Applied Soft Computing 9 (2009) 685-694

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

Applied

tin

Online hybrid traffic classifier for Peer-to-Peer systems based on network

Processors

Zhenxiang Chen?, Bo Yang®*, Yuehui Chen?, Ajith Abraham P, Crina Grosan€, Lizhi Peng?

2School of Information science and Engineering, University of Jinan, 106 Jiwei Road, 250022 Jinan, PR China
b Centre for Quantifiable Quality of Service in Communication Systems, Norwegian University of Science and Technology, Trondheim, Norway

€ Babes-Bolyai University, Cluj Napoca, Romania

ARTICLE INFO ABSTRACT

Article history:

Received 25 January 2007

Received in revised form 25 September 2008
Accepted 28 September 2008

Available online 17 October 2008

It is estimated that 70% or more of broadband bandwidth is consumed by transmitting music, games,
video and other content through Peer-to-Peer (P2P) clients. In order to detect, identify, and manage P2P
traffic, some port, payload and transport layer feature based methods were proposed. Most of them were
applied to offline traffic classification mainly due to the performance reason. In this paper, a network

processors (NPs) based online hybrid traffic classifier is proposed. The designed hardware classifier is able

Keywords:

Peer-to-Peer (P2P)
Network processors (NPs)
Traffic classification
Flexible Neural Tree (FNT)
Hybrid

Adaptation

Online learning

to classify P2P traffic based on the static characteristic namely on line speed, and the Flexible Neural
Tree(FNT) based software classifier helps learning and selecting P2P traffic attributes from the statistical
characteristics of the P2P traffic. Experiment results illustrate that the hybrid classifier performs well for
online classification of P2P traffic from gigabit network. The proposed framework also depicts good
expansion capabilities to add new P2P features and to adapt to new P2P applications online.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Since the emergence of Peer-to-Peer (P2P) applications in the
late-1990s, P2P file-sharing has relentlessly grown to represent a
formidable component of Internet traffic. Recently, it is very
common that P2P applications also reserve a big part of operator’s
total bandwidth [1]. It is often considered as a threat to the
businesses of Internet operators, Internet Service Providers (ISP)
and LAN operators. The bandwidth costs to the upstream ISPs and
inter exchange carriers are creating growing financial pressure. In
practice, this means that less bandwidth can be used for other
network usage like web browsing, e-mail and other critical
applications. Some research studies illustrate that there are many
known and unknown potential P2P traffic, which consumes almost
70-80% bandwidth but still cannot be well controlled and
managed. The financial benefits and fairly use of network resources
are undeniable motives for controlling P2P communications and

* Corresponding author.
E-mail addresses: czx@ujn.edu.cn (Z. Chen), yangbo@ujn.edu.cn (B. Yang),
yhchen@ujn.edu.cn (Y. Chen), ajith.abraham@ieee.org (A. Abraham),
plz@ujn.edu.cn (L. Peng).

1568-4946/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
do0i:10.1016/j.as0c.2008.09.010

managing P2P hosts. Despite this discomfiture, reliable profiling of
P2P hosts and traffic remains elusive.

Some of the currently proposed P2P traffic classification
methods, such as mapping of used IP-addresses or monitoring
port numbers, are not reliable. Packet payload capture and analysis
poses a set of insurmountable methodological land mines, which
includes legal, privacy, technical, logistics, security and encryption,
financial obstacles and growing number of poorly documented P2P
protocols. A transport layer identification method attempts to
identify P2P traffic only based on transport layer and other special
P2P features but does not make use of the payload information.
Recently, some machine learning based methods were used to
identify network applications. Almost all the proposed methods,
however, are only suitable for offline traffic classification due to the
performance reasons. In reality, the offline classification is not
helpful for detecting or managing online traffic.

In this scenario, in order to achieve flexibility and high
performance, the most promising solution is represented by the
adoption of network processors (NPs) [2]. NPs are emerging
platforms that offer very high packet processing capabilities (e.g.
for gigabit networks) and combines the programmability of
general-purpose processors with high performance typical of
hardware-based solutions. This paper proposes a NPs-based online
hybrid traffic classifier to identify active P2P traffic. The NPs-based

mailto:czx@ujn.edu.cn
mailto:yangbo@ujn.edu.cn
mailto:yhchen@ujn.edu.cn
mailto:ajith.abraham@ieee.org
mailto:plz@ujn.edu.cn
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2008.09.010

686 Z. Chen et al./Applied Soft Computing 9 (2009) 685-694

hardware classifier classifies traffic by static characteristics and the
Flexible Neural Tree (FNT) [3] based software classifier helps
classifying traffic by the statistical characteristics. Experiment
results reveal that the hybrid classifier has high performance and is
very competent for gigabit network traffic online classification,
besides having some other good features.

The remaining part of the paper is organized as follows. Section
2 reviews related work in P2P traffic classification. Section 3
presents the proposed P2P features and researches the normal-
ization method for the statistical features. The design of hardware
and software united hybrid classifier is described in Section 4.
Section 5 describes the experiments, results and related evaluation
of the new method. Section 6 concludes our work and gives the
future work.

2. Related research literature

A quick literature review reveals that some network packet
[23,25] and traffic identification related research and classifiers
[24] have been proposed. In order to learn more about traffic
information, some P2P traffic identification research emphasized
detailed features of a small subset of P2P protocols and/or
networks [4-6], often motivated by the dominance of that protocol
in a particular provider’s infrastructure or during a specific time
period. Some other systems used information such as known port
number, flow level analysis [1], payload information (such as
signatures) [8], topological feature and transport layer features [7].

Known transport-layer port numbers used to be an accurate
and efficient way for traffic classification. The problem, however, is
that recently P2P applications use arbitrary ports and even well
known application ports (e.g. 80, 21) to disguise their traffic in
order to go through firewalls or avoid legal persecution, thus
making it even harder to identify.

