
TWO-TIMESCALE LEARNING USING IDIOTYPIC BEHAVIOUR

MEDIATION FOR A NAVIGATING MOBILE ROBOT

Amanda M. Whitbrook, Uwe Aickelin, Jonathan M. Garibaldi

Intelligent Modelling and Analysis Research Group,

School of Computer Science, University of Nottingham, U.K.

{amw, uxa, jmg}@cs.nott.ac.uk

ABSTRACT

A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to

solving mobile-robot navigation problems is presented and tested in both the real and

virtual domains. The LTL phase consists of rapid simulations that use a Genetic

Algorithm to derive diverse sets of behaviours, encoded as variable sets of attributes,

and the STL phase is an idiotypic Artificial Immune System. Results from the LTL

phase show that sets of behaviours develop very rapidly, and significantly greater

diversity is obtained when multiple autonomous populations are used, rather than a

single one. The architecture is assessed under various scenarios, including removal of

the LTL phase and switching off the idiotypic mechanism in the STL phase. The

comparisons provide substantial evidence that the best option is the inclusion of both

the LTL phase and the idiotypic system. In addition, this paper shows that structurally

different environments can be used for the two phases without compromising

transferability.

KEYWORDS: Mobile-robot navigation, genetic algorithm, artificial immune systems, idiotypic

network, reinforcement learning, behaviour mediation.

1 INTRODUCTION

An important decision when designing effective controllers for mobile robots is how

much a priori knowledge should be imparted to them. Should they attempt to learn all

behaviours during the task, or should they begin with a set of pre-engineered actions?

Both of these alternatives have considerable drawbacks; starting with no prior

knowledge increases task time substantially because the robot has to undergo a

learning period during which it is also at risk of damage. However, if it is solely

reliant on designer-prescribed behaviours, it has no capacity for learning and

adaptation.

The architecture described in this paper takes inspiration from the vertebrate immune

system in order to attempt to overcome these problems. The immune system learns to

recognize antigens over the lifetime of the individual, which constitutes Short-Term

Learning (STL), but it also knows how to build successful antibodies from gene

libraries that have evolved over the lifetime of the species. This represents Long-Term

Learning (LTL), defined as that which evolves and develops as a species interacts

with its environment and reproduces itself. Here, this “two timescale” approach is

mimicked by using an Artificial Immune System (AIS) to represent the STL phase,

and a Genetic Algorithm (GA) to represent the LTL phase. The GA rapidly evolves

sets of behaviours in simulation to seed the AIS, which removes the need for using

pre-engineered behaviours, and prevents robots from having to begin a task with no

knowledge. The GA and AIS are run consecutively, with the GA running first. Once

the GA has converged, the evolved antibody information is stored in a database for

AIS initialization, and the GA does not run again.

An idiotypic network that uses Reinforcement Learning (RL) to update antibody-

antigen matching is selected for the AIS system, and Farmer’s computational model

(Farmer 1986) of Jerne’s idiotypic-network theory (Jerne 1974) is adopted. This

model uses the analogy of antibodies as robot behaviours and antigens as

environmental stimuli, and, in theory, has great potential to create very flexible and

dynamic robots that can adapt to their environment. However, most previous

implementations of the method exhibit rather limited self-discovery and learning

properties, since their designs use very small numbers of pre-engineered behaviours,

and only the network connections between them are evolved. In the architecture

described here, the actual behaviours themselves are evolved, which permits delivery

of novel and diverse sets of antibodies for seeding the AIS.

This paper demonstrates the importance of seeding (i.e. including an LTL-phase) by

comparing schemes that employ the GA with those that do not. It also investigates the

benefits of idiotypic selection by comparing idiotypic systems with AIS schemes that

rely on RL only. In addition, it examines whether antibody replacement is necessary

in seeded AIS systems. Finally, as a result of all these investigations, an attempt is

made to represent the antigen space (i.e. the environment) more fully. Here,

comparisons with the previous results show that a more complex representation does

not enhance performance.

2 BACKGROUND AND MOTIVATION

Throughout the lifetime of an individual, the adaptive immune system learns to

recognize antigens by building up high concentrations of antibodies that have proved

useful in the past, and by eliminating those deemed redundant. This is a form of STL.

However, the antibody repertoire is not random at birth and the mechanism by which

antibodies are replaced is not a random process. Antibodies are built from gene

libraries that have evolved over the lifetime of the species. This suggests that the

immune system depends on both STL and LTL in order to achieve its purpose.

AIS algorithms take inspiration from the natural immune system (de Castro and

Timmis 2002), and a variety of different models have been applied to both hardware

(Canham et al. 2003) and software (Neal and Timmis 2003) robotics. However, the

most popular robotics software model has been the idiotypic network, based on

Farmer’s model of continuous antibody-concentration change. In this model the

concentrations are not only dependent upon past matching to antigens, they also

depend on the other antibodies present in the system, i.e. antibodies are continually

suppressed and stimulated by each other as well as being stimulated by antigens. In

theory this design permits great variability of robot behaviour since the antibody that

best matches the invading antigen is not necessarily selected for execution; the

complex dynamics of stimulation and suppression ensure that suitable alternative

antibodies are tried when the need arises (see Whitbrook et al. 2007).

However, past work in this area has mostly focused on how the antibodies in the

network should be connected and, for simplicity, has used a single set of pre-

engineered behaviours for the antibodies, which limits the potential of the method.

For example, Watanabe et al. (1998a and 1998b) use an idiotypic network to control a

garbage-collecting robot. Their antibodies are composed of a precondition, a

behaviour, and an idiotope part that defines antibody connection. However, the sets of

possible behaviours and preconditions are fixed, and only the idiotope part is evolved.

Michelan and Von Zuben (2002) and Vargas et al. (2003) also use GAs, but again

only the idiotypic-network connections are derived. Krautmacher and Dilger (2004)

apply the idiotypic method to robot navigation, but their emphasis is on the use of a

variable set of antigens; they do not change or develop the initial set of handcrafted

antibodies, as only the network links are evolved. Luh and Liu (2004) address target-

finding using an idiotypic system, modelling their antibodies as steering directions.

However, although many behaviours are technically possible since any angle can be

selected, the method is limited because a behaviour is defined only as a steering angle.

Hart et al. (2003) update their network links dynamically using RL and a skill

hierarchy, so that more complex tasks are achieved by building on basic ones, but the

initial behaviours are hand-designed at the start.

It is clear that the idiotypic AIS methodology holds great promise for providing a

system that can adapt to change, but its potential has never been fully explored

because of the limits imposed on the fundamental behaviour-set. This research aims to

widen the scope of the idiotypic network by combining LTL with STL, as in the

natural immune system. The LTL consists of a GA in which six basic antibody-types

are encoded with a set of six variable attributes that can take many different values,

meaning that the system can evolve complete sets of simple but very diverse

antibodies. These can then be passed to the STL phase, as a form of seeding or

intelligent initialization for the AIS. In addition, the seeding provides the potential to

bestow much greater flexibility to the idiotypic system, as an evolved set of distinct

behaviours is available for each known antigen, providing a degree of choice.

