Feature Selection for Modular GA-based Classificatn

Fangming Zhu and Steven Goan

Department of Electrical and Computer Engineering
National University of Singapore
10 Kent Ridge Crescent, Singapore 119260

! Corresponding author: eleguans@nus.edu.sg

Feature Selection for Modular GA-based Classificatn

Abstract

Genetic algorithms (GAs) have been used as comraitimethods for classifiers to
adaptively evolve solutions for classification perhs. Feature selection plays an
important role in finding relevant features in dlifisation. In this paper, feature
selection is explored with modular GA-based clasaiion. A new feature selection
technique, Relative Importance Factor (RIF), isposed to find less relevant features
in the input domain of each class module. By remg\these features, it is aimed to
reduce the classification error and dimensionalitfy classification problems.
Benchmark classification data sets are used taiatalthe proposed approach. The
experiment results show that RIF can be used tbléss relevant features and help

achieve lower classification error with the featspace dimension reduced.

Keywords: classification, feature selection, genetic aldnit class decomposition

1. Introduction

Classification problems play a major role in vasdields of computer science and
engineering, such as image processing and datagniAi number of soft computing
approaches, such as neural networks (Aretral, 1995; Lu and Ito, 1999; Guan and
Li, 2003), evolutionary algorithms (Corcoran andhS£994; Bramerier and Banzhaf,
2001; Falceet al, 2002), and fuzzy logic (Ishibuckt al, 1999; Setnes and Roubos,
2000), have been widely used to adaptively evoletut®mns for classification
problems. Among them, GA-based solutions have aéda much attention and

become one of the popular techniques for classificgMereloet al, 2001).

However, when GA is applied to larger-scale reattav@lassification problems, it
still suffers from some drawbacks, such as thdfigiency in searching a large space,
the difficulty in breaking internal interference whining data, and the possibility of
getting trapped in local optima. A natural approexlovercome these drawbacks is to
decompose the original task into several sub-tdsksed on certain techniques.
Generally, a decomposition approach divides a tatk smaller and simpler sub-
tasks, supervises the learning of each sub-tagk,fiaally recombines individual
solutions into the final solution. Various task dewposition methods have been
proposed. These methods can be roughly classified the following categories:
functional modularity, domain modularity, class deposition, and state
decomposition, according to different partitionagdgies (Anancet al, 1995; Guan

and Li, 2002; Jenkins and Yuhas, 1993; Lu and1999).

A number of features are usually available for sifesation problems. However, not

all of the features are equally important for ac#e task. Some of them may be

redundant or even irrelevant. Better performancg beaachieved by discarding some
features (Verikas and Bacauskiene, 2002). In otireumstances, we may aim to
reduce the dimensionality of input space to savaescomputation effort, although
classification accuracy may be slightly deteriadafEhere are many feature selection
techniques developed from various perspectives sscperformance (Setiono and
Liu, 1997), mutual information (entropy) (Battifi994; Kwak and Choi, 2002), and

statistic information (Lernest al, 1994).

Principal component analysis (PCA) and linear disgrant analysis are two

traditional techniques used to reduce dimensignbitcreating new features that are
linear combinations of the original ones (Fukunad®90). Fisher's linear

discriminant (FLD) is the most popular goodnessscfunction used in feature

selection. It is simple in computation and does meéd strict assumptions in the
distribution of features. Generally, various conabions of features in the original
feature space can be evaluated with the goodness-function by excluding some
features in the feature space. Because all possioidinations of the features should
be tried, the computation effort of such technigigesery high. In order to reduce
computation time, some search algorithms are dpeelosuch as knock-out and

backtrack tree (Lerneat al, 1994; Gonzalez and Perez, 2001).

Some feature selection techniques based on neetrabrk and fuzzy set theory have
been proposed. Setiono and Liu (1997) proposed canigue based on the
performance evaluation of a neural network, whbeedriginal features are excluded
one by one and the neural network is retrained ewaduated repeatedly. Pal et al.

(2000) demonstrated a way of formulating neuroyuzgpproaches for feature

selection under unsupervised learning. A fuzzyueaevaluation index for a set of
features is defined in terms of degree of simyaniétween two patterns. Sherrah et al.
(1996, 1997) presented an evolutionary pre-processsystem which automatically

extracts features for classification problems bpgigenetic programming.

In this paper, we employ a modular GA-based schiemeassification. This modular
scheme uses class decomposition, which partitiordassification problem into
several class modules in the output domain. Eaatiuteds responsible for solving a
fraction of the original problem. These modules dan trained in parallel and
independently, and the results obtained from theenirtegrated to form the final
solution. Then, we propose a new feature seledcgohnique - Relative Importance
Factor (RIF) based on the optimal transformationigits from Fisher's linear
discriminant function. The RIF technique can defeetures that are less relevant to
the classification problem and remove them from tbature space to improve
classification performance in terms of accuracy. Mtegrate RIF into the modular
GA-based scheme by employing it in finding a suédeature subset for each class
module. We aim to explore the application of featselection in the GA domain,
which appears to be missing in the literature. Adolar-GA based classification
approach will be more effective for RIF-based featselection, as it is easier to find
the less relevant features (LRFs) in each individigss, eliminating the interference
from the other classes. Three benchmark data setsused to evaluate the
performance of RIF. The experiment results show Ri& can help achieve higher

classification accuracy with the feature space dsien reduced.

We first elaborate rule-based classification witlgenetic algorithm in section 2.
Then, a new feature selection technique RIF witlduer GA-based classification is
introduced in section 3. The experiment resultsbenchmark data sets and their
analysis are reported in section 4. Section 5 caoled the paper and presents future

work.

