
The Gaia AVU–GSR parallel solver: preliminary studies of a LSQR–based
application in perspective of exascale systems

Valentina Cesarea,∗, Ugo Becciania, Alberto Vecchiatob, Mario Gilberto Lattanzib, Fabio Pitaric, Mario Racitia,
Giuseppe Tudiscoa, Marco Aldinuccid, Beatrice Bucciarellib

aINAF, Astrophysical Observatory of Catania, via Santa Sofia 78, 95123 Catania, CT, Italy
bINAF, Astrophysical Observatory of Turin, via Osservatorio 20, 10025 Pino Torinese, TO, Italy

cCINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno, BO, Italy
dUniversity of Turin, Computer Science Department, corso Svizzera 185, 10149 Turin, TO, Italy

Abstract

The Gaia Astrometric Verification Unit–Global Sphere Reconstruction (AVU–GSR) Parallel Solver aims to find the
astrometric parameters for ∼108 stars in the Milky Way, the attitude and the instrumental specifications of the Gaia
satellite, and the global parameter γ of the post Newtonian formalism. The code iteratively solves a system of linear
equations, A× x = b, where the coefficient matrix A is large (∼1011 × 108 elements) and sparse. To solve this system
of equations, the code exploits a hybrid implementation of the iterative PC-LSQR algorithm, where the computation
related to different horizontal portions of the coefficient matrix is assigned to separate MPI processes. In the original
code, each matrix portion is further parallelized over the OpenMP threads. To further improve the code performance,
we ported the application to the GPU, replacing the OpenMP parallelization language with OpenACC. In this port,
∼95% of the data is copied from the host to the device at the beginning of the entire cycle of iterations, making the
code compute bound rather than data-transfer bound. The OpenACC code presents a speedup of ∼1.5 over the OpenMP
version but further optimizations are in progress to obtain higher gains. The code runs on multiple GPUs and it was
tested on the CINECA supercomputer Marconi100, in anticipation of a port to the pre-exascale system Leonardo, that
will be installed at CINECA in 2022.

Keywords: Massively parallel algorithms, astrometry, methods: numerical, Galaxy: stellar content

1. Introduction

The ESA’s Gaia mission1 has provided, in the eight
years since its launch on 19th December 2013, a map both
in the position and in the velocity dimensions of ∼1 billion
of stars in the Milky Way, about 1% of its total content,
with micro-arcsecond accuracy. Two of the main objec-
tives of the mission are the investigation of the formation
and the evolution of our galaxy (e.g. Krolikowski et al.
2021) and the test of Einstein’s theory of General Rela-
tivity (GR) (e.g. Hees et al. 2018). Indeed, thanks to the
accuracy of the measurements, Gaia can detect the bend-
ing of the light around massive objects and the consistency
of this effect with the predictions of GR can be verified.

In the Gaia’s early third data release (EDR3) (Brown
et al., 2021) a catalogue of parallaxes, sky positions, and

∗Corresponding author
Email addresses: valentina.cesare@inaf.it (Valentina

Cesare), ugo.becciani@inaf.it (Ugo Becciani),
alberto.vecchiato@inaf.it (Alberto Vecchiato),
mario.lattanzi@inaf.it (Mario Gilberto Lattanzi),
f.pitari@cineca.it (Fabio Pitari), mario.raciti@inaf.it (Mario
Raciti), giuseppe.tudisco@inaf.it (Giuseppe Tudisco),
marco.aldinucci@unito.it (Marco Aldinucci),
beatrice.bucciarelli@inaf.it (Beatrice Bucciarelli)

1https://sci.esa.int/web/gaia

proper motions of ∼1.468×109 stars was published and the
complete Gaia’s third data release (DR3) was published
in June 2022. The application that we present in this
work, called Gaia Astrometric Verification Unit–Global
Sphere Reconstruction (AVU–GSR) Parallel Solver, is de-
veloped under the Data Processing and Analysis Consor-
tium (DPAC), and it aims to find these parameters for the
so-called primary stars of the global astrometric sphere of
the Gaia mission, comprising ∼108 stars. Moreover, it will
constrain the attitude and the instrumental settings of the
Gaia satellite and the parameter γ of the Parametrized
Post-Newtonian (PPN) formalism of relativistic gravity
theories to describe the space-time and to test GR against
alternative theories of gravity (Vecchiato et al., 2003).

The astrometric model of the observations produces a
set of non-linear equations, one for each observation of the
Gaia satellite, as a function of the unknowns. To ren-
der this system of equations computationally solvable, the
observation equations are linearized around an appropri-
ate starting point. The resulting linearized system can be
written in matrix form as:

A× x = b, (1)

where A is the coefficient matrix, x the vector of the un-

Preprint submitted to Journal of LATEX Templates December 23, 2022

ar
X

iv
:2

21
2.

11
67

5v
1

 [
as

tr
o-

ph
.I

M
]

 2
2

D
ec

 2
02

2

https://sci.esa.int/web/gaia

knowns, and b the vector of the known terms. The system
matrix A is large and sparse (∼1011×108 elements), where
the number of rows is the number of observations of the
stellar parameters and the number of columns is the num-
ber of unknowns to solve. During computation only the
non-zero elements of A are considered, and the new matrix
contains ∼1011 × 101 elements. A single star is observed
∼103 times, on average. Since the number of equations is
much larger than the number of unknowns, the system has
to be solved in the least-squares sense, adopting a mod-
ified version of the iterative LSQR algorithm (Paige and
Saunders, 1982a,b), where the iterations stop when either
a given convergence criterion or a maximum number of
iterations is achieved.

The latest version of the code is written in C/C++
and is hybridly parallelized with MPI + OpenMP (Bec-
ciani et al., 2014). Each MPI process deals with the com-
putation of a horizontal portion of the coefficient matrix,
a subset of the total number of observations, and the cal-
culation in each MPI process is further parallelized over
the OpenMP threads.

Here we present a preliminary port of this application
to GPUs, where we replace the OpenMP part with the par-
allelization language OpenACC, finalized to a more opti-
mized port with CUDA to pre-exascale systems. The Ope-
nACC code runs on multiple GPUs and currently presents
a moderate gain in performance over the OpenMP ver-
sion, which might be improved with the future optimiza-
tions both with OpenACC and CUDA. We performed the
performance tests on the MPI + OpenMP and MPI +
OpenACC versions of the application on the CINECA su-
percomputer Marconi100 (M100).

The contents of the paper are as follows: Section 2
briefly describes the usage of the LSQR algorithm in the
literature; Section 3 presents the structure of the coeffi-
cient matrix of the system of equations; Section 4 details
the present version of the code parallelized with MPI +
OpenMP, in production on M100; Section 5 describes the
platform on which the code that is in production runs and
presents the performance of a typical execution of the in-
production code; Section 6 presents the current port to
the GPU with MPI + OpenACC; Section 7 describes the
tests, performed on M100, that compare the performance
of the MPI + OpenMP and MPI + OpenACC applica-
tions; Section 8 concludes the paper, also introducing the
future work with CUDA aimed to further accelerate the
code.

2. Related work

The main algorithm of this application is based on the
LSQR, an iterative Krylov subspace algorithm conceived
to solve large scale ill-posed problems while maintaining
numerical stability (Paige and Saunders, 1982a,b). Typ-
ically, the LSQR algorithm is employed to solve, in the
least-squares sense, a system of equations with a large

and sparse coefficient matrix that has not a unique so-
lution (e.g. Paige and Saunders 1982a,b; Reichel and Ye
2008; Jaffri et al. 2020; Penghui and Houbiao 2020). To
mention some examples, this algorithm is exploited in the
following contexts: (I) geophysics, to locate underground
gravitational and magnetic anomalies (Joulidehsar et al.,
2018; Liang et al., 2019a,b); (II) medicine, in electrocar-
diography (Bin et al., 2020) and X-ray tomography (Guo
et al., 2021); (III) industry, in electrical resistance tomog-
raphy (Jaffri et al., 2020); (IV) astronomy, for radioastro-
nomical image reconstruction (Naghibzadeh and van der
Veen, 2017), and in the application presented in this paper.

The LSQR algorithm was also adopted for the data re-
duction of the High Precision Parallax Collecting Satellite
(Hipparcos) Space Astrometry Mission, the first astromet-
ric space mission defined within the ESA scientific program
and precursor of the Gaia mission (Borriello et al., 1986;
Van der Marel, 1988; Becciani et al., 2014). In several
research fields, this algorithm is used to solve an inverse
problem, one of the most important issues in mathemati-
cal sciences, that consists of estimating the parameters of
a model from a set of observational data (e.g. Liang et al.
2019b; Bin et al. 2020; Guo et al. 2021). This is also the
target of the Gaia AVU–GSR application.

The LSQR algorithm usually adopts a precondition-
ing technique (e.g. Ling et al. 2019; Bin et al. 2020) to
improve its convergence speed, that could consist of prop-
erly normalizing the coefficient matrix of the system before
starting the iterations and multiplying this normalization
factor with the solution obtained only at the end of the
computation. This allows the LSQR algorithm to find an
equally accurate solution in ∼60-70% of the time com-
pared to other standard algorithms such as the conven-
tional iterative reweight norm method (Bin et al., 2020).
In the Gaia AVU-GSR code, we preconditioned the system
of equations by dividing the parameters of each column of
the coefficients matrix by the norm of the column itself.
We stored these normalization factors in an array p with
a number of elements equal to the number of columns of
the coefficient matrix and we multiplied this array with
the solution and standard error arrays at the end of all
the iterations. The preconditioned LSQR algorithm can
be abbreviated as PC-LSQR.

Typically, the systems of equations that exploit the
LSQR algorithm require parallelism to be solved in rea-
sonable timescales and to overcome possible problems due
to memory limits, given the large size of their coefficient
matrices (Huang et al., 2012). There are several exist-
ing implementations of the parallel LSQR algorithm. For
example, the implementation of Baur and Austen (2005)
exploits repeated vector-vector operations and was applied
to the data taken by the CHAMP, GRACE, and GOCE
satellites, and the implementations of Liu et al. (2006)
and Huang et al. (2013) were employed in seismic to-
mography. Another example is provided by the Portable,
Extensible Toolkit for Scientific Computation (PETSc) li-
braries (Balay et al., 1997, 2021a,b), optimized scientific li-

2

braries that support MPI and GPU (CUDA and OpenCL)
parallelism and even hybrid MPI + GPU parallelization
paradigms.