Then, the payload information identification method was
proposed. Most protocols contain a protocol specific string in
the payload that can be used for identification. These strings are
often public information and can also be determined by examining
a number of network traffic traces. Subhabrata et al. [8] presented
an analysis of a number of P2P protocols and their signatures. Their
classifier could accurately identify traffic by reading the payload
and using feature matching to discover protocol signatures.
Matthew et al. [9] also used application signatures for classification
but incorporated heuristics for categorizing unknown applications
with respect to a known class of applications. Payload-based
classifiers illustrate good results but have three major limitations:
(a) they cannot be used if payload information is not available
because of legal, privacy and encryption reason; (b) they cannot, in
general, identify unknown classes of traffic; (c) examining the
payload to classify traffic in real time is impractical due to its high
overhead, especially if there is a need for high network utilization.

In order to overcome the limitations of port and payload based
classification schemes [7,10], Thomas et al. [7] focus on identifying
P2P traffic by the source and destination connection features. Two
heuristics were used, which in most cases are sufficient to work
well. The first heuristic identifies source-destination IP pairs that
use both TCP and UDP transport protocols. Concurrent use of both
TCP and UDP is usually an indication that the traffic is P2P. The
second heuristic is based on monitoring connection features of {IP,
port} pairs. BLINC [10] explores a number of heuristics (Social level,
Function level and Application level) for classification at transport
layer.

Recently, Machine learning methods were also used to identify
game traffic [11] and network applications [12]. Cluster analysis is
one of the most prominent methods for identifying classes
amongst a group of objects, and has been used as a tool in many

fields such as biology, finance, and computer science. Recent work
by McGregor et al. [13] and Zander et al. [14] show that cluster
analysis has the ability to group Internet traffic using only
transport layer characteristics. Mahanti and co-workers [26], Quin
et al. [27], used semi-supervised learning methods to classify the
network traffic and application.

Soft computing method such as genetic algorithm was used to
network traffic patterns classification [30]. Chandramathi et al.
[31] utilized fuzzy approach to estimate cell loss probability and
Support Vector Machine (SVM) method was used to video streams
classification by Awada et al. [33]. Especially, other online hybrid
approaches were used to system identification [35],network
traffic classification [29,36] and data mining of data streams
[32,34],which promote the online network traffic classification and
controlling research greatly.

In contrast, the proposed approach is based on three principles:

(1) The target is to design a hybrid P2P traffic classifier, which
includes most of the proposed effective methods to improve
classification accuracy;

(2) The proposed classifier is designed based on network
processors, which can help distinguishing P2P traffic online
from high speed gigabit network stream;

(3) The software classifier can learn P2P characters from hardware
identified P2P traffic, which can help to find new P2P
applications intelligently and automatically.

3. The P2P traffic features
3.1. Static P2P traffic features

P2P traffic has some port-based and payload-based character-
istics, which is called static features in this article. It proves to have
some defects for classifying P2P traffic. The analysis experience
shows that part of P2P clients still has obvious static character-
istics, which is helpful for accurate P2P traffic identification,
because none of the non-P2P application will disguise as P2P
traffic.

3.1.1. Port-based feature

Port matching is very simple in practice and there are some P2P
clients running on well-known ports. Some of the well-known P2P
ports [1,7,15] are listed in Table 1.

3.1.2. Payload-based feature

To address the afore-mentioned drawbacks of port-based
classification, several payload-based analysis techniques have
been proposed [5,7,11]. In this approach, packet payloads are
analyzed to determine whether they contain characteristic
signatures of known applications. Studies show that these

Table 1

Port numbers of known P2P applications.

P2P application Port numbers Protocol
Limewire 6346/6347 TCP/UDP
Morpheus 6346/6347 TCP/UDP
BearShare default 6346 TCP/UDP
Edonkey 4662 TCP/UDP
EMule 4662(TCP)/4672(UDP) TCP/UDP
Bittorrent 6881-6889 TCP/UDP
WinMx 6699(TCP)/6257(UDP) TCP/UDP
eDonkey2000 4661-4665 TCP/UDP
Fastidentify 1214 TCP/UDP
Gnutella 6346-6347 TCP/UDP
MP2P 41170 TCP/UDP
Direct connect 411-412 TCP/UDP

Z. Chen et al./Applied Soft Computing 9 (2009) 685-694 687

approaches still can work well for current Internet except being
encrypted. But for recent new Kazaa version (v1.5 or higher), a peer
may send an encrypted short message before it sends back above
response. Note that both messages include a field called X-Kazaa-
SupernodelP. This field specifies the IP address of the supernode to
which the peer is connected including the TCP/UDP supernode
service port. This information could be used to identify signaling
using flow records for all communication. Using the special HTTP
headers found in the Kazaa downloading, we find two steps can
identify Kazaa stream:

(1) The string following the TCP/IP head is one of following: ‘GET’,
and ‘HTTP'.
(2) There must be a field with string: X-Kazaa.

Some other payload features of P2P protocols such as Gnutella,
eDonkey, DirectConnect and BitTorrent were analyzed in Ref. [8],
others are analyzed in the proposed classifier system.

3.2. Statistic attributes selection and normalization

The proposed software classifier is a machine learning based
method. So, a set of effective P2P token features should be selected
to support it. Three proposed features and one new found feature
were selected to create the feature set in the developed hybrid
classifier prototype system (see Section 5.1).

3.2.1. Transport layer protocol feature

Traffic which source-destination IP pairs concurrently use both
TCP and UDP during a special time can be expected as potential
P2P traffic. Six out of the nine analysed P2P protocols in Ref. [7] use
both TCP and UDP as layer-4 transport protocols. These protocols
include eDonkey, Fastidentify, WinMx, Gnutella, Emule, Bittor-
rent and Direct Connect, some of them are listed in Table 1.
Generally, controlling traffic, queries and query-replies by UDP,
and actual data transfers use TCP. It is found that besides P2P
protocols, only a few applications use both TCP and UDP:DNS,
NETBIOS, IRC, gaming, streaming, FTP and SQLserver, which
collectively typically put in a port numbers set, which signed as
M = (135,137,139,445,53,3531,21,1433,1434). The newly
found applications with the same feature can be added in this
set when applied to real environment. Fig. 1 shows the transport
layer connection feature of both TCP and UDP.

