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Abstract

Improving predictions of skin permeability is a significant problem for which

mathematical solutions have been sought for around twenty years. However,

the current approaches are limited by the nature of the models chosen and

the nature of the dataset. This is an important problem, particularly with

the increased use of transdermal and topical drug delivery systems. In this

work, we apply K-nearest-neighbour regression, single layer networks, mixture

of experts and Gaussian processes to predict the skin permeability coefficient

of penetrants. A considerable improvement, both statistically and in terms of

the accuracy of predictions, over the current quantitative structure-permeability

relationship (QSPRs) was found. Gaussian processes provided the most accu-

rate predictions, when compared to experimentally generated results. It was

also shown that using five molecular descriptors - molecular weight, solubility

parameter, lipophilicity, the number of hydrogen bonding acceptor and donor

groups - can produce better predictions than when using only lipophilicity and

the molecular weight, which is an approach commonly found with QSPRs. The

Gaussian process regression with five compound features was shown to give the

best performance in this work. Therefore, Gaussian processes would appear to
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provide a viable alternative to the development of predictive models for skin

absorption, and underpin more realistically mechanistic understandings of the

physical process of the percutaneous absorption of exogenous chemicals.
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1. Introduction

Predicting percutaneous absorption accurately has proven to be a major

challenge and one which has substantial implications for pharmaceutical and

cosmetic industries, as well as toxicological issues in fields such as pesticides

usage. Several approaches have been used to try to quantify and predict skin

absorption. One such method involves the use of quantitative structure-activity

(or permeability) relationships (QSARs, or QSPRs), and another is the use of

mathematical modelling [6]. These approaches have been extensively reviewed

[17]. Recently, more new approaches, for example, artificial neural network and

fuzzy modelling, have been applied to this problem domain [4], with varying

degrees of success.

Therapeutically relevant percutaneous absorption has presented a significant

challenge for pharmaceutical scientists for the last 50 years. As knowledge of the

detailed structure of the skin barrier - the stratum corneum, the skin’s outermost

layer - increased, new technologies gradually became available for the treatment

of medical conditions by transdermal therapy. The stratum corneum is the main

barrier to percutaneous absorption, due to its unique structure and properties.

It is a very thin layer, commonly 15− 30mm on the volar forearm, for example,

although it may be thicker or thinner at different sites on the body. This layer

effectively governs the rate of passage of exogenous chemicals across the skin

and into the viable tissues from the external environment. It is a densely packed

layer consisting of dead, flattened keratin cells enmeshed in a lipid domain [5].

It is generally held that the most common route of absorption across the skin

is via the lipid pathway [17].

While qualitative estimates of percutaneous absorption were common until
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the 1980’s, it was not until 1990, and the publication of the Flynn dataset [7] that

a quantitative approach to skin absorption was proposed. Flynn determined,

in a semi-quantitative manner, that skin absorption was influenced predomi-

nately by two compound descriptors - the lipophilicity of a molecule (P ) and its

molecular weight (MW ). The former term, P , is the ratio of the solubility of a

molecule between two phases; octanol, to represent the lipid phase, and water

(or a buffered aqueous solution) to represent the aqueous phase. Normally, this

gives quite a range as some molecules will prefer one phase to another, often

across as wide a range as 10−7 to 107. Hence, a log scale is used to simplify the

notation in common use. Potts and Guy [25] used the Flynn dataset to derive

a linear equation that quantified percutaneous absorption:

log Kp = 0.71 log P − 0.061MW − 6.3, (1)

where Kp is the permeability coefficient, log P the octanol-water partition coef-

ficient and MW the molecular weight of the penetrant. It is important to note

that log Kp is a completely different term to log P . The amount of drug that

passes across the skin is measured as concentration (in suitable units) against

time. This gives us a rate term which we call flux (J). However, to compare the

relative rates of drug release for molecules which may have different properties

(particularly different solubility and log P ) we have to correct for differences in

concentration. Kp is defined as follows:

Kp = J/∆Cm (2)

where ∆Cm denotes the concentration difference across the membrane. Thus,

Kp is a concentration corrected version of flux that allows comparison of perme-

ation for different molecules. A number of similar equations have been derived

since the publication of Potts and Guy’s model. For example, Moss and Cronin

[16] developed Potts and Guy’s model by evaluating a slightly larger and more

robust dataset. The model is represented by the following equation:

log Kp(cm/s) = 0.74 log P − 0.0091MW − 2.39, (3)
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where log Kp, log P and MW are as defined earlier. In [17], authors have

reviewed extensively similar QSAR equations. In general, these models offer

linear relationships to quantify percutaneous absorption. It is worth reflecting

on the implications of these consistent findings in the context of recent work by

Moss et al., [19], which suggests that the dataset employed for skin absorption

is fundamentally non-linear in nature.

Moss et al., [18] investigated this further, and compared a series of published

models. They showed that there were significant differences between log Kp val-

ues that were measured experimentally and those that were determined using the

Potts and Guy (and other, similar) equations. Interestingly, they showed that

the greatest difference between experimental and predicted values was found at

high log P values. This was reinforced by a detailed examination of the dis-

tribution of the permeability data, which showed no linear trends and a clear

Gaussian distribution, suggesting that the use of linear models to represent skin

permeability might not provide the most accurate of predictive models, and

that their approach to predicting permeability was limited to molecules with

log P < 3.0. It should also be noted that the use of such models in this manner

is inappropriate, as it does not fully reflect the spread of the dataset.

One problem addressed in the current study is how predictions of Kp may be

improved by applying advanced machine learning techniques, such as Gaussian

Processes [27]. One key feature of this problem domain is that the target,

the skin permeability coefficient (Kp), has a strongly non-linear relationship

with the compound descriptors (features). This has been determined previously

by Moss et al., [19], who used principal component analysis to explore the

mathematical nature of the dataset commonly used to generate mathematical

models of skin absorption. As this work clearly shows the inherently non-linear

nature of the data underpinning these models, it clearly raises issues over the

extensive prior use of linear models and their validity and accuracy in estimating

percutaneous absorption. It may also be suggested that this study shows the

limitations of the range of previous models, compared with previous models.

Currently, most QSPR-type models used to predict skin absorption suggest
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in general that only two molecular parameters, molecular weight and lipophilic-

ity (indicated by the octanol-water partition coefficient, log P ) are of relevance

to the percutaneous absorption of exogenous chemicals. However, a more spe-

cific analysis, such as that conducted by Potts and Guy [26], Pugh et al., [23]

and others [24], has shown that other parameters may be of significance for

certain types of molecule, and may indeed give a more detailed description of a

penetrant’s ability to pass into and across the skin.

Hydrogen-bonding, despite being absent from the Potts and Guy (1992)

model [25] and from its variants, has been considered as a key parameter in per-

cutaneous absorption for just over thirty-five years [28]. Further, consideration

of partition phenomena, particularly the development of the solvatochromic the-

ory [13] and developments in the understanding of epidermal permeability ([1],

[26], [29], [30]) clearly indicated the importance of hydrogen-bonding acceptor

and donor properties in understanding the underlying mechanisms governing

the percutaneous absorption of exogenous chemicals. For example, Roberts et

al. ([30]) showed that the introduction of even one hydrogen-bonding group to

a molecule resulted in a significant decrease to its ability to permeate success-

fully across the skin [30]. Addition of further groups to the molecule results

in further decreases, which were non-linear and not as large as the addition of

the first hydrogen-bonding group. They concluded that hydrogen-bonding was

the major factor in diffusion across the stratum corneum, and that lipophilicity,

usually represented by log P , was more important for partitioning.