The main issue for these libraries is that they are not
optimized for sparse matrices with particular patterns of
non-zero elements (Yoo et al., 2011) and, thus, they are not
suitable to solve systems of equations, such as the one of
the Gaia AVU–GSR application, that are based on a very
peculiar sparsity scheme, as described in Section 3. When
dealing with such large systems, optimization is essential:
assuming a system that converges in 141000 iterations,
with 4.23 s per iteration, representative of a typical execu-
tion of the Gaia AVU-GSR code (see Section 5), saving 1 s
per iteration means saving 2350 hours, that is the ∼24% of
the initial execution time. These percentages might vary
for systems with different sizes. For this reason, we did not
adopt an existing implementation of the LSQR algorithm
but defined a customized implementation, which exploits
a preconditioning technique and an ad-hoc algorithm to
compress the sparse coefficient matrix of the system of
equations.

We ported our application to a GPU environment, us-
ing the OpenACC parallel programming model. Some im-
plementations of GPU-ported LSQR algorithm were cre-
ated for solving problems in specific fields, e.g. seismic (Huang
et al., 2012) or medical (Flores et al., 2016) tomography. In
particular, Huang et al. (2012) implemented a MPI–CUDA
version of the LSQR algorithm with excellent performance:
17.6x speedup over the serial CPU algorithm and 3.8x
speedup over the MPI–CPU algorithm, besides obtaining
a better performance than the PETSc implementation and
very good strong and weak scaling behaviours2.

3. Coefficient matrix structure

As mentioned in Section 1, this application solves a
system of linear equations given by Eq. (1), where the co-
efficient matrix A contains ∼1011×108 elements. To solve
the system, we may choose between two fully-relativistic
astrometric models (Bertone et al., 2017; Crosta et al.,
2017), whose unknowns are (Becciani et al., 2014):

1. the astrometric unknowns, i.e. the parallax ω, the
right ascension α, the declination δ, and the two
components of the proper motion along these two
directions, (µα, µδ), of every star;

2. the attitude unknowns, given by a proper B-spline
representation of the Rodrigues parameters that de-
scribe the satellite attitude during the entire dura-
tion of the mission;

2The strong scaling is the capability of a parallel software to com-
pute a fixed-size problem faster with more computing resources (Am-
dahl, 1967). Instead, the weak scaling is the capability of a par-
allel software to maintain constant the computation time of a
problem with a size proportional to the amount of computing re-
sources (Gustafson, 1988).

3. the instrumental unknowns;

4. the global unknown γ of the PPN formalism;

with a total of ∼108 unknowns.
To solve the system of equations, we adopted a hy-

brid implementation of PC-LSQR, an iterative conjugate-
gradient type algorithm that can solve an overdetermined
system of linear equations in the least-squares sense. The
most computationally demanding part of this algorithm,
and of the entire application, consists of the call, at each
iteration i, of the aprod function in one of two possi-
ble modes. In the mode 1, aprod computes the product
A × xi, where xi is the i-th approximation of the solu-
tion of the system. In the mode 2, aprod computes the
product AT ×yi, where yi is proportional to the iterative
estimation of the vector of the residuals, y′i = b−A×xi,
and b is the vector of the known terms. The vector of the
residuals is the quantity that has to be minimized in the
least-squares sense up to the convergence of the algorithm.
In fact, the convergence is considered achieved when y′i

goes below a predefined tolerance tol, set to the machine
precision (10−16 on M100). To find a unique solution, an
additional number of constraint equations have to be set.

Figure 1 shows the flowchart of the entire code. First
of all, the quantities employed in the calculations, such as
the coefficient matrix A and the known terms array b, are
imported from external binary files, converted in binary
format from original FITS files with an external program.
Then, we calculate the preconditioning array p and we
normalize each column of A by the elements of this vector
(Section 2). From the normalized coefficient matrix and
the known terms array, we calculate, in each MPI pro-
cess, the initial solution of the system of equations, with
the aprod 2 function. The initial solution is then reduced
among the different MPI processes. Then, the LSQR algo-
rithm starts. The LSQR algorithm consists of a while loop
that terminates when either the convergence condition or,
in case convergence cannot be achieved, a maximum num-
ber of iterations are reached. At each iteration i of the
LSQR algorithm, the aprod 1 and 2 functions are called to
provide the iterative estimates of the known terms b and of
the unknowns x, respectively, locally to each MPI process.
The b and the x arrays are then reduced among the MPI
processes. At the end of each iteration, we also compute
the standard errors on the unknowns (variances) and the
possible correlations between the unknowns (covariances).
After the end of the LSQR cycle, we re-multiply the solu-
tion and the error on the solution by the preconditioning
vector p. The algorithm concludes with the print of the
solution, its standard error, and the covariances to binary
files, that are converted to FITS format with an external
program.

Each observation equation (each row of the coefficient
matrix A) contains the astrometric, the attitude, the in-
strumental, and the global parameters (vertical stripes on
the coefficient matrix in Figure 2). The astrometric co-
efficients represent the ∼90% of A and they are equal to

3

NAstro × NStars × NObs, where NAstro = 5 is the number
of astrometric parameters per star, NStars ∈ [106, 108] is
the number of stars, and NObs ∼ 1011 is the number of
observations. The non-zero astrometric coefficients of A
are organized in a block-diagonal structure (left part of
the coefficient matrix in Figure 2), where the rows of each
block contain the astrometric parameters observed for a
certain star. Specifically, the first block is related to star
number 0, the second block to star number 1, and so forth.

After the astrometric section, each row of the atti-
tude part of the matrix A contains NAtt = 12 parame-
ters different from zero, organized in NAxes = 3 blocks of
NParAxis = 4 elements separated by NDFA elements equal
to zero. NAxes represents the number of axes of the satel-
lite attitude, in this case equal to 3, whereas NDFA is the
number of degrees of freedom carried by each of the three
axes. After the attitude section, each row of the instru-
mental part of the matrix A contains NInstr = 6 elements
different from zero, distributed without any predefined or-
der, and the last columns of A contain the coefficients
of the global unknowns. In our case, we only considered
NGlob = 1 global parameter, which is the parameter γ of
the PPN formalism. The left part of Figure 2 summarizes
the structure of the system matrix A.

The coefficient matrix A is large and sparse, since the
ratio between the number of elements equal to zero and
different from zero is much larger than one. With a large
matrix of ∼1011 × 108 elements, solving the system could
not be performed on any existing infrastructure, even with
an efficient parallelization scheme. For this reason, the ma-
trix is compressed through an ad-hoc algorithm (Becciani
et al., 2014) and only the non-zero elements of A are con-
sidered during computation. In this way, the matrix size
reduces from ∼1011 × 108 to ∼1011 × 101. The new ma-
trix, Ad, where “d” stands for “dense”, is stored in a 1D
double-precision array that contains, for each observation,
Npar = 24 non-zero parameters (NAstro = 5 astrometric
coefficients, NAtt = 12 attitude coefficients, NInstr = 6 in-
strumental coefficients, and NGlob = 1 global coefficient).

To solve the system of equations with Ad, we defined
a map between the indexes of the elements in Ad and in
the original matrix A. The 1D single-precision array M i

contains the number of the star and the index of the first
attitude element in the matrix A, for each observation,
i.e. for each row of A. Given the regular structures of
the astrometric and of the attitude sections in the matrix
A, described above, these two indexes are sufficient to re-
trieve the original positions of all the astrometric and the
attitude coefficients in A. Instead, the 1D single-precision
array Ic contains the indexes pointing to the positions
that all the instrumental elements of Ad had in A, since
the instrumental part does not follow a regular pattern.
Instead, the unknowns and the known terms are stored in
two 1D double-precision arrays, x and b, respectively.

Figure 1: Flowchart of the entire Gaia AVU–GSR application.

4. Parallel code structure: MPI + OpenMP

The application is parallelized with MPI + OpenMP.
Figure 2 summarizes the parallelization scheme of the sys-
tem of equations (Eq. 1) on four MPI processes, repre-
sented with four different colours, in a single node of a
computer cluster.

The computation associated with different horizontal
portions of the matrix Ad, i.e. with different subsets of
the total number of observations, is assigned to separate

4

{
{
{
{

Att+Instr+Glob

Observations: MPI proc. 0

G
l
o
b
a
l

A x

Replica Portion

Astrometric Attitude Instrument

Observations: MPI proc. 1

Observations: MPI proc. 2

Observations: MPI proc. 3

Astrometric

b

Reduction at iteration i

Figure 2: Parallelization scheme of the system of equations (Eq. 1) on four MPI processes in a single node of a computer cluster. From the left
to the right, we can see the coefficient matrix A, the unknowns vector x, and the known terms vector b. The coloured stripes refer to the four
MPI processes where the computation is performed. The block-diagonal part in the left side of the coefficient matrix represents its astrometric
section. The four square blocks diagonally arranged, colour-coded as the MPI processes, and labelled as “Astrometric” show the astrometric
part of the solution array, distributed among the MPI processes. Instead, the four blue aligned blocks, labelled as “Att+Instr+Glob”,
represent the attitude, instrumental, and global portions of the solution array, replicated on each MPI process, as written below. At the end
of each iteration i, a reduction of the replicated portions of x is performed.

MPI processes. The number of observations handled by
each MPI process is stored in a 1D single-precision array,
N [nproc], where nproc is the total number of MPI pro-
cesses on which the code runs.

To optimize the code, the data are distributed among
the MPI processes as evenly as possible. To perform this
task, a small portion of the data, i.e. the attitude, the in-
strumental, and the global portions of the unknown vector
x, is replicated on each MPI process. The “Att+Instr+Glob
– Replica portion” part in Figure 2 represents this repli-
cated portion of the solution array. The majority of the
data, i.e. the astrometric section of x, is distributed, as
we can see from the four “Astrometric” blocks in Figure 2,
colour-coded as the four MPI processes. This scheme re-
duces the number of communications between the different
MPI processes. At every iteration of the LSQR algorithm,
a reduce operation is performed to combine the results, i.e.
the replicated parts of the i-th iterative estimates of both
the known terms and the solution arrays, bi and xi, from
the different MPI processes (Figures 1 and 2).