According to this analysis, when TCP and UDP both have been
used for a fixed IP (host) pairs during a given time t, the traffic
between the host pairs may be seen as potential P2P traffic. During
a given time t, for a fixed IP, the number of connected IPs that use

SrcPort DstPort

Proto DstIP

Fig. 1. The transportal layer connection feature of both TCP and UDP connected (IP,
port) pair. R is an arbitrary port number and 53 is one of the special non-P2P
application port, which also connect the (IP, Port) pair with both TCP and UDP
protocol.

both TCP and UDP is signed as Npy, the number of connected
destination IPs with port that listed in set M is signed as N peciq1, and
the number of all connected IPs is signed as N,;. The normalized
transport layer protocol feature can be described as

me _ Npro Ir] NSpecial (1)
pro

Larger value of fp, means higher potential of P2P traffic
between monitored IP pairs.

3.2.2. IP and port pair feature

In some P2P networks, each host chooses an arbitrary port to
connect to a different host. A connection feature where the number
of distinct connected IPs is equal to the number of distinct
connected ports usually is an evidence of P2P traffic [7]. In the
decentralized and hybrid P2P network, each peer selects a
temporary source port and connect to the advertised listening
port of peer A. For the advertised destination {IP, port} pair of host
A, the number of distinct IPs connected to it will be equal to the
number of distinct ports used to connect to it. The probability that
two distinct hosts pick the same random source port at the same
time is extremely low.

As in the P2P case, each host connects to a pre-specified {IP,
port} pair, e.g., the IP addresses of a web server W and port 80. In
summary, web traffic will have a higher ratio than P2P traffic of the
number of distinct ports versus number of distinct IPs connected to
the {IP, port} pair {W, 80}. So this can also be seen as a potential P2P
feature. The 4-tuple feature graph is illustrated in Fig. 2. During a
given time t, the number of connected IPs was defined as Njp and
the number of connected different ports is defined as N por¢, then
the normalized IP and port pair feature is calculated by

Np — N
fip—pore = % (2)
P

The smaller fp_p,,; valueis, the more potential of the P2P host it
is and the related traffic can be seen as potential P2P traffic.

3.2.3. UDP port connection feature

Gong [15] found that unique traffic behavior to UDP connection
feature exists with P2P applications. This can be used to process
network traffic and find out, which hosts are running P2P
applications in a decentralized network structure. Today almost
all P2P applications using a decentralized structure have a built-in
module to fulfill their interaction work, because there are many
control purpose packets that requires to be sent out to many
destinations. A great deal of the modern P2P networks and
protocols select UDP as the carrying protocol. An investigation of

DstPort

DstIP SrcPort

Fig. 2. The 4-tuple feature of IP and port connection. R is an arbitrary port number
and R1,...R7 mean different arbitrary port numbers.

688 Z. Chen et al./Applied Soft Computing 9 (2009) 685-694

some other decentralized P2P applications, such as BearShare,
Skype, Kazaa, EMule, Limewire, Shareaza, Xolox, MLDonkey,
Gnucleus, Sancho, and Morpheus leads to a similar conclusion.

All these applications have the same connection feature: for a
period of time t, from one single IP, fixed UDP port connected to
fixed or random UDP ports of y destinations IPs. They use one or
more UDP ports to communicate with many outside hosts during
their lifetime. Research experience shows that when t equals 5
min, y equals three, as administrators scanning for a P2P
application, the satisfying result could be obtained. This 4-tuple
feature graph can is depicted in Fig. 3. According to this analysis,
we assume that during a given time ¢, for a fixed IP with m UDP
ports who connected to the fix or random UDP ports of N; or more
IPs, then the normalized UDP port connection feature is obtained
from

m
fU port — m (3)

As shown in (3), the smaller fy . value is, just saying that the
larger of each UDP port average connected IP number is, the more
potential P2P traffic can be seen related to the host.

3.2.4. DNS query log feature

Run effectively without support of DNS service is one of the
primary characters of P2P application [16]. The structured and
unstructured model based P2P application, such as Skype, Kazaa,
EMule, Bittorent and Papstry, Chord, based P2P applications can
get the neighbours’ information from the center server, the super
node or the DHT, but never need locate the destination by DNS
service. So the DNS server log record can be checked as P2P
evidence by obtaining six months of statistical data, during a given
time of 5 min, for a fixed IP (host), if it connected more than 5 IPs
but without none of the connected IP’s DNS query log. It may be
seen as a potential P2P host. This feature is especially true in a LAN
environment with self-governing DNS server. During a given time,
the connected IPs number with query destination log is signed as
Ni,g and all connected IP number is signed as N Eq. (4) shows the
normalized DNS query log feature of a P2P host.

Niog
_ Niog 4
Fons Ny (4)

If Ngy > 5 and fpys equal O, the fixed IP can be seen as potential
P2P host and if fpys = 1 then it may be not a P2P host. The small
fpns means high P2P host potentiality. The host related traffic can
be seen as potential P2P traffic. The feature details are also
illustrated in Fig. 4. There are other P2P features such as symmetry

SrcPort DstPort

DstIP

Fig. 3. The UDP port connection feature in a given time. R1,...,R7 mean different
arbitrary port numbers.

DstIP DstDNS

SrcIP

EEEERIEE

Fig. 4. The DNS query log record feature. R means the connected destination IP’s
DNS querying log record. The connection line between DstIP and DstDNS means
that a log record of the DstIP can be found.

feature, network diameter, flow time and other new found features
that could be added to the features set in our future research.

4. The design of hybrid classifier

In case, where performance is key point of online classification,
it is possible to combine high-speed hardware classification with
low cost and increased flexibility of software classification. To do
so, a hybrid classifier that contains a hard classing stage for
standard static cases and a software stage for exceptions is
designed in this paper. In essence, a hybrid design uses hardware
as a filter. If it recognizes a P2P flow packet, the hardware classifier
diverts the packet into P2P traffic. Unrecognized packets are passed
as unclassified traffic and related features can be statistically
collected for the software classifier at the same time.

