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Abstract

The unprecedented precision of Gaia has led to a paradigm shift in membership determination of open clusters where a variety of
machine learning (ML) models can be employed. In this paper, we apply the unsupervised Gaussian Mixture Model (GMM) to a
sample of thirteen clusters with varying ages (log t ≈ 6.38-9.64) and distances (441-5183 pc) from Gaia DR3 data to determine
membership. We use ASteca to determine parameters for the clusters from our revised membership data. We define a quantifiable
metric Modified Silhouette Score (MSS) to evaluate its performance. We study the dependence of MSS on age, distance, extinction,
galactic latitude and longitude, and other parameters to find the particular cases when GMM seems to be more efficient than other
methods. We compared GMM for nine clusters with varying ages but we did not find any significant differences between GMM
performance for younger and older clusters. But we found a moderate correlation between GMM performance and the cluster
distance, where GMM works better for closer clusters. We find that GMM does not work very well for clusters at distances larger
than 3 kpc.

Keywords: (Galaxy:) open clusters and associations: general, individual: – (stars:) Hertzsprung–Russell and color-magnitude
diagrams

1. Introduction

The traditional method for finding and identifying open star
clusters involved looking for star overdensities in the sky, sup-
plemented with color-magnitude diagrams and/or proper mo-
tion or spectroscopic data.

The Dias et al. (2002) catalog is a compilation of heteroge-
neous data from various observations and methods to determine
cluster parameters. Determination of cluster parameters re-
quires not only a homogeneous set of data, but also similar tech-
niques of analysis. The homogeneous catalog by (Kharchenko
et al., 2013) used data from USNO CCD Astrograph Catalog
(UCAC) and PPMXL (Zacharias et al., 2013; Roeser et al.,
2010). The Two Micron All Sky Survey (2MASS) data has
also been widely used to study star clusters (Skrutskie et al.,
1997, 2006). Gaia is a homogeneous catalog of all-sky data
with unprecedented astrometric precision and hence makes it
ideal to identify members in existing open clusters (OCs) and
dismiss several asterisms. It also makes it possible to identify
subgroups and structures in the regions surrounding OCs.

Machine Learning has been increasingly used in astronomy
to analyse large amounts of data. Supervised machine learning
algorithms are algorithms that are used to learn a relationship
between a set of measurements and a target variable by mak-
ing use of labelled data (Mahabal et al., 2008; Brescia et al.,
2012; Ishida et al., 2019). This method is used to predict the
value of the target variable. In supervised learning techniques,
the model parameters are estimated from the data, and these
estimations from the training set help define the model. The
model is applied on the data to generate accurate predictions.

However, in the case of errors or biases in the training set, this
method can lead to wrong results.

Unsupervised learning refers to the process of teaching a ma-
chine to do a task using data that has not been categorised or
labelled in any way, and then letting the machine’s algorithm
make decisions independently based on the results of those cal-
culations. These include clustering analysis, dimensionality re-
duction, visualisation, and the identification of outliers. Tools
of this kind are of extreme importance in the field of scientific
study, especially where no prior assumptions are made. This is
due to the fact that they may be utilised to either produce new
discoveries or extract new knowledge from datasets, without
using a training set that could be biased or with errors.

Gao (2020) employed Principal Component Analysis in ad-
dition to a Gaussian Mixture Model (GMM) in order to iden-
tify members and characterize the tail of the cluster NGC 2506.
Bhattacharya et al. (2021) identified the tails of NGC 752 and
Agarwal et al. (2021) introduced the membership determination
method ML-MOC for a sample of open clusters.

Gao (2020) employed Principal Component Analysis and
GMM to identify extra-tidal stars.and found 2301 stars closely
related to the cluster, 147 of which are likely extra-tidal stars.
In an earlier paper (Mahmudunnobe et al., 2021), we used the
supervised technique of Random Forest to find membership of
stars in a sample of nine clusters. To avoid the dependence
of labelled data in supervised techniques, in this paper, we ap-
plied the unsupervised clustering technique GMM on a sam-
ple of thirteen clusters with Gaia DR3 data (Gaia Collabora-
tion et al., 2023) and use it to determine membership of stars at
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the low mass end and derive parameters for our clusters. Our
cluster sample has a wide range of ages and distances. We de-
fine a quantifiable metric Modified Silhouette Score (MSS) to
evaluate its performance and compare its value for our sample.
We compare the spectroscopic data of members identified by
(Cantat-Gaudin et al., 2018) and this work using APOGEE and
GALAH data to validate our member sample. We use ASteca
to determine parameters for the clusters from our revised mem-
bership data.