The reason for distributing the astrometric part and
replicating the attitude, instrumental, and global parts on
the MPI processes instead of distributing the entire sys-
tem is due to the different arrangements of the coefficients
in the four parts of the system. The coefficients of the

astrometric section are regularly distributed in the system
matrix following a block-diagonal structure, which makes
it easy to assign their computation to different MPI pro-
cesses. Instead, the other three sections do not follow a
specific regular pattern, which makes more difficult to re-
arrange the code to distribute their computation among
the MPI processes. Replicating the computation of the
attitude + instrumental + global parts on the MPI pro-
cesses simplifies the writing of the code while implying only
a minor loss in performance, since these sections represent
only the ∼10% of the total.

The observations treated by each MPI process are fur-
ther parallelized over the OpenMP threads, where the in-
dex of the thread, tid, goes from 0 to nth−1, where nth is
the total number of threads set at runtime (see lines omp.3
and omp.4 of Algorithm 2). In the aprod 1, the paralleliza-
tion with OpenMP is managed with the #pragma omp for

directive, placed on the for loop at line omp.4 of Algo-
rithm 1. In the aprod 2, we defined a single-precision 1D
array, N t, that stores the number of observations dealt
by each OpenMP thread tid, similarly to the array N for
each MPI process of rank pid. The for loop that manages
the computation in each OpenMP thread of ID tid iter-
ates from N t[tid][0] to N t[tid][1], where N t[tid][0] and
N t[tid][1] are the first and the last observation in the tid-

5

th thread (see line omp.5 of Algorithm 2).

5. The Marconi100 cluster and the production of
the AVU–GSR code

The application has been in production since 2014 un-
der an agreement between Istituto Nazionale di Astrofisica
(INAF) and CINECA, with the support of the Italian
Space Agency (ASI). The code has run on all the Tier0
systems of CINECA and it is now employed by the Coor-
dination Unit 3 (CU3) of DPAC for the AVU-GSR tasks.
The entire process of AVU-GSR is managed by the Data
Processing Center of Turin (DPCT) that is supervised by
the Aerospace Logistics Technology Engineering Company
(ALTEC) in collaboration with the Astrophysics Observa-
tory of Turin (INAF-OATO).

The application is currently running on the CINECA
supercomputer M100 which has 980 compute nodes with
the following features:

1. 2 sockets of 16 physical cores each, of the type IBM
POWER9 AC922, with a processor speed of 3.1 GHz.
Each physical core corresponds to 4 virtual cores,
with a total of 128 (2 × 16 × 4) virtual cores per
node;

2. 4 GPUs of the type NVIDIA Volta V100, with a
memory of 16 GB each, connected with Nvlink 2.0;

3. 256 GB of RAM.

So far, we have worked with a subset of the total num-
ber of observations. One of the most recent runs, which is
representative of a typical execution, dealt with ∼8.4×106

stars observed multiple times, with a total number of ob-
servations equal to ∼1.8×109. The execution converged
after ∼141000 iterations, with a time per iteration equal
to ∼4.23 s. This results in a total elapsed time of te ' 166
hours. The run was executed on 2 nodes of M100, on a
total of nproc = 32 MPI processes (16 per node). For each
MPI process, the code ran on nth = 2 OpenMP threads.
The run occupied a memory of ∼10.6 GB per MPI pro-
cess, correspondent to a total memory of ∼340 GB. With
these features, the total computational time corresponds
to tc = te × nproc × nth = 10624 hours. The astrometric
unknowns were retrieved with a micro-arcsecond resolu-
tion (Vecchiato et al., 2018).

6. From the CPU to the GPU: OpenACC

To further improve the performance of the application,
we ported it to the GPU by replacing OpenMP with Ope-
nACC (see Aldinucci et al., 2021, for the description of a
semi-automatic methodology to parallelize scientific appli-
cations with the OpenACC parallelization model).

6.1. Multi–GPU computation

The code runs on multiple GPUs, depending on the
number of MPI processes. The MPI processes in each node
are assigned to the GPUs of the node in a round-robin fash-
ion, according to the command at line 3 of Algorithm 3.

Figure 3 represents the parallelization scheme of the
coefficient matrix on four nodes of a computer cluster with
four MPI processes and four GPUs per node (e.g. M100).
The figure shows that the computation related to each
MPI process is assigned to a different GPU. Running on
a number of MPI processes per node equal to the number
of GPUs per node, like in this example, represents the
optimal configuration, as better explained in Section 7.1.

6.2. Data transfers

The GPU has∼102 times more cores than the CPU and
it is ideal to parallelize the computation of a large amount
of data. When dealing with GPU programming, it is im-
portant to proper manage the data transfers from the host
(CPU) to the device (GPU) (H2D) and vice versa (D2H).
Indeed, if a code parallelized on the GPU becomes data-
transfer bound, namely the data transfers dominate the
computation, its performance could worsen compared to
the same code parallelized on the CPU. Managing the data
copies is particularly important in iterative constructs,
where it is essential to move as much data as possible at the
beginning and/or at the end of the entire iteration cycle,
and to reduce the copies at every step of the algorithm.

The data movements between the CPU and the GPU
are regulated by particular directives placed in strategical
points of the code. Specifically, we employed the following
directives (see lines 4, 10, 12, 14, and 16 of Algorithm 3):

1. #pragma acc enter data copyin(), that copies H2D
the arrays listed within the round brackets;

2. #pragma acc exit data copyout(), that copies D2H
the arrays listed within the round brackets.

In our port, we transfer ∼95% of the data H2D at the be-
ginning of the LSQR iterative cycle. This is possible since
these quantities are not modified during the computation
on the GPU. Particularly, among these quantities there
are (see line 4 of Algorithm 3):

1. Ad, the 1D double-precision array containing only
the non-zero elements of the coefficient matrix A
(the dense coefficient matrix);

2. M i, the 1D single-precision array containing the num-
ber of the star and the index of the first attitude
element for each observation of the original matrix
A;

3. Ic, the 1D single-precision array with the indexes
that the instrumental elements of the dense matrix
Ad had in the original matrix A;

4. N , the 1D single-precision array containing the num-
ber of observations assigned to each MPI process.

6

Algorithm 1: aprod 1 with OpenMP and OpenACC

aprod 1 with OpenMP

omp.1 #pragma omp parallel private(pid,sum)

shared(N,x,Ad,b)
omp.2 {
omp.3 #pragma omp for

omp.4 for i← 0 to N [pid] do
omp.5 sum = 0.0

// Astrometric sect.
omp.6 k = i×Npar

omp.7 for j ← 0 to NAstro do
omp.8 sum = sum+ Ad[k]x[j + offset[i]]
omp.9 k++

// Attitude sect.
omp.10 k = i×Npar +NAstro

omp.11 for j1 ← 0 to NAxes do
omp.12 k2 = j1 ×NDFA + offset[i]
omp.13 for j2 ← 0 to NParAxis do
omp.14 sum = sum+ Ad[k]x[j2 + k2]
omp.15 k++

// Instrumental sect.
omp.16 k = i×Npar +NAstro +NAtt

omp.17 for j ← 0 to NInstr do
omp.18 sum = sum+ Ad[k]x[F(i, j) + offset]
omp.19 k++

// Global sect.
omp.20 k = i×Npar +NAstro +NAtt +NInstr

omp.21 for j ← 0 to NGlob do
omp.22 sum = sum+ Ad[k]x[j + offset]
omp.23 k++

omp.24 b[i] = b[i] + sum

omp.25 }
omp.26 Constraints computation

aprod 1 with OpenACC

// Astrometric sect.
acc.1 #pragma acc parallel private(sum)

acc.2 {
acc.3 #pragma acc loop

acc.4 for i← 0 to N [pid] do
acc.5 sum = 0.0
acc.6 k = i×Npar

acc.7 for j ← 0 to NAstro do
acc.8 sum = sum+ Ad[k + j]x[j + offset[i]]

acc.9 b[i] = b[i] + sum

acc.10 }
// Attitude sect.

acc.11 #pragma acc parallel private(sum)

acc.12 {
acc.13 #pragma acc loop

acc.14 for i← 0 to N [pid] do
acc.15 sum = 0.0
acc.16 k = i×Npar +NAstro

acc.17 for j1 ← 0 to NAxes do
acc.18 k1 = j1 ×NParAxis

acc.19 k2 = j1 ×NDFA + offset[i]
acc.20 for j2 ← 0 to NParAxis do
acc.21 sum = sum+ Ad[k + j2 + k1]x[j2 + k2]

acc.22 b[i] = b[i] + sum

acc.23 }
// Instrumental sect.

acc.24 #pragma acc parallel private(sum)

acc.25 {
acc.26 #pragma acc loop

acc.27 for i← 0 to N [pid] do
acc.28 sum = 0.0
acc.29 k = i×Npar +NAstro +NAtt

acc.30 for j ← 0 to NInstr do
acc.31 sum = sum+ Ad[k + j]x[F(i, j) + offset]

acc.32 b[i] = b[i] + sum

acc.33 }
// Global sect.

acc.34 #pragma acc parallel private(sum)

acc.35 {
acc.36 #pragma acc loop

acc.37 for i← 0 to N [pid] do
acc.38 sum = 0.0
acc.39 k = i×Npar +NAstro +NAtt +NInstr

acc.40 for j ← 0 to NGlob do
acc.41 sum = sum+ Ad[k + j]x[j + offset]

acc.42 b[i] = b[i] + sum

acc.43 }

acc.44 Constraints computation
7

Algorithm 2: aprod 2 with OpenMP and OpenACC

aprod 2 with OpenMP

omp.1 #pragma omp parallel private(pid,tid,nth)
shared(N,x,Ad,b)

omp.2 {
// ID number of the OpenMP thread

omp.3 tid = omp get thread num()
// Number of OpenMP threads

omp.4 nth = omp get num threads();
omp.5 for i←N t[tid][0] to N t[tid][1] do

// Astrometric sect.
omp.6 k = i×Npar

omp.7 for j ← 0 to NAstro do

omp.8 x[j + offset[i]] = x[j + offset[i]] + Ad[k]b[i]
omp.9 k++

// Attitude sect.
omp.10 k = i×Npar +NAstro

omp.11 for j1 ← 0 to NAxes do
omp.12 k2 = j1 ×NDFA + offset[i]
omp.13 for j2 ← 0 to NParAxis do
omp.14 x[j2 + k2] = x[j2 + k2] + Ad[k]b[i]
omp.15 k++

