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Abstract

Image restoration in astronomy has been considered a vital step in many ground-based observational pro-
grams that often suffer from sub-optimal seeing due to atmospheric turbulence, distortion of stellar shapes
due to instrumental aberrations, trailing, and other issues. It holds importance for various tasks: improved
astrometry, deblending of overlapping sources, faint source detection, and identification of point sources
near bright extended objects, such as galaxies, to name a few. We conduct an empirical study by applying
the Scaled Gradient Projection (SGP) iterative image deconvolution algorithm to restore distorted stellar
shapes in our observed data. We investigate using a more flexible divergence measure, the β-divergence,
which contains the commonly-used Kullback–Leibler (KL) divergence as a special case and allows automatic
adaptation of the parameter β to the data. An extensive set of experiments comparing the performance of
SGP and its β-divergence variant (β-SGP) is carried out on extracted star stamps and on images containing
multiple stars (both crowded and relatively sparser fields). We show a consistent enhancement in the flux
conservation across all considered scenarios using β-SGP compared to SGP. Using a few quantifiable metrics
such as the Full-Width-at-Half-Maximum (FWHM) and ellipticity of stars, we observe that β-SGP improves
restoration quality, compared to the SGP, in many cases and still preserves restoration quality in others. We
conclude that generalized versions of image restoration algorithms are more robust due to their enhanced
flexibility and could be a promising modification for astronomical image restoration.

Keywords: methods: statistical, methods: numerical, techniques: image processing

1. Introduction

Image restoration in astronomy was considered to be a luxurious field until an “impossible” mistake
of spherical aberration was identified in the primary mirror of the Hubble Space Telescope (HST) in 1990
(Molina et al., 2001). Since then, much attention has been given, and considerable research has been
carried out to develop novel techniques for deconvolving astronomical images. It is now widely believed
that satisfactory deconvolution algorithms are crucial for maximizing the scientific information output from
astronomical images, particularly for observations from ground-based telescopes that unpreventably suffer
from blurring and distortion due to atmospheric seeing. As a result, the observed images are assumed to
be convolved with the Point Spread Function (PSF), which quantifies intrinsic properties of the telescope,
such as instrumental anomalies and the effects of atmospheric refraction, dispersion, and optical aberration
due to the atmosphere. Some commonly faced issues in long-baseline astronomical observations include PSF
anisotropy or smearing of starspots arising due to these reasons.

Due to the prevailing degradation of observed images in astronomy, it becomes important not to discard
but restore them so they can be incorporated into further scientific analyses. For example, Servillat et al.
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(2011) discarded images with bad seeing or tracking problems from their observed dataset of the M13 globular
cluster so that only good images remain. In cases where the observing program is over a long baseline, and
the exposures are taken at a low cadence, each image becomes vitally important as it is impossible to repeat
them (e.g., this issue is particularly important in the search for rare microlensing events in globular clusters
since the data loss must be kept at the minimum to extract maximum information from them). Thus, in
recent years, extensive efforts have been applied to develop deconvolution methods so that the full potential
of large datasets can be utilized.

Deconvolution methods in astronomy have a long history, with works dating as early as the mid-1900s.
A large amount of literature is devoted to the development of new image restoration/deconvolution methods
with different focuses and applications; however, the primary aim of these methods is to correct or undo the
effects of atmospheric and instrumental distortions (see, e.g., Starck, Pantin, & Murtagh 2002 and Pantin
2002 for a review of deconvolution methods). The Maximum Entropy Method (MEM) was applied in the
image deconvolution context first by Skilling & Bryan (1984) and Skilling & Gull (1984), which maximizes
the entropy of an image given some constraints (see Narayan & Nityananda 1986 for a review of MEM in
astronomy) – this formulation regularizes the ill-posed nature of deconvolution and thus tries to find the
simplest solution possible. The CLEAN algorithm proposed by Högbom (1974) was another simple iterative
procedure initially developed initially for mitigating issues due to irregular baselines in radio interferometry.
Kaiser, Squires, & Broadhurst (1995) proposed a mechanism for reversing the effects of PSF with a specific
focus on weak gravitational lensing. Wiener filtering is another method but severely suffers from amplification
of noise and ringing artifacts (Starck, Pantin, & Murtagh 2002; Wang et al. 2018). The Richardson-Lucy
(RL) algorithm (Richardson, 1972; Lucy, 1974), also proposed in the 1900s, is a widely used deconvolution
algorithm not only in astronomy but also in other disciplines. It has the benefit of ensuring the non-
negativity of the image at each iteration. Perhaps, its wide use in the astronomical community is due to its
simplicity in implementation, apart from the benefits it provides, and its broad generalizability to a variety
of problems. However, several variants of RL need to be introduced to mitigate the enormous computing
time requirements of RL due to its slow convergence (e.g., the multiplicative relaxation modification; Meinel
1986).

Among these algorithms of great interest are the ones that not only reduce the distortion effects but also
ensure flux conservation so that reliable photometry studies can be performed on the deconvolved images.
For example, the RL algorithm under the assumption of zero background emission or the modification to
the classical MEM, proposed by Pantin & Starck (1996). Stating in general, deconvolution should facilitate
scientific studies on the otherwise sub-optimal images. In this regard, the aim is not to make the decon-
volved images nice-looking (although it does help for visualization), but the basic science requirements be
met. With similar aims, the SGP algorithm, initially proposed in Bonettini, Zanella, & Zanni (2009), has
proven promising for astronomical image deconvolution in recent years and as a possible improvement to the
traditional RL algorithm. It was shown to yield computational benefits and potentially better reconstruction
results than the standard Expectation-Maximization (EM) method (Shepp & Vardi, 1982) and other related
methods for astronomical image restoration (e.g., Bonettini, Zanella, & Zanni 2009; Prato et al. 2012). SGP
has been studied on astronomical sources ranging from point sources in open clusters to extended objects like
the nebulae (Prato et al., 2012), or to restore motion-blurred star images obtained from a star sensor (Wang
et al., 2018). SGP’s convergence properties were discussed in previous works (Bonettini & Prato, 2015; Yan,
Wang, & He, 2018), and further applications of SGP are described in (Zanella et al., 2009; Bonettini & Prato,
2010; Benvenuto et al., 2010). Some recent applications of SGP include an SGP-based blind deconvolution
approach studied in Jia et al. (2017) and an improved SGP method, along with a PSF estimation algorithm,
proposed in Wei & Bai (2015). More advanced studies on SGP’s scaling strategies and projections onto
generalized spaces have also been described in Bonettini et al. (2013) and Bonettini & Prato (2014).

In this paper, we showcase the capabilities of the SGP algorithm for astronomical image restoration.
Moreover, we test SGP with a flexible divergence measure, the β divergence, as opposed to the commonly
used KL divergence, and further allow the parameter β to learn from the data (we call this approach β-SGP
for ease of notation). The primary question we ask here is whether the flexibility allowed due to β-divergence
shows any benefits for image restoration. Our experiments use simulated and real telescope images. The
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former case serves as a basic test to compare SGP and β-SGP since the conditions of the image are fully
controlled. Our major focus, however, is to compare both algorithms on real observational data. Through a
comprehensive empirical study of SGP and β-SGP, using several quantifiable metrics, we show that due to
its more flexible nature, β-SGP does show improved restoration results and exhibits better flux conservation
than the SGP. We suggest that β-divergence is a promising alternative to the KL divergence for astronomical
image restoration. For the majority of the paper, we have restricted our analyses to images containing stars,
considered point sources.