2. Rule-based Classification with Genetic Algorithm
2.1 Encoding Mechanism
In our approach, a rule set consisting of a certaimber of rules is a solution

candidate for a classification problem. An IF-THERNE is represented as follows:

R IF Vimin €% SVimad EMVomin €% SVornad o EMVomin €%, SVimad THEN Yy =C (1)
whereR; is a rule labeln is the number of features¢;(,..., %) is the input feature
set, andy is the output class category assigned with a vafu@ Vjmin andVjmax are
the minimum and maximum bounds of fite featurex; respectively. Each rulg is

encoded according to the mechanism shown in Fijure

Antecedent Gene 1 | ... Antecedent Gene n Consequence Gene
ACt1| Vlmin Vlmax ------ ACtn ‘ Vnmin Vnmax C

Note: 1. Agtdenotes whether condition j is active or inacteecoded as 1 or 0.
2. If \nin is larger than Yhax at any time, this gene will be regarded as an
invalid gene.The invalid genes will make no contribution in the
classification rule.

Figure 1. Encoding mechanism for classification rds

Each antecedent gene represents a feature, antbtisequence gene stands for a
class. Each chromosome CRj consists of a set e§ifization rules Ri (i=1,2,...,m)

by string concatenation:

CR = UR j=12,...s @)

where m is the maximum number of rules allowed for eachrooiosome
(ruleNumber),s is the size of the population (popSize). Therefore chromosome
will represent one rule set. Classifiers can leagWVjmin, Vimax (for each feature) and
C from the training pattern. Then, a suitable step & determined for each feature.
For exampleVmin=0, Vimax=100, stepsize=0.1, then the possible number afegalor

Vj is 1000. Those values are evenly distributed] #rey are not necessary the same
values as presenting in the training set. TMgf,, Vimax, andC are encoded each as a

character by finding their positions in the rangéfhe maximum number of

characters i2", e.g., under thehar type in Java).

2.2 Genetic Operators

Genetic operators such as crossover, mutationrepraéduction play important roles
in GA. One-point crossover is used in all experiteefReferring to the encoding
mechanism, we note that crossover will not causernigistency and thus can take
place in any point of chromosome. On the contrtrg, mutation operator has some
constraints. The mutation point is randomly seléctgth a certain probability.
According to the position of a selected point, wan cetermine whether it is an
activeness, minimum or maximum element. Differenttation is available for each.
For example, if an activeness element is selecedfitation, it will just be toggled.
Otherwise when a boundary-value element is selettedalgorithm will randomly
select a substitute in the range of that featurgurE 2 shows the operations of
crossover and mutation. The rates for mutation@odsover are selected as 0.01 and
1.0 in our experiments (mutationRate=0.01, cross®at==1). For reproduction, we
set the survival rate as 50% (SurvivorsPercent=508ich means half of the parent

chromosomes with higher fitness will survive inb@ thew generation, while the other

half will be replaced by the newly created childresulting from crossover and/or

mutation.

Chromosomei| 1| b|k|[O]j[s|-[1]c|m 1] [1]b[k]O]j[p]-[1]b][Vv][1]
-4— Crossover point

Chromosome j[1[a]m0]d|p]-]1]b]v[1] [a[mod[s]-[1]c[m1]

chromosomei{1|b[k[O]j[s|-[1]c|m1|——»[1][b[k[O[n]s] [1]c|[m[1]

<— Mutation point

Figure 2. Crossover and mutation

Selection mechanism deals with the selection ofopufation that will undergo
genetic operations. Roulette wheel selection (Mmhiz, 1996) is used in this
paper. In this investigation, the probability tleachromosome will be selected for
mating is given by the chromosome's fitness divibdgdthe total fithess of all the
chromosomes. By this means, chromosomes with hidileess have a higher
probability of producing offspring during selectiéor the next generation than those

with lower fitness.

2.3 Fitness Function

The fitness of a chromosome reflects the succdss(ra., classification accuracy)
achieved while the corresponding rule set is usmdcfassification. The genetic
operators use this information to evolve betterontosomes over generations. As
each chromosome in our approach comprises an enteeset, the fitness function
actually measures the collective behavior of tHe set. The fithess function simply
measures the percentage of instances that can bectty classified by the

chromosome’s rule set, which can be represented as:

fo C _number of instances correctly classified 3)
N total number of instances

Since there is more than one rule in a chromosdanie possible that multiple rules

match the conditions for all features but predigrtilifferent classes. We use a voting
mechanism to resolve conflict. That is, each ralst€ a vote for the class predicted by
itself, and finally the class with the highest \wie regarded as the conclusive class. If
there is a tie on one instance, it means thatiisitance cannot be classified correctly

by this rule set.

2.4 Stopping Criteria

There are three factors in the stopping criteriae Evolution process stops after a
preset generation limit, or when the best chroma@ssnfitness reaches a preset
threshold (which is set as 1.0 through this papar)when the best chromosome’s
fitness has no improvement over a specified nurabgenerations -- stagnation limit.

The detailed settings are reported along with spwading results in Section 4.

3. Feature Selection for GA-based Classification

3.1 Modular GA-based Classification with Class Decompsition

Let us assume a classification problem badasses in the-dimensional feature
space.p vectorsX, =(x;, X, ... X,), i =12..,p, p>>c, are given as training
patterns. The task of classification is to assigiances to one out of the pre-defined
c classes, by discovering certain relationship antbedgeatures. Then, the discovered
rules can be evaluated by classification accuracgrir rate either on the training

data or test data.