// Instrumental sect.
omp.16 k = i×Npar +NAstro +NAtt

omp.17 for j ← 0 to NInstr do
omp.18 x[F(i, j)+offset] = x[F(i, j)+offset]+Ad[k]b[i]
omp.19 k++

// Global sect.
omp.20 k = i×Npar +NAstro +NAtt +NInstr

omp.21 for j ← 0 to NGlob do
omp.22 x[j + offset] = x[j + offset] + Ad[k]b[i]
omp.23 k++

omp.24 }
omp.25 Constraints computation

acc.1 aprod 2 with OpenACC

acc.2 #pragma acc parallel

acc.3 {

acc.4 #pragma acc loop

acc.5 for i← 0 to N [pid] do

// Astrometric sect.
acc.6 k = i×Npar

acc.7 for j ← 0 to NAstro do
acc.8 #pragma acc atomic

acc.9 x[j + offset[i]] = x[j + offset[i]] + Ad[k + j]b[i]

// Attitude sect.
acc.10 k = i×Npar +NAstro

acc.11 for j1 ← 0 to NAxes do
acc.12 k1 = j1 ×NParAxis

acc.13 k2 = j1 ×NDFA + offset[i]
acc.14 for j2 ← 0 to NParAxis do
acc.15 #pragma acc atomic

acc.16 x[j2 + k2] = x[j2 + k2] + Ad[k + j2 + k1]b[i]

// Instrumental sect.
acc.17 k = i×Npar +NAstro +NAtt

acc.18 for j ← 0 to NInstr do
acc.19 #pragma acc atomic

acc.20 x[F(i, j)+offset] = x[F(i, j)+offset]+Ad[k+j]b[i]

// Global sect.
acc.21 k = i×Npar +NAstro +NAtt +NInstr

acc.22 for j ← 0 to NGlob do
acc.23 #pragma acc atomic

acc.24 x[j + offset] = x[j + offset] + Ad[k + j]b[i]

acc.25 }

acc.26 Constraints computation

8

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

Observations: node 1

G
l
o
b
a
l

Astrometric Attitude Instrument

Observations: node 2

Observations: node 3

Observations: node 4

GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3

Figure 3: Parallelization scheme of the coefficient matrix of the system on four nodes of a computer cluster with four MPI processes and four
GPUs per node. The right part of the figure represents the coefficient matrix and the left part shows the GPUs on the four nodes of the
cluster. Each large stripe (yellow, green, blue, and brown) represents one node and the four colour-coded sub-stripes in each node correspond
to the four MPI processes in the node, associated with the different GPUs of the node.

There is no reason to copy these data back to the CPU
at the end of the entire cycle of iterations. For a typical
execution as the one presented in Section 5, that occupies
a total memory of ∼340 GB, the quantities Ad, M i, and
Ic occupy a memory of ∼246 GB, ∼27 GB, and ∼41 GB,
respectively, whereas the amount of memory occupied by
the array N is negligible compared to the total.

The only arrays that need to be copied both H2D and
D2H at every step of the LSQR algorithm are x, containing
the unknowns of the problem, and b containing the known
terms of the system of equations (see lines 10, 12, 14,
and 16 of Algorithm 3), since they are both updated at
each iteration. The H2D and the D2H copies of x and b
are performed both for the aprod 1 and for the aprod 2
functions but this does not imply a substantial slowdown
of the code, since these vectors only represent the ∼5%
of the total memory. Indeed, for the execution presented
above, the x and b arrays occupy a memory of ∼0.23 GB
and ∼14 GB, respectively.

Managing the data copies in this way, that is moving
the ∼95% of the data H2D before the LSQR cycle and
only the ∼5% of the data H2D and D2H at each step
of the LSQR, the time employed in memory transfers is
much less than the time employed in calculations, namely
the application is compute bound rather than data-transfer
bound. This point is better addressed in Section 7.3.

6.3. Parallelization

We defined the aprod modes 1 and 2 in two separate
functions that we both ported to the GPU. In aprod 1, we

reorganized the structure of the code: instead of comput-
ing the astrometric, the attitude, the instrumental, and the
global sections within a single external for loop iterating on
the number of observations assigned to each MPI process
(Algorithm 1, left column), we repeated the external loop
four times, once for every section (Algorithm 1, right col-
umn). Then, we enclosed each of the newly arranged sec-
tions in a #pragma acc parallel private(sum) direc-
tive, defining four parallel regions (lines acc.1–10, acc.11–
23, acc.24–33, and acc.34–43 of Algorithm 1). The #pragma
acc parallel directive starts a parallel execution on the
current device and, to be effective, it requires an analy-
sis by the programmer to ensure safe parallelism of the
region of the code that is enclosed within the scope de-
fined by the directive. The variable sum is declared within
the private clause (lines acc.1, acc.11, acc.24, and acc.34
of Algorithm 1), such that each GPU thread has a local
copy of it. In each parallel region, we parallelized the
most external for loop with the #pragma acc loop direc-
tive (lines acc.3, acc.13, acc.26, and acc.36 of Algorithm 1).

We inserted the entire aprod 2 in a #pragma acc parallel
region (Algorithm 2, lines acc.2–25) and we parallelized
the most external for loop with a #pragma acc loop di-
rective (Algorithm 2, line acc.4). With OpenACC, the
variable tid, that identifies the OpenMP thread in the
CPU code, becomes unnecessary: therefore the for loop
at line omp.5 of Algorithm 2 does not iterate anymore
from N t[tid][0] to N t[tid][1], but from 0 to N [pid], where
pid is rank of the MPI process. On the lines of code that
compute the operation x = x + A × b in the astromet-
ric, the attitude, the instrumental, and the global sections

9

Algorithm 3: Structure of the entire Gaia AVU–GSR application in OpenACC

1 Import data from files
2 Preconditioning
3 acc set device num(pid%acc get num devices(acc device default),acc device default)

4 #pragma acc enter data copyin(Ad,M i,Ic,N)

5 #pragma acc enter data copyin(x,b)
6 aprod 2 call (calculation of the initial solution)
7 #pragma acc exit data copyout(x,b)
8 MPI reduce

// LSQR algorithm
9 while (conv. cond. | | max itn. reached) do

10 #pragma acc enter data copyin(x,b)
11 aprod 1 call
12 #pragma acc exit data copyout(x,b)
13 MPI reduce
14 #pragma acc enter data copyin(x,b)
15 aprod 2 call
16 #pragma acc exit data copyout(x,b)
17 MPI reduce
18 Variances and covariances computation

19 Print solution to files

(lines acc.9, acc.16, acc.20, and acc.24 of Algorithm 2), we
put a #pragma acc atomic directive, preventing different
GPU threads to simultaneously write the same elements
of the array x.

6.4. Compilation and optimization of the code

To compile the application, we employed the PGI com-
piler3. Specifically, we prepared a Makefile and we com-
piled with the -acc, -fast, and -ta=tesla:maxregcount:32

options, where:

1. -acc enables the OpenACC directives;

2. -fast includes a set of flags to optimize the code;

3. maxregcount:n specifies that the GPU employs a
maximum number of registers equal to n. In partic-
ular, we set n to 32, since it optimizes the usage of
the compute resources and the memory occupancy
of a NVIDIA Volta V100 GPU, the device on which
the code is tested, and it provides a speedup of the
application. For better details, see Section 7.4.

The application uses the CFITSIO4, a library of C and
Fortran subroutines for reading and writing data files in
FITS data format. Indeed, before the start of the LSQR
iterations, the application converts the input data from
FITS to binary format, read by the LSQR, and after the
end of the LSQR iterations the solution is written to a
binary file then converted to FITS format (Figure 1).

3https://www.pgroup.com/resources/docs/19.1/x86/

pgi-ref-guide/index.htm
4https://heasarc.gsfc.nasa.gov/fitsio/

7. Performance tests

We aim to build a GPU version of the Gaia AVU-GSR
application that accelerates compared to the current MPI
+ OpenMP code. In this section, we compare the perfor-
mance of the OpenMP and the OpenACC codes. To per-
form this task, we simulated a complete system of stars in
the Milky Way, the attitude and the instrumental settings
of the Gaia satellite, and the global parameter γ of the
PPN formalism, as described in Section 3.

We ran the performance tests on the CINECA super-
computer M100, described in Section 5. On M100, the
memory of one node is of 256 GB and the memory of the
4 GPUs in each node is of 4× 16 GB. For this reason, we
cannot run the tests for the OpenACC code by simulating
a system that occupies a memory larger than 64 GB per
node. For safety reasons, to avoid memory overflows due
to the GPU architecture, we decided to lower this limit to
40 GB per node. The OpenMP code is not subject to this
limitation but we needed to set the same amount of mem-
ory in the two applications to compare their performance.

For a complete exploration of the performance of the
two applications, we ran the tests both on a single node
and on an increasing number of nodes, setting a system
with a fixed amount of memory. We also ran the tests on
more nodes, setting an amount of memory proportional to
the number of nodes. Specifically, the three tests were run
with the following configurations:

1. Fixed memory, intra-node: on 1 node of M100, on an
increasing number of MPI processes, setting the pa-
rameters of the system such that it occupies a mem-

10

https://www.pgroup.com/resources/docs/19.1/x86/pgi-ref-guide/index.htm
https://www.pgroup.com/resources/docs/19.1/x86/pgi-ref-guide/index.htm
https://heasarc.gsfc.nasa.gov/fitsio/

ory of 10 GB.5;

2. Fixed memory, inter-nodes: on an increasing num-
ber of nodes of M100, up to 16 nodes, with 4 MPI
processes per node and a system that occupies a
memory of 40 GB;

3. Proportional memory, inter-nodes: on an increasing
number of nodes of M100, up to 16 nodes, with 4
MPI processes per node, setting a system that oc-
cupies a memory of 40 GB per node (40 GB on one
node, 80 GB on two nodes, and so forth).