4.1. NP-based hardware classifier

A network processor is a special purpose, programmable
hardware device that combines the low cost and flexibility of a
RISC processor with the speed and scalability of custom silicon.
Network processors are building blocks used to construct network
system [17]. NP has the following characters:

(1) Relatively low cost

(2) Straightforward hardware interface
(3) Ability to access memory

(4) Programmability

(5) Ability to scale to high data rates
(6) Ability to scale to high packet rates

[XP2400 [18] is selected as the hardware platform. The Intel
IXP2400 network processor is a member of the Intel’s second-
generation network processors family. It is designed to perform a
wide range of functionalities, including multi-service switches,
routers, broadband access devices and wireless infrastructure
systems. The IXP2400 is an evolution of the first-generation Intel
IXP1200 and it is a fully programmable network processor that
implements a high-performance parallel processing architecture
on a single chip suitable for processing complex algorithms,
detailed packet inspection, traffic management and forwarding at
the wire speed.

The Intel IXP2400 architecture combines a high-performance
Intel XScale core with eight 32-bit independent microengines
MEv2 (connected in two clusters of four) that cumulatively
provide more than 5.4 giga-operations per second. The Intel
XScale core is a general-purpose 32-bits RISC processor (ARM

Z. Chen et al./Applied Soft Computing 9 (2009) 685-694 689

Version 5 Architecture compliant) used to initialize and manage
the NP, to handle exceptions, and to perform slow path processing
and other control plane tasks. For more details about Intel
[XP2400 NP the reader may refer to [18,19].

Since the Intel IXP2400 NP is hosted by an external hardware
circuit, in order to accurately design a packet classifier, acquisition
of the sizes of the available external memories is very important.
We adopt the Radisys ENP-2611 [20] hardware circuit, equipped
with 8 MB SRAM and 256 MB DRAM.

For example, in the case of classifying Edonkey traffic by static
rules, three classification rules are to be defined:

(1) The 2-octet type field in frame contains 0800+

(2) The 1-octet type field in the IP datagram contains 6

(3) The 2-octet destination port field in the TCP segment contains
4662 in software classification model, the conditional state-
ment in the pseudocode about the classification can be written
as:

1) If((frame type==0x0800)&&(IP type==6)&&(TCP port==4662))
2) declare the packet that match the classification;

3) Else

4) declare the packet that does not match the classification;

—~ o~ o~ —~

In order to further optimize the classification accuracy, one
approach uses parallel hardware to avoid testing header fields
sequentially. As shown in Fig. 5, when online traffic arrives the
classifier, the hardware moves a packet header across a wide data
path from memory to a dedicated register. When packet is moved
to hardware register, the classifier extracts pertinent fields,
concatenates the fields into a multi-octet value, and compares
the resulting values with a constant. The classifier concatenates
the fields into a five-octet value. And then compares the value
to the dotted hexadecimal constant 08.00.06.12.364¢. The value of
the constant is derived directly from the classification rules. The
hexadecimal constants 08.00 and 06 are specified explicitly; the
12.36, in the fourth and fifth octets, is the 2-octet hexadecimal
equivalent of the decimal values 4662.

Once the header has been moved, hardware extracts specific
octets and passes them to a Micro Engine (ME) based comparator
circuit. If it finds a match between header values and the

<—— Packet in memory —»

Hardware Register (Port and Signature)

Specific header bytes

: = Constant to compare
extracted for comparision

NP - Static|

. . tatic|
Microengine- <*—— Ryle!
based '

<+— Set |
Comparator

Result of comparison .

Fig. 5. Hardware classifier architecture for static classification.

predefined constant, the comparator recognize it as a P2P traffic;
otherwise, the comparator identify it as an exception.

4.2. The FNT based software classifier

4.2.1. The FNT model

For the dynamic statistical feature of P2P traffic, machine
learning technology is a potential useful solution for effective
identification. Based on payload independent statistical features,
such as flow size features, connection features, protocol features. a
formalized P2P feature set was created. Owning to the characters
of simple, fasthigh identify rate and good ability of selecting
features, the FNT (Flexible Neural Tree) model [3,21,22] is selected
as the machine learning tool. Based on the constructed feature set
and selected machine leaning method, A software classifier is
constructed.

The Flexible Neuron Instructor and FNT model are described as
follows: the function set F and terminal instruction set T used for
generating a FNT model S is described as

S=FUT ={+2,+3,...,+N}U{x1,...,xn} (5)

where +;(i = 2,3,...,N) denote non-leaf nodes’ instructions and
taking i arguments. X1,Xo,...,X, are leaf nodes’ instructions and
taking no other arguments. The output of a non-leaf node is
calculated as a flexible neuron model. From this point of view, the
instruction + is also called a flexible neuron operator with i inputs.

In the creation process of neural tree, if a non-terminal
instruction, i.e., +;(i = 2,3,4,...,N) is selected, i real values are
randomly generated and used for representing the connection
strength between node +I and its children. In addition, two
adjustable parameters a; and b; are randomly created as flexible
activation function parameters. Some examples of flexible activa-
tion functions are shown in Table 2. For developing the FNT
classifier, the flexible activation function used is

f(a;, by, x) = e~ (Ca)/bi)? 6)

The output of a flexible neuron +;, is calculated as follows. The
total excitation of +, is

n

net, = Wix; (7)
=1

where x;(j = 1,2, --- ,n) are the inputs to node +,. The output of

the node +, is

outy = f(ay, by, nety) = e ((net=an)/bn)’ (8)

A fitness function maps FNT to scalar, real-valued fitness values
that reflect the FNT’s performances on a given task. Firstly, the
fitness functions should be seen as error measures, i.e., MSE or
RMSE. A secondary non-user-defined objective for which algo-
rithm always optimizes FNTs is the size of FNT usually measured
by number of nodes. Among FNTs having equal fitness values
smaller FNTs are always preferred. In this research, the fitness
function used for the Probabilistic Incremental Program Evolution

Table 2

The number of samples of each class.

Class Training Testing
HTTP 772 772
HTTPS 428 428
FTP 182 182
POP3 278 278
SMTP 247 247
Others 361 361

690 Z. Chen et al./Applied Soft Computing 9 (2009) 685-694

X1

Wi
X W2 f(a,b) y
Xa Wh

Fig. 6. A flexible neuron operator.