2. Methods

2.1. Dataset and Data Reduction

2.1.1. Simulated dataset

We first test our modified SGP algorithm on two simulated images: 256 × 256 pixels HST image of the
NGC 7027 planetary nebula and an image of a satellite. They have pixel values in the range [0, 255]. These
images are distributed as part of the SGP-dec software available online1. They have been artificially degraded
by convolving the ground-truth images with a PSF, followed by the addition of a constant background
level and perturbing the images with the Poisson noise. This allows us to compare the original SGP-dec
implementation (in MATLAB) with our modified procedure. These data come with a PSF model, background
level, the simulated ground-truth image, and the simulated degraded image to be deconvolved.

2.1.2. Observational dataset

To showcase our procedure’s performance on real data, we test it on the image of Messier 13 (NGC 6205)
globular cluster, henceforth M13. This image is part of a larger time-series dataset (Safonova and Stalin,
2010), obtained in 2008–2015 on the 2-m Himalayan Chandra Telescope (HCT) of the Indian Institute of
Astrophysics (IIA), Leh, Ladakh, IAO, located at 4500 m above sea level. We selected the image, based on
visual inspection, from the images with bad seeing and distorted stellar shapes, particularly to demonstrate
the restoration algorithms’ capabilities. The images are taken with the Himalayan Faint Object Spectrograph
and Camera (HFOSC) mounted on the HCT. HFOSC is equipped with a Thompson CCD of 2048 × 2048
pixels with a pixel scale of 0′′.296/pix, equivalent to a total field of view (FOV) of ∼10′ × 10′. The readout
noise, gain, and readout time of the CCD are 4.87 ē, 1.22 ē/ADU, and 90 sec, respectively. The typical
seeing values observed in the images from the dataset were 6− 8.5 pixels.

All images were subjected to the usual image reduction process (bias subtraction, flat-fielding, and cosmic
rays removal) using IRAF (Tody (1986); Tody (1993))2 scripts. Flat fields were constructed from dithered
images of the twilight sky, and any star images were removed by combining flats in each band using a median
filter. Illumination correction was not required for our dataset because the detector’s field of view is small,
and the dark current is negligible since the CCD is cooled down to −100◦C. To remove the cosmic rays, we
employed the IRAF task crmedian, which uses a median filtering approach to replace cosmic ray pixel values
with the median value. We divide the full frame (2K×2K pixels size) I-band image into 5 × 5 overlapping
subdivisions, which we use for our study here.

2.2. Point Spread Function modeling

PSF models are good mathematical representations of the shapes of the stars. Synthetic PSF estimates
that describe the PSF analytically are devoid of any degradations due to instrumental noise or other reasons,
which could happen when the PSF is estimated from stars present in observational data (Starck, Pantin, &
Murtagh 2002; Lau et al. 2023 and refs therein). Moreover, deconvolution methods requiring the knowledge

1More information about SGP-dec and the simulated images can be found at https://www.unife.it/prin/software
2IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities

for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation.
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of PSF are strongly dependent on the quality of the PSF since unwanted artifacts can arise due to sub-
optimal PSF models (Lau et al., 2023). Hence, we have used the analytical approach by writing a custom
code to model the PSFs.

The DIAPL package3 is an efficient implementation of the Optimal Image Subtraction (OIS) method
described by Alard & Lupton (1998) and Wozniak (2000). In practice, we found it efficient in handling
overlapping stellar profiles in densely crowded fields like the globular cluster dataset considered in this
paper. As a result, we use DIAPL to detect stars and use them to model the PSF.

DIAPL first finds candidate PSF stars in the input frame (using the sfind program) and then calculates
the PSF model parameters, such as the raster size of the PSF model, x and y width scales of the PSF,
number of Gaussian functions used to build the PSF model, degree of polynomial describing local and
spatial dependent shapes, etc., using the getpsf program. DIAPL calculates the PSF model on the reference
frame for image subtraction purposes. To cater it our purposes, we modified the getpsf program. We also
divided the full frame into 5× 5 subframes and estimated the PSF model in each subframe to eliminate any
possible spatial dependence of the PSF. In Appendix A, we describe the procedure to convert a functional
PSF model to a two-dimensional matrix representation, which would be one of the inputs to the image
restoration algorithm.

2.3. Deconvolution methods theory

The equation for an astronomical image acquired using a CCD can be given by:

g = Af + b + η , (1)

where g is the observed degraded and noisy image from a telescope, A is the PSF, f denotes the undegraded
noise-free image of the object that is unknown, and to be estimated, b denotes the background level, and η
is the additive read-out noise. More specifically, modeling the observed image can be described by a mixed
Poisson-Gaussian noise (Bertero, Boccacci, & De MoI, 2021). In many practical cases, the additive read-out
noise component is often modeled by Poisson noise (Snyder et al. 1994; Bertero et al. 2009; Anconelli et
al. 2005) or simply ignored for simplification (approaches using least-squares methods, that assume additive
noise models, on images corrupted with Poisson noise also exist (Vio, Bardsley, & Wamsteker, 2005)), unless
the images have very low photon count in which case taking into account the read-out noise might be
important. We note that there have also been previous attempts to model both Poisson and Gaussian noise
(e.g., Lantéri & Theys, 2005; Benvenuto et al., 2008; Snyder et al., 1994).

It is a well-known fact that direct solutions to estimate f is often unacceptable due to the ill-conditioned
nature of the restoration problem (Molina et al., 2001). We also verify this by noting that the condition
numbers of our modeled PSFs are much larger than one; they lie roughly in the range 1018 − 1027, which
signifies that the matrices are ill-conditioned and near-singular. In such cases, its inverse calculation is
prone to significant errors. It is suggested to use iterative restoration methods instead of finding direct
inverse solutions (in a maximum likelihood setting, for example, we would like to move closer to the maxima
of the likelihood function iteratively and use early-stopping (see Section 2.4.1 for discussion on termination
criteria)). Moreover, since such restoration approaches tend to be sensitive to noise, particularly when images
have a low signal-to-noise ratio (Berry & Burnell, 2005), regularization is obtained by early stopping based
on the number of iterations considering that one observes a semi-convergent behavior in the case where
images are corrupted by noise (Bertero, Boccacci, & De MoI, 2021). Deconvolution approaches, such as
Wiener filtering, are not a good choice for such problems because they amplify image noise (Starck, Pantin,
& Murtagh, 2002; Wang et al., 2018) and inherently assume additive noise models, which is generally not a
dominant source of noise in astronomical images (Lim, 1990).

3We used the DIAPL code for Difference Image Analysis (DIA) (Wozniak, 2000) as modified by Wojtek Pych. The package,
along with its documentation, can be found at https://users.camk.edu.pl/pych/DIAPL/.
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2.4. SGP and its generalized version using β-divergence

The SGP algorithm, originally proposed in Bonettini, Zanella, & Zanni (2009), is also termed as an
efficient version of the famous RL deconvolution algorithm (Richardson 1972; Lucy 1974) that allows for
faster convergence via effective scaling and step length strategies and potentially better reconstruction results
than RL. It is an iterative procedure that minimizes an objective function with some desirable properties,
along with at least a non-negativity constraint on the reconstructed image. Specifically, SGP tries to solve
(under the non-negativity and flux conservation constraints):

min J(f ; g)

sub. to x ≥ 0,

n∑
i=1

xi = c, i ∈ S ,
(2)

where J is a continuously differentiable function (although the case of convex objective functions was dealt
with in the original paper), f is the restored image at some iteration, g is the observed image, S is the
source region, and c is some constant. Under the Poisson noise assumption (a commonly used model for
astronomical images), the function J in Eq. 2 can be chosen to be the KL divergence of the blurred and
background-added version of the partially reconstructed image (Af + b) from the observed image g. KL
divergence is the traditional divergence measure used in SGP and has great advantages since minimizing the
KL divergence is equivalent to maximizing the likelihood function, and as such, it is theoretically justified.