The tests are illustrated in Figure 4. The code ran
up to convergence of the LSQR algorithm, to increase the
statistical meaning of the time measurements. On the ver-
tical axis of all plots in Figure 4, we show the mean ex-
ecution time of one LSQR iteration. The error on these
measurements, represented as error bars, is provided by
the standard deviation of the times of all the LSQR itera-
tions.

In the intra-node plot (Figure 4a), the bottom hori-
zontal axis represents the number of MPI processes, set to
{1,2,4,8,16,32}. For the OpenMP version of the code, the
top horizontal axis shows the number of OpenMP threads
assigned to each MPI process. In particular, the number of
OpenMP threads is set such that the product of the num-
ber of MPI processes and the number of OpenMP threads
is equal to 32, the number of physical cores in one node
(Section 5). Since we set the number of MPI processes to
{1,2,4,8,16,32}, the number of OpenMP threads is set to
{32,16,8,4,2,1}.

To optimize each run in the intra-node and in the inter-
nodes tests, we set the number of MPI processes per socket
(--ntasks-per-socket) to the number of MPI processes
per node (--ntasks-per-node) divided by two, except
when we only consider one MPI process per node, since
M100 is a two-socket platform. As specified in Section 5,
each physical CPU core of M100 corresponds to 4 virtual
cores. We required that each MPI process on each node
was allocated on a different physical CPU core of the node
since, as experienced on POWER9 architecture and sug-
gested by the CINECA support for our specific case, al-
locating more MPI processes on different virtual cores of
the same physical CPU causes a slowdown of the code.
To obtain this configuration, we set the number of virtual
cores to allocate for each MPI process (--cpus-per-task)
such that the product between --ntasks-per-node and
--cpus-per-task is equal to 128, the total number of vir-
tual cores per node of M100. As detailed in the previous
paragraph, to exploit all the physical CPUs in each node,
we set the number of OpenMP threads (OMP NUM THREADS)

5In this test, the memory is not set to 40 GB but to 10 GB because
the codes are run on a number of MPI processes from 1 to 32. Since
the OpenACC code executed on one MPI process runs on only one
GPU, that has a memory of 16 GB, we cannot set a memory of 40
GB. It is logical to set the memory to 40 GB (the limit that we chose
for 4 GPUs) divided by 4 (the number of GPUs in the node).

such that the product of --ntasks-per-node and OMP NUM

THREADS is equal to 32.
Both the OpenMP and the OpenACC codes are launched

with a --map-by socket: PE=n specification. This map
defines the number of physical cores assigned to each MPI
process in one socket and is set to the total number of
physical cores present in a socket (16 on M100) divided
by the number of MPI processes per socket assigned for
the run. Setting this variable prevents each MPI process
to run on more virtual cores belonging to the same phys-
ical core in each socket. This map is fundamental for the
OpenMP code, that runs on the CPU, but it is basically
irrelevant for the OpenACC code, that mainly runs on the
GPU.

In the inter-nodes plots (Figures 4b and 4c), the bot-
tom horizontal axis represents, instead, the number of
nodes on which the codes run. Since the two inter-nodes
tests run on 4 MPI processes per node, the OpenMP code
is always parallelized on 8 OpenMP threads per MPI pro-
cess. We ran the two inter-nodes test on {1,2,4,8,16}
nodes, and thus on {4,8,16,32,64} total MPI processes.

7.1. Fixed memory

Figures 4a and 4b show the intra-node and the inter-
nodes performance tests of the code, respectively, with a
fixed memory configuration. Both plots demonstrate that
the OpenACC code is more performant than the OpenMP
code almost along the entire range of considered compu-
tational resources.

In the intra-node case, the gain in performance over
the OpenMP version increases when the OpenACC code
runs on a number of MPI processes larger or equal to 4.
This is due to the fact that, in these configurations, the
code runs on the four GPUs of the node, whereas when
the number of MPI processes is set to 1 and 2, the code
only exploits 1 and 2 GPUs, respectively (line 3 of Algo-
rithm 3). When running on a number of MPI processes ≥
4, the time of one iteration of the OpenACC code remains
nearly constant. For this reason, we could say that the op-
timal configuration to run the OpenACC code is on 4 MPI
processes per node, since we obtain the best performance
employing the minor number of computing resources: in
this setting, all the GPUs of the node are exploited and
only one MPI process is assigned to each GPU. This is
the configuration on which the GPU code will run when
in production.

Concerning the MPI + OpenMP code, we observe that
the response time decreases when the MPI processes in-
crease and the OpenMP threads decrease. Indeed, the
OpenMP parallelization is only employed within the two
aprod functions, whereas MPI parallelizes the entire struc-
ture of the code, combining among the MPI processes the
results obtained from the two aprod functions at each step
of the LSQR algorithm. In particular, we can observe from
Figure 4a that the optimal configuration for the OpenMP
code is to run on 16 MPI processes and 2 OpenMP threads.

11

We note that this configuration was employed for the in-
production run presented as an example in Section 5 and
for all the other production runs. Computing the speedup
of the OpenACC code over the OpenMP code as the ra-
tio between the iteration times achieved in the two opti-
mal settings, 4 MPI processes for the OpenACC code and
16 MPI processes + 2 OpenMP threads for the OpenMP
code, we obtain a factor of η = 1.20 ± 0.02. In general,
from 4 MPI processes on, the ratio between the average
times of one LSQR iteration of the OpenMP and the Ope-
nACC codes is nearly constant, around 1.3, and reaches
a maximum of 1.5 when comparing the two values on 32
MPI processes.

In the inter-nodes case, the ratio between the OpenMP
and the OpenACC average times remains nearly constant
along the entire range of nodes on which the codes were
run. This is explained by the fact that the two codes
always run in the same configuration, on 4 MPI processes
per node. Specifically, the OpenACC code always runs in
its optimal setting. Specifically, the average ratio, with
its dispersion, is 1.39 ± 0.06, consistent with the results
obtained for the intra-node case.

We note that the first point of the plot in Figure 4b
corresponds to a run of the two codes on 4 MPI processes
on one node and has an ordinate, i.e. the time for one iter-
ation, ∼4 times larger than the ordinate of the third point
of the plot in Figure 4a, that runs in the same configura-
tion. This is explained by the fact that the inter-nodes test
computes a system that occupies an amount of memory 4
times larger than the memory occupied by the system in
the intra-node test, as specified in the numbered list in
Section 7.

7.1.1. Strong scaling

We investigate the strong scaling of the OpenMP and
the OpenACC applications across the nodes. However,
porting the Gaia code to the GPU is not intended to im-
prove its scalability compared to the CPU code but its
performance, to obtain scientific results in more reason-
able timescales. In fact, we do not expect the scalability
of the OpenACC code to substantially change compared
to the OpenMP code, since the two applications have the
same structure.

The similar scaling behaviour of the OpenMP and the
OpenACC codes is confirmed by Figure 5a, that corre-
sponds to Figure 4b, where the iteration time is replaced
by the speedup, computed as:

S =
t1
tn
. (2)

In Eq. (2), t1 is the time of one average iteration of the
LSQR algorithm on one node and tn is the iteration time
on an increasing number of nodes. The error bars are
calculated by propagating the uncertainties on t1 and tn.
For comparison, we show as a black dashed line the ideal
speedup relation.

For both codes, the perfect scaling is achieved only
up to 2 nodes and for a larger number of nodes the two
scalability curves depart from the one-to-one line. Specifi-
cally, on 16 nodes, the OpenMP and the OpenACC codes
reach a maximum speedup of 9.91 and 9.57, respectively,
which translates to a parallel efficiency of 9.91/16 = 0.62
and 9.57/16 = 0.60. This moderate scalability can be
explained by the non-parallelizable parts of the two ap-
plications, such as atomic operations, and by the commu-
nications among the MPI processes scheduled across the
nodes.

7.2. Proportional memory

Figure 4c shows the inter-nodes performance test of the
codes where the system occupies a memory proportional to
the amount of computational resources. Also in this case,
the two codes always run on 4 MPI processes per node and
the OpenACC code is always in its optimal configuration.
The mean gain of the OpenACC code over the OpenMP
code, 1.44±0.02, is in agreement with the results obtained
in the two fixed memory tests.

7.2.1. Weak scaling

We investigate the weak scaling of the OpenMP and
of the OpenACC applications across the nodes. Figure 5b
corresponds to Figure 4c, where the iteration time is re-
placed by the scaled speedup. The scaled speedup and
its error are calculated as in Section 7.1.1. For compari-
son, we show as a black dashed line the S = 1 relation,
where S is the scaled speedup (Eq. 2), representing the
ideal trend of weak scalability, as stated by the Gustafson’s
law (Gustafson, 1988). The plot shows that the weak scal-
ability curves of the OpenMP and the OpenACC codes are
in agreement with each other and that the weak scaling is
quite well satisfied for both applications, since the mini-
mum scaled speedup is of 0.95 for the OpenMP code and
of 0.94 for the OpenACC code. The mean iteration time
passes from a minimum of 1.60 s (OpenMP) and 1.12 s
(OpenACC) when the codes run on one node to a max-
imum of 1.69 s (OpenMP) and 1.19 s (OpenACC) when
the codes run on 16 nodes.