Therefore, the aims of the current study are to demonstrate the feasibility of

prediction improvement by using computational regression modelling methods,

particularly Gaussian processes. Further, it is also the aim of this current study

to investigate the introduction of new compound descriptors to aid the problem

and to provide a mechanistic insight to the nature of percutaneous absorption.
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2. Methods

2.1. Theoretical background: modelling methods
2.1.1. QSPR analysis

Prior to the application of the modeling methods described below to the

dataset, the QSPR methods were applied to the data in order to provide a

comparison between machine learning methods and previous approaches to this

matter. The methods used are those reported previously (eqs. (1) and (3)).

Further details on the nature of these models may also be found elsewhere ([3]

and [17]).

2.1.2. Single layer networks

Regression analysis was initially carried out on the dataset using a single

layer network (SLN). This simple linear regression considers the output y as the

weighted sum of the components of an input vector x, which can be written as

follows [2]:

y = y(x;w) =
d∑

i=1

wixi + w0 , (4)

where d is dimensionality of the input space and w = (w1, . . . , wd, w0) is the

weight vector. The weights are set so that the sum squared error function is

minimised on a training set.

2.1.3. K-nearest-neighbour (KNN) regression

Given a test input vector x, the algorithm finds the K closest points to x

among all the training inputs. The prediction of the model is therefore the

average of those K target values.

2.1.4. Mixture of experts - MIXEXP

The mixture of experts [11] divides the input space into a nested set of

regions. In each region a simple surface is fitted to the data. It consists of a

gating network and experts. The function of the gating network is to partition

the input space so that each expert only needs to model a small region. The

gating network receives the input x, and outputs a scalar value pi with the

property that pi ≥ 0 and
∑

i pi = 1. The final prediction of the model is a
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sum of the expert predictions weighted by pi. In this work, all local experts are

linear regression models.

2.1.5. Gaussian process regression - GPR

Gaussian process (GP) modelling is a non-parametric method. It does not

produce an explicit functional representation of the data, as QSPR modeling

does in the form of an equation where the permeability is usually related to

statistically significant physicochemical descriptors of a dataset. In GPR mod-

elling it is assumed that the underlying function, f(x), that produces the data

will remain unknown, but that the data is produced from a (infinite) set of

functions, with a Gaussian distribution in the function space.

A Gaussian process is completely characterised by its mean and covariance

function. For simplicity, we usually consider the mean function to be the zero

everywhere function. The covariance function, k(xi,xj), is crucial to GP mod-

elling. It expresses the expected correlation between the values of f(x) at the

two points xi,xj . In other words, it defines nearness or similarity between data

points.

In this work, we apply the squared exponential covariance function, which

incorporates noise into the model, as follows:

k(xi,xj) = σ2
f exp

(
− 1

2
(xi − xj)T M(xi − xj)

)
+ σ2

nδij , (5)

where M = l−2I, l is characteristic length-scale, σf is signal variance, σn is

noise variance, and δij is the Kronecker delta which is one if i = j and zero

otherwise.

To make a prediction y∗ at a new input x∗, we need to compute the con-

ditional distribution p(y∗|y1, . . . , yNtrn) on the observed vector [y1, . . . , yNtrn ],

where Ntrn denotes the number of training examples. Since our model is a

Gaussian process, this distribution is also a Gaussian and is completely defined

by its mean and variance. The mean at x∗ is given by

E[y∗] = kT
∗ (K + σ2

nI)−1y . (6)
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In eq(6), k∗ denotes the vector of covariances between the test point and the

Ntrn training data; K denotes the covariance matrix of the training data; σ2
n

denotes the variance of an independent identically distributed Gaussian noise,

which means observations are noisy; and y denotes the vector of training targets.

The predictive variance at x∗ is given by

var[y∗] = k(x∗,x∗)− kT
∗ (K + σ2

nI)−1k∗. (7)

We use the mean as our prediction and the variance as error bars on the

prediction.