LTL in simulation coupled with an idiotypic AIS in the real world represents a novel

combination for robot-control systems, and should provide definite advantages, not

only for AIS initialization, but also for evolutionary robotics. In the past, much

evolutionary work has been carried out serially on physical robots, which requires a

long time for convergence and puts the robot and its environment at risk of damage.

For example, Floreano and Mondada (1996) adopt this approach and report a

convergence time of ten days. More recent evolutionary experiments with physical

robots, for example Marocca and Floreano (2002,) Hornby et al. (2000), and Zykov et

al. (2004) have produced reliable and robust systems, but have not overcome the

problems of potential damage and slow, impractical convergence times. Parallel

evolution with a number of robots (for example Watson et al. 1999) reduces the time

required, but can still be extremely prohibitive in terms of time and logistics.

Simulated robots provide a definite advantage for speed of convergence, but the trade-

off is the huge difference between the simulated and real domains (Brooks 1992).

Systems that employ an evolutionary training period (LTL) and some form of lifelong

adaptation (STL) have been used to try to address the problem of domain differences,

for example, Walker et al. (2006) use a GA in the simulated LTL phase and an

evolutionary strategy (ES) on the physical robot. They note improved performance

when the LTL phase is implemented, and remark that the ES provides continued

adaptation to the environment, but they deal with a limited number of behaviour

parameters in the GA, and do not state the duration of the LTL phase. Keymeulen et

al. (1998) run their LTL and STL phases simultaneously, as the physical robot maps

its environment at the same time as carrying out its goal-seeking task, thus creating

the simulated world. They report the rapid evolution of adaptable and fit controllers,

but these results apply only to simple, structured environments where the robot can

always detect the coloured target, and the obstacles are few. For example, they

observe the development of obstacle avoidance in five minutes, but this applies to an

environment with only one obstacle, and the results imply that the real robot was

unable to avoid the obstacle prior to this.

The method described here aims to capitalize on the fast convergence speeds that a

simulator can achieve, but will also address the domain compatibility issues by

transferring the behaviours to an adaptive AIS that runs on a real robot. In theory the

method should be entirely practical for real world situations, in terms of delivering a

short training-period, safe starting-behaviours, and a fully-dynamic and adaptable

system.

The aims of this paper are to investigate whether there are distinct advantages to

integrating LTL strategies with STL strategies (for this purpose unseeded systems that

use random behaviour sets are also trialed), and to establish the role of the idiotypic

network in providing flexibility. The important questions are whether the evolved

antibodies can be used effectively in real world environments, or whether there is a

need to replace the original antibodies with new ones. In addition, trials using a

slightly more complex environmental model are conducted to determine whether this

enhances performance. The paper thus aims to investigate the following hypotheses:

H1 Seeded STL systems outperform unseeded STL systems.

H2 Seeded STL systems that employ idiotypic effects outperform seeded systems

that rely on RL only.

H3 As long as the LTL-derived behaviours are sufficiently diverse, antibody

replacement should not be necessary in the STL phase.

H4 Task performance is enhanced by increasing the number of antigens from

eight to nine.

Whitbrook et al. (2007) provides statistical evidence that idiotypic AIS systems are

more effective than similar non-idiotypic techniques, but this is restricted to a single

robotic platform (Pioneer 3), the simulated domain, and only two different

environments. The work presented here will hence also extend this research to include

a different type of robot (e-puck), more environments, different problems, the real

domain, an alternative RL strategy (see sections 4.4 and 5.3), and a variable idiotope

(see section 5.1).

3 TEST ENVIRONMENTS AND PROBLEMS

The LTL phase requires accelerated simulations in order to produce the initial sets of

antibodies as rapidly as possible. For this reason the Webots simulator (Michel 2004)

is selected as it is able to run simulations up to 600 times faster than real time,

depending on computer power, graphics card, world design and the number and

complexity of the robots used. The chosen robot is the e-puck (see Fig 1), since the

Webots c++ environment natively supports it. It is a miniature mobile-robot equipped

with a ring of eight noisy, nonlinear, infra-red (IR) sensors that can detect the

presence of objects up to a distance of about 0.1 m. It also has a small frontal camera

and receives the raw RGB values of the images from this. Blob-finding software is

created to translate the RGB data into groups of like-coloured pixels (blobs).

The GA runs in a test environment that consists of a virtual e-puck navigating around

a building with three rooms (see Figs 2 and 3) by tracking blue markers painted on the

walls. These markers are intended to guide the robot through the doors, which close

automatically once the robot has passed through. A run ends when the robot has

crossed the finish-line in the third room, and its performance is measured according to

speed of task completion
L
T, and number of collisions recorded

L
C. Two variations of

the test environments are used; World 1 (see Fig 2) has fewer obstacles and no other

robots. World 2 (see Fig 3) includes many more obstacles, and there is also a dummy

wandering-robot in each room.

The STL is tested in both the virtual and real domains, and the simulated

environments are named World 3 and World 4 (see Figs 4 and 5). In these the robot

begins south of the central row of pillars and must detect and travel to the blue target-

block in the north, avoiding collisions. In addition, a wandering e-puck acts as a

dynamic obstacle. Once the robot has arrived at the target, the number of collisions
S
C

and task completion time
S
T are recorded. The starting positions of the robots and

target block are changed automatically after each run.

The real environment consists of a square wooden pen with sides 1.26 m long and

0.165 m high (see Fig 6), and the mission robot must find and travel to a blue ball

located inside it, avoiding collisions. Once the ball is found it must come to a

complete stop. The obstacles, robots and ball are randomly placed in different

starting positions after each run, to create a slightly different environment each time.

A hand-designed controller is also used for comparison with the seeded idiotypic

system. This uses a simple random wander for target searching, a backward turning

motion to escape collisions, and it steers the robot in the opposite direction to any

detected obstacles.

The simulations are run with Webots version 5.1.10 using GNU/Linux 2.6.9 (CentOS

distribution) with a Pentium 4 processor (clock speed 3.6 GHz). Fast mode is used

for the LTL, and real time for the STL. The graphics card is an NVIDIA GeForce

7600GS, which affords average simulation speeds of approximately 200-times real-

time for World 1 and 100-times real-time for World 2. The camera field-of-view is set

at 0.3 radians, the pixel width and height at 15 and 3 pixels respectively and the speed

unit for the wheels is set to 0.00683 radians/s.

4 LONG-TERM LEARNING (GA) SYSTEM ARCHITECTURE

4.1 Antigens and Antibodies

The antigens model the environmental information as perceived by the sensors. There

are only two basic types of antigen, whether the target is visible (a “target” type) and

whether an obstacle is near (an “obstacle” type), the latter taking priority over the

former. An obstacle is detected if the IR sensor with the maximum reading Imax has

value Vmax equal to 250 or more. If this is the case then the antigen is of type

“obstacle”, and the antigen is further classified in terms of the obstacle’s distance

from and its orientation toward the robot. The distance is “near” if Vmax is between

250 (about 0.03 m) and 2400 (about 0.01 m), and “collision” if Vmax is 2400 or more.