7.3. Detailed analysis of the speedup

We now investigate the origin of the speedup of the
OpenACC code over the OpenMP code by comparing the
elapsed times of the different regions of the two applica-
tions and by evaluating how much the memory transfers
H2D/D2H of the OpenACC code affect its performance.
Specifically, we compare a run of the OpenACC and of
the OpenMP codes in their optimal configurations on one
node of M100 (4 MPI processes for the OpenACC code and
16 MPI processes + 2 OpenMP threads for the OpenMP
code). In this analysis, we do not consider the regions
before the first call of the aprod 2 function, to calculate
the initial solution, and of the region after the end of the
LSQR iteration cycle (see Figure 1), since they are com-
parable between the two codes, given that they are not

12

●

●
● ●

●

●

●

●

● ● ● ●

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

32 8 4 2 1

Number of MPI processes

Ite
ra
tio
n
tim
e
[s
]

Number of OpenMP threads

●

●

●

●
●

●

●

●

●
●

0 5 10 15
0.0

0.5

1.0

1.5

Number of nodes
Ite
ra
tio
n
tim
e
[s
]

●
●

● ● ●

● ● ●

● ●

OpenMP

OpenACC

0 5 10 15
1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of nodes

Ite
ra
tio
n
tim
e
[s
]

(a) (b)

(c)

Figure 4: Performance tests for the OpenMP (blue lines and error bars) and the OpenACC (red lines and error bars) codes. The vertical axis
represents the mean execution time of one LSQR iteration. Figure 4a: intra-node fixed memory performance test. The bottom axis shows
the number of MPI processes on which the codes run and the top axis the number of OpenMP threads assigned to each MPI process for the
OpenMP code. Figure 4b: inter-nodes fixed memory performance test. The bottom axis shows the number of nodes on which the codes run.
Figure 4c: inter-nodes proportional memory performance test. The bottom axis is as in Figure 4a.

ported to the GPU in the OpenACC application. The
simulated systems occupy a global memory of 10 GB, as
in the intra-node performance test.

Figure 6 shows the output of the NVIDIA Nsight Sys-
tems profiler tool6 for the run of the OpenACC code. We
considered a run with 4 iterations of the LSQR algorithm.
The NVIDIA Nsight Systems profiler is an analysis tool to
visualize all the regions of a GPU-ported application: (I)
computed by a GPU kernel (blue regions with the name of
the correspondent kernel), (II) that involve memory trans-
fers H2D (green regions) and D2H (purple regions), and
(III) still computed on the CPU (white regions). This

6https://developer.nvidia.com/nsight-systems

tool is particularly useful to suggest how to optimize an
in-development application, like the Gaia AVU-GSR one.
Specifically, Figure 6 shows the relevant portion of the
output of the OpenACC code, from line 4 to line 17 of
Algorithm 3, to be compared with the correspondent part
of the OpenMP code.

The most expensive computation regions are the exe-
cutions of the aprod 1 and 2 functions. Figure 7a shows a
zoom-in of one iteration of the run of the OpenACC code,
illustrated in Figure 6, where the aprod 1 and aprod 2 ker-
nels, identified with the blue areas labelled as “b plus...”
(aprod 1) and “x plus...” (aprod 2), are more visible.
The times employed by these regions are directly measured
from the profiler, for the OpenACC code (see Figures 7b

13

https://developer.nvidia.com/nsight-systems

●
●

●

●

●

●
●

●

●

●

2 4 6 8 10 12 14 16
0

5

10

15

Number of nodes

S
pe
ed
up

●

●

●

●
●

●
● ●

●
●

OpenMP

OpenACC

2 4 6 8 10 12 14 16

0.94

0.96

0.98

1.00

1.02

Number of nodes
S
ca
le
d
sp
ee
du
p

(a)

(b)

Figure 5: Fixed memory (a) and proportional memory (b) inter-nodes performance tests for the OpenMP (blue lines and error bars) and
the OpenACC (red lines and error bars) codes. Figure 5a: strong scaling of the OpenMP and the OpenACC codes. The black dashed line
represents the ideal speedup. Figure 5b: weak scaling of the OpenMP and the OpenACC codes. The black dashed line represents the ideal
Gustafson’s law (Gustafson, 1988). Figures 5a and 5b correspond to Figures 4b and 4c, respectively.

and 7c, where these times are highlighted on the corre-
sponding kernels), and with the MPI Wtime() function, for
the OpenMP code.

In the OpenACC code, the aprod 1 computation is di-
vided into four kernels, one for the astrometric, one for
the attitude, one for the instrumental, and one for the
global part of the system of equations, as we can see in
Figure 7b and in the right part of Algorithm 1. The to-
tal elapsed time of these four regions of the aprod 1 is of
ta1,ACC ∼ 0.15 s (see Figure 7b), and the correspondent
time for the OpenMP code is of ta1,OMP ∼ 0.12 s. This
clearly means that the speedup of the OpenACC appli-
cation over the OpenMP code is not due to the aprod 1
function but that, instead, the OpenACC code looses in
performance compared to the OpenMP counterpart in ex-
ecuting this function. Specifically, the ratio between the
OpenMP and OpenACC times of the aprod 1 is of ∼0.8.

From Figure 7c we can see that the aprod 2 kernel
employs ta2,ACC ∼ 0.064 s for the OpenACC code. In-
stead, in the OpenMP code, the aprod 2 function employs
ta2,OMP ∼ 0.23 s. In this case, the OpenACC code clearly
accelerates compared to the OpenMP code, with a speedup
of ∼3.6. Dividing the sum of the times of the aprod 1 and
2 regions for the OpenMP and the OpenACC codes, we
obtain a speedup of ∼1.6, a bit larger than the one found
in the previous sections. This is explained by the fact that
in the OpenACC code we loose some time in copying the
data H2D and D2H for every iteration, operation that is
not performed in the OpenMP code.

In Figure 7 and in Algorithm 3, we can see that we
copy twice the x and b arrays both H2D and D2H at each
iteration of the LSQR algorithm. These four copies em-

ploy a total time of tMem ∼ 0.04 s, that is smaller than the
computation times of both the aprod 1 and 2 regions. The
white regions, namely all the operations still performed
on the CPU that include minor I/O and the reduce oper-
ations among the MPI processes, employ a total time of
tCPU ∼ 0.064 s, comparable to the corresponding time in
the OpenMP code. We estimate the total speedup as:

η′ =
ta1,OMP + ta2,OMP + tCPU

ta1,ACC + ta2,ACC + tMem + tCPU
∼ 1.3, (3)

which is consistent with the value found in Section 7.1.
This speedup is mainly due to the acceleration of the com-
putation of the aprod 2 region.

We have seen that, for each iteration of the OpenACC
code, the time involved in data copies is of tMem ∼ 0.04 s,
whereas the time involved in kernel computation is of

ta1,ACC + ta2,ACC ∼ 0.15 + 0.064 ∼ 0.21 s.

The data copies represent the ∼18.7% of the time em-
ployed in kernel computation, which means that the code
is compute bound rather than data-transfer bound. This is
a consideration only for one iteration. Yet, if we observe
the left part of Figure 6, we can see that for the entire run
the 89.0% of the time is due to kernel computation and
only the 11.0% of the time is due to memory transfers.
The compute bound consideration can thus be extended to
the entire application.

7.4. GPU utilization
The OpenACC code runs on 32 GPU registers. This

parameter is particularly important for a GPU code. On

14

Figure 6: Output of the NVIDIA Nsight Systems profiler tool for a run with 4 iterations of the LSQR algorithm of the Gaia AVU-GSR
application ported with OpenACC to 4 MPI processes (4 GPUs) of one node on M100. The system occupies a memory of 10 GB. The output
shows the portion of the OpenACC code from line 4 to line 17 of Algorithm 3. The blue areas, with the name of the kernel, represent the
computation regions parallelized with an OpenACC directive (GPU kernels), the green and the purple areas represent the H2D and D2H
memory transfers, respectively, and the white areas represent the regions still computed on the CPU.

Figure 7: Figure 7a: Zoom-in of one iteration of the LSQR cycle of the run shown in Figure 6, with superimposed its elapsed time. Figure 7b:
Same as Figure 7a but with highlighted the elapsed time of the only aprod 1 region. Figure 7c: Same as Figure 7a but with highlighted the
elapsed time of the only aprod 2 region.

a NVIDIA V100 GPU, setting the number of registers
to 32 might be a logical and optimal choice, since the
NVIDIA V100 architecture is organized such that groups
of 32 registers see the same cache memory and are sub-
ject to the same operation in a Single Instruction Multiple
Data (SIMD)-like fashion. In the software, this is encoded
in the size of a warp, a logical block of 32 threads that
always perform the same operations simultaneously. Each
warp is directly mapped on each block of 32 registers.

To verify whether 32 GPU registers actually corre-
spond to the optimal configuration, we exploited the NVIDIA
Nsight Compute profiler tool7. With this profiler, we com-
pared the Speed Of Light metric, that calculates the per-
centage of utilization of the compute (SM) and of the mem-
ory resources of the GPU compared to the theoretical max-

7https://developer.nvidia.com/nsight-compute

imum, of four configurations, where we set the number of
registers to 32, 64, 128, and 42 (green, light blue, purple,
and orange bars in Figure 8, respectively), three numbers
multiples of 32 and one number that is not a multiple of
32. Figure 8 refers to a system that occupies 10 GB of
memory and that runs on 1 GPU.

Whereas with 32 registers ∼80% of the available com-
pute and memory performance of the GPU are utilized, for
the other three cases these reduce to ∼45% and are com-
parable to each other. For 32 registers, the resources of
the device are better exploited. A higher Speed Of Light
metric corresponds to a better performance of the code:
whereas the mean iteration times for the 64-, 128-, and
42-registers cases are of 1.30 s, 1.27 s, and 1.25 s, the
mean iteration time for the 32-registers case is of 1.05 s,
which implies a speedup of 1.24, 1.21, and 1.19 compared
to the other three configurations.

15

https://developer.nvidia.com/nsight-compute

Figure 8: Percentage of utilization of the compute (SM) and of the memory resources of the GPU compared to the theoretical maximum
(Speed Of Light metric) when the OpenACC code is run on 32 (green bar), 64 (light blue bar), 128 (purple bar), and 42 (orange bar) GPU
registers, as set during compilation. The plot is performed with the NVIDIA Nsight Compute profiler and refers to a system that occupies
10 GB of memory and runs on 1 GPU.

8. Conclusions and Future Work

We ported to the GPU with OpenACC the Gaia AVU–
GSR solver, that aims to find the positions and the proper
motions of ∼108 stars in our galaxy, besides the attitude
and the instrumental specifications of the Gaia satellite
and the parameter γ of the PPN formalism. The applica-
tion, originally parallelized on the CPU with MPI+OpenMP,
solves, with the iterative LSQR algorithm, a system of lin-
ear equations, where the coefficient matrix is large and
sparse.