2.1.6. GPR with automatic relevance determination - GPRARD

To implement automatic relevance determination [20] in GPR, one can re-

define the characteristic length-scale matrix M in eq.(5) as a diagonal matrix

containing the elements of vector L = [l−2
1 , . . . , l−2

d ], and l1, . . . , ld on the diag-

onal are the characteristic length scales for each input dimension, determining

how relevant an input is to the task. If the length-scale has a very large value,

it suggests that the corresponding input could be removed from the inference.

These characteristic length-scales can be optimised from the data by Bayesian

inference.

2.2. Description of the Dataset Employed

The dataset employed in this study has been collated with reference to a

range of literature sources. It predominately consists of the Flynn dataset, used

by Potts and Guy, and others. It contains several additions, including those

described in [18] and whose origins are described in [17], covering a wide range

of molecular properties. The whole dataset consists of 149 compounds. Usu-

ally, log P and MW appear to be the only significant features in QSAR forms.

However, in some cases (such as [17]) other features achieve significance; these

features are often calculated using expensive and specialist software. Since they

often provide only marginal improvements in the prediction of log Kp compared

to other QSAR models, there is little application of them in the field [17].
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In this work, five molecular features in total are involved. They are molecular

weight (MW ), solubility parameter (SP ), log P (often described, for example

by Potts and Guy, as log Pknown), counts of the number of hydrogen-bonding

acceptor (HA) and donor groups (HD), respectively, that can be found on a

molecule. These descriptors are described in detail elsewhere ([17] and [19]).

2.2.1. Visualisation of the data

The scatter plot matrix in Figure 1 shows data for all 149 compounds with

five features plotted against each other. The diagonal is different in that it

shows the shape of the distribution of each feature. The subplot appearing in

the first row and last column shows MW against log Kp. It suggests that very

similar log Kp values can correspond to many different MW values. This is also

true of log P (shown as log Pknown) and log Kp. It can also be seen that there

is no simple linear relationship between any pair of descriptors. For example,

the correlation coefficient for SP and log P is −0.32; for SP and HD is 0.21;

for SP and HA is 0.30. These correlation coefficients would suggest that there

is no linear correlation between these descriptors.

2.2.2. Canonical correlation analysis

Canonical correlation analysis (CCA) [10] can be used to find a projection

that maximises the correlation between two sets of variables. In this study,

MW , SP , log P , HA and HD were grouped into one set, denoted by x, and

log Kp into another set, denoted by y, in order to investigate the correlating

linear relationship between log Kp and the five compound descriptors. CCA

seeks vectors m and n so that the correlation between the random variables

m′x and n′y is maximised. The random variables m′x and n′y are called

canonical variables.

The canonical variable 1 ( CV 1) in Figure 2 is a combination of five descrip-

tors used in this work:

CV 1 = 0.002MW − 0.116SP + 0.033 log P + 0.107HA + 0.6655HD ,

while the canonical variable 2 (CV 2) in Figure 2 is given by CV 2 = −0.686 log Kp.

Figure 2 demonstrates clearly that there is no linear relationship between the
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Figure 1: A scatter plot matrix of the skin dataset. The diagonal shows the shape of the
distribution of each feature. The graphs in the lower triangle are the transpose of the graphs
in the upper triangle.
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Figure 2: The canonical correlation between five compound descriptors and log Kp.

two sets of variables. It is interesting to note that in CV 1 the least impor-

tant features (those with lowest coefficients) are MW and log P . Actually, the

canonical correlation coefficient is approximately 0.42, while the canonical cor-

relation coefficient between log Kp and a group of two variables, MW and log P

is about 0.24.

The use of both the above visualisation and the canonical correlation analysis

indicates that a non-linear approach to predicting skin permeability is essential,

given the inherent nature of the skin dataset being employed.

2.3. Experimental setup

The whole dataset was randomly divided into a training set and an indepen-

dent test set. There are 130 compounds in the training set, while the test set

consists of the remaining 19 compounds. Those modelling methods described

in Section 2.1 were applied to the training set to develop predictions on the

independent test set using the trained models. This process was repeated ten

times, each time for different randomly assigned training and test sets.