2. Cluster Sample

The basic parameters of the 13 selected clusters are given in
Table 1 which shows the coordinates of these clusters α and δ,
the radius that contains half the number of members from the
same reference r50, the logarithm of age log t, the distance to
the cluster in parsecs d and the galactocentric distance in par-
secs GC from (Cantat-Gaudin and Anders, 2020). The sample
covers a large range of ages (log t ≈ 6.38-9.63) and distances
(441-5183 pc).

Cluster α δ l b r50 log t d GC
(deg) (deg) (deg) (deg) (pc) (pc) (pc)

NGC 752 29.22 37.79 136.9 -23.3 0.049 9.18 441 8640
IC 4651 261.21 -49.92 340.1 -7.9 0.23 9.32 920 7488
NGC 2539 122.66 -12.83 233.7 11.1 0.19 8.83 1243 9137
NGC 2099 88.07 32.54 177.6 3.1 0.16 8.78 1299 9775
NGC 581 23.34 60.66 128.0 -1.8 0.062 7.44 2502 10075
NGC 6823 285.79 23.32 59.4 -0.1 0.074 6.38 2330 7430
NGC 2243 97.4 -31.28 239.5 -18.0 0.046 9.64 3719 10584
IC 1805 38.21 61.47 134.7 0.9 0.11 6.88 1964 9821
NGC 7142 326.29 65.78 105.4 9.5 0.10 9.55 2040 9241
NGC 6791 290.22 37.78 69.9 10.9 0.068 9.8 4231 7942
NGC 2141 90.73 10.45 198.0 -5.8 0.073 9.27 5183 13339
NGC 1893 80.72 33.44 173.5 -1.6 0.085 6.64 3222 11546
NGC 2682 132.85 11.8 215.7 31.9 0.166 9.63 899 8964

Table 1: Basic cluster parameters(Cantat-Gaudin and Anders, 2020)

3. The GMM Method

The GMM is a parametric machine learning model and is
based on the assumption that the data is a combination of two
or more Gaussian distributions.

In the case of star clusters, we have two distinct groups of
stars: members and field stars. We can assume that the mem-
bers follow a normal distribution in the feature space made up
of (α, δ, π, µα, and µδ), and are clustered. However, the field
stars would be distributed in a random manner and will not fol-
low a broader normal distribution.

When we have a large sample area in comparison to the clus-
ter size, previous researchers (Gao, 2018) and (Agarwal et al.,
2021) found that GMM does not work very well. This is be-
cause in the sample, the field stars dominated and the cluster
stars were difficult to be identified.

It was pointed out by (Cabrera-Cano and Alfaro, 1990; de
Graeve, 1979) that when it comes to cluster membership, one
strategy that should be employed in models like GMM, is by
making sure that the following conditions are met:

• The ratio of the number of member stars to the number
of field stars in the sample area should be high. This will
make sure that in the dataset the member group is the pri-
mary group of stars.

• There should be a difference between the peak positions
of the field star distributions and the member star distri-
butions in feature space. If such is not the case, then the
GMM model will not be able to differentiate between these
two groups of stars.

With reference to the second criterion, it is highly improbable
that the peak of the member star distribution and the field star
distribution will coincide in feature space. But if it does take
place, then we will have to try to limit the size of our sample
region in order to cut down on the number of field stars.

Keeping this in mind, we query the data using a cone search
for a specific position in the sky (i.e., α and δ ) and a search
radius, r. Then we extract all the stars that lie around that posi-
tion within the given search radius. A larger radius will increase
the number of field stars and violate the first condition. For a
smaller search radius, the field stars, and the member stars both
have the highest number density in the center, i.e., the peak of
their distribution in α and δ overlaps, and breaks the second
condition. Hence, it is better not to use α and δ as one of our
input features in GMM. Instead, we can use a smaller search
radius to ensure that all the stars in the dataset are close to the
cluster center.