The IR sensors correspond to the quantity of reflected light, so higher readings mean

closer obstacles. The orientation is “right” if Imax is sensor 0, 1 or 2, “rear” if it is 3 or

4 and “left” if it is 5, 6 or 7 (see Fig 1). If no obstacles are detected then the perceived

antigen is of type “target” and there are two varieties, “target seen” and “target

unseen”, depending on whether appropriate-coloured pixel-clusters have been

recognized by the blob-finding software. There are thus eight possible antigens, which

are coded 0–7, see Table 1.

Six basic types of behaviour are employed; wandering using either a left or right turn,

wandering using both left and right turns, turning forwards, turning on the spot,

turning backwards, and tracking the door-markers. Behaviours hence possess an

attribute type U, and a further six attributes are encoded to enable behaviour diversity.

These are speed S, frequency of turn F, angle of turn A, direction of turn D, frequency

of right turn Rf, and angle of right turn Ra. The fusion of the basic behaviour-types

with a number of attributes that can take many values means that the GA has the

potential to select from a huge number of possible robot actions. However, some

behaviour types do not use a particular attribute and there are limits to the values that

the attributes can take. These limits (see Table 2) are carefully selected in order to

strike a balance between reducing the size of the search space, which increases speed

of convergence, and maintaining diversity.

Table 1: System antigens

Antigen

Code

Antigen

Type

Name

0 Target Target unseen

1 Target Target seen

2 Obstacle Obstacle near right

3 Obstacle Obstacle near rear
4 Obstacle Obstacle near left

5 Obstacle Collision right

6 Obstacle Collision rear

7 Obstacle Collision left

Table 2: System antibody types

U Description S

Speed

Units / s

F

% of

time

A

%

reduction

in speed

of one

wheel

D

Either

left or

right

Rf

% of

time

Ra

%

reduction

in right

wheel-

speed

LIMITS
0 Wander single 50 800 10 90 10 110 L R - - - -

1 Wander both 50 800 10 90 10 110 - - 10 90 10 110

2 Forward turn 50 800 - - 20 200 L R - - - -

3 Static turn 50 800 - - 100 100 L R - - - -

4 Reverse turn 500 800 - - 20 200 L R - - - -

5 Track markers 50 800 - - 0 30 - - - - - -

4.2 GA System Structure

The GA control program uses the two-dimensional array of behaviours Bij, i = 0, …,

x-1, j = 0, …, y-1, where x is the number of robots in the population (x ≥ 5) and y is

the number of antigens, i.e. eight. When the program begins i is equal to zero, and the

array is initialized to null. The infra-red sensors are read every 192 milliseconds, but

the camera is only read if no obstacles are found as this increases computational

efficiency.

Once an antigen code is determined, a behaviour or antibody is created to deal with it

by randomly choosing a behaviour type and its attribute values. For example, the

behaviour WANDER_SINGLE (605, 50, 90, LEFT, NULL, NULL) may be

constructed. This behaviour consists of travelling forwards with a speed of 605 Speed

Units/s, but turning left 50% of the time by reducing the speed of the left wheel by

90%. (Note that wheel speed reductions of more than 100% represent the wheels

turning backwards.) The newly created action is executed and the sensor values are

read again to determine the next antigen code. If the antigen has been encountered

before, then the behaviour assigned previously is used, otherwise a new behaviour is

created. The algorithm proceeds in this manner, creating new behaviours for antigens

that have not been seen before and reusing the behaviours allotted to those that have.

However, the behaviour’s cumulative reinforcement-learning score E, which is a

measure of how well it is thought to have performed, is adjusted after every sensor

reading. If E falls below the threshold value of -14 then the behaviour is replaced with

a new one. Behaviour replacement also occurs when the antigen has not changed in

any 60-second period, as this most likely means that the robot has not undergone any

translational movement.

A separate supervisor-program is responsible for returning the virtual robot back to its

start-point once it has passed the finish-line, for opening and closing the doors as

necessary, and for repositioning the wandering dummy-robot, so that it is always in

the same room as the mission robot. Another of the supervisor’s functions is to assess

the time taken to complete the task
L
T. Each robot is given 1250 seconds to reach the

end-point; those that fail receive a 1000-second penalty if they do not pass through

any doors. Reduced penalties of 750 or 500 seconds are awarded to failing robots that

pass through one door or two doors respectively. When the whole population has

completed the course, the relative-fitness
L
µ of each individual is calculated. Since

high values in terms of both
L
T and

L
C should yield a low relative-fitness, the

following formula is used:

,

][

1
1

0

1∑
−

=

−

=
x

k

ki

i
L

ff

µ (1)

where
L
f is the absolute-fitness given by:

.i
L

i
L

i
L CTf ρ+= (2)

In this phase, ρ is set to 1 to give greater weight to the task time, otherwise robots that

constantly turn on the spot, and hence endure no collisions, would receive good

relative-fitness values and the GA would take too long to converge.

The five fittest robots from each generation are selected, and their mean task time and

mean number of collisions are calculated. The mean absolute-fitness is derived from

these using (2) and compared with that of the previous generation to assess rate-of-

convergence. The GA terminates when any of the four conditions shown in Table 3

are reached. These are selected in order to achieve fast convergence, but also to

maintain a high solution quality. (Note that the convergence criteria are relaxed for

World 2, as it is a more cluttered environment requiring a longer task completion

time.) If the stopping criteria are met, the attribute values representing the behaviours

of the five fittest robots are saved for seeding the AIS system, otherwise the GA

proceeds as described in section 4.3.

Note that when adopting the scenario of five separate populations that never

interbreed, the five robots that are assessed for convergence are the single fittest from

each of the autonomous populations. In this case, convergence is dependent upon the

single best
L
T,

L
C, and

L
f values, and the final five robots that pass their behaviours to

the AIS system are the single fittest from each population after the GA is complete.

Table 3: Stopping criteria. (g = generation number)

Criteria - World 1 Criteria - World 2

g > 0 AND LTg < 400 AND LCg < 60

AND |Lfg – Lfg-1| < 0.1

g > 0 AND LTg < 600

AND LCg < 90 AND |Lfg – Lfg-1|< 0.2
g > 30 g > 30
LTg < 225 AND LCg < 35 LTg < 400 AND LCg < 45

g > 15 AND |Lfg – Lfg-1| < 0.1 g > 15 AND |Lfg – Lfg-1| < 0.2

4.3 GA Details

Two different parent robots are selected through the roulette-wheel method and each

of the x pairs interbreeds to create x child robots, (x is the number of robots in the

population). The process is concerned with assigning behaviour attribute-values to

each of the child robots for each of the eight antigens in the system. It can take the

form of complete antibody replacement, adoption of the attribute values of only one

parent or crossover from both parents, and attribute-value mutation.

• Complete antibody replacement occurs according to the prescribed mutation

rate ε. Here, a completely new random behaviour is assigned to the child robot

for the particular antigen, i.e. both the parent behaviours are ignored.

• Crossover is used when there has been no complete replacement, and the

method used depends on whether the parent behaviours are of the same

antibody type U.

o If the types are different then the child adopts the complete set of

attribute values of one parent only, which is selected at random.

o If the types are the same, then crossover can occur by taking the

averages of the two parent values, by randomly selecting a parent

value, or by taking an equal number from each parent according to set

patterns. In these cases, the type of crossover is determined randomly

with equal probability. The purpose behind this approach is to attempt

to replicate nature, where the offspring of the same two parents may

differ considerably each time they reproduce.