(PIPE) and Simulated Annealing (SA) is given by Mean Square Error
(MSE).

A typical flexible neuron operator and a neural tree model are
illustrated in Figs. 6 and 7. The overall output of flexible neural tree
is computed from left to right by depth-first method, recursively.

For optimal design of FNT, a tree structural evolutionary
algorithm, Probabilistic Incremental Program Evolution and
Particle Swarm Optimization algorithms (PSO) are employed.
Reader may refer to [3,22] for more technical details.

4.2.2. The optimization of FNT model

The optimization of FNT including the tree-structure and
parameter optimization. Finding an optimal or near-optimal
neural tree is formulated as a product of evolution. A number of
neural tree variation operators are developed as follows: mutation
five different mutation operators were employed to generate
offspring from the parents. These mutation operators are as
follows:

(1) Changing one terminal node: randomly select one terminal
node in the neural tree and replace it with another terminal
node.

(2) Changing all the terminal nodes: select each and every terminal
node in the neural tree and replace it with another terminal
node.

(3) Growing: select a random leaf in hidden layer of the neural tree
and replace it with a newly generated subtree.

(4) Pruning: randomly select a function node in the neural tree and
replace it with a terminal node.

(5) Pruning the redundant terminals: if a node has more than 2
terminals, the redundant terminals should be deleted.

Crossover select two neural trees randomly and select one

nonterminal node in the hidden layer for each neural tree
randomly, and then swap the selected subtree. The crossover

Output layer

Second hidden layer X1

First hidden layer
Input layer x1

X2 x3 x3 X2

Fig. 7. A typical representation of the FNT with function instruction set
F = +2;+3;+4; +5; +6, and terminal instruction set T = X1;X2;X3.

operator is implemented with a pre-defined a probability 0.3 in
this study. Selection evolutionary programming (EP) style tourna-
ment selection was applied to select the parents for the next
generation [28]. Pairwise comparison is conducted for the union of
one parents and one offsprings. For each individual, ¢ opponents
are chosen uniformly at random from all the parents and offspring.
For each comparison, if the individual’s fitness is no smaller than
the opponent’s, it receives a selection. Select 1 individuals out of
parents and offsprings, that have most wins to form the next
generation. This is repeated for each generation until a predefined
number of generations or when the best structure is found.
Parameter optimization by MA parameter optimization is achieved
by the MA algorithm as described in Section 2. In this stage, the
architecture of FNT model is fixed, and it is the best tree developed
during the end of run of the structure search. The parameters
(weights and flexible activation function parameters) encoded in
the best tree formulate an individual. The GA algorithm works as
follows: (a) initial population is generated randomly. The learning
parameters crossover and mutation probabilities in MA should be
assigned in advance; (b) the objective function value is calculated
for each individual; (c) implementation of the local search,
selection, crossover and mutation operators; (d) if maximum
number of generations is reached or no better parameter vector is
found for a significantly long time (100 steps), then stop, otherwise
go to step (b).

4.2.3. Feature/input selection with FNT

It is often a difficult task to select variables (features) for the
classification problem, especially when the feature space is large. A
fully connected NN classifier usually cannot do this. In the
perspective of FNT framework, the nature of model construction
procedure allows the FNT to identify important input features in
building an P2P classifier that is computationally efficient and
effective. The mechanisms of input selection in the FNT
constructing procedure are as follows: (1) initially the input
variables are selected to formulate the FNT model with same
probabilities; (2) the variables which have more contribution to
the objective function will be enhanced and have high opportunity
to survive at next generation by an evolutionary procedure; (3) the
evolutionary operators, i.e., crossover and mutation, provide a
input selection method by which the FNT should select appropriate
variables automatically.

4.2.4. FNT based traffic classification

For soft classification evaluation, the network traffic classifica-
tion is selected for the test. The source of test data is the public
domain available packet trace called Auckland IV. The Auckland IV
trace contains only TCP/IP headers of the traffic going through the
University of Auckland’s link to the Internet. We used a subset of
the Auckland IV trace from 20 February 2001 at 21:01:22 to 21
February 2001 at 02:00:00. There are 9,575,122 packets in this
trace.

The public domain available Auckland IV traces include no
payload information. Thus, to determine the connections “true”
classifications port numbers are used. For this trace, we believe
that a port-based classification will be largely accurate, as this
archived trace predates the widespread use of dynamic port
numbers. The classes considered for the Auckland IV data sets are
HTTP, HTTPS, FTP (control), SMTP, POP3 and THE-OTHERS. Since
the flows number of P2P applications in this trace was not enough
to form the data set, we did not consider it.

For evaluation within a reasonable amount of time, the data set
we used was a random subset from the transformed statistical flow
information data set. We extracted samples randomly from data
sets and formed two new data sets: one for training and another for

Z. Chen et al./Applied Soft Computing 9 (2009) 685-694

testing. There are 2268 samples in training data set and 2268
samples in testing data set. This subset provided sufficient
connection samples to build our model. There are six classes in
the data set: HTTP, HTTPS, FTP (control), POP3, SMTP and THE-
OTHERS. Table 2 illustrates the sample distribution over these
classes in both data sets:

The statistical flow characteristics considered include: number
of packets in each direction, mean packets length in each direction,
variance of packets length in each direction and duration. Our
decision to use these seven characteristics was based primarily on
the previous work done by Zander et al. [14].

4.2.5. Result evaluation

In order to evaluate the different experiments, two criteria of
Training Accuracy (TA), Accuracy of Classed Samples (ACS) are
defined as follows:

correct
T Numbertraining

= total
Numbertraining

(9)

where Number%e, is defined as the number of total samples in
training data set. Numberfrﬁgfmg is defined as the number of right

classified samples in training data set.

correct
NumberJ!
classi fied
test

ACS = (10)

Number,

where Number{®ified js defined as the number of classified

samples in test data set.

Performance of the proposed method after eight independent
run is depicted in Table 3. The Min and Max is defined as the least
and maximum accuracy and M is the mean accuracy of each class.
As evident from Table 3, for both training and test data sets, the
accuracy of FNT classification accuracy is much higher than that of
a direct neural network approach. Experiment results combined
with other related works [21,22] illustrate that the FNT model is
suitable for network traffic classification.