Module |— \

>
Input ! — Output
Features Classes
= Module > Integration | —__* p
e []
< 1 :
Module |—

C ./

Figure 3. lllustration of modular GA-based classifcation with class decomposition

A traditional GA maps features to classes direictlg batch manner, which means all
the features, classes, and training data are wsgpather to train a group of GA
chromosomes. Our approach -- GA with class decoitiposs significantly different.
As shown in Figure 3, it generally consists of éhsteps. Firstly, the original problem
is divided into c sub-problems in terms of classes. ThenGA modules are
constructed for these sub-problems, and GA in eactule will be responsible for
evolving a sub-solution. Finally, these sub-sohsi@re integrated to form the final
solution for the original problem. We present tle¢ails for each step in the following

subsections.

3.1.1 Class Decomposition
The first step is to decompose a classificatiorblgrm with a high-dimensional class
space into sub-problems with low-dimensional clagsces, in terms of class

categories.

10

Following the notations presented above, the asigolassification problem can be
denoted as:
f: X T 4

where, X 0 R"is the set of features affddJ R°is the set of classes. The objective of
GA is to find a certait with a satisfactory classification rate on the lehoaining set
&, which can be represented as:

& ={(x,.T1)}ipzl (5)
Now thec-class problem is fully decomposed imtsub-problems. Denoting the class
for each sub-problem &, we have:

T=TOUT®@U..UT® (6)
Each sub-problem can be formulated as finding dairerf; with a satisfactory
classification rate o !:
fo- X - T (7)

J

3.1.2 Parallel Training
With the division ofc sub-problems, classifiers can constmi@A modules and solve
them in parallel. Each module is composed of theleimput features and a fraction

of the class categories to produce a corresporidiatjon of the original problem.

We denote:
7O _1 -T, j=12..c (®)

which meansT"” is the complemented set . Then, the training set for each

module can be represented as:

11

& = {xoto) ok 7Ok, 9

where we assume there dvkinstances in the training set whose classes belong

T, and the rest belong B

Therefore, with the training of each module, GAmdulej has two objectives. It

will not only classify the data with the class T correctly but also ensure that
training data for the class(es) T’ will not be wrongly classified into the class TH.

In other words, dr those class(es) Fl_i(j), GA will only distinguish them from the

class inT. As a result, the GA in each module will convengare quickly.

3.1.3 Integration
Although each GA module has evolved a portion @& #olution, we cannot just

simply aggregate their sub-solutions as the fima. As discussed earlier, each GA

module only classifies the classTH”, but not the class(es) " . Therefore, when
the sub-solutions are combined together, there stithgxist conflicts among the sub-
solutions. For example, rules from different modufeay classify an instance into
several classes. In order to resolve these camfledd further improve the
classification rate, the classifier employs sontelligent decision rules. The detailed
integration process is explained as follows.

» The classifier constructs an overall rule set byragating all rules from

c modules.
= Some decision rules are added to help resolve tioeeamentioned

conflicts. We believe that the ending classificatiate obtained from

12

each module would be useful for this purpose. Quiyethe following

decision rules have been employed:

i) If an instance is classified into more than afess categories by the
rule set, it will be classified into the class whosorresponding
module achieves the highest classification ratthéparallel training
phase, if available.

ii) If an instance is not classified into any classegory by the rule set, it
will be classified into the class whose correspogdnodule achieves

the lowest classification rate in the parallelrinag phase, if available.

3.2 Relative Importance Factor (RIF) Feature Selection

Fisher’s linear discriminant (FLD) algorithm profe@ann-dimensional feature space

to ac-1 dimensional feature space by the functipr= w'x , in the directionw that

t

- . : w S;w :
maximizes the criterion functiod(w) =——"—, whereS; is called as the between-
w'S,w

class scatter matrix, arfl, the within-class scatter matrix (Duda and HarQ®@0

As we aim to employ a feature selection technigueach class module which only

distinguishes two classes, i..{" and TV the projected feature space is one-
dimensional (projected on one line) in this sitoiatiHence, the transformation matrix
w that maximizes the criterion functidifw) is a vectorw = [wl W, ... wn]‘. The

elements in the transformation vectar can be viewed as weights for different

features in the original feature space respectivehus, we can simplify the feature

selection technique based on one observation: iopimal transformation vectav

of the Fisher’s linear discriminant, a larggrmeans that thanfeature is likely to be

13

more relevant to the module and a smallemeans thénfeature is likely to be less

relevant to the moduleThis observation forms the basis of the proposéd R

technique.

However, the weights obtained directly from thensfarmation vectow are not
normalized. In order to derive a common featurecan metric across different sets

of features in different problems, we propos®&elative Importance Factor (RIF)
r= [rl rn .. rn]t, instead of using the transformation veatodirectly for feature

selection. The RIF is obtained through the follogviwo steps (Guan and Li, 2003):

I. Normalize the length of the transformation vectomw.

Since we are evaluating the relative importanckeafures, we are more
interested in the relative weights of the featufeemed from the
transformation vectow, which can be obtained through normalization:

w=—2Y__ (10)

[y’

where w is the weight of thd, feature inw, w is the normalized

transformation vector, andis the number of features.
Il. Render the importance factor independent of the nuter of features.

Since different problems have different numbersfeztures in their
feature spaces, it is necessary to make the Rllesahdependent of the
number of features in the feature space. This isiesed by the

following function:

w (11)

14

Combining (10) and (11), RIF values can be obtaifnech the transformation vector
w directly as:

n w n

r = [l - = ; W
Y w)? 2wl

(12)

n

The elements af represent the normalized importance of differeatdees, which are

independent of the magnitudewfand the number of features in the feature space.