The method to ensure that the first condition is met is by ap-
plying GMM in a more constrained region and using an optimal
range of all feature variables. If our operational radius is too
large, then we will have a significant number of field stars and
the member group will no longer function as the primary group.
If our range is too confined, then we will not have many field
stars and GMM will attempt to locate two distinct groups within
the members. To ensure this condition, we extract stars from a
certain region using a distance cutoff that we will explore in the
following sections. The Gaia data was filtered through qual-
ity checks: parallax > 0, parallax/error > 3, errors in µα and
µδ < 0.3. This has been done to ensure that the data used is
reliable and not noisy.

4. The Performance Metric: Modified Silhouette Score
(MSS)

In this section, we shall introduce the Modified Silhouette
Score (MSS) that we defined for GMM.

The Silhouette Score (SS) is a metric used to calculate the
performance of a given clustering technique and validate the
clustering algorithm. When using the silhouette approach, each
point’s silhouette coefficient is calculated, which indicates how
well the point belongs to a cluster rather than to some other
cluster. It gives a graphical illustration of how accurately each
cluster has been identified.

The SS is a representation of how far an object is from other
clusters in comparison to objects in its own cluster. A high
value implies the object is well-matched to its own cluster and
poorly matched to neighboring clusters. The value of the SS lies
in the interval [1,−1]. The goodness of a clustering technique
is indicated if the majority of the objects have high values of
SS. The silhouette coefficient for the sample point is defined as,
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s =
b − a

max(a, b)

where a is the mean distance between a sample and all other
points in the same class and b is the mean distance between the
sample and all other points in the next class.

The problem in this metric is that the silhouette score as-
sumes that all clusters are dense and well separated, which is
not true in the case of star clusters. We have a member set, that
is compact and dense in all the feature-variable spaces. But our
field stars are random and uniform in all feature spaces and is
mixed with the member set in feature space. Even when we
have a good separation of member and field stars, for a member
star the value of b would be close to the value of a, as the field
stars are uniformly found all around the member set. Hence,
the silhouette score will be close to 0.

We shall use another property of our sample in this case. The
standard deviation (σ) of the members would be small due to
the cluster’s compact nature. On the other hand, the field stars
are dispersed evenly, which means that their σ ought to be high.
Therefore, in our case, σ as a metric may be more helpful than
the comparison of the distance between clusters. In light of this,
a new metric is proposed for evaluating performance for clus-
tering by an unsupervised model by making certain adjustments
to the silhouette score. This newly proposed metric is named as
the Modified Silhouette Score (MSS) and is denoted by

MS S =
1
k

k∑
i=1

(σi, f ield − σi,member)
max(σi, f ield, σi,member)

(1)

where k is the total number of features and σi, f ield and σi,member

denote the σ of the feature i for field stars and members respec-
tively.

We would expect that a well-performed model would show
the members to be distributed normally with a very small σ and
the field stars to be uniformly distributed, i.e., with a high σ.

In this case, we would have σ f ield >> σmember, therefore the
numerator will be σ f ield − σi,member ≈ σi, f ield. This will result
in an MSS value very close to 1. On the other hand, for a poor
performance model, the member and field stars both will have a
similar random distributions. Thus, the numerator will be close
to 0, resulting in an MSS value around 0. One special case is
when the predicted field star group shows a stronger normal dis-
tribution (thus having low σ), but the predicted member group
is distributed randomly (a larger σ). In this case, the numerator
will be σ f ield − σi,member ≈ −σi,member and the MSS value will
be around -1. So, a strong negative MSS value will likely indi-
cate that the model was able to distinguish well between mem-
ber and field stars, but it mislabeled the groups. The predicted
member group is the field star group and vice-versa.

4.1. Performance of GMM in Simulated Data

We used a simulated dataset of normally distributed members
and randomly distributed field stars to check how changing the
range of the features influences the performance of GMM. We
have two features in each simulation: feature 1 and feature 2,

analogous to µα and µδ. We denote the half-width for a given
variable by hw. If the chosen center of the variable is x, then
we take x ± hw values: the chosen range for the variable is
[x − hw, x + hw].

We ran the simulations for 40 different values of hw varying
between 2σ to 10σ. Each of the simulations was run 20 times
(ntrial = 20) and we took the average value of the MSS metric.
Then we changed the number of field stars (n f ield) while keep-
ing the grid size and the number of members constant. This was
to study the effect of the field star density on GMM. For each
value of n f ield, we ran the system again for 40 different values
of hw and with 20 iterations each time. The results of the sim-
ulations are shown in Fig. 1. We note a common trend for all
values of n f ield. Each of them has a low MSS value at first.
Then in the middle as hw increases to around 4σ to 6σ, there
is a flat peak at MSS. Then for a larger value of hw, the MSS
decreases. For a smaller half-width, there are only a very few
field stars and GMM tries to separate the member stars into two
different groups. For a larger cutoff, GMM fails to capture the
prominent distribution. Only for an optimal range of hw values,
GMM works well.

