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Abstract

Lens system design provides ideal problems for evolutionary algorithms: a complex
non-linear optimization task, often with intricate physical constraints, for which
there is no analytical solutions. This paper demonstrates, through the use of two
evolution strategies, namely non-isotropic SA-ES and CMA-ES, as well as multiob-
jective NSGA-II optimization, the human competitiveness of an approach where an
evolutionary algorithm is hybridized with a local search algorithm to solve both a
classic benchmark problem, and a real-world problem.
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1 Introduction

Lens system design is a complex engineering task that cannot be achieved by
an analytical approach. Modern optical design is conducted by experimented
engineers backed by specialized CAD tools. The process starts by crafting a
good initial lens system using the expert’s experience and catalogs of well-
known designs. Then, refinements to the initial design are conducted using
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local search algorithms and the expert’s personal experience and intuition.
On the other hand, Evolutionary Algorithms (EA) consist in population-based
global search methods inspired by natural evolution. They are recognized to
be particularly efficient for complex non-linear optimization problems such as
lens system design.

This paper is on the use of EA for automatic lens system design. Its aim
is to demonstrate that the approach can lead to results comparable to those
obtained by modern lens system design processes. The paper structure goes as
follows. Section 2 introduces the EA with an emphasis on the algorithms used
in this paper. In Section 3 some theory is given on lens system design. Section
4 is a review of different local and global computer optimization techniques
for this task. Section 5 presents a lens system design benchmark problem.
This problem was initially defined for a friendly competition involving human
experts. Results obtained with EA for the same problem are presented in
Section 6. They show that the EA used are able to find better solutions than
those presented by human experts. Then, a real-world design problem for an
imaging application is tackled in Section 7. Results show that EA is again
able to discover lens systems that are comparable to those obtained after a
reasonable effort by human experts. The same imaging problem is tackled
again in Section 8, this time using a two-objective criterion to simultaneously
improve image quality and reduce system cost. Finally, the paper concludes
with some considerations for the automatic design of lens systems with EA.

2 Evolutionary Computations

Evolutionary Computations (EC) [1] encompass a family of robust search al-
gorithms loosely inspired by natural evolution. They are a set of generic black
box optimization method applicable whenever solutions can be represented by
some data structure and evaluated by an objective function, the so-called “fit-
ness” function. Populations of solutions – initially random solutions – evolve
over time through a sequence of processes that include (natural) selection and
different variation operations such as mutation and crossover. At the end,
there is a set of good solutions to the problem and, although EC do not give
any general guaranty of convergence to the global optimum, it has been shown
in practice that they outperform other techniques as well as human experts for
several hard problems [2,3]. In this project, a specific EC flavor is of interest:
the evolution strategies [1,4].

The evolution strategies (ES) paradigm was developed by I. Rechenberg and
H.-P. Schwefel at the Berlin Technical University in the 1960s. With ES, each
individual is a set of characteristics of a potential solution. This set is generally
represented by a floating-point vector of fixed length. The ES is applied to
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a parent population (of size µ ≥ 1) from which individuals are randomly
selected to generate a children population (of size λ). To engender a new
population, the best µ individuals are chosen within either the λ children
(approach (µ, λ), where λ � µ), or the µ parents and λ children (approach
(µ + λ), where λ � 1). Each child is generated by a mutation of a parent,
which generally consists in adding randomly generated values that follow some
parameterized probability density function. In modern ES, parameters of this
probability density function, often called the strategy parameters, are adapted
themselves over time. Three main variants of ES with adaptive mutations are
usually distinguished [4,5]: (1 + 1)-ES with the 1/5 rule, Self-Adaptive ES
(SA-ES), and derandomized ES.

(1 + 1)-ES with the 1/5 rule is the first successful ES with adaptive muta-
tion. It consists in the evolution of a single solution with Gaussian mutation,
where the mutation amplitude is adapted according to the success rate: the
mutation amplitude σ is increased if the success rate (ratio of the number of
successful mutations over the number of mutations observed) is higher than
1/5, the mutation amplitude is decreased if the success rate is less than 1/5,
and unchanged otherwise. Although the method is quite well known and has
been proved to be globally convergent [6], it has the drawback of converg-
ing very slowly after an initial period of improvements [4] and to be limited
by the adaptation of a global single value for all of the optimized parameter
components.

In SA-ES [4], mutation parameters are associated to the individuals and are
themselves changed by mutation. This coupling allow an evolution of the
mutation parameters along with the optimized variables, that is an auto-
adaptation of the mutation strength. There are three main sub-variations of
SA-ES: isotropic SA-ES, where the strategy parameter is a single value that
gives the standard deviation for all components during Gaussian mutations;
non-isotropic SA-ES, where the strategy parameter consists in a standard de-
viation value for each component during Gaussian mutations; and correlated
SA-ES, where the strategy parameter of each individual is a covariance ma-
trix parameterizing the probability density function of Gaussian mutations. In
practice, non-isotropic SA-ES is generally used as it represents a good compro-
mise between the isotropic SA-ES that restrict the feature space dimensions
to a uniform scale, and the correlated SA-ES which requires very large popu-
lations to correctly estimate the covariance matrices.

Non-isotropic SA-ES are recognized as very good EA for solving real-valued
parameter optimization problems. But in order to achieve good results, rela-
tively large populations are still needed in order to have good stochastic es-
timates of the strategy parameters [5]. Recently, derandomized ES have been
developed in order to palliate several issues of SA-ES. Similarly to the (1+1)-
ES with the 1/5 rule, they use a global parameterization of the mutation
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and a small size population. But the adaptation of this global parameteriza-
tion is done by making a better use of the search path information and by
smoothing adaptation over many generations. This should avoid loosing the
evolution convergence, as observed with (1+1)-ES with the 1/5 rule. Like the
SA-ES, the mutation parameterization is done using several values. Currently,
the Covariance Matrix Adaptation ES (CMA-ES) [7–9] is probably the most
achieved derandomized ES. It consists in using a global covariance matrix to
parameterize the Gaussian mutations and in adapting this covariance matrix
from cumulation paths of successful mutations. CMA-ES uses a modified (µ, λ)
strategy, that is (µ/µW , λ), where λ children are generated from a single mean
parent, computed as a weighted sum of the µ parents. Just like the standard
(µ, λ) approach, selection of individuals in the weighted (µ/µW , λ) strategy is
realized by keeping the µ best children, with λ� µ.