Here, our aim is to explore a generalized divergence measure, the β-divergence (Basu et al. 1998, Eguchi
& Kano 2001), which can be described as:

dβ(g,f) =



1

β(β − 1)

(
gβ + (β − 1)fβ − βgfβ−1

)
,

if β ∈ R\{0, 1} .
g log

g

f
− g + f , if β = 1 .

g

f
− log

g

f
− 1, if β = 0 .

(3)

Note that while the authors in the above references considered the case β ≥ 1, the definition can be extended
for all real values of β, as described in Févotte & Idier (2011). It is a family of functions parametrized only
by a single parameter β that controls the trade-off between the robustness and efficiency of the estimators
of parameters. The special cases of β = 2, 1, 0 correspond to the Euclidean distance, the generalized KL
divergence, and the Itakura-Saito divergence, respectively. Specific values of β can be used if one has complete
knowledge of the noise model: β = 2 can be used in cases of Gaussian noise, β = 1 for Poisson noise, and
β = 0 for multiplicative Gamma noise (Févotte & Cemgil, 2009). A neat feature of this class of divergence
is that it smoothly connects commonly-known distance measures described above. A common application of
β-divergence has been in non-negative matrix factorization (Kompass 2007; Févotte & Idier 2011). Another
peculiar feature of the class of β-divergences is the robustness to outliers which was exploited in various
applications (Basu et al. 1998; Mihoko & Eguchi 2002; Akrami et al. 2022).

As stated above, astronomical images acquired from CCD consist of a combination of Gaussian and
Poisson noises, and hence a Poisson noise assumption is not perfect. Such an assumption is valid in many cases
(e.g., by approximating Gaussian noise by Poisson noise). Moreover, it has been argued that modeling both
noise models separately is only useful in certain scenarios (Bertero et al., 2009). However, we hypothesize that
a value of β ∈ (1, 2], or some value around β = 1, could serve as a better loss function due to the complicated
nature of noise in real observational images, and verify whether it is helpful in different scenarios. We also
expect such a modification to work better in simulated cases where multiple noise models are used, e.g., a
combination of Gaussian and Poisson noise.

While not necessarily required to exploit the flexibility due to β-divergence, we exploit the parameterized
nature of β-divergence by adapting β to the data using a stochastic gradient descent procedure. This is to
investigate whether a suitable β, learned from the data, can outperform the theoretically-rationalized choice
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of KL divergence. A fair expectation could be that the adaptation of β to the data should make the starting
choice of β less important since the updates should naturally move towards the optimal β, if any. However,
this may not always be the case since the loss function takes a new form parametrized by β for every updated
β. The recipes needed are: calculating the β-divergence of the blurred and background-added version of the
reconstructed version from the original image, its derivative, which is defined as:

∇J(f ; g) = (Af + b)β−1 −ATg(Af + b)β−2 , (4)

and the derivative of β-divergence with respect to (w.r.t) β, for updating the parameter β. Only the last
recipe is a new one (and only needed if one seeks to update β as iterations proceed), and the other two are
simply the β-divergence equivalent of KL divergence as used in the original SGP algorithm. Thus, updates
to β are regulated by the gradient of β-divergence w.r.t β, which contains information on which direction β
should move to. It is important to note that the β-divergence is convex w.r.t Af+b for β ∈ [1, 2] (Févotte &
Idier, 2011), so one can restrict β within this range if convexity is desired. However, we here perform no such
restriction. We also note that adapting β, as done here, is not required, in which case one must appropriately
fix β. Further details of the SGP algorithm, including the modification to update the parameter β and a
few other changes, are described in Appendix B.

2.4.1. Termination criterion

Several stopping rules can be used, depending on the problem, to prevent amplification of noise during the
iterations (see Section 3.3 of Prato et al. (2012) for a review of some rules). For point sources in simulation
studies, SGP can generally be pushed to a convergence (Prato et al., 2012) (see Bertero et al. 2004 for a
similar observation in the case of the RL algorithm).

Here, we terminate based on the convergence of the objective (or the data fidelity) function such that
the iteration is stopped when

|J(fk+1; g)− J(fk; g)| ≤ tol J(fk; g) , (5)

where tol is the tolerance level which we set to 10−4 unless otherwise specified. Apart from this, we also set
a maximum iteration limit of 500 for experiments on non-simulated images, which provides regularization.

3. EXPERIMENTS AND RESULTS

Here we compare the use of β-divergence in SGP with the original SGP algorithm via experiments: on
two simulated images, on individual star stamps extracted from observed globular cluster images, and on
larger-sized subdivisions extracted from observed globular cluster images containing multiple stars in a single
image.

3.1. Setup and evaluation metrics

We demonstrate the capabilities of the SGP algorithm and leverage statistical metrics to compare SGP
and β-SGP. All experiments were conducted using Python 3.8.10 on a computer equipped with Intel(R)
Core(TM) i3-1005G1 CPU processor at 1.20 GHz.

It is known that even if SGP has a lot more parameters than RL, extensive experiments have led to
an optimization of the parameters such that no specific parameter tuning is needed irrespective of the
application (Prato et al., 2012). For this reason, we do not perform any SGP parameter tuning and use
the default values described earlier (Prato et al. 2012 noted that any choice of the step length parameter
αk belong to [αmin, αmax] is a valid choice, and that α can be tuned inside this interval to optimize the
reconstruction performance; however, we have not experimented with different values of α). It has been
found that including the flux constraint does not remarkably improve the convergence rate of SGP (see
Fig. 4 in Bonettini, Zanella, & Zanni 2009). However, due to photometry considerations, we have necessarily
used the flux conservation constraint. It is also important to note that our implementation here does not
include boundary effect correction (see Bertero & Boccacci 2005 and Bertero et al. 2013 for discussion on
this issue).
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Table 1: Performance comparison of the original SGP and SGP with β-divergence (β-SGP) in terms of the minimum relative
error achieved. Both approaches use the same number of iterations.

Image SGP min. rel. error4 β-SGP min. rel. error βinit
NGC7027 0.1379 0.1366 ∼0.9887
Satellite 0.2932 0.2912 1.0001

For all the experiments using β-divergence, we adapt the β parameter using a simple gradient descent pro-
cedure, as described in Sect. 2.4. We have also allowed the learning rate to be adaptive using an exponential
decay schedule, which is described further in Sect Appendix B.

3.2. Comparison on simulated images

We first perform a test on a simulated image of the NGC7027 nebula and an image of a satellite that
came as part of the test cases in the SGP-dec software. Using these two examples, we aim to compare the
traditional SGP with the β-SGP we introduce in this paper. Since the ground-truth image is available in
simulations, we use the relative L2 error as the metric, as described in the tests in SGP-dec. The same
initialization of the restored image and the stopping criterion for both approaches are used and are taken
from the SGP-dec software tests: a constant image with pixel values equal to a normalized flux value, and
stopping the iterations is a fixed number of iterations. For SGP, 27 and 332 iterations, respectively, were
considered optimal, and we used the same values for both SGP and β-SGP.

For selecting the starting value of β (called as βinit) for both cases, we randomly sample 30 different β
values from a normal distribution with a mean of 1 and a standard deviation of 0.05 for NGC7027 and 0.01
for the satellite image. Such a selection procedure uses the fact that it is expected that the optimal starting
value of β is not too far away from 1 (corresponding to KL divergence). It was also noted in Basu et al.
(1998) that larger β values were found to be less efficient. We then select that βinit that yields the lowest
relative error. The final run is made with this βinit.

Table 1 shows the relative L2 error achieved at the iteration numbers 27 and 332 and the starting value
of the parameter β in β-divergence that gives the lowest error. It shows that the optimal starting point
is close to 1, as expected. In particular, a decrease in the minimum relative error is observed when using
β-divergence as compared to using KL divergence. These two cases show that a β value different from 1
was able to yield a lower error than fixing it to β = 1. This is likely due to the enhanced flexibility of
β-divergence, and thus it was able to “fit” the data better.