• Mutation of an attribute value may also take place according to the mutation

rate ε, provided that complete replacement has not already occurred. Here, the

individual attribute-values (except D) of a child robot may be increased or

decreased by between 20% and 50%, but must remain within the prescribed

limits.

4.4 Reinforcement Learning in the Long-Term Learning Phase

Reinforcement Learning (RL) is used to accelerate GA convergence, and works by

comparing current and previous antibody codes to determine behaviour effectiveness.

Ten points are awarded for every positive change in the environment, and ten are

deducted for each negative change. Table 4 shows the possible antigen code

combinations and column 3 shows the points added or deducted in the LTL-phase.

For example, 20 points are awarded if the antigen code changes from an “obstacle”

type to “target seen”, because the robot has moved away from an obstacle as well as

gaining or keeping sight of the target. In the case where the antigen code remains at 1

(the target is kept in sight), the score awarded depends upon how the orientation of the

target has moved with respect to the robot. In addition, when an obstacle is detected

both in the current and previous iteration, then the score awarded depends upon

several factors, including changes in the position of Imax and in the reading Vmax, the

current and previous distance-type (“collision” or “near”) and the tallies of

consecutive “nears” and “collisions”. Further details on the LTL architecture are

provided in Whitbrook et al. (2008a).

Table 4: Reinforcement scores in the LTL and STL phases

Antigen Code Score

(LTL)

Score

(STL)

Reinforcement status (score)

Previous Current

0 0 0 0.05 Neutral

1 0 -10 -0.10 Penalize - Lost sight of target

2-7 0 10 0.10 Reward - Avoided obstacle
0 1 10 0.10 Reward - Found target

1 1 0 - 5 0.00- 0.05

Reward – Kept sight of target

(Score depends on orientation of target with

respect to robot)

2-7 1 20 0.20
Reward - Avoided obstacle and gained or

kept sight of target
0 2-7 0 -0.05 Neutral

1 2-7 0 -0.05 Neutral

2-7 2-7 -4 - 5 -0.40 -0.50
Reward or Penalize (Score depends on

several factors)

5 SHORT-TERM LEARNING (AIS) SYSTEM ARCHITECTURE

5.1 Creating the Paratope and Idiotope Matrices

The GA selects the five fittest robots from the final generation, so five distinct sets of

antibodies are used, each set consisting of eight behaviours, i.e. one antibody for each

antigen. The 40 antibodies in the system can hence be represented as Aij, i = 0, …, v-1,

j = 0, …, y-1, where v is the number of sets and y is the number of antigens. The

evolved antibody types and their associated attribute values, task completion times
L
Ti

and numbers of collisions
L
Ci are taken directly from the file created in the LTL

phase. The STL phase calculates the relative fitness of each antibody set
S
µi from:

,

][

1
1

0

1∑
−

=

−

=
v

k

ki

i
S

ff

µ (3)

using (2) with ρ set to 8 to give the collisions approximate equal weight compared to

the task time. (This is permissible here because it is assumed that evolution will not

have selected robots that constantly turn on the spot.) Once the relative fitness values

are calculated, a matrix of RL scores Pij can be derived by multiplying the antibody’s

final RL score Eij by the relative fitness
S
µi of its set, and scaling approximately to

between 0.00 and 1.00 using:

.
ϕ

µi
S

ij
ij

E
P = (4)

Taking φ as 20 achieves the required scaling in (4) since the maximum value Eij
 S

µi

can take is approximately 20. The matrix P is analogous to an antibody paratope as

the scores represent a comparative estimate of how well each antibody matches its

antigen.

For the unseeded systems the five antibody sets are generated at the start of the STL

phase, by randomly choosing behaviour types and their attribute values. The initial

elements of P are also randomly generated, but always lie between 0.25 and 0.75 to

try to limit any initial biasing of the selection.

For both seeded and unseeded systems, a matrix I (analogous to a matrix of idiotope

values) is created by comparing the individual paratope matrix elements Pij with the

mean element value for each of the antigens σj. This is given by:

.

1

0

v

P

v

i

ij

j

∑
−

==σ (5)

If Pij (i = 0, …, v-1) is less than σj, then an idiotope value Iij of 1.0 is assigned,

otherwise a value of zero is given. However, only one antibody in each set may have a

non-zero idiotope. If more than one has a non-zero value, then one is selected at

random and the others are set back to zero. This avoids over-stimulation or over-

suppression of antibodies.

The paratope matrix is adjusted after every iteration; first, because the active anti-

body’s paratope value either increases or decreases, depending on the RL score

awarded, and second, because the paratope values are re-calculated, so that each σj is

returned to its initial mean value. The adjustment is given by:

,0

1
tj

j

tijtij PP
σ

σ
=

+
 (6)

where σj0 represents the initial mean and σjt represents the temporary mean obtained

after scoring of the active antibody. The adjustment helps to eliminate the problems

that occur when useful antibodies acquire zero Pij values. The idiotope is recalculated,

based on the latest Pij values, after every 120 sensor readings.

5.2 Antibody Selection Process

At the start of the STL phase each antibody has 1000 clones in the system, but the

numbers fluctuate according to a variation of Farmer’s equation:

),1(3)()()1(
kNbSN

ttt imimim −+=
+

 (7)

where Nim represents the number of clones of each antibody matching the invading

antigen m, Sim is the current strength-of-match of each of these antibodies to m, b is a

scaling constant and k3 is the death rate constant. The concentration Cij of every

antibody in the system consequently changes according to:

,
1

0

1

0

∑∑
−

=

−

=

Φ
=

x

k

y

l

kl

ij

ij

N

N
C (8)

where Φ is another scaling factor that can be used to control the levels of inter-

antibody stimulation and suppression (25 is used here).

The antibody selection process comprises three stages for idiotypic selection, but only

one stage if idiotypic selection is not used. First, the sensors are read to determine the

index of the presenting antigen m, and an appropriate antibody is selected from those

available for that antigen. More specifically, the system chooses from antibodies Aim, i

= 0, …, 4, by examining the paratope values Pim. The antibody α with the highest of

these paratope values is chosen as the first-stage winner. If the index of the winning

antibody set is denoted as n, then α = Anm. If idiotypic effects are not considered α

carries out its action, and is assessed by RL, see section 5.3.

If an idiotypic system is used, then the stimulatory and suppressive effects of α on all

the antibodies in the repertoire must be considered. This involves comparing the

idiotope of α with the paratopes of the other antibodies to determine how much each

is stimulated, and comparing the paratope of α with the idiotopes of the others to

calculate how much each should be suppressed. Here, idiotypic selection is governed

by equations (9)-(12), which are based on those in Whitbrook et al. (2007). Equation

(9) concerns the increase in strength-of-match value εim when stimulation occurs,

,)1(
1

0
1∑

−

=
−=

y

j
njijnjijim CCIPkε (9)

where k1 is a constant that determines the magnitude of any stimulatory effects. The

formula for the reduction in strength-of-match value δim when suppression occurs is

given by:

∑
−

=
=

1

0
2 ,

y

j
njijijnjim CCIPkδ (10)

where k2 governs the suppression magnitude. Hence, the strength-of-match after the

second selection-stage (Sim)2 is given by:

,)()(12 imimimim SS δε −+= (11)

where the initial strength-of-match (Sim)1 for each antibody is taken as the current Pim

value. After the (Sim)2 values are calculated, the numbers of clones Nim are adjusted

using (7) and all concentrations Cij are re-evaluated using (8). The third stage

calculates the activation λ of each antibody in the sub-set Aim from:

.)(2imimim SC=λ (12)

The third-stage winning antibody β is that with the highest λ value in the sub-set. If p

is the index of β’s antibody set, then β = Apm. When idiotypic selection is used, β

carries out its action and it is β that is scored using RL rather than α, although α and β

are the same when n = p.