The main target of this analysis is to explore the fea-
sibility of porting this application to a GPU environment
through a preliminary work based on the OpenACC li-
brary. This study, along with the investigation of the per-
formance improvement, is propaedeutic to the final goal
of a CUDA port and to a better optimization of the algo-
rithm, to exploit at most the GPU architecture.

To perform this preliminary port, we replaced the OpenMP
part with the OpenACC language. In the OpenACC port,
we moved the ∼95% of the data H2D before the start of
the LSQR cycle to limit the copies per iteration, which
makes the code compute bound rather than data-transfer
bound.

We compared the performance of the OpenMP and
the OpenACC applications on M100 by running systems
that occupy a memory both constant and proportional to
the amount of computing resources. The OpenACC code
presents a speedup of ∼1.2–1.5 over the OpenMP code,
and its optimal configuration is obtained by running on
4 MPI processes per node, which allows to exploit all the
GPUs of the node assigning a single MPI process per GPU.
With a speedup of ∼1.3, a typical execution of the AVU–
GSR solver, as the one presented in Section 5, passes from
an elapsed time of ∼166 hours to ∼128 hours, saving the
∼23% of the total time, in agreement with the estimate
presented in Section 2. This speedup is mainly driven
by the port of the aprod 2 function to the GPU, which
accelerates ∼3.6 times over the CPU version. We point
out that, to control the GPUs, the MPI processes are the
most logical choice compared to the OpenMP threads. A
OpenMP + OpenACC version of this code would follow
a completely different structure compared to the MPI +
OpenMP application and it would be limited to run on
only one node, which is not possible for systems with a
size even much smaller than the expected final data set of

Gaia.
The proportional memory test shows that both the

OpenMP and the OpenACC applications satisfy the weak
scalability, since the average time of one LSQR iteration
maintains nearly constant with the number of nodes, pro-
portional to the memory occupied by the system.

To exploit at best the compute and the memory re-
sources of the GPU, we compiled the OpenACC code with
32 GPU registers, which entail the optimal performance
compared to a different number of registers.

Additional analyses to further accelerate the code are
already underway or planned. A possible way to explore is
the asynchronous computation of the CPU and the GPU
code regions. Some tests have demonstrated that, with
the current structure of the code, we do not obtain a sig-
nificant gain in performance if we asynchronously run, for
example, the aprod 1 and 2 regions, ported to the GPU
with OpenACC, and their respective constraints sections,
run on the CPU. This is due to the fact that, although
running on the CPU, the two constraints regions are ∼100-
1000 faster than the aprod 1 and 2 functions. For the same
reason, also a port of these two regions to the GPU would
not significantly improve the code speed.

Another possibility would be to reduce the copies of
the x and b vectors at every iteration. However, the main
future aim for this application is to port it to the GPU
by replacing OpenACC with CUDA and by further opti-
mizing the algorithm. CUDA is a low-level parallelization
language that would imply a reorganization of some parts
of the code to better match the GPU architecture, which
would entail a more efficient parallelization and, thus, a
higher speedup. This CUDA port is already in progress
and the preliminary results are very optimistic. The ac-
celeration factor over the OpenMP application might be
around 10. With the CUDA port, we might also explore
the advantages of the asynchronous computation of differ-
ent GPU regions and of CPU and GPU regions.

We began to define the CUDA code by following the
architecture of the V100 GPUs on M100 and we plan to
readjust it to fit the architecture of the A100 GPUs that
will be present on the pre-exascale system Leonardo, a
supercomputer of CINECA that will be operational at the
end of 2022. Given that the memory and the number of
streaming multiprocessors of the A100 GPUs of Leonardo
will be larger than on the V100 GPUs of M100, we would
expect a further speedup of the code when it will run on

16

this system. This is the object of a paper in preparation.
To conclude, the preliminary tests presented in this

work provide essential information about the potential per-
formance and scaling properties of the GPU-ported Gaia
AVU-GSR code in perspective of exascale systems. These
properties could be extrapolated to a class of codes that
analogously solve an inverse problem for a large-sized sys-
tem, that, as we have seen in Section 2, we can retrieve in
several contexts. However, these tests have to be extended
to provide more exhaustive information. The largest sys-
tem that we computed in the tests presented in this paper
occupies a memory of 640 GB (40 GB per node on 16
nodes) and contains ∼3 × 109 observations of the Milky
Way stars, ∼2 orders of magnitude less than in the ex-
pected final data set of the Gaia mission, i.e. ∼1011 obser-
vations. A system with ∼1011 observations will occupy a

memory of ∼ 1011

3×109 × 640 = 21333 GB, which will require
356 nodes of M100 to be solved, by running with 60 GB
per node, nearly the maximum allowed for a GPU code.
To better explore the behaviour of this code and of other
LSQR-based applications on exascale systems, we aim to
extend the presented tests up to a larger amount of com-
puting resources, for systems with an increasing size up to
realistic science cases. This is what we plan to do with the
CUDA code both on M100 and on the pre-exascale cluster
Leonardo.

CRediT authorship contribution statement

Valentina Cesare: Software, Validation, Formal anal-
ysis, Investigation, Writing - Original Draft, Visualization.
Ugo Becciani: Term, Conceptualization, Software, Vali-
dation, Writing - Review & Editing, Supervision, Project
administration. Alberto Vecchiato: Software, Writing
- Review & Editing, Supervision. Mario Gilberto Lat-
tanzi: Writing - Review & Editing, Supervision, Funding
acquisition. Fabio Pitari: Software, Investigation, Writ-
ing - Review & Editing. Mario Raciti: Software, Inves-
tigation, Writing - Review & Editing. Giuseppe Tud-
isco: Software, Investigation, Writing - Review & Edit-
ing. Marco Aldinucci: Methodology, Writing - Review
& Editing. Beatrice Bucciarelli: Writing - Review &
Editing, Supervision.

Declaration of competing interest

The authors declare the following financial interests/
personal relationships which may be considered as po-
tential competing interests: Mario Gilberto Lattanzi has
patent Gaia AVU–GSR parallel solver licensed to Mario
Gilberto Lattanzi, Alberto Vecchiato, Beatrice Bucciarelli,
Roberto Morbidelli, Ugo Becciani, Valentina Cesare. Al-
berto Vecchiato has patent Gaia AVU–GSR parallel solver
licensed to Mario Gilberto Lattanzi, Alberto Vecchiato,
Beatrice Bucciarelli, Roberto Morbidelli, Ugo Becciani,
Valentina Cesare. Beatrice Bucciarelli has patent Gaia

AVU–GSR parallel solver licensed to Mario Gilberto Lat-
tanzi, Alberto Vecchiato, Beatrice Bucciarelli, Roberto Mor-
bidelli, Ugo Becciani, Valentina Cesare. Ugo Becciani has
patent Gaia AVU–GSR parallel solver licensed to Mario
Gilberto Lattanzi, Alberto Vecchiato, Beatrice Bucciarelli,
Roberto Morbidelli, Ugo Becciani, Valentina Cesare. Valentina
Cesare has patent Gaia AVU–GSR parallel solver licensed
to Mario Gilberto Lattanzi, Alberto Vecchiato, Beatrice
Bucciarelli, Roberto Morbidelli, Ugo Becciani, Valentina
Cesare.

Data availability

The data that has been used is confidential.

Acknowledgements

We sincerely thank the referee, whose comments largely
improved and clarified the presentation of our results. We
sincerely thank Dr. Aswin Kumar of NVIDIA, one of the
mentors of the CINECA GPU Hackathon Digital Event
of 2021, for the precious indications provided during the
event that allowed to achieve the current speedup of the
OpenACC code over the OpenMP code and for his help
with the usage of the NVIDIA profilers. We also thank
Dr. Massimiliano Guarrasi of CINECA, for the time that
he dedicated to explain the basis of GPU architecture,
and the organizers of the CINECA course “Programming
paradigms for GPU devices”, held on 9th−11th June 2021,
for their availability to deepen the fundamental aspects of
GPU programming that were exploited to parallelize our
application in a more efficient way.

Funding

This work was supported by the Italian Space Agency
(ASI) [Grant Number: 2018-24-HH.0], in support of the
Italian participation to the Gaia mission. This work was
also supported by Consorzio Interuniversitario Nazionale
per l’Informatica, under the project EUPEX, EC H2020
RIA, EuroHPC-02-2020 [Grant Agreement: 101033975].

Appendix A. Supplementary data

Supplementary material related to this article can be
found online at https://doi.org/10.1016/j.ascom.2022.
100660. Supplementary material contains: Configuration
options set in the SLURM scripts to run the performance
tests of the code.

References

Aldinucci, M., et al., 2021. Practical parallelization of scientific
applications with openmp, openacc and mpi. JPDC 157, 13–
29. URL: https://www.sciencedirect.com/science/article/

pii/S0743731521001295, doi:https://doi.org/10.1016/j.jpdc.
2021.05.017.

17

https://doi.org/10.1016/j.ascom.2022.100660
https://doi.org/10.1016/j.ascom.2022.100660
https://www.sciencedirect.com/science/article/pii/S0743731521001295
https://www.sciencedirect.com/science/article/pii/S0743731521001295
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2021.05.017
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2021.05.017

Amdahl, G.M., 1967. Validity of the single processor approach
to achieving large scale computing capabilities, in: Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference,
Association for Computing Machinery, New York, NY, USA.
p. 483–485. URL: https://doi.org/10.1145/1465482.1465560,
doi:10.1145/1465482.1465560.

Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp,
W.D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C.,
Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F.,
Zampini, S., Zhang, H., Zhang, H., 2021a. PETSc Users Manual.
Technical Report ANL-95/11 - Revision 3.15. Argonne National
Laboratory.

Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P.,
Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp,
W.D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C.,
Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F.,
Zampini, S., Zhang, H., Zhang, H., 2021b. PETSc Web page.
Https://petsc.org/.

Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F., 1997. Efficient
management of parallelism in object oriented numerical software
libraries, in: Arge, E., Bruaset, A.M., Langtangen, H.P. (Eds.),
Modern Software Tools in Scientific Computing, Birkhauser Press.
pp. 163–202.

Baur, O., Austen, G., 2005. A parallel iterative algorithm for large-
scale problems of type potential field recovery from satellite data,
in: Proceedings Joint CHAMP/GRACE Science Meeting, Geo-
ForschungsZentrum Potsdam.