3.3. Comparison on star stamps

We now compare results on square-sized star cutouts extracted from the observational dataset of the M13
globular cluster, as detailed in Sect. 2.1.2. Here the aim is to check the performance on cutouts containing
a single star, which will serve as a first test. As a result, we have selected stars from the outskirts of the
cluster to prevent any potential blending of stars. For detecting the stars used in this experiment, we have
used the DIAPL package’s sfind routine. It can be substituted with any other software one chooses since
the further procedure is agnostic to the software choice. To extract star cutouts, we leverage the photutils

package’s Cutout2D class. The cutout size can be set such that the cutout serves as a minimal bounding
box surrounding the star, padded with a few pixels to ensure full containment of the star’s wings. For
background estimation, we use the Background2D class from photutils and use the median value of the
background map to yield a scalar background level. We use the PSF model of the subframe from which the
star is extracted. The flux is estimated as

∑
Ii − N ∗ bkg, where N is the total number of pixels in the

observed star cutout, I, with a background level, bkg. For all the experiments here and henceforth, we use
the observed (unrestored) image as the initialization to the SGP and β-SGP algorithms.

We randomly selected ∼1100 star cutouts extracted from all time-series M13 images in the dataset. For
each cutout, we run SGP and β-SGP and compare their performance. Similar to Sect. 3.2, we need to select
an optimal starting β value. Hence, we use five trial β values sampled from a normal distribution with a
mean of 1 and a standard deviation of 0.05 and select that βinit that gives the best flux conservation, i.e.,
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(a) Mean flux fractional difference for SGP
and β-SGP = 0.044 and 0.006, respectively.
The median flux fractional difference is ∼0
for both.

(b) Mean and median ratio for SGP and β-
SGP = (0.33, 0.32), and (0.3, 0.3), respec-
tively

(c) Mean and median ratio for SGP and β-
SGP = (1.19, 1.12), and (0.79, 0.83), re-
spectively

Figure 1: Statistical comparison of SGP and β-SGP’s restoration of ∼1100 observed star stamps using three metrics: flux,
FWHM, and ellipticity. The vertical dashed black line in (b) and (c) denotes a ratio of 1.

with the least flux difference between the restored and the original star cutout. In principle, βinit can be
optimized using a combination of one or metrics, but we have only used flux conservation for simplicity.

We first show the results across all the cutouts used in this experiment using the FWHM, ellipticity, and
flux conservation as the metrics for quantifying the performance (as described in Sect. 3.1). For calculating
the metrics to quantify restoration quality, we have used the SourceCatalog class from photutils (Bradley
et al., 2022) to yield the FWHM, ellipticity, and flux. For detecting sources, we use the SourceFinder class
and use deblending. We also set the npixels parameter to 5 for the original image and 1 for the restored
images since the restored stars are expected to be much more compact than the original ones. All other
options are kept as default, as of photutils v1.5.0.

Fig. 1 shows a histogram comparison of both approaches using these three metrics. In Fig. 1a, for
satisfactory flux conservation, the fractional difference must be close to zero. It shows that β-SGP preserves
the flux better since it contains more examples where the fractional difference in flux is close to zero.
Statistically speaking, exact flux conservation is not guaranteed. Hence, we must set an error bar around
the original star’s flux such that any restored flux lying within that error bar will be considered satisfactory
flux conservation. For example, using 0.1% times the original flux as the error bar, β-SGP conserves flux
satisfactorily in ∼99% cases, whereas SGP in ∼93% cases. One can observe that no fractional difference value
is > 1, which indicates that flux is never overestimated by both SGP and β-SGP but can be underestimated.

We next compare the FWHM and ellipticity ratio of the restored and original star under the two ap-
proaches. The aim is to see whether SGP and β-SGP make the stars more compact (since the blurring effect
by PSF is reversed) and reduce their ellipticity (so that the PSFs are circularized and hence become closer
to an ideal PSF; see Fig. A.5 for a visual demonstration). Hence, the lower the ratio, the better. In Fig. 1b
and 1c, the majority (in fact, all for FWHM) of the ratios are < 1, which indicates that SGP and β-SGP
both improve the star’s shape overall. However, there are a non-trivial number of cases for SGP and β-SGP
where ellipticity increases. In terms of these two metrics, β-SGP and SGP show similar performance overall
based on the mean/median FWHM and ellipticity ratio (see captions of Fig. 1b and 1c). However, it can be
seen that β-SGP has fewer instances of an FWHM/ellipticity ratio closer to one compared to SGP, which
shows that β-SGP has a slight advantage in terms of these two metrics.

An important consideration is how the flux conservation performance changes as the flux of the original
source changes. This is because it has been well-known that deconvolution performance becomes increasingly
unhelpful as sources become fainter (e.g., Thomson et al. 1992). As a result, we compare the original and
restored flux for a star-by-star comparison. In Fig. 2, we plot the original vs. the restored flux using SGP
and β-SGP. It is clear that the flux is conserved well for all ranges of original fluxes (as low as ∼ 5 × 102

to 106) for both SGP and β-SGP. However, SGP shows non-trivial differences between the original and
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Figure 2: Comparison of original and restored fluxes (in counts) of stars from all the extracted star stamps. The blue points
represent the actual data points, whereas the black line denotes perfect flux conservation. Note that these residual measures
are different in spirit to the flux fractional difference shown in Fig. 1a

restored fluxes in the mid-flux range (∼ 5 × 103 − 5 × 104), which is absent in β-SGP, which shows that
β-SGP preserves the flux better. There are also significant deviations from the straight line for SGP and
β-SGP – these are outlier cases and are again lesser in number for β-SGP than SGP. Moreover, these large
deviations occur mainly for smaller original fluxes (. 104). β-SGP’s superior flux conservation is quantified
by the mean residuals shown on the plot. It is not unexpected to find the median residual to be zero and the
same for both approaches since the no. of points with significant deviation from perfect flux conservation is
small compared to the total number of points.

We have found no significant evidence supporting the idea of whether the FWHM and ellipticity ratios
> 1 mainly correspond to lower flux (i.e., fainter) stars in the original images for SGP and β-SGP. This
is because only ∼15-20% stars in the original image, with flux less than 20-quantiles of the entire flux
distribution, have an ellipticity ratio > 1. Note that there is no case where the FWHM ratio is > 1.

3.4. Comparison on fields containing multiple stars

The previous section served as a basic test using a conservative scenario of isolated stars. For practical
purposes, several complications arise. It has been observed that while the restoration algorithms can be
applied to star-field images containing multiple stars from simulated images, their application on real star-
field images is not straightforward, in that it tends to suppress the dimmer stars and enhances the brighter
stars (Wu & Barba, 1998). In SGP, it is speculated that the projection onto the non-negative orthant could
be responsible for the suppression of the fainter stars for which Prato et al. (2012) suggested a possible
remedy: to decrease the tolerance used in the KL divergence stopping criterion in SGP. For all experiments
in this section, we set the tolerance, tol = 10−5. On top of that, to prevent suppressing fainter stars, for
detecting sources, we have used a threshold of 1.5σ so that the relatively fainter stars are detected, and hence
their flux is considered when considering SGP and β-SGP’s flux constraint. We speculate that using larger
thresholds such as 3σ can disregard flux contribution from any fainter but true sources, which is undesirable.
This becomes increasingly important in fields where many detectable, relatively faint sources exist apart
from bright ones.
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3.4.1. Subdivision extracted away from the center

For this experiment, we visually selected an image with distorted stars (having non-circular, highly
elliptical, or other weird shapes) to compare the capabilities of SGP and β-SGP to restore distorted stellar
shapes in our data. As described in Sect. 2.1.2, we generated 5 × 5 subdivisions (each of size ∼ 400 × 400
pixels) from this image. For this experiment, we selected a subdivision towards the edge of the globular
cluster, which is the sparsest field possible for our dataset. Fig. 3 shows a comparison of the restored
subdivisions using SGP and β-SGP.