RIF values are used as the feature selection toolbur modular GA-based
classification. The feature selection techniquelmasummarized as follows:

Step 1 Calculate the Fisher's transformation vectowith respect to all
features in the input feature space for each clastule.

Step 2 Calculate the RIF value for each feature by gi&in. 12.

Step 3: Sort all features in each module accordinghtirt RIF values in
descending order.

Step 4: In each class module, train a rule set withdhginal set of features
first. Repeat knocking out the last feature witk thast RIF value,
and train a new rule set with the remaining featseé Stop the
knock-out process when the test error performanbé&éaed with the
new feature set degrades compared to the erroachieved with the
last feature set. The features knocked out caretermined as LRFs
for each class module.

Step 5 Remove all LRFs from each module. A new seteattdires for each

class module will be selected.

15

Step 6 Modular GA-based classification is then perfedibased on the new
feature set for each class module, as presentgédtion 3.1.
The proposed RIF technique requires much less ctatipn time. Assume there are n
input features in the original feature space. lteorto obtain the relative importance
of each featuren FLD computations witim-1 features included is needed each time
using traditional knock-out techniques. With thé-Ripproach, the knock-out process

can be simplified with the use of feature rankimgRiF values.

4. Experimental Results and Analysis

4.1 Experimental Scheme

We have implemented several classifiers runninghmae benchmark data sets to
evaluate our approaches. The data sets choserhareime data, glass data, and
diabetes data. The first one is taken from the W@&thine learning repository (Blake
and Merz, 1998), and the last two are taken frommRROBENL1 collection (Prechelt,

1994). They all are real-world problems.

For benchmarking, the partitioning of data sets wdepted from the PROBENL1.
Each data set is partitioned into two parts. 75%hef data instances were used for
training (including the 50% training set and 25%dation set defined in the original
PROBENL1 settings), while the rest 25% are usedtdsting. Also, three different
permutations of the patterns available in the PRRBRere used for experiments for
the glass and diabetes data. This should incrdasecdanfidence that results are

independent of the particular distribution in theriing and test sets.

16

All experiments were completed on Pentium IV 2.4@M2s with 768M RAM. The
results reported are averaged over twenty indeperdes. The parameters, such as
mutationRate, crossoverRate, generationLimit, aneerng under the results. We
recorded the evolution of each module and the raten process. We are only
interested in some indicative metrics, which ineluditial classification error (CE),
generation cost, training time, ending CE, and @&t The CE in each generation is

the lowest error rate achieved by the whole pomriat

We followed the six steps listed in the last settmdetermine the LRFs and evaluate
the classifier performance with those LRFs removBden, by comparing to the
performance of a classifier with the complete featet, it can be shown whether the
performance of our modular classifiers have impdowe degraded as a result of
removing LRFs. Furthermore, our results on all dats (including all permutations)
are compared with those using other approacheh, asioeural networks and genetic

programming, etc.

4.2 The Wine Data

The wine data contains the chemical analysis of Wit&es from three different
cultivars in the same region in Italy. The analydetermines the quantities of 13
constituents found in each of the three types afewi In other words, it has 13

continuous features, 3 classes, 178 instances)@anussing values.

Table 1 shows the RIF value for each feature i ed&ss module. This is computed

by using Eq. 12 on the available training patteres, 75% of the data instances. With

the RIF feature selection technique presented ai@e3.2, it is found that feature 5

17

and 13 are regarded as LRFs in all class modutelsighlighted in the Table 1. Note
that feature 13 has the lowest RIF values in btstdscmodules, and feature 5 follows
as the second lowest.

Table 1. RIF value for each feature in different chss modules - wine data

RIF Class=1 Class=2 Class=3
Feature 1 1.0729 1.2194 1.1621
Feature 2 0.3557 0.2543 0.9223
Feature 3 3.3961 3.0028 3.0893
Feature 4 0.3211 0.0975 0.0888
Feature 5 0.0073 0.0081 0.0152
Feature 6 0.9826 0.8317 0.3374
Feature 7 1.8716 0.6643 2.1069
Feature 8 1.1662 0.9327 2.4267
Feature 9 0.8742 0.6158 0.0857
Feature 10 0.0803 0.1306 0.9423
Feature 11 1.4363 4.8893 1.7115
Feature 12 1.4303 0.3511 0.1107
Feature 13 0.0054 0.0024 0.0011
Notes:

1. Each row in the table records the RIF value for eactuffea
under each class module;
2. Those features determined as LRFs are highlighted.

Table 2. Performance comparison of the classifier with/without fature selection - wine data

Module 1 Module 2
(Class=1) (Class=2) Module 3 (Class=3)
Initial CE 0.1188 0.2357 0.1459
Using Generationg 36.2 67.1 335
All T. time (s) 35.9 66.8 32.9
Features | Training CE 0.0008 0.0038 0.0019
Test CE 0.0422 0.0763 0.0689
Integration
Training CE 0.0064
Test CE 0.0944
) Initial CE 0.1417 0.2165 0.1342
fei?uT:s\,/lsngl Generations 48.8 65.2 33.9
from eac’h T. _tlr_ne (s) 46.4 64.0 34.2
module Training CE 0.0045 0.0060 0.0008
Test CE 0.0344 0.0744 0.0567
Integration
Training CE 0.0113
Test CE 0.0689
Notes:

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;
2.For each module, ruleNumber=10, popSize=200, generationLimitsidghationLimit=30.
3.“Initial CE” means the lowest classification errorer@ichieved by the initial population on the
training data;
“Generations” means the generation needed to reach the stopgfeng;cr

18

“T. time (s)” means the training time cost, and its isgecond,;
“Training CE” means the lowest classification error aebie by the resulting population on
the training data;
“Test CE” means the lowest classification error ratBieved by the resulting population on
the test data.