Becciani, U., Sciacca, E., Bandieramonte, M., Vecchiato, A., Buc-
ciarelli, B., Lattanzi, M.G., 2014. Solving a very large-scale
sparse linear system with a parallel algorithm in the gaia mission,
in: 2014 International Conference on High Performance Comput-
ing Simulation (HPCS), pp. 104–111. doi:10.1109/HPCSim.2014.
6903675.

Bertone, S., Vecchiato, A., Bucciarelli, B., Crosta, M., Lattanzi,
M.G., Bianchi, L., Angonin, M.C., Le Poncin-Lafitte, C., 2017.
Application of time transfer functions to Gaia’s global astrometry.
Validation on DPAC simulated Gaia-like observations. A&A 608,
A83. doi:10.1051/0004-6361/201731654, arXiv:1708.00541.

Bin, G., Wu, S., Shao, M., Zhou, Z., Bin, G., 2020. Irn-mlsqr: An
improved iterative reweight norm approach to the inverse problem
of electrocardiography incorporating factorization-free precondi-
tioned lsqr. J. Electrocardiol. 62, 190–199. URL: https://www.
sciencedirect.com/science/article/pii/S0022073620305379,
doi:https://doi.org/10.1016/j.jelectrocard.2020.08.017.

Borriello, L., Dalessandro, F., Murgolo, F., Prezioso, G., 1986.
Hipparcos-the reduction chain of observations and double star
recognition using an image processing approach. Mem. Soc. As-
tron. Ital. 57, 267–289.

Brown, A.G.A., Vallenari, A., Prusti, T., de Bruijne, J.H.J.,
Babusiaux, C., Biermann, M., Creevey, O.L., Evans, D.W.,
Eyer, L., et al., 2021. Gaia early data release 3. A&A 650,
C3. URL: http://dx.doi.org/10.1051/0004-6361/202039657e,
doi:10.1051/0004-6361/202039657e.

Crosta, M., Geralico, A., Lattanzi, M.G., Vecchiato, A., 2017. Gen-
eral relativistic observable for gravitational astrometry in the con-
text of the Gaia mission and beyond. Phys. Rev. D 96, 104030.
doi:10.1103/PhysRevD.96.104030.

Flores, L., Vidal, V., Verdú, G., 2016. Gpu based algorithms in ct
imaging. AMGP 3, 25–31.

Guo, H., Zhao, H., Yu, J., He, X., He, X., Song, X., 2021. X-
ray luminescence computed tomography using a hybrid proton
propagation model and lasso-lsqr algorithm. J. Biophotonics ,
e202100089.

Gustafson, J.L., 1988. Reevaluating amdahl’s law. Commun.
ACM 31, 532–533. URL: https://doi.org/10.1145/42411.

42415, doi:10.1145/42411.42415.
Hees, A., Le Poncin-Lafitte, C., Hestroffer, D., David, P., 2018. Lo-

cal tests of gravitation with Gaia observations of Solar System
Objects, in: Recio-Blanco, A., de Laverny, P., Brown, A.G.A.,
Prusti, T. (Eds.), Astrometry and Astrophysics in the Gaia Sky,

pp. 63–66. doi:10.1017/S1743921317005907, arXiv:1709.05329.
Huang, H., Dennis, J.M., Wang, L., Chen, P., 2013. A scalable par-

allel lsqr algorithm for solving large-scale linear system for tomo-
graphic problems: a case study in seismic tomography. Procedia
Comput. Sci. 18, 581–590.

Huang, H., Wang, L., Lee, E.J., Chen, P., 2012. An mpi-cuda im-
plementation and optimization for parallel sparse equations and
least squares (lsqr). Procedia Comput. Sci. 9, 76–85.

Jaffri, N.R., Shi, L., Abrar, U., Ahmad, A., Yang, J., 2020. Electri-
cal resistance tomographic image enhancement using mrnsd and
lsqr, in: Proceedings of the 2020 5th International Conference on
Multimedia Systems and Signal Processing, pp. 16–20.

Joulidehsar, F., Moradzadeh, A., Ardejani, F.D., 2018. An im-
proved 3d joint inversion method of potential field data using
cross-gradient constraint and lsqr method. Pure Appl. Geophys.
175, 4389–4409.

Krolikowski, D.M., Kraus, A.L., Rizzuto, A.C., 2021. Gaia EDR3
Reveals the Substructure and Complicated Star Formation His-
tory of the Greater Taurus-Auriga Star-forming Complex. AJ
162, 110. doi:10.3847/1538-3881/ac0632, arXiv:2105.13370.

Liang, S.X., Jiao, Y.J., Fan, W.X., Yang, B.Z., 2019a. 3d inversion
of magnetic data based on lsqr method and correlation coefficient
self constrained. Progress in Geophysics 34, 1475–1480. doi:https:
//doi.org/10.6038/pg2019CC0275.

Liang, S.X., Wang, Q., Jiao, Y.J., Liao, G.Z., Jing, G., 2019b. Lsqr
- analysis and evaluation of the potential field inversion using lsqr
method. Geophysical and Geochemical Exploration 43, 359–366.
doi:https://doi.org/10.11720/wtyht.2019.1261.

Ling, S.T., Jia, Z.G., Lu, X., Yang, B., 2019. Matrix lsqr al-
gorithm for structured solutions to quaternionic least squares
problem. Comput. Math. Appl. 77, 830–845. URL: https://www.
sciencedirect.com/science/article/pii/S0898122118306205,
doi:https://doi.org/10.1016/j.camwa.2018.10.023.

Liu, J.S., Liu, F.T., Liu, J., Hao, T.Y., 2006. Parallel lsqr algorithms
used in seismic tomography. Chin. J. Geophys. 49, 483–488.

Naghibzadeh, S., van der Veen, A.J., 2017. Radioastronomical least
squares image reconstruction with iteration regularized krylov
subspaces and beamforming-based prior conditioning, in: 2017
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE. pp. 3385–3389.

Paige, C.C., Saunders, M.A., 1982a. Lsqr: An algorithm for sparse
linear equations and sparse least squares. ACM Trans. Math.
Softw. (TOMS) 8, 43–71.

Paige, C.C., Saunders, M.A., 1982b. Algorithm 583: Lsqr: Sparse
linear equations and least squares problems. ACM Trans. Math.
Softw. (TOMS) 8, 195–209.

Penghui, H., Houbiao, L., 2020. A note on the least squares qr (lsqr)
algorithm. Math. Numer. Sin. 42, 487–496.

Reichel, L., Ye, Q., 2008. A generalized lsqr algorithm. Numer.
Linear Algebra Appl. 15, 643–660.

Van der Marel, H., 1988. On the “great circle reduction” in the data
analysis for the astrometric satellite HIPPARCOS”. Ph.D. thesis.
Delft University of Technology, Netherlands.

Vecchiato, A., Bucciarelli, B., Lattanzi, M.G., Becciani, U., Bianchi,
L., Abbas, U., Sciacca, E., Messineo, R., De March, R., 2018.
The global sphere reconstruction (GSR). Demonstrating an in-
dependent implementation of the astrometric core solution for
Gaia. A&A 620, A40. doi:10.1051/0004-6361/201833254,
arXiv:1809.05145.

Vecchiato, A., Lattanzi, M.G., Bucciarelli, B., Crosta, M., de Felice,
F., Gai, M., 2003. Testing general relativity by micro-arcsecond
global astrometry. A&A 399, 337–342. doi:10.1051/0004-6361:
20021785, arXiv:astro-ph/0301323.

Yoo, A., Baker, A.H., Pearce, R., Henson, V.E., 2011. A scal-
able eigensolver for large scale-free graphs using 2d graph par-
titioning, in: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analy-
sis, Association for Computing Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/2063384.2063469, doi:10.1145/
2063384.2063469.

18

https://doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/HPCSim.2014.6903675
http://dx.doi.org/10.1109/HPCSim.2014.6903675
http://dx.doi.org/10.1051/0004-6361/201731654
http://arxiv.org/abs/1708.00541
https://www.sciencedirect.com/science/article/pii/S0022073620305379
https://www.sciencedirect.com/science/article/pii/S0022073620305379
http://dx.doi.org/https://doi.org/10.1016/j.jelectrocard.2020.08.017
http://dx.doi.org/10.1051/0004-6361/202039657e
http://dx.doi.org/10.1051/0004-6361/202039657e
http://dx.doi.org/10.1103/PhysRevD.96.104030
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1017/S1743921317005907
http://arxiv.org/abs/1709.05329
http://dx.doi.org/10.3847/1538-3881/ac0632
http://arxiv.org/abs/2105.13370
http://dx.doi.org/https://doi.org/10.6038/pg2019CC0275
http://dx.doi.org/https://doi.org/10.6038/pg2019CC0275
http://dx.doi.org/https://doi.org/10.11720/wtyht.2019.1261
https://www.sciencedirect.com/science/article/pii/S0898122118306205
https://www.sciencedirect.com/science/article/pii/S0898122118306205
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2018.10.023
http://dx.doi.org/10.1051/0004-6361/201833254
http://arxiv.org/abs/1809.05145
http://dx.doi.org/10.1051/0004-6361:20021785
http://dx.doi.org/10.1051/0004-6361:20021785
http://arxiv.org/abs/astro-ph/0301323
https://doi.org/10.1145/2063384.2063469
http://dx.doi.org/10.1145/2063384.2063469
http://dx.doi.org/10.1145/2063384.2063469

	1 Introduction
	2 Related work
	3 Coefficient matrix structure
	4 Parallel code structure: MPI + OpenMP
	5 The Marconi100 cluster and the production of the AVU–GSR code
	6 From the CPU to the GPU: OpenACC
	6.1 Multi–GPU computation
	6.2 Data transfers
	6.3 Parallelization
	6.4 Compilation and optimization of the code

	7 Performance tests
	7.1 Fixed memory
	7.1.1 Strong scaling

	7.2 Proportional memory
	7.2.1 Weak scaling

	7.3 Detailed analysis of the speedup
	7.4 GPU utilization

	8 Conclusions and Future Work
	Appendix A Supplementary data