5.3 Reinforcement Learning within the Short-Term Learning Phase

In the STL phase the RL scores are scaled to one hundredth of the values used for the

LTL phase (see column 4 of Table 4), since the RL is intimately linked with the

idiotypic selection process, and larger values would lead to over-stimulation and over-

suppression. In addition, a reward is given when no obstacles are encountered, and

penalties are issued when they are. This is in contrast to the LTL case, where no

reward or penalty is issued, and is necessary to increase the flux of the system. In the

LTL, neutral scores are permissible as there is ample time to develop good strategies,

but in the STL, the idiotypic system needs to remain in a state of flux if suppression

and stimulation are to occur at all.

The maximum cumulative-RL-score (or Pij value) allowed is 1.00, and the minimum

Pij value is 0.00. The Pij values are also adjusted when the antigen code has remained

at 0 for more than 250 iterations, as this means that the robot is spending too much

time wandering and has not found anything. It is important to recognize this

behaviour as negative, as otherwise robots may be circling around on the spot, never

achieving anything, but receiving constant rewards. The non-idiotypic case reduces

the cumulative-RL-score by 1.0, and the idiotypic case reduces it by 0.5, as pre-trials

have shown that non-idiotypic robots require a more drastic change to break out of

repeated behaviour cycles. The same Pij adjustments are also made if there have been

more than 15 consecutive obstacle encounters, as this may indicate that a robot is

trapped. Following RL, the paratope values are scaled using (6).

In the case of the unseeded trials, replacement occurs for all antibodies with a

cumulative- RL-score less than 0.1. The successor is created by randomly choosing a

behaviour type and its attribute values. Replacement does not occur in the seeded

systems, since H3 is directly concerned with establishing whether this is necessary.

Further details on the STL architecture are provided in Whitbrook et al. (2008b).

6 EXPERIMENTAL PROCEDURES AND RESULTS

6.1 Long-Term Learning General Procedures

The GA is run in Worlds 1 and 2 using single populations of 25, 40, and 50 robots,

and using five autonomous populations of five, eight, and ten. A mutation rate ε of

5% is used throughout, as previous trials have shown that this provides a good

compromise between fast convergence, high diversity and good solution-quality.

Solution quality
L
q is taken as half of the absolute-fitness value (2) with ρ = 8, to give

approximate equal weighting to the collisions. For each scenario, ten repeats are

performed and the means of the convergence time τ, solution quality
L
q, and diversity

in type ZU and speed ZS (see Section 6.2) are recorded. Two–tailed standard t-tests are

conducted on the result sets, and differences are accepted as significant at the 99%

level only.

6.2 Measuring Antibody Diversity

Antibody diversity is measured using the type U and the speed S attributes, since

these are the only action-controlling attributes common to all behaviours. The final

antibodies are grouped by antigen number and the groups are assessed by comparison

of each of the five members with the others, i.e. ten pair-wise comparisons are made

in each group. A point is awarded for each comparison if the attribute values are

different; if they are the same no points are awarded. For example, the set of

behaviour types [1 3 4 4 1] has two pair-wise comparisons with the same value, so

eight points are given. Table 5 summarizes possible attribute-value combinations and

the result of conducting the pair-wise comparisons on them.

The y individual diversity-scores for each of U and S are summed and divided by σy

to yield a diversity score for each attribute. Here σ is the expected diversity-score for a

large number of randomly-selected sets of five antibodies. This is approximately

8.333 for U (see Table 5) and 10.000 for S. It is lower for U since there are only six

behaviours to select from, whereas the speed is selected from 751 possible values, so

there is a much higher probability of producing unique values in a random selection of

five. The adjustment effectively means that a random selection yields a diversity of 1

for both S and U. The diversity calculation is given by:

,1

y

z

Z

y

i

i

σ

∑
== (13)

where Z represents the overall diversity-score and z represents the individual score

awarded to each antigen.

Table 5: Diversity scores

Attribute-value status Points Expected:

Frequency

for U

Score

for U

All five different 10 9.26 0.926

One repeat of two 9 46.30 4.167

Two repeats of two 8 23.15 1.852
One repeat of three 7 15.43 1.080

Two repeats, one of

two, one of three
6 3.86 0.231

One repeat of four 4 1.93 0.077

All five the same 0 0.08 0.000

Total 100.00 8.333

6.3 Long-Term Learning Phase Results

Table 6 presents mean τ,
L
q, ZU, and ZS values, and Table 7 summarises the significant

difference levels when comparing single and multiple populations of robots. The

schemes that are compared use the same number of robots, for example a single

population of 25 is compared with five populations of five.

Table 6: Mean values

Pop.

size

World 1 World 2

τ (s) Lq ZU (%) ZS (%) τ (s) Lq ZU (%) ZS (%)

25 417 220 40 86 972 314 37 85

40 530 216 53 95 1292 266 51 89

50 811 191 49 90 1414 250 56 94

5 x 5 508 155 55 100 1211 258 58 100

5 x 8 590 146 54 100 1325 225 55 100

5 x 10 628 144 58 100 1498 208 57 100

Table 7: Significant differences

Comparison World 1 World 2

τ (s) Lq ZU

(%)

ZS (%) τ (s) Lq ZU

(%)

ZS (%)

25 5 x 5 77.40 99.94 99.90 99.99 88.47 84.51 99.96 99.63

40 5 x 8 72.58 99.97 43.07 99.97 20.91 94.09 61.19 99.28

50 5 x 10 97.13 99.80 98.36 99.96 40.78 97.31 18.34 99.87

The tables show that, for both worlds, there are no significant differences between

convergence times when comparing the single and multiple populations. In addition,

speed diversity is significantly better for the multiple populations in all cases.

Multiple populations always demonstrate a speed diversity of 100%, indicating that

the final-selected genes are completely unrelated to each other, as expected. In

contrast, single-population speed-diversity never reaches 100% as there are always

repeated genes in the final-selected robots. Evidence from previous experiments with

single populations of five, ten and 20 suggests that the level of gene duplication

decreases as the single population size increases. This explains the lower ZU and ZS

values for a population of 25 robots.

Type diversity is consistently higher for the multiple populations, but only

significantly higher when comparing a single population of 25 with five populations

of five robots. For the multiple populations, mean type-diversity ratings never reach

100%, even though there are no repeated genes. The reduced type-diversity must

occur because there are only six types to choose from, and these are not randomly

selected but chosen in a more intelligent way. However, speed diversity can remain at

100% because there are many different speeds to choose from and convergence is

rapid. It is likely that both intelligent selection and repeated genes decrease the type-

diversity scores for the single populations, but in the multiple populations, the

phenomenon is caused by intelligent selection only.