4.The following tables regarding the performance of classibllow the same notation as this
table.

Table 2 shows the comparison of the classifier ggathnce with/without feature
selection on the wine data. We can find that tise @Es are improved in all modules
as a result of removing all LRFs. For example, tist CE of module 3 gets an
improvement from 0.0689 to 0.0567 by 17.7%. In &ddj we can also find that the

overall test CE is improved with a decrease fro@®04 to 0.0689 by 27%.

4.3 The Glass Data

The glass data set contains data of different gigsss. The results of a chemical
analysis of glass splinters (the percentage oft@ldferent constituent elements) plus
the refractive index are used to classify a sartgplee either float processed or non-
float processed building windows, vehicle windowsntainers, tableware, or head
lamps. This data set consists of 214 instances @ittontinuous features from 6
classes.

Table 3. RIF value for each feature in different chss modules — glass1 data

RIF Class=1 Class=2 Class=3 Class=4 Class= Class=6
Feature 1| 0.0645 0.2187 2.0409 0.1927 0.0596 0.257f
Feature 2| 1.4093 1.4884 1.2032 1.3094 2.5947 1.2916
Feature 3| 1.1428 0.9304 0.4649 0.8526 0.8253 0.9006
Feature 4| 0.5118 0.5577 1.3768 0.5023 0.3428 0.3427
Feature 5| 1.2445 1.1260 1.8705 0.7560 1.6632 1.3296
Feature 6| 1.4864 1.4024 1.2752 2.5161 1.2902 1.3839
Feature 7| 2.3679 2.4237 0.4870 2.3102 1.9069 1.8742
Feature 8| 0.7631 0.8267 0.1806 0.5286 0.2871 1.6008
Feature 9| 0.0096 0.0258 0.1008 0.0320 0.0302 0.0189

Notes:

1. Each row in the table records the RIF value for eadiufeainder each class module;

2. Those features determined as LRFs are highlighted.

19

Table 3 shows the RIF values for each featureffiergint class modules of the glassl
data. The LRFs found are highlighted in the tabli. found that feature 9 is regarded

as a LRF in the class modules 1, 4, 5, and 6, anféature is found as LRF s in the

modules 2 and 3.

Table 4.Performance of the classifier with the complete seif features — glass1 data

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6
(Class=1) (Class=2) (Class=3) (Class=4) (Class=5) (Class=6)
Initial CE 0.3012 0.2835 0.0783 0.0683 0.0385 0.0432
Generations 138.9 138.8 72.8 94.1 75.1 39
T. time (s) 41.5 43.8 18.6 24.6 18.9 12.7
Training CE 0.0876 0.1078 0.0655 0.0177 0.0196 0.0022
Test CE 0.1509 0.2236 0.0840 0.0198 0.0462 0.0604
Integration (Class=1, 2, 3, 4, 5, 6)
Training CE 0.2298
Test CE 0.3694
Notes:

1.mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;
2.For each module, ruleNumber=5, popSize=100, generationLimit=150, Stexjmanit=50.

Table 5. Performance of the classifier with all LRE removed — glass1 data

Module 1 | Module 2 | Module 3 | Module 4 | Module 5 | Module 6
(Class=1) | (Class=2)| (Class=3)| (Class=4)| (Class=5)| (Class=6)
Initial CE 0.3053 0.2835 0.0783 0.0634 0.037 0.0385
Generationg 145.1 138.8 72.8 93.9 79.3 30.2
T. time (s) 42.6 43.8 18.6 24.1 20.1 9.8
Training CE| 0.0925 0.1078 0.0655 0.0081] 0.0177 0.0006
Test CE 0.1481 0.2236 0.0840 0.0195 0.0406 0.0585
Integration (Class=1, 2, 3, 4, 5, 6)
Training CE 0.2081
Test CE 0.3538
Notes:

1. mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;
2.For each module, ruleNumber=5, popSize=100, generationLimit=150, Stexjmanit=50.

The performance of the classifier trained with ¢benplete set of features and the one

with LRFs removed is shown in Table 4 and 5 respelgt Comparing the

corresponding results in these tables, we cantfiatithe test CEs for modules 1, 4, 5,

20

and 6 are improved, and the overall test CE is migwmoved from 0.3694 to 0.3538

by 4.2%.

4.4 The Diabetes Data

The diabetes problem diagnoses diabetes of Pimansdit has 8 features, 2 classes,

and 768 instances. All features are continuous tlagylare number of times pregnant,

plasma glucose concentration, diastolic blood presdriceps skin fold thickness, 2-

hour serum insulin, body mass index, diabetes pedifunction, and age.