Unlike the case in Sect. 3.3, there are multiple sources in a single image, so we compare the original and
restored flux source-by-source in the below panel (Fig. 3b). Sources are detected, and their photometries
are calculated using the SourceCatalog class as detailed in Sect. 3.1. We use the same source detection
parameters for all three images (e.g., 1.5σ detection threshold, the FWHM of the Gaussian kernel used
before detection = 1.2, and other background estimation parameters). We then performed crossmatching
of sources from the original and the restored subdivisions using the TOPCAT software (Taylor, 2005). We
set a maximum permissible error of 1.1 pix while crossmatching so that any source within a 1.1 pix radius
around the original source is considered a successful match. The symmetric, best-match criterion is used.

A visual comparison shows that the restored images are not drastically different. To quantify the stellar
shapes, we calculated the median ellipticity and FWHM of the detected stars in the original and the restored
images using SGP and β-SGP. It is important to note that the total flux is exactly5 preserved for both SGP
and β-SGP, which is a direct consequence of the flux-conserving constraint. However, it is of more interest to
us to compare the source-by-source flux comparison. In terms of that, β-SGP has a lower mean and median
residual and hence outperforms SGP. This indicates that β-SGP not only preserves the flux of stars better
than SGP when considered individually (as seen in Sec. 3.3) but also in an image containing multiple stars.

As a quick test, we also compared the flux residuals at the faint regime to see how the flux conservation
compares for fainter sources. We visually selected a cutoff flux by looking at Fig. 3b, which shows that for
original flux values . 2×103, the scatter increases. Hence, we calculated the mean and median residual only
considering points with flux less than the set cutoff. We still observe better flux conservation using β-SGP
(a reduction of ∼13 counts for the mean residual and ∼21 counts for the median residual). This shows that
β-SGP also preserves the flux of faint sources better than SGP. A more extensive analysis comparing the
flux of unmatched sources, and repeating this for a large set of images, will give an exact picture of the
capabilities of β-SGP in recovering the faint ends better.

The three marked positions, A, B, and C, require some discussion. Just to the right of A, a large blob
was detected as a single source. Whereas, at the corresponding places in both the restored images, three
sources closely separated were detected. This is an example of the deblending capacity of SGP and β-SGP.
A similar observation can be made around point B, although, in this case, the source finder could detect
two distinct sources in the original image itself. However, in the restored images, the presence of those two
sources becomes apparent visually. Similarly, below point C, we see a new source is detected in the restored
images just above the big bright source in the original image, which could hardly be seen in the original
image. This discussion shows that both SGP and β-SGP are capable of deblending closely separated images.
The observation in case C is particularly important since it shows that the restoration could deblend a faint
source nearby a bright source.

3.4.2. Subdivision extracted from the center of the globular cluster

Now, we perform restoration using both algorithms on a subdivision containing many closely spaced stars.
To achieve this, we selected a subdivision from the center of the globular cluster. It serves as an extreme
case, where not only are multiple stars present, but there is also a significant blending of their profiles.

Fig. 4 shows the restoration results for this case. Unlike the previous sections, the restored images using
SGP and β-SGP vastly differ visually. This is not unexpected since SGP only used two iterations whereas
β-SGP used 51 iterations, as described in the caption of Fig. 4a6. Visually, one can observe that the restored

5up to 3-4 decimal places
6Our internal experiments have suggested that the number of iterations and the visual appearance of the restored image
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(a) Detected sources are marked with a blue dot. The original image contains 103 detected sources, and the restored image using SGP
and β-SGP contain 134 and 126 sources, respectively. Three positions are marked as A, B, and C, discussed further in the text. SGP
and β-SGP required 51 and 43 iterations, respectively, and execution times of ∼6.5s and ∼6.7s, respectively. The optimal βinit for
β-SGP found was ∼0.97. Images are shown using a combination of square root stretching and clipping values outside the central 98%
percentile pixel values for the original and 99% for both the restored images.

(b) Star-by-star flux (in counts) comparison of matched sources from the original and restored subdivisions. Flux uncertainties are
not shown for easier visualization. Both SGP and β-SGP generate 62 matches. The mean residual is the mean of the absolute value
of differences in the original and restored flux values. Similarly, for the median residual. It quantifies the flux agreement between the
original and restored images. β-SGP has a lower residual, which indicates it preserves the flux better than SGP.

Figure 3: Example restoration of a subdivision extracted from the outskirts of the globular cluster (subdivision 15: first along
the x-direction and fifth along the y-direction) to prevent significant overlapping of stellar profiles.

Image Median FWHM Median Ellipticity
Original 4.5 0.305

SGP-restored 2.42 0.154
β-SGP-restored 2.39 0.148

Table 2: Comparison of median FWHM and ellipticities of the original and restored stars from the subdivisions shown in Fig. 3a.
The median is taken from only the matched sources and not all detected sources in that image. β-SGP yields lower values than
SGP, indicating an improvement in the restoration.
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Image Median FWHM Median Ellipticity
Original 4.69 0.307

SGP-restored 5.13 0.296
β-SGP-restored 2.52 0.239

Table 3: Comparison of median FWHM and ellipticities of the original and restored stars from the subdivisions shown in Fig. 4a.
The median is taken from only the matched sources and not all detected sources in that image. β-SGP yields significantly lower
values than SGP, indicating an improvement in the restoration. This can also be predicted visually by looking at the restored
subdivisions. It must be noted that the sample sizes used for taking the median are quite different due to the inclusion of only
matched sources. See main text for details.

image using β-SGP reconstructs a star profile closer to a circular shape and makes them more compact than
the stars in the original image, which had a triangular-like shape. One might observe that some stars at
the edges do not lie entirely in the original image; however, the restored images using both approaches still
preserve and restore their shapes successfully.

Successfully and reliably cross-matching sources from crowded stellar fields or fields with worse seeing is
an ongoing research problem (e.g., Wilson & Naylor 2017; Shi, Budavári, & Basu 2019). Instead of devising
the best ways to crossmatch sources in our crowded and large-seeing field, we opt for simplicity and focus
on the matches generated by TOPCAT7. In terms of the number of matches, β-SGP has a far lesser number
of matches than SGP even though it detects ∼90 sources more than SGP8. The situation here is more
complicated than in the previous experiments since the overlapping is so strong that almost a continuum of
sources can be seen toward the center in the original image. β-SGP demonstrates the capability to resolve this
crowded center of the globular cluster, due to which much more stars could be detected towards the center
than were detected in the original image. However, the structure of this central core in the restored image
using β-SGP has significantly changed. We attribute the apparent loss of matched sources using β-SGP to
the enhanced resolution at the center and closely separated stars, which is worsened by the suppression of
sources apart from the center. Due to this reason, the flux comparison, in this case, must be considered only
a conservative comparison, i.e., using only those sources that were easy to match between the original and
restored images. As in the previous section, the sum of the flux of all detected stars is exactly preserved,
which is always going to be true as long as the flux-conserving constraint is used in the algorithm.

We also compare the properties of stars in the restored images in Table 3. As can be seen, β-SGP
reduces the FWHM and ellipticity much more than SGP; it is expected based on the visual comparison of
the restored images.