In World 1, solution quality is consistently significantly better for the multiple

populations, but this is not the case in World 2. This may indicate that using multiple

populations helps to improve solution quality for simpler problems, but the

phenomenon diminishes as the problem becomes more difficult.

The best option in terms of population model appears to be five autonomous

populations, since this elicits significantly-higher antibody diversity. In addition, one

can run the GA without significantly increasing the convergence time or reducing

solution quality, and the fast convergence times (ten minutes in World 1 and 25

minutes in World 2) satisfy the requirement for a practical training-period.

6.4 Short-Term Learning General Procedures

Pre-trials have shown that the antibody sets taken from the above LTL experiments

produce a higher number of collisions compared with a hand-designed controller,

when used to seed the AIS in Worlds 3 and 4. Since the hand-designed controller

deals with much slower speeds, the GA is run again in World 1 with five autonomous

populations of ten robots and with the static-turn antibody’s upper speed-limit

reduced to 100 speed units/s, all other speed limits reduced to 400 speed units/s, and

the reverse antibody’s lower speed-limit reduced to 300 speed units/s. The stopping

criteria is also simplified to g > 0 AND
L
Tg < 500 AND

L
Cg < 25 OR g > 30 to allow

for the general increase in task time.

Thirty STL trials are performed in each of the two simulated worlds, World 3 and

World 4, and 20 are completed in the real world. This is done for each of the

following systems; seeded with idiotypic effects, seeded with RL only, unseeded with

idiotypic effects, unseeded with RL only, and the hand-designed controller. In the

unseeded simulated-worlds two separate sets of experiments are conducted with two

different initially-random behaviour sets R1 and R2. The real-world unseeded

experiments use only R1 since they have to run in real time and are hence much more

time consuming to carry out.

In the idiotypic systems b is set to 100, k3 is set to zero, and k1 and k2 are set at 0.85

and 1.10 respectively. These values are chosen in order to yield a mean idiotypic

difference rate of approximately 20%, as suggested in Whitbrook et al. (2007). Note

that an idiotypic difference occurs when the antibodies α and β are different.

A run finishes when the robot has detected three consecutive instances of more than

40 blue pixels in the ball image, so that it is “aware” of having found its target. For all

experiments, the time taken
S
T and the number of collisions

S
C are capped at 4000 s

and 100 respectively. Any runs that exceed either of these limits are counted as

failures. The solution quality,
S
q is calculated in the same way as for the LTL, i.e:

2

CT
q

SS
S ρ+

= (14)

where ρ = 8 as before. Standard two-tailed t-tests are applied to compare the various

systems, and differences are accepted as significant at the 99% level only.

6.5 Short-Term Learning Phase Results

Table 8 shows the mean
S
C,

S
T, and

S
q values for each of the systems in each of the

worlds, and Table 9 presents the significant difference levels when the systems are

compared. Table 10 highlights the failure rates, indicating the percentage of failures

due to an excessive number of collisions, running out of time, and overall.

Table 8. Mean SC, ST, and Sq. (S = seeded, U = unseeded, IE = idiotypic effects, RL = reinforcement learning,

HDC = hand-designed controller)

System Set Simulated World

3

Simulated World

4

Real World

SC ST Sq SC ST Sq SC ST Sq

SIE - 1 562 284 2 659 336 5 283 161

SRL - 8 1298 679 4 1113 573 23 904 544

UIE R1 26 1513 862 26 1530 868 96 1384 1074

URL R1 45 2150 1253 35 1732 1006 100 1678 1239

UIE R2 20 1720 941 48 1578 981 - - -

URL R2 35 2214 1246 54 2137 1285 - - -

HDC - 2 1362 688 2 1256 636 44 1439 897

In all of the worlds, both simulated and real, the seeded idiotypic system proves better

in terms of fewer collisions, a faster completion time, and a higher solution quality.

When compared with the unseeded systems it is significantly better in all cases, i.e.

for all of the metrics, in all the worlds, and irrespective of whether the unseeded

systems use idiotypic effects, or which random behaviour set is used.

Table 9. Significance Levels (S = seeded, U = unseeded, IE = idiotypic effects, RL = reinforcement learning, HDC

= hand-designed controller)

Systems Set Simulated World

3

Simulated World

4

Real World

SC ST Sq SC ST Sq SC ST Sq

SIE SRL - 100 100 100 98 96 97 99 99 100

SIE HDC - 85 100 100 33 97 97 100 100 100

SIE UIE R1 100 100 100 100 100 100 100 100 100

SIE URL R1 100 100 100 100 100 100 100 100 100

SIE UIE R2 99 100 100 100 100 100 - - -

SIE URL R2 100 100 100 100 100 100 - - -

SRL UIE R1 98 49 72 99 83 92 100 85 99

SRL URL R1 100 99 100 100 94 98 100 96 100

SRL UIE R2 91 82 89 100 86 98 - - -

SRL URL R2 100 99 100 100 100 100 - - -

UIE URL R1 87 90 93 59 44 52 68 53 57

UIE URL R2 82 81 87 40 86 84 - - -

Table 10. Percentage Failure Rates (S = seeded, U = unseeded, IE = idiotypic effects, RL = reinforcement learning,

HDC = hand-designed controller)

System Set Simulated

World 3

(%)

Simulated

World 4

(%)

Real World

(%)
Mean

(%)

SC ST Tot SC ST Tot SC ST Tot SC ST Tot

SIE - 0 0 0 0 0 0 0 0 0 0 0 0

SRL - 0 3 3 0 7 7 10 5 10 3 5 7

UIE R1 23 17 30 20 13 23 95 10 95 46 13 49

URL R1 43 30 57 33 23 47 100 20 100 59 24 68

UIE R2 17 20 37 43 17 43 - - - 30 18 40

URL R2 30 30 47 50 27 53 - - - 40 28 50

HDC - 0 20 20 0 17 17 10 25 35 3 21 24

The seeded idiotypic system also surpasses the hand-designed controller in all cases

(except for a tie in
S
C in World 4), and more than half of these differences are

significant overall. Moreover, in the real world all of the differences are significant. It

appears that the hand-designed controller performs very well in the simulator in terms

of
S
C, but poorly for

S
T, whereas in the real world it performs badly for both of these

metrics. Although it has built-in initial knowledge, it probably proves inferior in the

real world because of its inability to change the way it responds to an antigen. The

seeded idiotypic system works well in the real world and in the simulator for both
S
C

and
S
T. In fact, in the real world it proves significantly better than all of the other

systems trialled, for all metrics.

When the non-idiotypic seeded system is compared with the unseeded systems,

although its performance is better in all cases, it is not always significantly better.

Most of the significant differences arise when comparing seeded and unseeded

systems that do not use idiotypic effects. When the unseeded system employs

idiotypic effects and the seeded system does not, there is a marked drop in the

percentage of significant differences.

When the seeded idiotypic system is compared with the seeded non-idiotypic system,

the idiotypic system performs better in all cases, and significantly better in most.

However, when the unseeded systems are compared in this way, although the

idiotypic system consistently performs better, none of the differences are significant.