Non-isotropic SA-ES and CMA-ES are used in this paper for lens system
design, but many other evolutionary algorithms (e.g. differential evolution,
genetic algorithms with SBX crossover, estimation of distribution algorithms)
and non-evolutionary algorithms (e.g. simulated annealing) could also have
been chosen for such a global optimization task. The paper should not be
interpreted as a statement for the superiority of the former methods over the
latter, only that the former are well adapted for the particular problem at
hand. The main contribution of this paper is the methodology for automati-
cally designing lens systems capable of human competitiveness.

3 Theory on Lens System Design

A lens system is an arrangement of lenses with specific refractive indices,
surface curvatures, thicknesses and spacings. Figure 1 shows an example of a
two-lens system. Given an object of specific size at a certain distance, its func-
tion is to produce an image of this object. Although many lens arrangements
can generate images of the same size, the problem of lens system design is gen-
erally to seek the one with the least amount of aberrations. Aberrations are
the difference between a real image and the corresponding approximate image
computed with Gauss optics [10]. Gauss optics constitute a usable framework
to characterize an optical system with various constants such as effective focal
length, stop, f -number, and image distance and magnification. Aberrations
come from the fact that Gauss optics is used during the design process; real
physics of lens systems being analytically intractable.

To characterize lens systems we need to do what is called ray tracing. Starting
at a given point on the object and a given initial angle, a ray trace is the
computation of the trajectory of a light ray through the optical system until
it reaches the image plane. The exact (real) ray trace is obtained from the first
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Fig. 1. Parameters of a two-lens system: nj represents the refractive index of a
media, cj a lens surface curvature, t1 and t3 are the lens thicknesses, and t2 is the
lens spacing.
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Fig. 2. Illustration of Snell-Descartes first law of refraction.

law of refraction (Snell-Descartes) that governs the behavior of light passing
through the interface between two media having different refractive indices.
The path of a ray passing from medium 1 to medium 2 obeys the following
equation:

n1 sin θ1 = n2 sin θ2 (1)

where n1 and n2 are refractive indices of media 1 and 2, and θ1 and θ2 are
incident and refracted angles relative to the normal of the interface between
the two media. Figure 2 illustrates this first law of refraction. On the other
hand, the paraxial approximation consists in assuming that all rays lie close
to the optical axis. Using the sine expansion:

sinφ = φ− φ3

3!
+
φ5

5!
− · · · (2)

and let φ ≈ 0 =⇒ sinφ ≈ φ. Equation 1 becomes:

n1θ1 ≈ n2θ2 (3)
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Fig. 3. Two of the Seidel aberrations: a) spherical aberration, and b) distortion.

This approximation is the basis of Gauss optics or first order optics.

The aberrations of an optical system are measured by computing the differ-
ence between the real image (i.e. the one that stems from Equation 1), and the
image that results from the paraxial approximation. In other words, two ray
traces emerging from the same point on the object with the same (non-zero)
angle, one exact and one approximated 1 , will strike the image plane at dif-
ferent positions. These differences, averaged over a whole set of distinct rays
provide a convenient basis for building a quality measure.

It is interesting to note that if we also consider the second term of the sine
expansion in Equation 2, we obtain what is called third order optics. The dif-
ference between first and third order optics represents the five Seidel aberra-
tions: spherical aberration, coma, astigmatism, field curvature, and distortion
[10]. Figure 3 illustrates two of these. The spherical aberration (Figure 3a)
is caused by the fact that, for spherical lenses, rays coming from infinity and
parallel to the optical axis do not converge to the same focus point, depending
on the ray distance from the optical axis. The result of this type of aberration
is a blurred image. Another type of aberration is distortion, that causes pin-
cushion (positive distortion) or barrel (negative distortion) shaped images, as
shown in Figure 3b.

Finally, it should be noted that the refractive index of a given glass is not
constant but varies as a function of the light wavelength. The refractive index
value found in the literature is usually the refractive index value of the material
at the Helium d wavelength (λ = 587.6 nm). Also, the refractive index rate of
change with the wavelength is different from one glass to another. It is standard
to characterize the dispersion property of a given glass using a measure called
the v-number (or Abbe number). This measure is simply a relative rate of
change of the refractive index, calculated using the refractive index of the
material at three arbitrary wavelengths. The v-number of glasses is a factor
that should be taken into account when designing polychromatic lens systems.

1 The approximated ray trace is virtual and computed with Gauss optics.
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4 Lens System Optimization

Modern design of lens systems is generally conducted using specialized CAD
software that help designers to visualize the lens system, to evaluate its quality
based on precise criteria, and to locally optimize the system variables. This
optimization is often achieved by local search algorithms such the Damped
Least Squares (DLS) method. But the typical search space of optical sys-
tem design is a complicated multidimensional space comprising several peaks,
non-linearities and strong correlation between parameters [11]. Hence, a local
search explores only the immediate neighborhood of the initial solution, mak-
ing the result very dependent on the starting point solution. But since the end
of the 1980’s, several applications of global search methods have been made in
optical design. A few researchers have successfully used simulated annealing
[12,13]. Others have modified local optimization algorithms, like the DLS al-
gorithm, to allow exploration beyond local optima [14]. These two approaches
have been recently integrated in some optical CAD tools.

The idea of using EA as a global optimization method for lens system design
has been investigated independently by several researchers. The pioneering
work of Walk and Niklaus [15] consists in the application of a basic ES to
lens system design. Betensky [16] presents an original method incorporating
a set of zero power operators that do not change significantly the first order
properties of lens systems. Bit string Genetic Algorithms (GA) [17,18] were
used, with each position in the string representing the application (or not) of
the associated zero power operator. Each design modified by these operators
is re-optimized with traditional local search algorithms. Since 1996, several
papers have been published on the use of bit string GAs [19,20], real-valued
GA [21–23] or ES [22,24] for the optimization of a fixed number of real-valued
parameters. Results presented in [21] are apparently very good, with the suc-
cessful automatic design of large-scale lens systems composed of more than
ten parts with real-valued GA, and experiments on the use of Pareto op-
timal selection strategy for multiobjective optimization [25]. Others [26,27]
have used a two step approach, starting with a bit string GA global search to
find a good starting point solution, then using DLS optimization and the end
of the evolution to further refine the best GA-found solution. Unfortunately,
there is no baseline results generated by human experts or other automatic
approaches presented in these papers, for which comparative results would be
good indicators on the real capability of EC for fully automated lens system
design.

In [28], we presented results on the automatic lens system design with EA for
a benchmark problem introduced in [29]. Since the publication of that paper,
Nagata [30] gave some results for the same benchmark problem and other
problems taken from [21] using the CMA-ES algorithm. In his paper, Nagata
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used its own quality measure, with no clear statement on the superiority of
its results compared to those of [29] and [28].