Since the diabetes data have only 2 classes, eatird has the same RIF value in the

two class modules. Table 6 shows the RIF valuetherdiabetes?2 data, and features

4,5, and 8 are regarded as the LRFs for both nasdul

Table 6. RIF value for each feature in different chss modules — diabetes2 data

RIF Class=1/ Class=2
Feature 1 0.4750
Feature 2 3.1144
Feature 3 0.6694
Feature 4 0.0491
Feature 5 0.4219
Feature 6 1.9772
Feature 7 0.8444
Feature 8 0.4487

Notes:

1. Each row in the table records the RIF value for each

feature under each class module;

2. Those features determined as LRFs are highlighted.

21

Table 7. Performance of the classifier with differat set of features — diabetes2 data

Using All Module 1 Module 2 Removing all Module 1 Module 2
Features (Class=1) (Class=2) LRFs (Class=1) (Class=2)
Initial CE 0.2994 0.2761 Initial CE 0.3609 0.2778
Generations 191.1 168.5 Generationg 161.1 163.7
T. time (s) 357.5 323.4 T. time (s) 297.0 311.4
Training CE 0.1601 0.1869 Training CE 0.1700 0.1842
Test CE 0.2979 0.3042 Test CE 0.2820 0.2924
Integration (Class=1, 2) Integration (Class=1, 2)
Training CE 0.1770 Training CE 0.1825
Test CE 0.2870 Test CE 0.2689
Notes:

1.mutationRate=0.01, crossoverRate=1, survivorsPercent=50%;
2.For each module, ruleNumber=15, popSize=100, generationLimits2fhationLimit=30.

With all LRFs Removed from both modules, the rasgltperformance of our
classifier is reported in Table 7, which compatesdlassifier performance under two
scenarios, i.e., the special case when the LRFseareved and the normal case when
all features are used for classification. We notica the test CEs for both modules
are improved, and the final test CE is also impdofrem 0.2870 to 0.2689 by 6.3%.
These results have shown again that the removaRé%s successfully reduces the

feature pace dimension and helps improve the fiesperformance.

4.5 Overall Results and Comparison to Related Work

With the same procedures as the above three expatisinmore experiments have
been conducted for other permutations of the ghaskdiabetes data. Because of the
limited space, we just report the final training @&d test CE for these experiments.
Furthermore, we also compared our results with eéheported in four literature
works. Falco et al. (2002) and Sherrah et al. (128@d genetic programming (GP)
frameworks to discover classification rules, ané thter paper also suggested a
feature selection pre-processor. Prechelt (199%)iged a set of benchmark data sets

known as PROBENL1, and reported the performancesofah networks on these data

22

sets. Brameier & Banzhaf (2001) introduced a newnfwf linear GP and GP

performance was compared with those obtained byahaatworks.

Table 8. Performance comparison on the benchmark da sets

Falco, 2002 Prechelt, 1994 Brameier, 2001 Sherrah, 1996 F RI
Data Set Train. Test Train. Test Train. Test Train. Test Train. Test
CE CE CE CE CE CE CE CE CE CE
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Diabetesl1 23.41 24.84 - 24.10 - 23.96 4 21.9 18.82 25.86
Diabetes2 22.71 30.36 - 26.4R - 27.85 4 . 1825 26.89
Diabetes3 24.30 26.09 - 22.59 - 23.09 4 - 1885 24.69
Glassl 38.25 40.92 - 32.70 - - - 48.11 20.81 35|38
Glass2 36.63 43.39 - 55.5Y - - - - 2457 36,89
Glass3 35.39 42.63 - 58.40 - - - - 25.50 40.66

Table 8 compares the performance of our RIF appredth those reported in the

above-mentioned four papers. The dash line ‘-‘dasilenotes that the element was
not reported in the corresponding papers. The rigglin the table demonstrate the
effectiveness of the RIF approach. It can be fotihad the training CE of the RIF

approach outperforms those reported in (Falco, P662all data sets. Regarding the
test CE, the performance of RIF on the diabetea gatomparable to other results.
Generally, it ranks in the middle among all resol$ained. For instance, the test CE
on the diabetes2 data attained with RIF is infet@othat reported in (Prechelt 1994),
but better than those reported the other two papeterms of the glass data, the RIF

approach performs better. It has the best resultthe glass2 and glass3 data, and

ranks second on the glassl data.

Sherrah et al. (1996) employed an evolutionary gsosessor with GP to extract
features. The features extracted for the diabedts dre features 3, 4, 5 and 8. In
(Guan and Li, 2003), feature 4 is found as anexaht feature, and features 5 and 8

are regarded as boundary features. With the RIFoaph, LRFs found for the

23

diabetes data are features 4, 5, 8 (cf. table Biclhwconform to those reported in the

literature.

5. Conclusions and Discussions

This paper proposes a new feature selection tegniBelative Importance Factor
(RIF), to find the less relevant features (LRFsjha input domain of a classification
problem. By removing these features, we aim to awerclassification accuracy and
reduce the dimensionality of the classificationigpeons. RIF is employed in modular
GA-based classifiers. In this modular approach, lasstfication problem is
decomposed into several modules in terms of classrdposition, and each module is
responsible for solving a fraction of the origimsbblem. These modules are trained
in parallel, and the sub-solutions obtained froenthare integrated to form the final
solution. RIF is used as a feature selection teglento detect the LRFs in each class

module.

Benchmark classification data sets were used ttuateathe proposed approaches.
The experiment results showed that RIF can be ased simple and yet effective
feature selection technique to determine less aelefeatures and help achieve higher

classification accuracy with the feature space dsman reduced.

The integration of RIF feature selection with a mlad GA approach brings forth
some advantages. First, as each module is onlpmegye for one class, it is easier to
use RIF to find the LRFs in that particular clasbminating the interference from
other classes. Second, RIF requires relatively Isoaahputation cost compared to

other feature selection techniques such as théifaitk-out technique. It is based on

24

the statistic distribution of features in the ingeature space. Furthermore, RIF is
independent of the learning algorithms used, arwiit also be used with other soft
computing techniques such as neural network anerdgipes of classifiers such as

Bayes classifiers.