The seeded idiotypic system is the only scheme that displays an overall failure rate of

0%. Failure rates are reasonably low (7% overall) for the non-idiotypic seeded

system, but reach unacceptable proportions for the hand-designed controller (24%

overall) and the idiotypic unseeded system (49% and 40% overall). The non-idiotypic

unseeded system is clearly the worst option with overall fail rates of 68% and 50%.

Moreover, the actual number of collisions for failing robots is of the order of

thousands for unseeded real-world systems, which renders the method entirely

unsuitable.

A general observation is that both the hand-designed controller and the non-idiotypic

seeded system exhibit repeated behaviour patterns, particularly when obstacles are

both to the left and to the right of the robot. Under these circumstances the robot often

moves away from one obstacle, only to encounter the other, and the sequence

continues, sometimes indefinitely. The phenomenon is also observed with the seeded

idiotypic system, but to a much lesser extent, and the robot is always able to free itself

quite promptly.

6.6 Representation of the Antigen Space

The seeded idiotypic robot still sometimes exhibits a repeated behaviour pattern when

there are objects both to its left and right. Although this is observed rarely, and the

robot is always able to free itself quite quickly, it may be that the antigen coverage is

not represented adequately. This raises the question as to whether there are potential

benefits to introducing an additional environmental scenario “obstacle left and right”.

Its inclusion might also improve the performance of the non-idiotypic and hand-

designed systems, reducing or even eliminating any idiotypic advantage. In order to

investigate these matters, a single new antigen is created, and the antigens are recoded

as shown in Table 11. The new antigen (coded 5) presents itself when IR sensors 5

and 2 (those directly to the left and right of the robot respectively) both exhibit

readings between 140 and 2400. However, if Vmax is above 2400, antigen 6, 7, or 8

(i.e. one of the collision antigens) is invoked, as before. There is no “collision left and

right” antigen as a series of simulated and real world trials suggests that it simply does

not appear. In addition, the mixed antigens “object near left and collision right”, and

“collision left and object near right” are not included as they occur very rarely and

would produce too many new antigens, probably increasing the execution time of the

LTL phase too much.

Pre-trials also show that, when the previous antigen is the newly introduced one (i.e.

antigen 5) and any object is detected, it is necessary to use only positive RL scores,

and to boost them. This is because the new antigen does not occur as often as the

others, and so any negative RL scores effectively put the assigned behaviours out of

business very quickly. The required changes are accomplished by ignoring the actual

Vmax values and the object distances, and by making all scores awarded for changes in

orientation positive and tripling them, see Table 12.

Table 11: Recoded system antigens

New

Antigen

Code

Antigen

Type

Name

0 Target Target unseen

1 Target Target seen

2 Obstacle Obstacle near right

3 Obstacle Obstacle near rear

4 Obstacle Obstacle near left

5 Obstacle Obstacle near left and right

6 Obstacle Collision right

7 Obstacle Collision rear

8 Obstacle Collision left

Table 12. Reinforcement scores with the additional antigen in the STL phase

New Antigen Code Score Reinforcement status

Previous Current

0 0 0.05 Reward – No obstacles encountered

1 0 -0.10 Penalize - Lost sight of target
2-8 0 0.10 Reward - Avoided obstacle

0 1 0.10 Reward - Found target

1 1
0.00 to

0.05

Reward – Kept sight of target

(Score depends on orientation of target with respect

to robot)

2-8 1 0.20
Reward - Avoided obstacle and gained or kept sight

of target

0 2-8 -0.05 Penalize – Encountered obstacle

1 2-8 -0.05 Penalize – Encountered obstacle

2-4, 6-8 2-8
-0.40 to

0.50

Reward or Penalize (Score depends on several

factors)

5 2-4, 6-8
0.00 to
0.54

Reward or Penalize (Score depends on several
factors)

5 5
0.00 to

0.54

Reward or Penalize (Score depends on several

factors)

Following these adjustments, the GA is re-run with five autonomous populations of

ten, as before, in order to obtain the new sets of starting antibodies. The STL

experimental procedures used for the eight-antigen structure are repeated for the nine-

antigen structure, except that only R1 is used for the unseeded systems. When

compared with the results from the eight-antigen structure, the new results show no

significant difference for the seeded and unseeded idiotypic systems, but there are

some significant differences for the non-idiotypic schemes. With nine antigens the

seeded non-idiotypic system performs significantly better for all of the metrics in

World 3, and the unseeded non-idiotypic network performs significantly better for

collisions in World 3, but significantly worse for time and solution quality in the real

world.

These results translate to the following changes when comparing the nine-antigen

systems with each other:

• The seeded idiotypic system is still always significantly better than the

unseeded systems in terms of time and solution quality, but in the simulator

the collisions show less significance now.

• The seeded idiotypic system still consistently out performs the seeded non-

idiotypic system, but the only significant differences are in World 4 for time

and solution quality.

• The unseeded idiotypic system is now mostly significantly better than the

unseeded non-idiotypic system.

6.7 Discussion

The observations detailed in section 6.5 provide very strong statistical evidence in

support of H1, i.e. they defend the notion that seeded schemes outperform unseeded

ones. The results also uphold H2, since robot performance appears to be further

enhanced by incorporating an idiotypic network into the STL architecture. In the

seeded idiotypic system, the evolved antibody set provides immediate knowledge of

how to begin the task, and the idiotypic AIS permits it to change and adapt its

behaviour as the need arises. Without idiotypic effects, the seeded system has the

same initial knowledge, but relies only on RL for adaptation, so it is less flexible.

However, when the unseeded systems are compared in this way, no significant

difference is apparent. This is because the unseeded systems have no initial

knowledge, and must acquire their abilities during the STL phase. This is a very slow

process, even when idiotypic selection is used, because the search space is probably

much too large given the time frame for completing the task. Moreover, the

mechanism by which antibodies are replaced is not well developed; the robot is forced

to select a random behaviour when it rejects an antibody, and could hence still be

using random antibodies during the latter stages of task completion.

Further evidence in favour of coupling LTL seeding with STL idiotypic mechanisms

lies in the fact that the seeded idiotypic system is the only scheme that consistently

displays a 0% failure rate. This upholds H3, i.e. it suggests that antibody replacement

is not necessary when adequate seeding and a sufficiently adaptive strategy are in

place.

The effect of the extra antigen is to reduce the number of collisions for the unseeded

systems, but only in simulation. It also brings about reduced numbers of collisions,

and an all-round better performance for the seeded non-idiotypic systems, especially

for the simpler simulated world, but the improvement is not consistent throughout all

the environments, and the system still exhibits an overall fail rate of 3% compared

with 0% again for the seeded idiotypic system. As the collision reduction translates

poorly to the real world, and the improvement in non-idiotypic systems is

inconsistent, there is not much support for H4, and so use of the extra antigen is not

recommended. In addition, its use increases the convergence time of the GA, and

based on performance, one would always opt for the seeded idiotypic system, which

shows no significant change when the new antigen is introduced.