Recently, Koza, Al-Sakran and Jones [31,32] presented a developmental ge-
netic programming approach [33] for optical system design with a variable
number of lenses. They tested their approach on six patented lens systems,
with lens systems automatically generated by GP using the prescription given
in the patent statement as framework for the fitness function. Their evolutions
were conducted on very big population (respectively 346 000 and 75 000 in-
dividuals) and the lens systems obtained are apparently of performance level
comparable to those patented. No local optimization were applied to finely
tune the numeric parameters of the lens systems.

The present paper is an extension of our previous paper [28], where different
evolutionary optimization techniques were tested. The main contribution of
the present paper is to detail an approach based on state-of-the-art EA for
real-valued optimization, namely SA-ES and CMA-ES, which are hybridized
with local search algorithm specific to lens system design. Results obtained
for the benchmark problem and a new real world problem are comparable
and sometimes even better than those produced by optical experts, hence
showing the human-competitiveness of the approach. These results are of great
importance, as we clearly demonstrates the practical viability of EA to further
automate lens system design.

5 Monochromatic Quartet

For the first experiments on evaluating the capability of EA for automatic lens
system design, we choose a problem defined for the 1990 International Lens De-
sign Conference (ILDC 1990). This conference, held every four years, includes
a friendly lens design competition for its participants. The 1990 problem [29]
became a benchmark to evaluate the performance of optimization algorithms
for lens system design because the 11 best solutions proposed by human ex-
perts form only two different classes of similar solutions, and the organizers
concluded that these solutions were probably global optimums of the solution
space.

This benchmark problem is named the monochromatic quartet. Essentially, it
consists in finding an optical system made of four spherical lenses. Here is the
formal statement of the problem [29]:

Design a 4-element, f/3, 100 mm effective focal length lens of BK7 glass,
illuminated by helium d wavelength (i.e., n = 1.51680). The object is at
infinity, the object field covers 30◦ full field (15◦ semi-field angle) and the
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image field is flat.

Constraints on the construction includes: only spherical surfaces, no as-
pherics, GRIN elements, Fresnel lenses, binary elements, holographic optical
elements, etc. The minimum glass thickness is 2 mm, but there is no upper
limit on the size of the lens. The distortion must be less than 1% and there
should be no vignetting. The last is intended to assure that vignetting could
not be used to improve the edge performance on the lens. No requirement is
put on the location of the stop of the system.

The merit function consists of the average of the RMS blur spot for three
fields : on-axis, 10.5◦, and 15◦, weighted equally.

The f -number (also written f/#) is a measure of the size and light-collecting
ability of the lens system. The effective focal length for a lens system is similar
to the focal length of an equivalent single lens, which is the distance from the
center of the lens to the convergence point of rays that are initially parallel
to the optical axis. The BK7 glass is just an ordinary type of glass frequently
used for lens fabrication. The helium d wavelength constraint specifies that
the problem is monochromatic, that is the considered wavelength is fixed and
thus the refractive index is also fixed (otherwise we would have to consider
different refractive indices for different wavelengths). The system must not
have vignetting, i.e. the image must not be truncated. It is also possible to
include a stop, that is an aperture in the optical system which limits the
amount of light in the system, allowing to reduce aberrations. Its diameter
directly influences the effective focal length and the f -number.

The problem is formulated in such a way that the error measure of distortion
is separated from the other aberrations. The problem statement specifies that
distortion must not exceed 1% and thus implies that below this level, one
should only concentrate on minimizing other aberrations. Using exact compu-
tations (Equation 1), the RMS blur spot method consists in tracing several
parallel rays at a given entrance angle. These angles must be set successively
at 0◦, 10.5◦, and 15◦ as specified in the problem statement. Using paraxial
approximation, all the rays with the same entrance angle converge at a single
point. But with exact ray traces, they will strike the image plane at different
points, generally in the neighborhood of the approximated point, and form a
so-called blur spot, as illustrated in Figure 4. The RMS blur spot size is com-
puted from the variance of the position at the image plane of different exact
rays with the same entrance angle. A reference ray traced with the paraxial
approximation is used to evaluate the distortion, measuring its distance from
the centroid of the exact rays at the image plane.

Figure 5 presents two of the best lens designs presented at ILDC 1990, one
of each class of similar solutions. The first is solution #14, the best overall
reported solution, and the second is solution #7, the best for the second class
of designs (4th overall). RMS blur spot sizes computed with the commercial
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Fig. 4. Illustration of the distortion measure with the blur spot centroid.

CAD tool CODE V [34] are respectively 0.0022 mm and 0.0025 mm. These
are slightly different from those reported in [29] (0.0021 mm and 0.0024 mm),
which were computed using a different software.

6 Evolutionary Monochromatic Quartet

In optimization problems, one needs to consider the exploration vs exploitation
dilemma. The configuration of the search algorithm should make a good trade-
off between exploring unvisited regions of the search space, in order to discover
better solutions, and exploiting known regions that are rich in good solutions.
For the specific problem of lens systems, local search algorithms such as DLS
are very good to discover local optima. EA should thus be used mostly for
the exploration part of the optimization algorithm, letting exploitation to
well established numerical methods. Much like [16], but contrary to [26,27]
where local optimization is conducted at the end of evolutions, we apply local
optimization to each individual of each generation, provided that it satisfies
the problem constraints. This is an hybrid approach, sometimes called memetic
algorithms [35,36], that has the advantage of reducing the exploitation pressure
on the EA, favoring more exploratory searches.

For the monochromatic quartet, individuals can be represented as a vector of
15 real-valued parameters. During initialization, each parameter is uniformly
generated in the [−1, 1] interval. Each parameter value is then scaled at the
fitness evaluation, based on its respective search bounds. Table 1 summarizes
the parameters with their respective value transformations. The last surface
curvature, the distance between the last surface and the image plane, and
the stop aperture are dependent variables, computed for each system in order
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ildc90-s14 Scale: 0.54      29-Nov-04 

46.30   MM   

Radius Thickness Semi- Glass

(mm) (mm) Aperture

0.0 ∞ – AIR

145.6875 2.0 64.9691 BK7

94.7116 10.8039 61.6892 AIR

162.7274 231.4971 61.6778 BK7

−143.6539 0.0 15.3583 AIR

0.0 0.1 13.5674 AIR

68.4004 103.2294 14.3693 BK7

−1480.2792 6.7215 23.2095 AIR

−43.0337 2.0 23.2221 BK7

858.3420 2.0046 25.8911 AIR

0.0 – 26.7948 –

(Bold surface is the aperture stop.)