Finally, we note that some relatively fainter stars towards the edges are suppressed for both approaches
and can no longer be seen and detected, which is a limitation. As discussed before, this is very likely due
to the projection step, due to which the brighter sources are given more preference. However, it can be
potentially solved by experimenting with a smaller tolerance level or using smaller-sized subdivisions. Thus,
with the current implementation, the faintest sources can be lost if there are many sources in the image and
the difference in the fluxes (or magnitudes) between the brightest and the faintest objects in an image is
high, i.e., the dynamical range is high. It is our expectation that in sparser fields with a high dynamical

using SGP are sensitive to the choice of the detection threshold. While we found 1.5σ to be a good choice for allowing the
detection of fainter stars and hence including them for calculating the total flux of all stars in the image, SGP’s restored image
using a 2σ threshold looks visually similar to β-SGP’s restoration using 1.5σ shown in the main text and takes much more than
two iterations. However, such a detection threshold choice leaves out ∼30-35 faint sources. Hence, we do not show results with
such a choice.

7Another option for crossmatching would be crossmatching not with the (degraded) original image, but a good seeing image
of the same field. However, we have not opted for that here since other issues can arise due to the variability of stars, such that
a star is present in one image but not in the other. However, it can still be done for a fair estimate since a large fraction of
stars in GCs are not variable.

8It is known that some care is required for crossmatching in crowded fields: using a symmetric, best match criterion can
give unsatisfactory results since the sources are so close to each other that unwanted matches could be generated. In such
cases, asymmetric matching is generally preferred. However, we have found no difference between symmetric and asymmetric
matching for this crowded field, due to which we stick with symmetric matching.
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range, the faintest sources can still be recovered since there are not many sources so as to prefer some and
suppress the others.

4. Discussion

In this paper, we performed single-image deconvolution where the PSF is assumed to be known, with
a particular focus on the restoration of stellar shapes. This work was primarily inspired by the recent
advancements in the applications of the SGP algorithm, which is theoretically and empirically proven to be
more efficient than the famous RL deconvolution algorithm on a wide range of astronomical images such as
nebulae, galaxies, and open star clusters. Due to its effective strategies for improved convergence, SGP has
been recently studied extensively to test its plausibility as a possible replacement for RL.

We have showcased the capabilities of SGP to restore stars from real astronomical images, which is an
important aspect since the application of SGP on non-simulated images has been through less scientific
scrutiny. The aim of this paper is also to introduce β-divergence, a broader class of divergence measure that
encompasses KL divergence as a special case in SGP. It is to be noted that in practice, these algorithms
can be terminated using various criteria, and KL divergence is one of the commonly-used ones. Hence,
the use of β-divergence makes sense when some divergence measure, like the KL divergence, is used as the
stopping criterion. β-SGP, as we called it in this paper, is a generalized version of SGP without modifying
the specifics of the SGP algorithm otherwise. We allowed automatic updates to the parameter, β, regulated
by a simple stochastic gradient procedure. The learning rate for this update also changes by a specified rule
in our formulation. We have found no concrete rule to set the initial value of β. Instead, we recommend
selecting a few (e.g., ∼5-10) different values and selecting an optimal starting point based on some metric.
Here we used flux conservation for selecting the optimal starting point, but it can be extended to any other
metric or combination of metrics.

The gradient descent may not automatically proceed towards the optimal β due to the complicated
nature of the β-divergence loss landscape; hence, the dependence of the restoration result on the initial value
of β. However, our experiments, which used a non-extensive optimization of the initial β value (only five
different trials of initial β), have suggested that β-divergence does provide some benefits owing to its flexible
nature, despite the fact that for values of β outside the range [1, 2], the convexity of β does not hold. β
values outside the convexity interval have also been empirically helpful in other contexts (e.g., the β-NMF
multiplicative updates; see Févotte & Idier 2011). The theoretical convergence results of β-divergence in
SGP are not strictly dealt with in this paper, but we have shown that it works well in practice in a wide
range of scenarios. Further improvements could be expected if more extensive tuning is performed. Our
modifications are heuristic, and extensive empirical analyses are presented. We note that the generalization
of gradient projection methods in general, although with different modifications, was dealt in Bonettini &
Prato (2014), so our work is in line with the generalization ideology mentioned there.

We first compared β-SGP with SGP using two simulated cases. Optimizing the initial value of β using
the relative pixel-wise error metric, we could find a suitable starting point that yields a lower error than
the traditional SGP. While most previous works test the applications of SGP on simulated images where
the noise and blurring conditions are fully controlled, we also provide extensive results on real astronomical
images, ranging from individual star stamps to images containing multiple stars in a single frame. In the
latter category, we use a massively crowded field (center of a globular cluster) and a relatively sparser field
as our guiding examples. To quantify the restoration quality, we used the FWHM, ellipticity, and flux as
our metrics. Our experiments on star stamps indicated that β-SGP shows a significant improvement in
flux conservation compared to SGP while still keeping similar FWHM and ellipticities of the restored stars
compared to SGP, sometimes even showing an improvement compared to SGP. On subdivisions containing
multiple stars, β-SGP not only preserved flux better than SGP but also yielded smaller FWHM and ellipticity
of the restored stars compared to SGP. In particular, by crossmatching stars from the restored and original
subdivisions and comparing their FWHMs, ellipticities, and fluxes, we observed β-SGP shows benefits over
SGP on both types of fields: the relatively sparser field and extremely crowded field (center of the globular
cluster). This is quantified by a smaller median FWHM and ellipticity in the restored images using β-
SGP than SGP. The comparison of flux conservation in the crowded fields was tricky due to the enhanced
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(a) Detected sources are marked with a blue dot. The original image contains 392 detected sources, and the restored image using SGP
and β-SGP contain 321 and 407 sources, respectively. SGP and β-SGP required 2 and 51 iterations, respectively, and execution time of
∼0.6s and ∼10.2s, respectively. The optimal βinit for β-SGP found was ∼1.025. Images are shown using a combination of square root
stretching and clipping values outside the central 95% percentile pixel values for the original and 97% for both the restored images.

(b) Star-by-star flux (in counts) comparison of matched sources from the original and restored subdivisions. SGP generated 121, and
β-SGP generated 35 matches. Due to the vastly different sample sizes (discussed in the main text in detail), we do not show the mean
and median flux residual.

Figure 4: Example restoration from a subdivision extracted from the center of the globular cluster (subdivision 33: third along
the x and y-directions, i.e., the middle subdivision), serving as an extreme case of overlapping.

14



resolution obtained by the restored image using β-SGP. As a result, we could only make a conservative
comparison of fluxes of matched sources. Overall, these experiments provide a strong indication that there
could exist a β 6= 1 that can allow for better flux conservation and improve the quality of the restored images.
Using a few visual examples, we discussed how deconvolution/restoration using SGP and β-SGP could be
used for deblending, which is an important application of deconvolution methods in general.

The current limitation of SGP and β-SGP is that the flux of individual sources is only guaranteed to
agree up to ∼1-5% for sufficiently bright sources (flux & 103 − 104), despite the fact that the total flux is
always preserved. This is expected since SGP’s constraints involve only total flux conservation. To improve
on this aspect, a natural solution is to run the algorithm on smaller-sized subdivisions such that a good
compromise between the number of sources present in the subdivision (it should be minimized for better
source-by-source flux conservation) and the overall computational time to restore all subdivisions is made.
Some research could be conducted so that the flux constraint is modified such that the flux of each source is
preserved rather than the total flux; however, it could make the projection step more time-consuming since
the nature of the flux constraint would have changed. Another point to note is that relatively fainter stars
tend to get suppressed when using SGP and β-SGP, which is likely due to the simple nature of the constraints
(non-negativity and flux conservation). However, we have shown a visual example where a fainter star around
a bright star was not suppressed but was newly detected in the restored images. Thus we conclude that
suppression of fainter stars is likely to happen when considering a bigger-sized image containing multiple
sources. Using smaller-sized subdivisions could again potentially solve this issue. Along similar lines, one use
of these deconvolution algorithms is to find fainter stars submerged in the background noise in the observed
images. Hence, the unmatched sources during crossmatching can be inspected to see the typical fluxes of
sources present in the deconvolved but not in the original – supposedly, a large fraction of such sources will
be the fainter ones, provided those fainter sources are not strongly suppressed.