In this paper, classifiers partition the outputssks in a non-overlapping manner,
which means each module only tackles one claseridtively, classifiers can have
some degrees of overlapping in class decompositfi.may need a modification to
accommodate this overlapping situation. Furthermitre design and implementation
of GA can be improved. For example, the valuenof(ruleNumber) is selected
empirically. As future work, we will add the select of rule number as an additional
module for classifiers. Starting from one rule, thke set is increased gradually until
the performance does not improve with a furtheraase of the rule number. Thus, a

compact rule set will be obtained finally.

Appendix

Rule Set Samples for the Diabetes Data

The following two lists show the resulting rulessétr class module 1 of the diabetes2
data before and after feature selection respegtivedmoving features 4, 5 and 8 (cf.
Table 6 and 7). We can see that features 4, 5 §#d,8X5, and X8 in the rule set) do

not appear in the second list, as they have beaowed from the feature space. It is

also found that the rule set after feature selagsanore concise.

25

(Rule set for module 1 with all features)

1. IF (0.65<=X1<=0.73) AND (0.30<=X2<=0.60) AND (0.26<=X3<=0.49) AND (0.20<=X4<=0. 44)
AND (0. 44<=X5<=0.49) AND (0.73<=X7<=0.94) AND (0.13<=X8<=0.19) THEN C ass=1

2. | F (0.44<=X1<=0.98) AND (0.68<=X2<=0.88) AND (0.37<=X6<=0.69) THEN Cl ass=1

3. I F (0.78<=X2<=0.96) AND (0.17<=X3<=0.70) AND (0.11<=X7<=0.64) AND (0.10<=X8<=0. 32)

THEN Cl ass=1

I F (0.27<=X4<=0.71) AND (0. 44<=X7<=0.64) THEN O ass=1

I F (0.52<=X2<=0.64) AND (0.18<=X4<=0.57) AND (0.17<=X5<=0.24) AND (0.09<=X8<=0. 71)

THEN Cl ass=1

I F (0.55<=X6<=0.88) AND (0.07<=X7<=0.58) AND (0.58<=X8<=0.97) THEN C ass=1

F (0.72<=X6<=0.84) THEN C ass=1

F (0.81<=X2<=0.99) THEN C ass=1

F (0.57<=X2<=0.71) AND (0.31<=X3<=0.82) AND (0.48<=X5<=0.64) AND (0.17<=X8<=0.57)

F

ar

©® N

|

|

|

THEN Cl ass=1

10. 1 F (0.18<=X1<=0.79) AND (0. 31<=X3<=0.60) AND (0.90<=X5<=0.91) AND (0.43<=X6<=0.69)

AND (0.57<=X8<=0.63) THEN C ass=1

11.1F (0.06<=X1<=0.96) AND (0.20<=X4<=0.78) AND (0.15<=X6<=0.58) AND (0.41<=X7<=0. 76)
NI

AND (0. 15<=X8<=0.32) THEN O ass=1

12. 1 F (0.04<=X4<=0.89) AND (0.27<=X5<=0.45) AND (0.45<=X7<=0.78) AND THEN d ass=1

13. 1 F (0.57<=X3<=0. 61) AND (0.18<=X6<=0.22) AND (0.16<=X7<=0.16) AND (0. 73<=X8<=0. 90)
THEN Cl ass=1

14. 1 F (0.24<=X4<=0.81) AND (0.06<=X7<=0.69) AND (0.38<=X8<=0.63) THEN Cl ass=1

15. 1 F (0.30<=X2<=0.76) (0.02<=X5<=0.46) AND (0.55<=X6<=0.77) AND (0.64<=X7<=0.97) THEN

Cl ass=1

(Rule setfor module 1 with feature selection — features 4, &nd 8 are removed)

1. IF (0.16<=X3<=0. 45) AND (0.79<=X7<=0. 96) THEN Cl ass=1

2. IF (0.50<=X2<=0. 98) AND (0.81<=X3<=0.86) THEN Cl ass=1

3. IF (0.64<=X2<=0.72) AND (0.54<=X7<=0.92) THEN O ass=1

4. | F (0.84<=X3<=1.01) AND (0.55<=X6<=0.89) THEN O ass=1

5. IF (0.71<=X6<=0.96) THEN C ass=1

6. |F (0.00<=X1<=0.19) AND (0.46<=X2<=0. 83) AND (0.47<=X6<=0.55) AND (0. 25<=X7<=0. 81)
THEN Cl ass=1

7. |F (0.17<=X1<=0. 70) AND (0. 24<=X3<=0. 34) AND (0.07<=X6<=0. 31) AND (0. 34<=X7<=0. 84)
THEN Cl ass=1

8. IF (0.81<=X2<=1.02) THEN C ass=1

9. IF (0.51<=X1<=0.94) AND (0. 45<=X2<=0. 96) AND (0. 47<=X6<=0. 85) AND (0. 16<=X7<=0. 58)
THEN Cl ass=1

10. I F (0. 04<=X1<=0.39) AND (0.24<=X2<=0.50) AND (0.19<=X6<=0.51) AND (0.81<=X7<=0. 83)
THEN Cl ass=1

11.1F (0. 64<=X3<=0.81) AND (0. 44<=X7<=0. 65) THEN Cl ass=1

12. 1 F (0.93<=X1<=0. 97) AND (0. 04<=X2<=0. 94) AND (0.53<=X3<=0. 71) AND (0. 00<=X7<=0. 77)
THEN Cl ass=1

13. 1 F (0.12<=X1<=0.42) AND (0.46<=X7<=0.65) THEN C ass=1

14. 1 F (0.84<=X1<=0. 93) AND (0. 21<=X2<=0.27) AND (0.67<=X7<=0. 81) THEN O ass=1

15. 1 F (0.46<=X1<=0. 69) AND (0.68<=X2<=0.92) AND (0.20<=X3<=0.99) THEN d ass=1

Acknowledgements

The first author is grateful to the Singapore Milkum Foundation for the

scholarship awarded.