a)
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26.60   MM   
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(mm) (mm) Aperture

0.0 ∞ – AIR

116.753325 8.0 41.3577 BK7

−896.302517 4.6 41.5202 AIR

−148.252719 86.666308 41.7531 BK7

−170.784756 0.0 23.9590 AIR

61.852545 22.856198 21.7151 BK7

0.0 66.187961 11.5910 BK7

−406.404293 5.8 19.5193 AIR

−36.156468 3.965152 19.5915 BK7

−1470.14649 0.0 22.4919 AIR

0.0 – 26.7948 –

(Bold surface is the aperture stop.)

b)

Fig. 5. Best lens systems of two classes of designs presented by human experts at
ILDC 1990: a) solution 14 (blur spot of 0.00218 mm) and b) solution 7 (blur spot
of 0.00250 mm).

to get the paraxial image in-focus on the image plane, and to satisfy the
specified f -number (3.0) and effective focal length (100.0). The stop location
is the relative position of the stop between the first and the last surface of the
system. Lens curvature is simply the inverse of lens radius (cj = 1/rj).

The fitness measure used for the experiments is composed of a scalar fitness
value and a Boolean stating whether the solution is feasible or not. If the
original system is not feasible, the fitness value is computed from the sum of
Seidel aberrations plus some constraint penalties:
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Table 1
Number of parameters and value transformations for the monochromatic quartet.
Tilde variables (i.e. x̃) represent untransformed vector components.

Type # of Param. Value Transformation

Curvature 7 cj = 0.025c̃j mm−1

Thickness 4 tj = (|10t̃j |+ 2) mm

Distance 3 tj = |10t̃j | mm

Stop location 1 s =

 |s̃| s̃ ∈ [−1, 1]

1 otherwise

Table 2
Physical constraints for the monochromatic quartet; the different penalties are null
when the constraint is satisfied. %dist is the percentage of distortion measured on
the image plane, and lvign is the number of surfaces affected by vignetting.

Type Constraint Penalty

Distortion |%dist| ≤ 1 Pdist = |%dist|

Image distance timg ≥ 0 Ptimg = −timg

Vignetting lvign = 0 Pvign = 1000 lvign

RMS blur spot at 0◦, 10.5◦, and 15◦ PRMS = 1000

F1 = 1000 +B + F + C + PI2 + E

+ Pdist + Ptimg
+ Pvign + PRMS (4)

where B, F , C, PI2, and E are the five Seidel aberrations, respectively spher-
ical aberration, coma, astigmatism, field curvature, and distortion, and the
Px are different penalties computed from a set of physical constraints, as pre-
sented in Table 2. The arbitrary penalty value of 1000 in Equation 4 is used to
make sure that the fitness values of unfeasible designs are always worse than
those of feasible ones.

If the original system is feasible, then the fitness value depends only on the
average RMS blur spot size which is computed for the three field angles:

F2 =
1

3

∑
θ={0,10.5,15}

RMS
orig
θ (5)

Local optimization is next applied to the system for a period of up to six
seconds. Preliminary experiments have shown that this delay is more than
enough to reach a local optimum, in most circumstances. If this local opti-
mum is also feasible, a new average RMS blur spot size is computed from the
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optimized solution.

F3 =
1

3

∑
θ={0,10.5,15}

RMS
opt
θ (6)

The final fitness value is thus F1, F2, or F3 depending on the context.

The use of distinct fitness measures F1 and F2 for unfeasible and feasible lens
system evaluation is motivated by the brittleness of the RMS blur spot size
quality criterion which cannot always be computed by the CAD tool for the
three specified field angles. In those cases, an alternate criterion based on the
sum of Seidel aberrations is used instead.

For all experiments presented in this paper, the Open BEAGLE [37] C++
framework 2 was used to implement the corresponding EA. The lens system
characteristics (Seidel aberrations, RMS blur spot size, etc.) were computed
using the commercial CAD tool CODE V [34]. This tool is also used to apply
the six seconds of local optimization using the DLS algorithm 3 .

As a first experiment, a (µ + λ) non-isotropic SA-ES was applied to the
monochromatic quartet problem. Five populations of µ = 50 individuals each
were used, with λ = 350 children generated at each generation for each pop-
ulation using the usual SA-ES mutation. One-way random ring migration
was also applied at each generation using two individuals chosen from each
population. Runs were conducted over 250 generations, with initial strategy
parameters of σj = 2.0, and a lower bound value of 0.05. This experiment was
repeated five times, and the best result is presented in Figure 6. Its RMS blur
spot size is 0.00167 mm, that is 23% smaller than the best human-engineered
design presented at ILDC 1990. But the design is also very peculiar. Indeed,
its total track (length of assembly) is more than 23 meters long and the first
lens is disproportionate compared with the others. Nevertheless, it satisfies all
of the problem constraints. To our knowledge, it is the best design ever for
this problem, and contradicts the belief that the two design classes presented
at ILDC 1990 are global optima. Another interesting point is that the five
independent runs of (µ+ λ) non-isotropic SA-ES converged toward the same
design class.

As a second experiment, CMA-ES was also applied to the monochromatic
quartet problem, but using a single population of µ = 10 individuals, λ = 50
children, and 500 generations. Figure 7 presents the best lens design obtained
over the five runs. This result obtained with CMA-ES belongs to the second
design class of solutions presented at ILDC 1990 (Figure 5b). At 0.00393 mm,

2 Freely available at http://beagle.gel.ulaval.ca.
3 Using the command AUT with global optimization deactivated (GS NO).
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(mm) (mm) Aperture

0.0 ∞ – AIR

11141.72266 20296.860683 9185.5313 BK7

184.34870 110.757080 153.1824 AIR
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−206.83954 8.574215 49.4441 AIR

224.63126 4.437700 47.4147 BK7

1803.40918 5.638265 47.4147 AIR

−226.65711 200.040559 47.4147 BK7

−234.83769 211.117756 43.9963 AIR

0.0 – 26.7949 –

(Bold surface is the aperture stop.)

Fig. 6. Best lens system found with (µ+ λ) non-isotropic SA-ES for the monochro-
matic quartet problem (RMS blur spot size of 0.00167 mm).
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−216.40247 4.115601 18.3684 AIR

−36.90077 15.687862 18.3684 BK7

492.37558 7.557047 23.6293 AIR

0.0 – 26.7949 –

(Bold surface is the aperture stop.)