4.3. The combined hybrid classifier

After designing the hardware and software classifier, the
combined hybrid classifier can work effectively as illustrated in
Fig. 8. When the online traffic flows into the classifier, part of the
traffic with static features can be identified by the hardware firstly
(as described in Section 4). At the same time, it collects the

691
Table 3
Accuracy information of different network traffic class.
Class Standard Neural network FNT
TA ACS TA ACS
MIN 77.84% 77.09% 81.83% 82.69%
HTTP MAX 79.03% 79.52% 84.99% 85.43%
M 78.46% 77.90% 83.12% 84.19%
MIN 81.31% 78.22% 83.42% 81.34%
HTTPS MAX 82.98% 83.11% 85.78% 86.22%
M 82.10% 81.26% 84.39% 84.31%
MIN 93.12% 91.40% 95.41% 95.23%
FTP MAX 96.98% 96.47% 97.48% 97.30%
M 93.45% 93.51% 96.73% 96.16%
MIN 94.18% 94.00% 95.33% 94.80%
PoP3 MAX 96.16% 96.83% 96.82% 97.56%
M 94.96% 96.00% 96.17% 96.28%
MIN 96.38% 96.08% 97.06% 97.15%
SMTP MAX 96.95% 97.31% 97.88% 97.79%
M 96.71% 96.75% 97.23% 97.35%
MIN 84.67% 83.88% 84.82% 84.78%
Others MAX 85.20% 85.24% 86.34% 86.11%
M 84.86% 84.40% 85.13% 85.16%

designed statistical features of the identified traffic(as described in
Section 3), which can be used as online training data set for the ML-
based software classifier.

Part of hardware classifier ignored traffic will be classified by
the software classifier. The DNS log can be obtained from the sever
in real-time. The unrecognized packets are grouped into flows
based on IP addresses, TCP or UDP ports and the flow
characteristics (features) are computed. The flow data used for
training each class must be representative for the particular
network application. Especially for supervised learning algorithms,
the flow data needs to be labeled with class labels corresponding to
the network applications prior to training. The previously captured
traffic traces, which may be from a special network (Fig. 9) or
merged from the hardware classifier results can greatly satisfy this
requirement. The role of the expert manager is a person who has
the ability to find out the static rule from the software classified
traffic. With the help of an expert manager, it will returns the
identifier rule to the NP based hardware to filter the traffic after the
software classifier identified the traffic correctly. It should be noted
that at the beginning, small fraction of the traffic cannot be

£ Expert dynamic P2P | Server
features model
— _Offlne Tracg |_ — — | ML- based software
classifier
7
(=]
>
=
g Recognized P2P 4 4 4 4 Unrecognized traffic
traffic statistics i A statistics
v YA —
7 —
ML-based 2P bal ,', ,', P2P traffic recognized by
features model »l ENP-2611 dynamic features—————————
| ENP-2611] 5

Online Trace
- — —

Expert static P 2P
features model

-

NP- based hardware

classifier

Fig. 8. Hybrid classifier architecture.

692 Z. Chen et al./Applied Soft Computing 9 (2009) 685-694

Traffic collect ion
server

d software
\ classifier

INormal Networks

g |

Sub net

Server

Fig. 9. The developed hybrid classifier prototype system in the Network Research
Laboratory of University of Jinan.

handled using this method, especially for new P2P traffic. Once the
classifier has been trained new flows can be identified based on
their statistical attributes. The expert manager can monitor the
hybrid classifier according to the requirements and can add, delete
or modify the classification knowledge to ensure the classification
accuracy, reduce the classification FP (False Negative) and enhance
the TP (True Positive).

5. Experiments and evaluation
5.1. Experiment environment

Experiments were designed to evaluate our methodology
(Fig. 9). The architecture includes five special hosts only running
given P2P clients and some other normal hosts without running
any P2P clients in the Network research laboratory of University of
Jinan. The special networks only run the given P2P clients:
BitTorrent(BT), kazaa, Edonkey, PPlive and skype. The normal
networks work in the normal way without running any P2P clients
but performing normal application, such as web browsing, ftp, e-
mail and playing games. Traffic from special network is default
seen as P2P traffic and traffic from normal network is default seen
as non-P2P traffic. The proposed classifier is put at the gateway of
the campus network. At the same time, the synchronous DNS
query log is transported to the software classifier. In order to
validate the experiment results, the classified traffic were stored in
traffic collection server.

5.2. Data set analysis

In order to get the real traffic data, A hybrid classifier prototype
is developed in the Network Research Laboratory of University of
Jinan (Fig. 9). The experiments were arranged in three stages
during three days (3 hin each day). The collected data (D1-D3) are
described in Table 4. At the first stage, the static features of
Edonkey and Bittorent was input to the hardware classifier and the
software classifier without any statistical features. In this stage,

Table 4
The collected traffic data set (D1 on 25 November 2006,D2 on 26 November 2006,
D3 on 27 November 2006).

Data P2P P2P type During (h) D1 (MB) D2 (MB) D3 (MB)
D20 100 Kazaa 3 21.21 4131 88.34
D21 100 Edonkey 3 401.15 511.36 438.56
D22 100 BiTorent 3 320.77 430.18 302.66
D23 100 PPlive 3 55.38 110.20 37.72
D24 100 Skype 3 21.31 36.38 18.56
D25 0 Non-P2P 3 310.19 390.27 789.11

there was also a DNS log including 302 records got from the DNS
server. Based on the features defined in Section 3.2, the identified
P2P data was normalized to four elements records (f o, fip_pores
Suports fpns) in €ach 5 min.

Then the software classifier trains itself by the normalized data
set in first stage. The selected data records of (f 0. fip_ports fuports
fpons) were used as the inputs (xp, X1, X2, x3) of FNT. After the
optimization of the tree structure by PIPE algorithms and
optimization of tree weights by PSO algorithms, FNT performance
is illustrated in Fig. 10. The output y from the FNT is a real number
between 0 and 1. For a given IP, if y is a number between 0 and 0.5,
then it may be seen as potential P2P host and related traffic may be
potential P2P traffic. The smaller y is, the higher potential P2P host
it is. Otherwise, it may be seen as non-P2P host when y lies
between 0.5 and 1, lager y means higher potential of non-P2P host
and the related traffic can be seen as potential non-P2P traffic.