Figure 1: MSS vs Half-width for the varying ratio of member and field stars

Another point to note from Fig 1 is the influence of the field
star density. As the grid size is constant, the field star density
increases with increasing values of n f ield, i.e., decreasing value
of nmember/n f ield. We can see that for a smaller field star density,
we get a good MSS for a relatively high value of hw (5.5σ) and
it stays good up to a relatively high hw value (7.5σ). This trend
is observed as we need to increase the range of the variable to
get enough field stars in our dataset due to the small field star
density. As the ratio of the members to field stars increases, the
optimum region shifts towards the lower values of hw (around
3.3σ to 5.5σ). Then, once the ratio of the members to field
stars decreases (nmember/n f ield = 0.25), we have a low MSS. The
maximum value of the MSS metric is still low for high field star
densities (< 0.4).

From this analysis, we infer that the quality of the GMM
model depends on choosing an optimal filter/cutoff for the fea-
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tures. In our analysis, we derived this optimal cutoff for parallax
and proper motion empirically. In that case, we get good MSS
values.

5. GMM Analysis

As we discussed earlier, for a smaller search radius, α and δ
can sometimes affect the performance of GMM, as both groups
of stars often have a similar peak position and similar distri-
bution. Fortunately, for a smaller radius, all the stars are very
close to the cluster center, so it is not necessary to include them
in our model. Thus, we ran the analysis with only three im-
portant variables of choice pmra (µα)1, pmdec (µδ) and paral-
lax (ϖ). Further, we need to get rid of noisy data, by applying
quality filters. We used the following filters in our analysis: er-
rors in µα and µδ to be less than 1 and ϖ/errors > 3. Then we
normalized each of the features before feeding it to our model.

We ran the 2-component GMM algorithm with 5 different
initial conditions and chose the best one (by setting ninit = 5).
This is because the convergence of the Expectation-Maximum
algorithm, used to train the GMM model, is only guaranteed to
a local optimum, not to the global optimum. We have used the
default type “full” as we did not want to make any assumptions.

For the cutoff in the parameter space, Gao (2018); Agarwal
et al. (2021) used a trial and error method to choose the cutoff.
In our analysis, as a first filter, we only took stars with proper
motions (pmra, pmdec) between -20 to 20 mas/yr. The reason-
ing is that any star with higher than 20 mas/yr proper motion
will always escape the cluster.

The cutoff for the distance (i.e., parallax) is not as straightfor-
ward as it depends on the cluster distance, its member density,
and field star density along the line of sight. We used an empir-
ical approach to choose the optimal distance cutoff. If the mean
cluster distance (either from literature or by taking the mean of
the star distances) is d pc, then we change the distance filter
from d ± 50 pc up to d ± 1400 pc, run the GMM model with
filtered stars, and record the model performance using MSS. Fi-
nally, we chose the cutoff, where the model performs best. Fig-
ure 2 shows the MSS vs distance cutoff for four of our sample
clusters. We can see that initially, MSS increases with the dis-
tance cutoff up to a certain point, and then drops significantly.
This boundary point is taken as our optimal distance cutoff.

GMM divides the stars into two groups. We defined the
member group as the group with a lowerσ in the feature spaces.
It also assigns a membership probability for each of the sample
stars to be in the member group. We followed a similar ap-
proach to choose the optimal member threshold. We varied the
member threshold, measured the MSS of the model, and finally
chose the one with the highest MSS value2.