Fig. 7. Best lens system found with CMA-ES for the monochromatic quartet prob-
lem (RMS blur spot size of 0.00393 mm).

its blur spot size is 57% worse than the corresponding best human-engineered
design of the same class, but still a lot better than the worse qualified human
design presented at ILDC 1990 (solution 4 with a blur spot size of 0.00605 mm
according to our measures). It should be noted that computational resources
deployed for this solution were more than 10 times lower than with SA-ES
(about 15 hours vs 167 hours using a 3 GHz Pentium 4 PC). The difference
between the two algorithms stems from the large population size required by
(µ+λ) non-isotropic SA-ES, which increases the computational requirements,
but also allows a finer solution space exploration. On the other hand, CMA-ES
is more computationally efficient, at the cost of a less systematic exploration
of the search space.
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Table 3
Specifications of the ILS problem.

Specification Requirement

Number of lenses ≤ 5

Total track length
∑
tj ≤ 120 mm (object up to image)

Object distance tobj = 75 mm

Full field of view 80 mm (yobj ∈ [−40, 40])

Magnification m = −0.36

f -number f/4 (to be determined)

Vignetting No vignetting tolerated.

Lens semi-aperture aj ≤ 15 mm ∀j

Wavelengths and weights 865 nm× 0.5, 890 nm× 1.0, 915 nm× 0.5

Image format CCD detectors of 15× 15 µm

Image quality 75% encircled energy diameter less than 15 µm

7 Imaging Lens System

In this section, a real-world application, the imaging lens system (ILS) prob-
lem is tackled. This problem was presented to the optical design team of the
National Optics Institute (INO), in Quebec City. The INO experts found a so-
lution that satisfied the specification constraints after conducting a best effort
search within the budget limits defined by the client: about 5 man-days. No
doubt that with more resources, these experts could have produced a better
system.

The problem is to design an imaging system of limited length. The detailed
specifications are given in Table 3. This problem has strong physical con-
straints that are difficult to satisfy. The target imaging quality criterion is the
75% encircled energy diameter, with a primary target of making this circle fit
into a 15×15 µm CCD sensor. Smaller encircled energy diameters means bet-
ter image quality. The 75% encircled energy diameter is evaluated using three
wavelengths of different weights as specified in Table 3. The requirement on
the f -number is an indication rather than a strict specification: the working
f -number of the resulting system may be slightly modified if necessary.

Figure 8 describes the design that was developed by INO experts. It satisfies
all of the constraints of the problem. The 75% encircled energy diameter is 13.3
µm for points at 0 mm on the object plane, 33.0 µm for points at 28 mm, and
21.8 µm for points at 40 mm on the object plane. Since the specification for
the image quality is somewhat fuzzy and the 75% encircled energy diameter is
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12:06:14             

ino-imaging Scale: 4.40      19-Jan-05 

5.68    MM   

Radius Thickness Semi- Glass

(mm) (mm) Aperture (index : v-#)

0.0 76.13582 – AIR

−12.59783 3.453205 4.208 1.762 : 26.5

−16.10987 0.249998 3.922 AIR

18.36991 2.0 3.541 1.734 : 51.8

−32.45907 0.608283 3.110 AIR

0.0 3.805474 2.497 AIR

−9.53878 2.0 3.523 1.626 : 35.7

32.59135 0.841538 4.545 AIR

−17.88445 1.999995 4.503 1.669 : 57.4

−9.49337 0.25 5.103 AIR

584.59130 2.046863 5.984 1.670 : 39.2

−26.44450 26.74464 6.327 AIR

0.0 – 14.4 –

(Bold surface is the aperture stop.)

Fig. 8. Best system found by INO experts for the ILS problem.

within the 15 µm prescribed for points at 0 mm on the object, the design can
be considered to provide the desired image quality. But the energy diameters
observed for points at 28 mm and 40 mm on the object indicate that the image
is probably less well defined than expected near the borders.

For the EA experiments, the solutions are represented as vectors of 30 real-
valued parameters. Table 4 summarizes these parameters along with the value
transformations that are applied on the vector components of solutions. Note
that this time, there is no specification on the glass indices and v-numbers.
Original values for stop location (s̃), glass indices (ñj), and glass v-numbers
(ṽj) have been normalized using a triangular wave function in order to scale
values in [0, 1]. Over this normalization, glass indices and v-numbers have
been transformed from a ñj ∈ [0, 1] and ṽj ∈ [0, 1] square space into a quadri-
lateral space delimited by the (̊nj, v̊j) corners at (1.487, 70.4), (1.620, 60.3),
(1.744, 44.7), and (1.755, 27.6). This domain includes indices and v-numbers
of the most commonly used glasses in lens design. Contrary to the monochro-
matic quartet experiments, the EA is this time constrained to locate the stop
on a lens surface, rather than let it float anywhere in the system. The stop
location is the surface just at the left-hand side of the relative stop position
given by parameter s. The distance between the last surface and the image
plane is computed rather than evolved in order to get an in-focus paraxial
image on the image plane. Finally, even if the specification on the f -number
is rather lax, it was fixed to 4.0 for all of the EA runs.

The fitness measure used is similar to the one used for the monochromatic
quartet experiments, with a single fitness real-value and a feasibility Boolean
flag. If the original system is not feasible, the fitness value is computed as a
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Table 4
Parameters and value transformations for the ILS problem. Values marked by a
tilde (i.e. x̃) are the original optimized parameter before the transformation, and
values marked by a dot (i.e. x̊), as well as the stop location, are normalized within
[0, 1] using a triangular wave function.

Type # of Param. Value Transformation

Curvature 10 cj = 0.025c̃j

Thickness 5 tj = |20t̃j |+ 2

Distance 4 tj = |20t̃j |

Glass index 5
n̊j =

 |ñj | − b|ñj |c if d|ñj |e is odd

d|ñj |e − |ñj | otherwise

nj = 0.135n̊j − 0.133̊vj + 0.122n̊j v̊j + 1.620

v-number 5
v̊j =

 |ṽj | − b|ṽj |c if d|ṽj |e is odd

d|ṽj |e − |ṽj | otherwise

vj = −32.7n̊j + 10.1̊vj + 7.0n̊j v̊j + 60.3

Stop Location 1 s =

 |s̃| − b|s̃|c if d|s̃|e is odd

d|s̃|e − |s̃| otherwise

penalty sum:

F1 = 1000 +
∑

Paj
+ Pyimg

+ Ptt + Pvign + Ptimg
(7)

where the different Px are the penalties associated to the system constraints
summarized in Table 5. Because these physical constraints are difficult to
satisfy, some of them (i.e. semi-aperture, image size, and total track) have
been relaxed in order to avoid tagging the lens system as not feasible when
they are not satisfied. If the original system is feasible, the 75% encircled
energy Eyobj

is computed from three points on the object plane (yobj = 0 mm,
yobj = 28 mm, and yobj = 40 mm), taking the maximum value among the
three diameters obtained. The 75% encircled energy is a measure to evaluate
the quality of a lens system, different from the RMS blur spot used with the
monochromatic quartet. The fitness value also includes the penalty value for
the three relaxed constraints.