In the 3 h of the second stage, the received DNS log records
number is 356. After this stage, the identified P2P and non-P2P data
are all normalized to four elements records in each five minutes.
Then the train feature set include known P2P traffic and known
non-P2P traffic features were obtained. The software classifier
retrains itself from the normalized data set in the second stage. In
the third stage, the received DNS log records number is 388.

5.3. Result evaluation
The True Positive, False Negative and total accuracy standard

were used to evaluate the experiment result. When calculating the
total accuracy, it is the summation of the hardware classifier

@ xO X3 X1

x0 x3

Fig. 10. The optimized FNT tree.

xl x0 x2xl

Z. Chen et al./Applied Soft Computing 9 (2009) 685-694 693

Table 5
Test results of the first stage.

Stage Traffic TP (%) FP (%) Total accuracy (%)
First Non-P2P 98.15 1.61 69.71

First p2P 98.89 29.63 69.71

Second Non-P2P 90.67 6.61 93.37

Second p2P 94.39 533 93.37

Third Non-P2P 94.67 5.61 95.67

Third pP2P 96.49 4.31 95.67

Table 6

Comparision of the hybrid method. Port and payload based method means the
related static information. Transport-L is based on transport layer information and
ML is the machine leaning method.

Method Port Payload Transport-L ML Hybrid
Application signature No Yes No No Yes
Private info No Yes No No Yes
Need port info Yes No Some Yes Yes
Accuracy Low High High High High
Identify encrypted Some No Yes Yes Yes
Identify unknown P2P No No Yes Yes Yes
Expansibility No No Middle High High
Online learning ability No No No No Yes

accuracy and the software classifier accuracy to a tested traffic
flow. The classified result is depicted in Table 5. At the first stage,
P2P identification and FP is high (29.63%) and the total accuracy is
very low (69.71%). But at the second stage, because the software
learned the statistical knowledge of identified P2P traffic from first
stage, the total accuracy increased to 93.37%, and the P2P
identification and FP decreased to 5.33%. After retraining, the
total accuracy in third stage increased to 95.67%, TP up from 94.39%
to 96.49%, and the P2P identification and FP also decreased from
5.61% to 4.31%. As evident from the experiment results, the hybrid
classifier can learn to identify P2P traffic with high accuracy but
only need small set of static features at the beginning. Most
importantly, the proposed method can identify the hosts that run
unknown P2P clients and the unknown P2P traffic, such as Maze
(one of the most popular P2P application in CERNET) in our further
tests.

As experiment experience, the given time space can greatly
affect different normalized feature value, which is an important
factor for the software identification rate. It needs adjustment and
retest for deciding the suitable time space for the entire feature. FP
dependent factor should be further investigated in future work. In
Table 6 illustrate the performance of the hybrid classifier and other
methods. The proposed model has the ability to learn online and
retrains itself by the newly obtained data sets at the same time.
Specially, the easy extendability is one of the most important
highlights of the proposed method.

6. Conclusions

P2P application is becoming more and more prominent. In
the past, some methods were used to identify the P2P traffic, but
most of them were tested and evaluate by offline traffic. In
reality, offline identification is not helpful for online controlling
and managing mainly due to the performance reason. These
facts lead to the adoption of high performance and flexible
network components. In this paper, a network processors based
online hybrid traffic classifier was designed. The hardware
classifier can classify P2P traffic by the static characteristics of
online speed, and the Flexible Neural Tree based software

classifier could help learning and selection of P2P traffic
attributes from the statistical characteristics. The selected
attributes can be further returned to NPs and be handled with
high performance.

Experiment results clearly illustrate that the hybrid classifier
can be competent for classifying P2P traffic from gigabit network
stream online. It also shows good extension ability to add new P2P
features, to learn and find new P2P applications. As evident from
the experiments, the proposed approach seems to be very
promising. For further research, we try to improve the intelligence
with the help of some clustering algorithms.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China Grant 60873089, National Natural Science
Foundation of China Grant 60773109 and the Natural Science
Foundation of Shandong Province of China Grant Z2006G03. Ajith
Abraham is supported by the Centre for Quantifiable Quality of
Service in Communication Systems, Centre of Excellence,
appointed by The Research Council of Norway, and funded by
the Research Council, NTNU and UNINETT.

References

[1] S. Sen, J. Wang, Analyzing peer-to-peer traffic across large networks, IEEE/ACM
Transactions on Networking (2004) 219-232.

[2] E.C. Douglas, Network System Design Using Network Processor, Prentice-Hall,
2003, pp. 115-126.

[3] Y. Chen, B. Yang,]. Dong, Nonlinear systems modelling via optimal design of
neural trees, International Journal of Neural systems 14 (2004) 125-138.

[4] M. Izal, G. Urvoy-Keller, E\W. Biersack, P.A. Felber, A. Hamra, L. Garc'es-Erice,
Dissecting BitTorrent: five months in a Torrent’s lifetime, in: Proceeding of
PAM’04, 2004, 267-277.

[5] P.Karbhari, M. Ammar, A. Dhamdhere, H. Raj, G. Riley, E. Zegura, Bootstrapping in
Gnutella: a measurement study, in: Proceeding of PAM’04, 2004, 189-201.

[6] K. Tutschku, A Measurement-based traffic profile of the eDonkey filesharing
service, in: Proceeding of PAM’04, 2004, 137-149.

[7] K. Thomas, B. Andre, F. Michalis, K. Claffy, Transport layer identification of p2p
traffic, in: Proceedings of IMC'04, 2004, pp. 121-134.

[8] S. Subhabrata, S. Oliver, D. Wang, Accurate, scalable in-network identification of
p2p traffic using application signatures, in: Proceedings of the 13th international
conference on World Wide Web, 2004, pp. 512-521.