1 pmra = µα is actually µ∗α = µα × cosδ. Henceforth, it will be referred to as
pmra

2All the code for GMM is available at https://github.com/

mahmud-nobe/Cluster-Membership/tree/master/GMM

Figure 2: MSS value vs distance cutoff (in pc) for four clusters of our sample.
We can see that initially, MSS increases with the distance cutoff up to a certain
point, and then the MSS drops significantly. This boundary point is taken as
our optimal distance cutoff, which is found from the sharp drop-off point in the
plots

6. Revised Membership samples

Figures 3 to 11 show the distribution of the two groups: clus-
ter stars (blue) and field (red) for nine of our clusters. The up-
per left in each figure shows the plot in µα vs µδ, the upper right
shows parallax, lower left is the CMD for cluster stars and lower
right is for field stars. The proper motion plots in the upper left,
a very clear region occupied by members, is very compact and
well defined. The parallax plots on the upper right show that
the members and field stars have very clearly different peaks
and the distribution of the parallax has smaller standard devia-
tions for members. In the plots, non members were defined as
stars with a membership probability PMemb <= 0.2 and mem-
bers were stars with PMemb >= 0.95 for all clusters excluding
NGC 7142 with PMemb >= 0.90. This was to ensure the con-
fidence in our membership determination and avoid any field
star contamination. In the case of some clusters (Figs. 5, 9, 11),
there is a very clear separation of these stars, where the space
between members and non-members is empty, i.e., devoid of
stars with PMemb between 0.2 and 0.95 indicating a very clear
categorization of members and non-members. In the case of the
rest of our sample of clusters, this is not very well segregated
and there are stars with intermediate values of PMemb.

Cantat-Gaudin and Anders (2020) determined members of
all open clusters using the GAIA DR2. We use it as a bench-
mark and find fainter members at the low mass end G ≈ 20
. As GAIA DR3 provides more precise astrometric data, it is
possible that we can find a member that was earlier classified
as a field star due to a lack of precise measurement. We com-
pare the members identified by the (Cantat-Gaudin and Anders,
2020) and our analysis, which is shown in Figs. 12, 13 and 14.
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Figure 3: GMM results for M67 with distance cutoff of 750 pc and member
threshold of Pmemb ≥ 0.95. The upper left shows the plot in µα vs µδ, the upper
right shows parallax, the lower left is the CMD for cluster stars and the lower
right is for field stars.

Figure 4: GMM results for NGC 2243 with distance cutoff of 2450 pc and
member threshold of Pmemb ≥ 0.95 with the two groups in red (cluster) and
blue (field) . The upper left shows the plot in µα vs µδ, upper right shows
parallax, lower left is the CMD for cluster stars and lower right is for field stars.

Figure 5: GMM results for NGC 6823 with distance cutoff of 900 pc and mem-
ber threshold of Pmemb ≥ 0.95 with the two groups in red (cluster) and blue
(field) . The upper left shows the plot in µα vs µδ, upper right shows parallax,
lower left is the CMD for cluster stars and lower right is for field stars.

Figure 6: GMM results for IC 4651 with distance cutoff of 350 pc and member
threshold of Pmemb ≥ 0.95 with the two groups in red (cluster) and blue (field)
. The upper left shows the plot in µα vs µδ, upper right shows parallax, lower
left is the CMD for cluster stars and lower right is for field stars.
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Figure 7: GMM results for NGC 752 with distance cutoff of 200 pc and member
threshold of Pmemb ≥ 0.95 with the two groups in red (cluster) and blue (field)
. The upper left shows the plot in µα vs µδ, upper right shows parallax, lower
left is the CMD for cluster stars and lower right is for field stars.

Figure 8: GMM results for NGC 2539 with distance cutoff of 550 pc and mem-
ber threshold of Pmemb ≥ 0.95 with the two groups in red (cluster) and blue
(field) . The upper left shows the plot in µα vs µδ, upper right shows parallax,
lower left is the CMD for cluster stars and lower right is for field stars.

Figure 9: GMM results for NGC 7142 with distance cutoff of 650 pc and mem-
ber threshold of Pmemb ≥ 0.90 with the two groups in red (cluster) and blue
(field) . The upper left shows the plot in µα vs µδ, upper right shows parallax,
lower left is the CMD for cluster stars and lower right is for field stars.

Figure 10: GMM results for NGC 2099 with distance cutoff of 750 pc and
member threshold of Pmemb ≥ 0.95 with the two groups in red (cluster) and
blue (field) . The upper left shows the plot in µα vs µδ, upper right shows
parallax, lower left is the CMD for cluster stars and lower right is for field stars.
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Figure 11: GMM results for NGC 581 with distance cutoff of 600 pc and mem-
ber threshold of Pmemb ≥ 0.95 with the two groups in red (cluster) and blue
(field) . The upper left shows the plot in µα, upper right shows parallax, lower
left is the CMD for cluster stars and lower right is for field stars.