F2 =

max
j={0,28,40}

Eorig
yobj=j

0.015
+

∑
Paj

+ Pyimg
+ Ptt (8)

Then, the system is locally optimized for six seconds. If it is still feasible, the
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Table 5
Physical constraints of the ILS. Different Px penalties are set to zero when the as-
sociated constraints are satisfied. Constraints marked by a † do not affect feasibility
of lens system when they are not satisfied. aj is the semi-aperture value of lens j.
lvign is the number of surfaces where there is vignetting or that are not reached by
ray tracing because of vignetting.

Type Constraint Penalty

Semi-aperture† aj ≤ 15 mm ∀j Paj = 2aj − 30

Image size† |yimg| ∈ [12.4, 16.4] Pyimg =



(144/yimg)− 10 mm

if |yimg| < 12.4

0.694yimg − 10 mm

if |yimg| > 16.4

Total track†
∑
tj ≤ 119 mm Ptt =

∑
tj − 119

Vignetting lvign = 0 Pvign = 1000 lvign

Image distance timg ≥ 0 Ptimg = −10 timg

fitness is recomputed as:

F3 =

max
j={0,28,40}

Eopt
yobj=j

0.015
+

∑
Paj

+ Pyimg
+ Ptt (9)

As with the monochromatic quartet, the 75% encircled energy diameter is a
brittle quality criterion that is not computable for some unfeasible imaging
lens systems. This again explain why distinct functions are used here as fitness
measures for evaluating the quality of different systems.

The first experiments with the ILS problem are conducted using the (µ +
λ) non-isotropic SA-ES. Except for the initial mutation strategy parameter
values that are set to σj = 1.0, parameters are the same as those used for
the monochromatic quartet: five populations of µ = 50 individuals, λ = 350,
two migrants, and minimum strategy parameter value of σj = 0.05. Figure 9
presents the mutation and crossover algorithm used to generate new children
for the actual experiments. This is different from the monochromatic quartet
problem experiments, where only mutation was used. Figure 10 illustrates the
best system generated over five (µ+λ) non-isotropic SA-ES evolutions of five
µ = 50 demes. This system has a 75% encircled energy diameter of 11.68 µm.
The averaged energy diameter obtained on the best systems found is 12.19
µm (standard deviation of 0.48 µm). Average computation time needed to
run each evolution is a little less than 8 days (190 hours).

The image quality of the best imaging system found with (µ+λ) non-isotropic
SA-ES is significantly better than the target value given in the specifications
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(1) Let Y p1 = ({xp11 , σ
p1
1 }, {x

p1
2 , σ

p1
2 }, · · · , {xp1n , σp1n }) and Y p2 =

({xp21 , σ
p2
1 }, {x

p2
2 , σ

p2
2 }, · · · , {xp2n , σp2n }) be a copy of two randomly se-

lected individuals taken from the parent population of size µ, each
individual being composed of n pairs of {x, σ} real values;

(2) Apply classical non-isotropic SA-ES mutation [4] to Y p1 and Y p2 in-
dividuals to generate the mutated Ȳ p1 and Ȳ p2 individuals;

(3) Create the individual Y c = ({xc1, σc1}, {xc2, σc2}, · · · , {xcn, σcn}) with uni-
form crossover by setting each composing real value to {xcj, σcj} =

{x̄p1j , σ̄
p1
j }, if Uj(0, 1) < 0.5 or {xcj, σcj} = {x̄p2j , σ̄

p2
j }, if Uj(0, 1) ≥ 0.5,

where {x̄p1j , σ̄
p1
j } and {x̄p2j , σ̄

p2
j } are composing values of the mutated

Ȳ p1 and Ȳ p2 individuals, and Uj(0, 1) are randomly generated num-
bers using an uniform distribution in [0, 1];

(4) Return Y c as the generated child.

Fig. 9. Mutation and crossover algorithm used to generate children in (µ + λ)
non-isotropic SA-ES experiments for the ILS problem.

15:27:29             

esimg-evol3 Scale: 4.40      13-Jan-05 

5.68    MM   

Radius Thickness Semi- Glass

(mm) (mm) Aperture (index : v-#)

0.0 75.0 – AIR

12.98357 2.861395 9.3063 1.744 : 44.7

32.13223 2.690679 9.1445 AIR

5.62296 0.524639 4.9694 1.755 : 27.6

5.00620 4.615829 4.509 AIR

−19.54992 2.049896 2.589 1.755 : 27.6

−28.86507 3.646095 3.4002 AIR

21.42485 12.345714 7.2616 1.744 : 44.7

−26.02713 8.684502 8.7982 AIR

−11.27961 6.481251 8.919 1.755 : 27.6

3078.62227 0.100000 14.1306 AIR

0.0 – 14.4 –

(Bold surface is the aperture stop.)

Fig. 10. Best lens system found with (µ+λ) non-isotropic SA-ES for the ILS problem
(75% encircled energy diameter of 11.68 µm).

(15 µm). The imaging problem has strong physical constraints, and the op-
timization of the image quality is probably harder given these constraints.
From a practical point of view, however, the second lens of the system is a
fragile thin concentric meniscus that may introduce some assembly difficulties.
Even though this type of consideration was not taken into account by the EA,
additional constraints could be added to penalize such fragile designs.

An important point to note is that for all the five experiments with (µ + λ)
non-isotropic SA-ES for the imaging problem, the best design belong to the
same design class. This indicates a good repeatability capacity of (µ + λ)
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14:43:11             

cmaimg-evol5 Scale: 4.40      06-Dec-04 

5.68    MM   

Radius Thickness Semi- Glass

(mm) (mm) Aperture (index : v-#)

0.0 75.0 – AIR

13.3777 3.605079 9.4359 1.744 : 44.7

33.78061 1.434992 8.8859 AIR

6.10523 1.014729 5.4339 1.487 : 70.4

5.11550 4.891598 4.6416 AIR

−19.45778 1.584712 2.5459 1.755 : 27.6

−27.05155 4.264199 3.1678 AIR

22.29296 12.773908 7.6798 1.744 : 44.7

−26.63388 8.824164 9.2583 AIR

−11.81669 5.506620 9.3422 1.755 : 27.6

3950.09610 0.100008 14.1489 AIR

0.0 – 14.4 –

(Bold surface is the aperture stop.)