In terms of computation time, β-SGP does require, on average more time per iteration than SGP since
updates to β are allowed – the majority of the extra time β-SGP takes goes into calculating gradients of
β-divergence w.r.t β. On star stamps (sized 40× 40 pixels), we found β-SGP takes ∼ 1− 2× 10−4 seconds
more time per iteration than SGP. The difference rises to ∼0.03s per iteration for larger-sized subdivions
containing multiple sources. β-SGP’s execution time could be reduced by using GPU (for fast gradient
calculations) and/or using tools such as JAX (Bradbury et al., 2021) to speed up computation. If β updates
are not required for a particular case, a similar execution time as SGP is expected without using any external
tools.

It is still an open question whether β updates are necessary for improved performance; however, empiri-
cally, we have found it slightly beneficial. In our internal tests, we observed the same results for the crowded
field (in terms of flux conservation, FWHM, and ellipticity). This indicates that β update did not occur -
that can happen when no updates to λk occur - see Algorithm 1. However, we observed slightly worse results
(in terms of FWHM and ellipticity) and almost similar flux conservation for the sparser field when not using
β updates.

For large-scale applications of the β-SGP approach, it could be an interesting line of research to learn β
on a training dataset and make it adapt to the test dataset with only a few iterations or keep it fixed after
learning. No observed image has a perfect seeing, due to which such algorithms can improve the science
extracted from any observed image. However, these algorithms are most important to the most severely
degraded images, in which case an appropriate quantification of the seeing quality, or equivalently, the PSF
shapes could be made (some efforts along this direction have taken place, e.g., Wang et al. 2018). Here, we
restricted it to visual analysis, but appropriate quantification and automation for large-scale applications
will become important.

5. Conclusion

The enhanced flexibility due to the incorporation of β-divergence (parametrized by the parameter β) in SGP
has resulted in:
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1. An improvement in the flux conservation of stellar sources, which holds even at the faint ends of the
original flux.

2. A consistent improvement in the restoration quality in terms of stellar shapes (quantified using FWHM
and ellipticity).

Despite the strong theoretical reasoning to use KL divergence for images corrupted with Poisson noise, we
noted that the Poisson noise model is only a “good” approximation made in astronomy, which in practice is
not entirely true. Hence, it is natural to think that a β 6= 1 (β = 1 corresponds to KL divergence) could “fit”
the data better; however, large deviations from β = 1 are not likely to be helpful as studied in the literature
previously.

Thus, generalizing the SGP algorithm using the β-divergence shows a promising alternative for improving
the capabilities of the traditional SGP algorithm. In general, our study shows that using flexible and robust
divergence measures could be an interesting line of research to improve current image restoration pipelines
and are worth exploring. As such studies continue to grow, we will get a much better understanding of the
capabilities and improvements availed by such generalized approaches.

This paper is focused on the introduction, testing, and analysis of the proposed restoration algorithm.
The application of the algorithm for the restoration of the entire time-series globular cluster image dataset
and image analysis post-restoration is part of future work, and the results will be reported in a separate
communication.

6. Code and data availability

The codes associated with this manuscript are available at https://github.com/Yash-10/beta-sgp/.
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Appendix A. PSF modeling: mathematical details

In summary, DIAPL’s procedure to calculate the PSF model parameters is as follows: First, it reads the
stellar coordinates output from the sfind program along with a bad pixel mask file. Then it rejects stars
that lie close to each other or near the edges. It also performs an isolation test for the stars. For this, it only
selects stars that are above the NSIG DETECT×σ level and rejects any star whose flux is contaminated
due to crowding. We set NSIG DETECT to 2. On these well-isolated candidate stars, an initial symmetric
circular PSF fit is made for a few iterations, followed by a final fit for another few iterations. The candidate
stars might still be affected by cosmic rays or the blending of profiles with nearby stars. Hence, during the
final fit, a sigma clipping procedure on the light distribution of the candidate star is performed to mitigate
such undesirable scenarios. All of the parameters required during the whole process are user-defined. The
getpsf routine calculates PSF vector coefficients used to build a PSF model in the form of a two-dimensional
matrix. The size We produce PSF matrices of size 31 × 31 pixels. For this, we need to calculate the pixel

9https://drive.google.com/file/d/13Vk2TpXgSB6IoLUIv-zdh-XI53wJp-0y/view?usp=sharing
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Figure A.5: Examples of three categories of PSF matrices observed in our dataset: (a) Optimal (a near-circular shape that
best depicts the true star shape), (b) Trailed (an elliptical shape with elongation in one particular direction), and (c) Distorted
(weird shapes that cannot be classified as either near-circular or elliptical shapes) obtained using the PSF model parameters
from the DIAPL package.

value at each location, (x, y), of the defined region, where x, y ∈ [−hw,+hw], and hw denotes the half-width
of the PSF model, set to 15 for our case, resulting in a 31× 31-pixels PSF model. In terms of programming,
we start with a zero pixel value for each location in the raster and keep on accumulating values in a pixel
based on the NGAUSS and NDEG LOCAL parameters, denoting the number of Gaussians used to build the
PSF model (two in our case), and the degree of the polynomial used to describe the PSF shape, in our case
set to two. The PSF model is a sum of two Gaussians, with the first Gaussian describing the core and the
second describing the wings of the star. The second Gaussian is set to be ≈ 0.548 times wider than the first,
which is specified by the SIGMA INC parameter. It is beneficial to model both of them separately since both
have different shapes and statistics; for example, the wings of any star are buried in photon noise, and the
distance at which this happens is different for fainter and for brighter stars. After setting all the parameters,
we reproduced DIAPL’s psf_core script from the phot program in Python to calculate the values of the
entries of the PSF matrix. Fig. A.5 shows the PSF matrices generated by this procedure. As mentioned in
the main text, we generate PSF coefficients and, thus, the PSF matrix for each subframe separately without
accounting for spatial variations.

Appendix B. SGP and β-SGP: algorithm details

The SGP algorithm, with a modification to update β, is shown in Algorithm 1, and β update step is
shown in line 13. As seen in line 15, we also schedule the learning rate using an exponential decay schedule
given by

ηi = η0 · e−k , (B.1)

where η0 is the initial learning rate, k is the exponential decay parameter, and ηi the learning rate at any
iteration, i ≥ 1.

We reproduce a Python implementation of the MATLAB code of SGP10 for single-image deconvolution
proposed by Prato et al. (2012). We have modified the flux-conservation step to handle pixel saturation
during the projection step alongside ensuring non-negativity of pixels: denoting the pixel counts above
which the pixel is said to be saturated by c; we set the condition: xi = min(xi, c) so that we ensure no
pixel is deemed saturated in the restored image. There are several reasons we incorporate this condition.
First, if we do not account for saturation, photometry on the restored image would flag the star as saturated
and exclude them from further analyses, which is undesirable. Second, after restoration, the same flux
is spread among a smaller number of pixels (since the restored star would have a lower FWHM than the

10 http://www.unife.it/prin/software
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original star). Hence it is likely that a pixel exceeds the saturating condition if the pixels in the original
image were already near saturation. Compared to the original SGP implementation, we have also allowed
passing a two-dimensional background level, which could be helpful and yield better results for images with
a strong gradient in the background across the field of view. Our tests of the original MATLAB SGP code
showed that it could only work when the dimensions of the PSF model were the same as that of the image.
As a result, we have optionally allowed using a two-dimensional Fast Fourier Transform-based convolution.
When such an option is used, the difference is that we perform convolution by reshaping the image to two
dimensions and then performing the convolution. In contrast, the original implementation performed it on
the flattened (one-dimensional) images. For all our experiments on simulated images (in Sect. 3.2), we use
the original SGP-dec code’s implementation, whereas we use the two-dimensional convolution for all other
experiments.