As seen in the Figures, the proper motion scatter is large in
the case of NGC 6823 and NGC 1893. All these clusters are
at distances > 2000pc. But there are other clusters at similar
distances for which the scatter is less. In the case of these two
clusters we could not use APOGEE or GALAH data for valida-
tion and hence we cannot confirm our result. However, as both
these clusters are young, we have found a large number of pre-
main sequence stars, which are probable members. In general,
caution should be exercised in the use GMM for clusters at fur-
ther distances > 3 kpc. Supplementary methods of validation
may be used in such cases.

7. Spectroscopic Data: APOGEE and GALAH

We compared the chemical abundances of our members
and the members found by Cantat-Gaudin et al. (2018) using
APOGEE and GALAH data, where available. APOGEE an
acronym of, Apache Point Observatory Galactic Evolution Ex-
periment, is a large scale, stellar spectroscopic survey which is
conducted in the near infra-red (IR) region of the electromag-
netic spectrum. APOGEE (Majewski et al., 2017) observations
provide R ∼ 22, 500 spectra in the infrared H-band, 1.5−1.7µm,
as part of the third and fourth phases of the Sloan Digital Sky
Survey (Eisenstein et al., 2011; Blanton et al., 2017). Fig-
ures 15 to 17 show the chemical abundances of members from
APOGEE. The upper plot shows members found by Cantat-
Gaudin et al. (2018) and the lower one is our result. The Galac-
tic Archaeology with HERMES (GALAH) is a high resolution,
ground-based spectroscopic survey. It is carried out using the
Anglo-Australian Telescope’s Two Degree Field (2dF) of view

Figure 12: Comparison of members defined by our method (green) and Cantat-
Gaudin and Anders (2020) (orange). The plots show pmra and pmdec in mas/yr,
ra and dec in degrees, gmag and bp-rp in mag.

and the High Efficiency and Resolution Multi-Element Spectro-
graph (HERMES) (Barden et al., 2010; Heijmans et al., 2012;
Sheinis et al., 2015).The HERMES spectrograph gives a high
resolution (R ∼ 28000) spectra for 392 stars in four passbands.
Figures 18 show the chemical abundances of members from
GALAH. The upper plot shows members found by (Cantat-
Gaudin et al., 2018) and the lower one is our result.

8. ASteCA Results

Table 2 shows the ASteCA parameters Perren et al. (2015)
of some of our sample clusters and see they compare well with
the values of Cantat-Gaudin and Anders (2020). Figures 19 to
22 show the ASteCA plots and CMDs of the members obtained
after running GMM clustering algorithm on our sample.
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Figure 13: Comparison of members defined by our method (green) and Cantat-
Gaudin and Anders (2020) (orange). The plots show pmra and pmdec in mas/yr,
ra and dec in degrees, gmag and bp-rp in mag.

9. Results and Discussion

In this paper, we apply the unsupervised Gaussian Mixture
Model (GMM) to a sample of thirteen clusters with varying
ages (log t ≈ 6.38 − 9.64) and distances (441-5183 pc) from
Gaia DR3 data to determine membership. Cantat-Gaudin et al.
(2018) found members to a large sample of cluster down to G
≈ 18 mag. We go deeper, and find members with G ≈ 20 mag.
We also define a quantifiable metric Modified Silhouette Score
(MSS) to evaluate its performance. We study the dependence
of MSS on age, distance, extinction, galactic latitude and lon-
gitude, and other parameters to find the particular cases when
GMM seems to be more efficient than other methods. We find
that the quality of GMM model depends on choosing an optimal
filter/cutoff for the features. In our analysis, we derived this op-
timal cutoff for parallax and proper motion empirically where
we get good MS S values. We also used a combination of k-dist,
MNN and MS S to determine suitable ϵ and MinPts values for

Figure 14: Comparison of members defined by our method (green) and Cantat-
Gaudin and Anders (2020) (orange). The plots show pmra and pmdec in mas/yr,
ra and dec in degrees, gmag and bp-rp in mag.

each cluster. We describe the improvement in the number of
members and show plots where the cluster stars show peaks in
parallax and proper motions with small σ compared to the field
stars. We use this feature to define our metric MS S for the
clustering method.