Fig. 11. Best lens system found with CMA-ES for the ILS problem (75% encircled
energy diameter of 12.05 µm).

non-isotropic SA-ES for the imaging problem.

For the second series of experiments, the CMA-ES algorithm was applied to
the imaging problem. Parameters used are: a population of µ = 10, λ =
50 children, runs of 500 generations, and individuals generated with random
values uniformly distributed in [−1, 1]. Figure 11 presents the best imaging
system found with CMA-ES over five evolutions. The average of the 75%
encircled energy diameter of the best system found for each evolution is 14.09
µm (standard deviation of 1.52 µm). Average computation time needed to run
one CMA-ES evolution is 41 hours.

The best imaging system found with CMA-ES has a 75% encircled energy
diameter of 12.05 µm, which is slightly more than the best design found with
(µ+λ) non-isotropic SA-ES. Moreover, this design belongs to the same design
class as the one obtained with (µ+ λ) non-isotropic SA-ES.

8 Multiobjective Optimization

In the previous section, once the physical constraints of the system were sat-
isfied, the lens system problem was formulated so that image quality could
be optimized through the minimization of the 75% encircled energy diame-
ter. But in real-life situations, the lens system designer may need to optimize
other characteristics, such as system cost or assembly tolerance. In this sec-
tion we investigate the use of multiobjective EC methods for simultaneous
optimization of the image quality and relative cost in the context of the ILS
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problem.

The Pareto front for population-based optimization is the set of solutions that
are not dominated by the other solutions of the population [25]. A solution is
said to dominate another if all of its objective values are better or equal and if
at least one objective value is better. The Pareto front of a population consists
in the set of non-dominated solutions. Usual multiobjective EC methods use
a selection operation that is based on the concept of Pareto dominance.

As a final series of experiments, two-objective EC optimizations are conducted
for the ILS problem. The first objective is to minimize the fitness measure
presented in Equations 7, 8, and 9. The second objective is to minimize the
total cost of the lenses. Regarding the multiobjective fitness, it should be noted
that a feasible solution is always considered as dominating a non-feasible one,
notwithstanding the respective objective values. The cost is evaluated using
the list of relative prices per gram for different types of glass (see Table 6; this
list is a subset of the SCHOTT optical glass catalog [38]; SCHOTT glasses
are widely used in the industry). The relative cost per gram for an arbitrary
glass is taken from the nearest glass of Table 6 using the following distance
measure:

d =

√
(na − nl)2 +

(va − vl)2

10 000
(10)

where na and va are the refractive index and v-number of the arbitrary glass,
and nl and vl those of a glass in the list of Table 6.

Experiments have been conducted using a multiobjective variant of non-iso-
tropic SA-ES. The (µ + λ) replacement strategy is changed for the NSGA-II
(Non-Dominated Sort Genetic Algorithm 2) [39], more commonly used within
the GA paradigm. It is in some way similar to the (µ + λ) approach, but
with µ = λ and the particularity that individuals are selected for a new gen-
eration using a sophisticated multiobjective sort of the parents and children
population based on dominance and niching. Population size was set to 500
individuals, runs were conducted for 500 generations, and children were gener-
ated using the same crossover and mutation operators as previously (see Fig.
9). Five different evolution runs were conducted using these parameters for
multiobjective optimization of the ILS problem.

The selection of the best-of-run individuals for multiobjective optimization is
not as straightforward as for single objective optimization, where we simply
selected the individual with the best fitness value. In the present case, the
best-of-run individual is selected as the individual on the Pareto front with
the smallest relative price that has a 75% encircled energy diameter under
15 µm. The overall best individual over the five evolution runs is selected
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Table 6
List of relative cost per gram for common glasses typically used in lens system design
(subset of SCHOTT optical glass catalog [38]). NBK7 glass is used as reference with
a relative cost of 1.0.

Glass Index v-number Price/g Glass Index v-number Price/g

F2 1.62004 36.37 1.6 NLAK10 1.72003 50.62 4.5

F4 1.61659 36.63 2.5 NLAK12 1.6779 55.2 3

F5 1.60342 38.03 2 NLAK14 1.6968 55.41 3

K10 1.50137 56.41 2.5 NLAK21 1.64049 60.1 3.5

K7 1.51112 60.41 2 NLAK22 1.65113 55.89 3.5

KZFSN4 1.6134 44.29 3 NLAK33 1.75398 52.43 11.5

KZFSN5 1.65412 39.63 3 NLAK7 1.6516 58.52 3.5

LAFN7 1.7495 34.95 5 NLAK8 1.713 53.83 3

LF5 1.58144 40.85 2 NLAK9 1.691 54.71 5

LLF1 1.54814 45.75 2.5 NSF1 1.71736 29.62 4

NBAF10 1.67003 47.11 3 NSF10 1.72828 28.53 4

NBAF3 1.58272 46.64 3.5 NSF15 1.69892 30.2 3.5

NBAF4 1.60568 43.72 4 NSF5 1.67271 32.25 3.5

NBAF51 1.65224 44.96 3 NSF64 1.70591 30.23 3.5

NBAF52 1.60863 46.6 3 NSF8 1.68894 31.31 3.5

NBAK1 1.5725 57.55 2 NSK10 1.62278 56.98 4

NBAK2 1.53996 59.71 2 NSK11 1.56384 60.8 3

NBAK4 1.56883 55.98 1.5 NSK14 1.60311 60.6 2.5

NBALF4 1.57956 53.87 3 NSK15 1.62296 58.02 2.5

NBALF5 1.54739 53.63 2.5 NSK16 1.62041 60.32 3

NBASF2 1.66446 36 3 NSK2 1.60738 56.65 2

NBASF64 1.704 39.38 3 NSK4 1.61272 58.63 6

NBK10 1.49782 66.95 2 NSK5 1.58913 61.27 1.5

NBK7 1.5168 64.17 1 NSSK2 1.62229 53.27 5

NF2 1.62005 36.43 2 NSSK5 1.65844 50.88 3

NK5 1.52249 59.48 2 NSSK8 1.61773 49.83 3.5

NKF9 1.52346 51.54 2 NZK7 1.50847 61.19 3

NKZFS4 1.61336 44.49 11 SF1 1.71736 29.51 2.5

NLAF2 1.74397 44.85 3.5 SF10 1.72825 28.41 2

NLAF3 1.717 47.96 6 SF15 1.69895 30.07 2.5

NLAF7 1.7495 34.82 5.5 SF5 1.6727 32.21 5

as the best-of-run individual with the smallest relative price. Figure 12 gives
the Pareto front of the last generation for the overall best individual which
is summarized in Fig. 13. It has a 75% encircled energy diameter of 15.0 µm,
and a relative price of 50.96. The average 75% encircled energy diameter of
the best-of-run individual for the five independent runs is 14.9 µm (standard
deviation of 0.14 µm), and the average relative cost is 95.9 (standard deviation
of 29.7). The evolutions where conducted on a different processor than for the
previous experiments (Pentium M 1.9 GHz laptop PC) and the average CPU
time needed on this computer was a little less than 25 hours per evolution.
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Fig. 12. Pareto front of the experiments with the overall best individual. Individuals
with a first objective value that corresponds to a 75% encircled energy diameter
higher than 50 µm (when not penalized) have been omitted. The selected best-of-run
solution is designated by the black dot.