Choices for updating the scaling matrix include a diagonal matrix that approximates the inverse of the
Hessian matrix, ∇2J(x) or a diagonal matrix that can be used to rewrite the RL method, in which the latter
is computationally less expensive (Bonettini, Zanella, & Zanni, 2009). We use the latter option where the
updating rule becomes,

dki = min{L2,max{L1, x
k
i }} , (B.2)

where L1 and L2 are the lower and upper bounds, respectively, on the elements of the scaling matrix. We
use the appealing choice for the bounds that adapt themselves to the data described in Prato et al. (2012).

As far as the projection step for flux conservation is concerned, we must solve a non-negative and
linearly constrained strictly convex quadratic programming problem for flux conservation. Several linear-
time projection algorithms exist in the literature (see Bonettini, Zanella, & Zanni 2009 for references). We
use the secant-based approach suggested by Dai and Fletcher (2006) that has shown good performance. For
updating the step length parameter, we alternate between the two Barzilai & Borwein step length (BB) rules
(Barzilai & Borwein, 1998) only after the first 20 iterations, as suggested in Prato et al. (2012) (see Sec. 3
in Bonettini, Zanella, & Zanni 2009 for more discussion). This effective strategy also makes the choice of
initial τ less important for convergence (Bonettini, Zanella, & Zanni, 2009). In step 3 of Algorithm 1, the
subscript + in the projection operator P denotes the closed convex set containing x that satisfies the flux
conservation and the non-negativity constraints on x.

The parameters common to SGP and β-SGP are set as follows: βb = 0.4, γ = 10−4, M = 1, αmin = 10−5,
αmax = 105, Mα = 3, τ = 0.5, α0 = 1.3, where all values are taken from Prato et al. (2012), and use a
maximum of 1000 flux conservation projections. Moreover, M = 1 implies that the line-search strategy
reduces to the standard monotone Armijo rule (Bonettini, Zanella, & Zanni, 2009), and we have used it
since we did not find any significant improvements by using a non-monotone strategy. Hyperparameters
due to the inclusion of beta divergence are set as follows: initial learning rate for updating β, η = 10−3,
exponential learning rate schedule parameter, k = 0.1. The procedure we used to set the initial value of β
is described at various places throughout the text.
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Algorithm 1: β-SGP

1 Choose the starting point x(0) ∈ Ω, and select (βb, γ) ∈ (0, 1); βb: backtracking line search
parameter, γ: line search penalty parameter, 0 < αmin < αmax, α0: initial step length, Mα:
memory length, τ : alternating parameter, memory length, M > 0, and the initial scaling matrix,
D0. Set lower and upper bounds for D. Set initial value of β and learning rate, η0, for updating β.
tol is the tolerance level.

2 while true do
3 Projection: y(k) = P+(x(k) − αkDk∇f(x(k)))

4 if y(k) = x(k) then
5 break

6 Descent direction: d(k) = y(k) − x(k)

7 Set λk = 1 and fmax = max0≤j≤min(k,M−1) f(x(k−j))
8 while true do
9 if f(x(k) + λkd

(k)) ≤ fmax + γλk∇f(x(k))Td(k) or λk < tol then
10 break

11 else
12 λk = βbλk

13 β = β − η · 1

n

∑
∇βf(xk)

14 Set x(k+1) = xk + λkd
k

15 Update the scaling matrix: D(k+1) ← Dk, the step length: α(k+1) ← αk, and the learning rate, η.
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Shi X., Budavári T. & Basu A., 2019. Probabilistic Cross-identification of Multiple Catalogs in Crowded
Fields. ApJ, 870, 51. DOI:10.3847/1538-4357/aaf00a

Skilling J., Bryan R. K., 1984. Maximum entropy image reconstruction: general algorithm. MNRAS, 211,
111. doi:10.1093/mnras/211.1.111

Snyder, D. L., Helstrom, C. W., Lanterman, A. D., Faisal, M. and White, R. L., 1994. Compensation for
Read-Out Noise in HST Image Restoration. In The Restoration of HST Images and Spectra - II, p. 139.

Starck J. L., Pantin E., Murtagh F., 2002, PASP, 114, 1051. doi:10.1086/342606

Taylor M. B., 2005, ASPC, 347, 29

Thomson R. C., Schade D. J., Elson R. A. W., Mackay C. D., Wilkins T. N., 1992. Deconvolution and photom-
etry of Faint Object Camera images with point sources. MNRAS, 259, 104. doi:10.1093/mnras/259.1.104

Vio, R., Bardsley, J., Wamsteker, W., 2005. Least-squares methods with Poissonian noise: Analysis and
comparison with the Richardson-Lucy algorithm. A&A, 436, 741. doi:10.1051/0004-6361:20041997

Wang, S., Zhang, S., Ning, M. & Zhou, B., 2018. Motion Blurred Star Image Restoration Based on MEMS
Gyroscope Aid and Blur Kernel Correction. Sensors, 18(8), 2662

Wang W., Jia P., Cai D., Liu H., 2018. Automated clustering method for point spread function classification.
MNRAS, 478, 5671. doi:10.1093/mnras/sty1504

Wei, Y. & Bai, P., 2015. An Improved Scaled Gradient Projection (ISGP) for Astronomical Images Re-
struction. 2015 8th International Congress on Image and Signal Processing (CISP 2015), IEEE, 2015:
268-274.

Wilson T. J. & Naylor T., 2017. The effect of unresolved contaminant stars on the cross-matching of photo-
metric catalogues. MNRAS, 468, 2517. doi:10.1093/mnras/stx629

Wozniak, P. R., 2000. Difference Image Analysis of the OGLE-II Bulge Data. I. The Method. Acta Astro-
nomica, 50, 421-450.

Wu, H.S. & Barba, J., 1998. Minimum entropy restoration of star field images. IEEE Trans. Syst. Man.
Cybern. B Cybern. 28(2), 227-31. doi: 10.1109/3477.662762. PMID: 18255939.

Xihong Yan, Kai Wang & Hongjin He, 2018. On the convergence rate of scaled gradient projection method.
Optimization, 67:9, 1365-1376, DOI: 10.1080/02331934.2018.1455833

Zanella R., Boccacci P., Zanni L., Bertero M., 2009. Efficient gradient projection methods for edge-preserving
removal of Poisson noise. Inverse Problems, 25, 045010. doi:10.1088/0266-5611/25/4/045010

22


	1 Introduction
	2 Methods
	2.1 Dataset and Data Reduction
	2.1.1 Simulated dataset
	2.1.2 Observational dataset

	2.2 Point Spread Function modeling
	2.3 Deconvolution methods theory
	2.4 SGP and its generalized version using beta-divergence
	2.4.1 Termination criterion


	3 EXPERIMENTS AND RESULTS
	3.1 Setup and evaluation metrics
	3.2 Comparison on simulated images
	3.3 Comparison on star stamps
	3.4 Comparison on fields containing multiple stars
	3.4.1 Subdivision extracted away from the center
	3.4.2 Subdivision extracted from the center of the globular cluster


	4 Discussion
	5 Conclusion
	6 Code and data availability
	7 Acknowledgements
	Appendix  A PSF modeling: mathematical details
	Appendix  B SGP and beta-SGP: algorithm details