We compared MSS for all clusters with varying ages but we
did not find any significant differences between GMM perfor-
mance for younger and older clusters. However we found a
moderate correlation between GMM performance and the clus-
ter distance, where GMM works better for closer clusters as the
the errors in pmra, pmdec and parallax will increase for dis-
tant clusters. We find that GMM does not work very well for
clusters at distances larger than 3 kpc. It also depends on other
factors mentioned above as well as the field star contamination
which varies with the position of the cluster in the galaxy. We
use ASteca to determine parameters for the clusters from our
revised membership data.

Table 3 shows the results we obtained for our sample using
GMM which shows the increase in number of members. Fig-
ures 3 to 11 show a variety of interesting features in the CMDs
of the clusters such as pre-main sequence stars in NGC 6823,
blue stragglers in M 67, NGC 2243 and NGC 7142, binaries in
NGC 752, IC 4651 & NGC 2539, gaps in NGC 581 and we ob-
tain photometric outliers in these clusters, as photometric data
was not used in the GMM model we used.

As noted in Table 3, the lowest MSS results are for clusters
at larger distances. The most likely parameter in these is the
distance. GMM appears to work better for closer clusters and
not very well for clusters at larger distances (> 3000 pc). This
relationship looks more clear in Fig 2.

This is because GMM is very sensitive to field star contam-
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ASteCA Cantat
Cluster Rcl (arc min) log(age) d log(age) d

NGC 2682 60 9.39 913 9.63 889

NGC 2539 30.77 8.92 1137 8.84 1228

NGC 2099 35.22 8.95 1282 8.65 1432

NGC 581 60.33 8.39 2333 7.44 2502

NGC 2243 29.74 9.436 4246 9.64 3719

NGC 7142 72.99 9.99 1828 9.49 2406

Table 2: ASteCA Parameters vs parameters from (Cantat-Gaudin and Anders,
2020) using GMM.

Cluster MSS Member Member Ratio
GMM Cantat GMM/Cantat

NGC 2682 0.94 1390 691 2.01

NGC 752 0.93 232 240 0.97

IC 4651 0.90 875 854 1.02

NGC 2539 0.90 560 518 0.93

NGC 2099 0.90 1607 1710 0.94

NGC 581 0.87 458 152 3.01

NGC 6823 0.84 397 158 2.51

NGC 2243 0.84 484 515 0.94

IC 1805 0.81 495 136 3.63

NGC 7142 0.79 430 401 1.07

NGC 6791 0.79 1106 1654 0.67

NGC 2141 0.59 284 831 0.34

NGC 1893 0.51 592 169 3.50

Table 3: GMM Performance for the cluster sample

ination. In the case of distant clusters, foreground field stars
will be brighter, more in number and dominate the sample com-
pared to the cluster stars. In the case of closer clusters, the field
stars will be fainter and contribute lesser to the sample. The
accuracy depends upon the sample composition i.e., the ratio of
member to non-members. If, for example, the sample consists
of 90% members of member stars and 10% members of field
stars. Then the model makes predictions with an accuracy of
90% by correctly predicting all of the training samples that be-
long to member stars. If we test the same model using a test
set that contains 60% of examples from member stars and 40%
from field stars. The accuracy will then drop, and we will end
up with a score of 60%. At larger distances, the errors in pmra,
pmdec and parallax will increase and therefore GMM will work
best for closer clusters.

If we put an MSS score cut-off of 0.8, then we should limit
our cluster distance to be < 3 kpc. Caution should be exercised
in the use GMM for clusters at further distances > 3 kpc. Sup-
plementary methods of validation may be used in such cases.
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Figure 15: Chemical abundances of members from APOGEE for NGC 2682
(a) Upper plot (Cantat-Gaudin et al., 2018) (b) Our results.
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Figure 16: Chemical abundances of members from APOGEE for NGC 752 (a)
Upper plot (Cantat-Gaudin et al., 2018)
(b) Our results.

Figure 17: Chemical abundances of members from APOGEE for NGC 2243
(a) Upper plot (Cantat-Gaudin et al., 2018)
(b) Our results.
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Figure 18: Chemical abundances of members from GALAH for NGC 2539 (a)
Upper plot (Cantat-Gaudin et al., 2018) (b) Our results.

Figure 19: ASteCA plots of NGC 2682

Figure 20: ASteCA CMD plots of NGC 2682
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Figure 21: ASteCA plots of NGC 752

Figure 22: ASteCA CMD plots of NGC 752

Figure 23: MSS metric as a function of cluster distance. We can see a general
trend that the MSS decreases (which means the model performs worse) for the
distant clusters.
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