15:54:01             

esmoimg-lri-evol1 Scale: 4.50      28-Jul-05 

5.56    MM   

Radius Thickness Semi- Glass

(mm) (mm) Aperture (index : v-#)

0.0 75.0 – AIR

19.92097 0.651722 3.3915 1.653 : 54.6

−93.50633 0.91961 3.6240 AIR

−16.08813 8.4892 3.8168 1.755 : 27.6

33.88862 0.911516 6.8241 AIR

−108.58032 1.547007 6.8267 1.62 : 60.3

−16.90217 0.1 6.9651 AIR

27.14198 2.994467 8.7468 1.62 : 60.3

−30.6649 24.613475 8.7889 AIR

−13.34412 1.253166 10.4569 1.755 : 27.6

−193.56806 1.586845 13.3861 AIR

0.0 – 14.4 –

(Bold surface is the aperture stop.)

Fig. 13. Best lens system found with multiobjective NSGA-II non-isotropic SA-ES
for the ILS problem (75% encircled energy diameter of 15.0 µm and relative cost of
50.96).
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In comparison, the INO imaging system has a relative cost of 10.4, which is
almost five times smaller than the price of the best lens system found with the
NSGA-II algorithm. But, it should be noticed that the maximum 75% encir-
cled energy diameter for the INO system is in fact 33.3 µm, which is more than
twice the image quality of the best evolved lens system. Taking a closer look
at the Pareto front, we can see that the solution of comparable image quality
has a maximum 75% encircled energy diameter of 30.7 µm, with a relative
cost of only 8.53. This is 18% less than the INO system’s relative cost. On
the other hand, the system with the nearest relative cost on the same Pareto
front (relative cost of 9.80) has a maximum 75% encircled energy diameter of
28.5 µm, which is significantly better than for the INO system. This illustrates
the advantages of using an evolutionary multiobjective optimization based on
Pareto optimality. It allows the selection of the most interesting solution for
a given problem in the knowledge of the different possible trade-offs.

In a practical context, the method used to select the best-of-run individuals for
all of the multiobjective experiments makes sense. For the imaging problem,
once the 75% encircled energy diameter is less than 15 µm, other considera-
tions can be taken into account during the design process. In the present case,
the total relative cost is used as a second objective. Taking a look at the best
lens system found, it can be seen that it is in a class of design close to those
previously presented, while being made of inexpensive glasses. Moreover, con-
trary to the two previous EA-found systems, the best multiobjective design
does not have a fragile thin meniscus as second lens (starting from the left).

9 Conclusion

Because of its very complex nature, where intricate physical constraints must
be dealt with, it would be surprising that human expertise could be completely
removed from lens system design any time soon. However, we have shown in
this paper that evolutionary computations can be human competitive [40] for
real-world lens design, and thus advocate that it should be part of every lens
designer’s toolbox. Current specialized CAD tools offer mostly local optimiza-
tion, but only after a human has produced a draft design. By combining an
evolutionary algorithm with a local search algorithm, and through the use of
multiobjective optimization, we were able to find solutions that sometimes
outperform those produced by human experts.

More specifically two evolution strategies were studied, namely (µ + λ) non-
isotropic SA-ES and CMA-ES, each hybridized with a damped least square
algorithm. The goal of this hybrid approach is to take advantage of both
the exploratory nature of EC and the exploitation capabilities of the finely
tuned local search algorithm. To the best of our knowledge, a similar approach
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has only been explored in [16], but with genetic algorithm evolved solutions
representing zero-power transformations of an initially simple lens system, not
by working directly on the system parameters.

Results obtained in this work are for a benchmark problem, called the mo-
nochromatic quartet, that was initially introduced as a friendly competition
between human experts, and a real imaging problem that was presented to
human experts of the INO research center. For both problems, two series
of experiments were conducted using respectively the (µ + λ) non-isotropic
SA-ES and the CMA-ES algorithms. For the first problem, the best evolved
solution using SA-ES was found to outperform the best human solution by
over 23%. This evolved design satisfies all of the problem specifications, but the
solution itself is not practical because of its extreme dimensions. Nevertheless,
it invalidates the common belief that the two categories of designs found by
human experts are global optimums. Using the CMA-ES algorithm, one of
these two design classes was re-discovered, with a level of performance in
between the worst and best human expert.

For the second problem, a real-world application was tackled with severe phys-
ical constraints. With a best effort of five man-days of work, the INO experts
designed a system that was surpassed by both the SA-ES and CMA-ES al-
gorithms. The only weak part of these evolved designs, in both cases, is that
one of the lenses is very thin, in practice probably too thin to be fabricated
and assembled at reasonable cost. But since no specification was given against
such a solution, the EA approach cannot be discredited for converging towards
such a lens. In order to evolve lens systems that satisfy practical considera-
tions, the common sense of optical design must be implemented into a set of
general constraints.

A second objective was then added in the evolution process: the minimization
of the cost of raw lens material. Using NSGA-II for multiobjective optimiza-
tion, solutions were found that both outperformed the INO design on image
quality at equivalent cost, and cost less at equivalent image quality.

In general, the non-isotropic SA-ES algorithm was found to explore more
thoroughly the solution space, and thus to discover better solutions, but the
CMA-ES algorithm tends to converge much more rapidly to solutions that
are almost as good as those of SA-ES. This results mostly from the ability
of CMA-ES to work with much smaller populations, whereas non-isotropic
SA-ES requires larger populations to adequately re-estimate its mutation pa-
rameters.
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[1] T. Bäck, D. B. Fogel, Z. Michalewicz (Eds.), Evolutionary Computation 1: Basic
Algorithms and Operators, Institute of Physics Publishing, Bristol, UK, 2000.
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