[9] R. Matthew, S. Subhabrata, S. Oliver, D. Nick, Class-of-service mapping for qos: a
statistical signature-based approach to ip traffic classification, in: Proceedings
IMC'04, 2004, pp. 135-148.

[10] K. Thomas, P. Konstantina, F. Michalis, Blinc: multilevel traffic classification in the
dark, ACM SIGCOMM 35 (2005) 229-240.

[11] W. Nigel, Z. Sebastian, A. Grenville, Evaluating Machine Learning Methods for
Online Game Traffic Identification, (CAIA) Technical Report 060410C, 2006.

[12] W. Nigel, Z. Sebastian, A. Grenville, Evaluating Machine Learning Algorithms for
Automated Network Application Identification, (CAIA) Technical Report 060410B,
2006.

[13] A.McGregor, M. Hall, P. Lorier, J. Brunskill, Flow clustering using machine learning
techniques, in: Proceedings of PAM’04, 2004, pp. 19-20.

[14] S. Zander, T. Nguyen, G. Armitage, Automated traffic classification and applica-
tion identification using machine learning, in: Proceedings of LCN’05, 2005, pp.
5-17.

[15] http://www.securityfocus.com/infocus/1843/3, Access time: May 15, 2006.

[16] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A survey and comparison of peer-
to-peer overlay network schemes, Journal of IEEE Communications Survey and
Tutorial 7 (2005) 72-93.

[17] K.Keutzer, S. Malik, R. Newton,]. Rabaey, A. Sangiovanni-Vincentelli, System level
design: orthogonalization of concerns and platform-based design, IEEE Transac-
tions on Computer-Aided Design of Circuits and Systems 19 (2000).

[18] Intel Corporation:Intel IXP2400 Network Processor. http://www.intel.com/
design/network/prodbrf/27905302.pdf, access time: October 20, 2006.

[19]]JJ. Erik, RK. Aaron, IXP2400/2800 Programming, Intel Press, 2003, p. 12.

[20] RadiSys Corporation: ENP-2611 Data Sheet. http://www.radisys.com, Access
time: November 20, 2006.

[21] Y. Chen, B. Yang,]. Dong, A. Abraham, Time-series forecasting using flexible neural
tree model, Information Science 174 (2005) 219-235.

[22] Y. Chen, B. Yang, A. Abraham, Feature selection and classification using flexible
neural tree, Neurocomputing 70 (2006) 305-313.

[23] S. Shieh, F. Lee, Y. Lin, Accelerating network security services with fast packet
classification, Computer Communications 27 (2004) 1637-1646.

http://www.securityfocus.com/infocus/1843/3
http://www.intel.com/design/network/prodbrf/27905302.pdf
http://www.intel.com/design/network/prodbrf/27905302.pdf
http://www.radisys.com

694 Z. Chen et al./Applied Soft Computing 9 (2009) 685-694

[24] Y. Wang, S. Ye, Y. Tseng, A fair scheduling algorithm with traffic classification for
wireless networks, Computer Communications 28 (2005) 1225-1239.

[25] D. Pao, Y.K. Li, P. Zhou, Efficient packet classification using TCAMs, Computer
Networks 50 (2006) 3523-3535.

[26]]J. Erman, A. Mahanti, M. Arlitt, I. Cohen, C. Williamson, Offline/realtime traffic
classification using semi-supervised learning, Performance Evaluation 64 (9-12)
(2007) 1194-1213.

[27] F.Qian, G.Hu, X. Yao, Semi-supervised internet network traffic classification using
a Gaussian mixture model, AEU - International Journal of Electronics and Com-
munications, 62 (2008) 557-564.

[28] K. Chellapilla, Evolving computer programs without subtree crossover, IEEE
Transactions on Evolutionary Computation 1 (1997) 209-216.

[29] LE. Rocha-Mier, L. Sheremetov, I. Batyrshin, Intelligent agents for real time data
mining in telecommunications networks, in: V. Gorodetsky, et al. (Eds.), Lecture
Notes in Computer Science, vol. 4476, Springer-Verlag, 2007, pp. 138-152.

[30] D. Montana, T. Hussain, Adaptive reconfiguration of data networks using genetic
algorithms, Applied Soft Computing Journal 4 (2004) 433-444.

[31] S. Chandramathi, S. Shanmugavel, Estimation of cell loss probability for self-
similar traffic in ATM networks—a fuzzy approach, Applied Soft Computing 3
(2003) 71-83.

[32] L. Cohena, G. Avrahamia, M. Lasta, A. Kandelb, Soft computing for dynamic data
mining info-fuzzy algorithms for mining dynamic data streams, Applied Soft
Computing 8 (2008) 1283-1294.

[33] M. Awada, Y. Motaia, Dynamic classification for video stream using support vector
machine, Applied Soft Computing 8 (2008) 1314-1325.

[34] L. Cohena, G. Avrahami-Bakisha, M. Lasta, A. Kandelb, O. Kipersztokc, Real-time
data mining of non-stationary data streams from sensor networks, Information
Fusion 9 (2008) 344-353.

[35] S. Purwar, LN. Kar, AN. Jha, On-line system identification of complex
systems using Chebyshev neural networks, Applied Soft Computing 7
(2007) 364-372.

[36] G. Zhang, G. Xie, J. Yang, Y. Min, Z. Zhou, X. Duan, Accurate online traffic
classification with multi-phases identification methodology, in: Proceedings of
CCNC'08, 2008, pp. 141-146.

	Online hybrid traffic classifier for Peer-to-Peer systems based on network processors
	Introduction
	Related research literature
	The P2P traffic features
	Static P2P traffic features
	Port-based feature
	Payload-based feature

	Statistic attributes selection and normalization
	Transport layer protocol feature
	IP and port pair feature
	UDP port connection feature
	DNS query log feature

	The design of hybrid classifier
	NP-based hardware classifier
	The FNT based software classifier
	The FNT model
	The optimization of FNT model
	Feature/input selection with FNT
	FNT based traffic classification
	Result evaluation

	The combined hybrid classifier

	Experiments and evaluation
	Experiment environment
	Data set analysis
	Result evaluation

	Conclusions
	Acknowledgments
	References