7 CONCLUSIONS

This paper has described merging LTL (an accelerated GA), with STL (an idiotypic

AIS), in order to seed the AIS with sets of very diverse behaviours that can work

together to solve a mobile-robot target-finding problem. It has described the unique

antibody encoding and the GA method used for evolving the initial set of antibodies,

and has shown that significantly higher antibody diversity can be obtained when a

number of autonomous populations are used, rather than a single one. Furthermore,

for five autonomous populations, one can run the GA without significantly increasing

convergence time or reducing solution quality, and the diversity ratings do not appear

to be affected by the difficulty of the problem. The LTL system has proved itself

capable of delivering the starting antibodies within a realistic time frame, i.e. within

about ten minutes in a static world, and within about 25 minutes in a dynamic world.

The STL phase architecture has also been described and a number of experiments

performed that show that seeded systems consistently perform significantly better

than unseeded systems in both the real world and different simulated worlds. Strong

statistical evidence that the idiotypic selection process contributes towards this

improvement has also been demonstrated, and the experiments further imply that

antibody replacement is not necessary within the STL-phase as long as adequate

seeding is in place. In addition, trials have been conducted with an extra antigen, but

these have shown no significant benefit, suggesting that eight antigens may already be

optimal in terms of balancing LTL convergence-time and STL performance.

The fusion of the two learning timescales has hence provided an adaptable and robust

system for carrying out navigation activities in structured real-world environments.

This shows that, given the right conditions, behaviours derived in GA simulations can

transfer extremely well to the real world, even when the nature and layout of the

environments are quite different.

ACKNOWLEDGEMENTS

This work was funded by the UK Government’s Engineering and Physical Sciences

Research Council (EPSCRC).

REFERENCES

R. A. Brooks, Artificial life and real robots, in: F. J. Varela and P. Bourgine, eds.,

Toward a Practice of Autonomous Systems, Proc. of the First European Conf.

on Artificial Life, Cambridge, MA, USA (MIT Press, 1992)

R. Canham, A. H. Jackson, and A. Tyrell, Robot Error Detection Using an Artificial

Immune System, in: Proc. of the NASA/DoD Conf. on Evolvable Hardware,

Chicago, Illinois, USA (2003) 209-217

L. N. de Castro, and J. Timmis, Artificial Immune Systems: A New Computational

Approach, (Springer-Verlag, London, 2002)

J. D. Farmer, N. H. Packard, and A. S., Perelson, The immune system, adaptation,

and machine learning, Physica, D, 2(1-3) (1986) 187-204

D. Floreano, and F. Mondada, Evolution of homing navigation in a real mobile robot,

IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics,

26(3) (1996) 396-407

E. Hart, P. Ross, A. Webb, and A. Lawson, A role for immunology in ‘next

generation’ robot controllers, in: Proc. of the 2nd International Conf. on

Artificial Immune Systems, Edinburgh, Scotland (2003) 46-56

G. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fujita,

Evolving robust gaits with AIBO, in: Proc. of the IEEE International Conf. on

Robotics and Automation (ICRA), San Francisco, CA, USA (2000) 3040-

3045

N. K. Jerne, Towards a network theory of the immune system. Ann. Immunol. (Inst

Pasteur), 125 C (1974) 373-389

D. Keymeulen, M. Iwata, Y. Kuniyoshi, and T. Higuchi, Comparison between an off-

line model-free and an on-line model-based evolution applied to a robotics

navigation system using evolvable hardware, in: Proc. of the 6th International

Conf. on Artificial Life, (1998) 199-209

M. Krautmacher, and W. Dilger, AIS based robot navigation in a rescue scenario, in:

Proc. of the 3rd International Conf. on Artificial Immune Systems, Catania,

Sicily, Italy (2004) 106-118

G. C. Luh, Gand W. W. Liu, Reactive immune network based mobile robot

navigation in: Proc. of the 3rd International Conf. on Artificial Immune

Systems, Catania, Sicily, Italy (2004) 119-132.

D. Marocco, and D. Floreano, Active vision and feature selection in evolutionary

behavioural systems, in: Proc. of the 7th International Conf. on Simulation of

Adaptive Behaviour (SAB-02), Edinburgh, Scotland (2002) 247-255

O. Michel, Cyberbotics Ltd – WebotsTM: Professional Mobile Robot Simulation.

International Journal of Advanced Robotic Systems, 1(1) (2004) 39-42

R. Michelan, and F. J. Von Zuben, Decentralized control system for autonomous

navigation based on an evolved artificial immune network, in: Proc. of the

2002 Congress on Evolutionary Computation, Honolulu, Hawaii (2002) 1021-

1026

M. J. Neal, and J. Timmis, Timidity: A useful mechanism for robot control?

Informatica 27(2) (2003)197-204

P. A. Vargas, L. N. de Castro, and R. Michelan, An immune learning classifier

network for autonomous navigation, in: Proc. of the 2nd International Conf. on

Artificial Immune Systems, Edinburgh, Scotland (2003) 69-80

J. H. Walker, S. M. Garrett, and M. S. Wilson, The balance between initial training

and life-long adaptation in evolving robot controllers. IEEE Transactions on

Systems, Man and Cybernetics- Part B: Cybernetics, 36(2) (2006) 423-432

Y. Watanabe, A. Ishiguro, Y. Shirai, and Y. Uchikawa, Emergent construction of

behavior arbitration mechanism based on the immune system, in: Proc. of the

1998 IEEE International Conf. on Evolutionary Computation, (ICEC),

Piscataway, NJ, USA (1998) 481-486

Y. Watanabe, T. Kondo, A. Ishiguro, Y. Shirai, and Y. Uchikawa, Evolutionary

construction of an immune network-based behavior arbitration mechanism for

autonomous mobile robots, Electrical Engineering in Japan, 123(3) (1998) 1-

10

R. A. Watson, S. G. Ficici, and J. B. Pollack, Embodied evolution: A response to

challenges in evolutionary robotics, in: Proc. of the Eighth European

Workshop on Learning Robots, Lausanne, Switzerland (1999) 14-22

A. M. Whitbrook, U. Aickelin, and J. M. Garibaldi, Idiotypic Immune Networks in

Mobile Robot Control, IEEE Transactions on Systems, Man and Cybernetics-

Part B: Cybernetics, 37(6) (2007)1581-1598

A. M. Whitbrook, U. Aickelin, and J. M. Garibaldi, Genetic-Algorithm Seeding of

Idiotypic Networks for Mobile-Robot Navigation, in: Proc. the 5th

International Conf. on Informatics in Control, Automation and Robotics,

(ICINCO 2008), Funchal, Madeira, Portugal (2008) 5 –13

A. M. Whitbrook, U. Aickelin, and J. M. Garibaldi, An Idiotypic Immune Network as

a Short-Term Learning Architecture for Mobile Robots, in: Proc. of the 7th

International Conf. on Artificial Immune Systems, (ICARIS 2008), Phuket,

Thailand (2008) 266 – 278

V. Zykov, J. Bongard, and H. Lipson, Evolving dynamic gaits on a physical robot, in:

Proc. of The Genetic and Evolutionary Computation Conf. (GECCO), Seattle,

Washington, USA (2004) Late Breaking Papers

FIGURE CAPTIONS

Fig 1 An e-puck robot showing IR sensor positions and frontal camera.

Fig 2 Simulated World 1

Fig 3 Simulated World 2

Fig 4 Simulated World 3

Fig 5 Simulated World 4

Fig 6 The real world environment