References

Anand, R., Mehrotra, K., Mohan, C.K., and Rankal995. Efficient classification
for multiclass problems using modular neural nek8oHEEE Transactions on

Neural Networks, 6 (1), pp. 117-124.

26

Battiti, R. 1994. Using mutual information for setieg features in supervised neural
net learning. IEEE Transactions on Neural Netwosk&l), pp. 537-550.

Blake, C.L. and Merz, C.J. 1998. UCI Repository nahchine learning databases
(http://www.ics.uci.edu/~mlearn/MLRepository.htmlyvine, CA: University of
California, Department of Information and Compuserence.

Brameier, M. and Banzhaf, W. 2001. A comparisoriréar genetic programming
and neural networks. IEEE Trans. on Evolutionaryn@otation 5 (1), pp. 17-26.

Corcoran, A.L. and Sen, S. 1994. Using real-valgexetic algorithm to evolve rule
sets for classification. Proceedings of the 1stHEEonference on Evolutionary
Computation, Orlando, US, pp. 120-124.

Duda, R.O., Hart, P.E., and Stork, D.G. 2000, Pattelassification, New York:
Wiley, 2nd Edition.

Falco, I.D., Cioppa, A.D., and Tarantino, E. 200Riscovering interesting
classification rules with genetic programming. Apdl Soft Computing, 1, pp.
257-269.

Fukunaga, K. 1990, Introduction to Statistical @attRecognition, 2nd ed., Boston:
Academic Press.

Gonzalez, A. and Perez, R. 2001. Selection of agieveatures in a fuzzy genetic
learning algorithm. IEEE Transactions on SystemanMnd Cybernetics, Part B,
31 (3), pp. 417-425.

Guan, S.U. and Li, S.C. 2002. Parallel growing &radhing of neural networks using
output parallelism. IEEE Transactions on NeuraMeks, 13 (3), pp. 542-550.

Guan, S.U. and Li, P. 2003. Feature selection fodutar neural network classifiers.

Journal of Intelligent Systems, 12 (3), pp. 113-139

27

Ishibuchi, H., Nakashima, T., and Murata, T. 1998rformance evaluation of fuzzy
classifier systems for multidimensional patternssification problems. IEEE
Transactions on Systems, Man and Cybernetics BR@&% (5), pp. 601-618.

Jenkins, R.E. and Yuhas, B.P. 1993. A simplifiedirak network solution through
problem decomposition: the case of the truck baakger. IEEE Transactions on
Neural Networks, 4 (4), pp. 718-720.

Kwak, N. and Choi, C.H. 2002. Input feature setattfor classification problems.
IEEE Transactions on Neural Networks, 13 (1), p§8-159.

Lerner, B., Levinstein, M., Rosenberg, B., Guterptdn Dinstein, L., and Romem, Y.
1994. Feature selection and chromosome classditatising a multilayer
perceptron neural network. IEEE International Cogriee on Neural Networks,
vol. 6, pp. 3540-3545.

Lu, B.L. and Ito, M. 1999. Task decomposition anddme combination based on
class relations: a modular neural network for pattelassification. IEEE
Transactions on Neural Networks, 10 (5), pp. 122861

Merelo, J.J., Prieto, A., and Moran, F. 2001. Optation of classifiers using genetic
algorithms. In: Patel, M., Honavar, V., Balakrishn&. (Eds.), Advances in the
Evolutionary Synthesis of Intelligent Agents. MITeBs, Cambridge.

Michalewicz, Z. 1996. Genetic Algorithms + Dataustures = Evolution Programs,
3rd ed. Springer-Verlag, New York.

Pal, S.K., De, R.K., and Basak, J. 2000. Unsupedvigature evaluation: a neuro-
fuzzy approach, IEEE Transactions on Neural Netwa/otk (2), pp. 366 —376.
Prechelt, L. 1994. PROBEN1: A set of neural netwbdnchmark problems and

benchmarking rules, Technical Report 21/94, Depamtmof Informatics,

University of Karlsruhe, Germany.

28

Setiono, R. and Liu, H. 1997. Neural network featselector. IEEE Transactions on
Neural Networks, 8 (3), pp. 654-662.

Setnes, M. and Roubos, H. 2000. GA-Fuzzy modelimdy @dassification: complexity
and performance. IEEE Transactions on Fuzzy Sys&(h¥ pp. 509-522.

Sherrah, J., Bogner, R.E., and Bouzerdoum, A. 1886 matic selection of features
for classification using genetic programming. Protthe IEEE Australian and
New Zealand Conference.

Sherrah, J., Bogner, R.E., and Bouzerdoum, A. 1BB&.evolutionary pre—processor:
automatic feature extraction for supervised clasdibn using genetic
programming. Proc. of the Second Annual Genetigfamming Conference.

Verikas, A. and Bacauskiene M. 2002, Feature deleetith neural networks. Pattern

Recognition Letters 23, pp.1323-1335.

29