To investigate whether predictions can be improved by involving all five
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features rather than the original two features used in the QSAR forms, (MW

and log P ), we employed regression modelling methods with both two and five

compound features as an input vector.

In K-nearest-neighbour modelling, we varied the number of neighbours, K,

between one and ten; in the mixture of experts, we set the number of experts

between two and five. In Gaussian process modelling, we chose the initial values

of the logarithm of characteristic length-scale, the logarithm of signal variance,

and noise variance using cross validation from ten user defined pre-sets.

We used a five-fold cross-validation procedure to select optimal parameters

for each of K-nearest-neighbour, the mixture of experts, and Gaussian process.

In these cases, each training set is further divided into training and validation

sets five times.

To further investigate which compound descriptors contribute significantly to

the prediction, we apply GPRARD (see section 2.1.6) to the data. Again, we un-

dertake experiments on ten randomly selected training and test sets. However,

this time the hyperparameters are optimised by maximising the marginal like-

lihood using the derivative rather than selecting from pre-set hyperparameters

using a cross validation procedure. More details can be found in [27]. Each time

we initialise the logarithm of characteristic length-scale for each input dimension,

the logarithm of signal variance, and noise variance as [0; 0; 0; 0; 0; 0; log(sqrt(0.1))].

We applied Rasmussen and Williams’s GP toolbox [27] to do Gaussian pro-

cess modelling; and employed the Bayes Net Toolbox to carry out the mixture

of experts modelling (publicly available at

http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html#ack).

2.4. Influence of descriptors on the model

To explore the effect of particular descriptors on permeability and subsequent

predictive models, an analysis of dependence was carried out using the trained

GP model and the method reported previously in [21]. Firstly, one of ten trained

GP models, using all five descriptors, was randomly selected as the final model

to be analysed. Next, six new test sets were constructed. In each of the first five
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datasets, one of five descriptors was varied and the other four descriptors were

set to the median values in the training set. For the last dataset both log P and

MW were varied and the remaining descriptors were set to their median values.

In this study, the six test sets varied MW (range 1 to 600; in increments of

1), log P (−5 to 9; 0.1), SP (0 to 50; 0.1), HA (0 to 12; 1), HD (0 to 8; 1);

other descriptors were set to their median values as described above. Table 1

summarises the statistics of the corresponding training set.

Table 1: : Summary of the training set used.

Descriptor Mean Std Min Max Median
MW 231.5778 103.8051 18.0200 454.4500 236.1700
log P 2.0007 2.1257 -4.4700 8.3900 1.9750
SP 12.3001 4.5697 0 44.0600 11.4300
HA 2.7769 1.8184 0 10.0000 2.0000
HD 1.1615 1.1123 0 6.0000 1.0000

3. Performance measures

Suppose we are given Ntrn and Ntst training and test input-target pairs

(xtrn
n , ytrn

n ) and (xtst
n , ytst

n ), respectively. Given a test input xtst
n , the model

prediction is denoted by ŷn.

3.1. Mean squared error

The mean squared error measures the average squared difference between

model predictions ŷn and the corresponding targets ytst
n . Here we report the

normalised mean squared error (NMSE) which is shown in the following equa-

tion:

NMSE =
1

Ntst

Ntst∑
n=1

(ytst
n − ŷn)2

var(ytrn)
. (8)

3.2. Percent improvement over a naive model

In the naive model for any input the prediction is always the same value,

namely the mean of log Kp in the training set, defined by

ŷnaive =
1

Ntrn

Ntrn∑
n=1

ytrn
n . (9)
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Thus, the mean squared error of a naive model is given by

MSEnaive =
1

Ntst

Ntst∑
n=1

(ŷnaive − ytst
n )2 . (10)

The degree of improvement of the model over the Naive predictor can be

quantified by the improvement over Naive (ION) measure [32]

ION =
MSEnaive −MSE

MSEnaive
× 100% . (11)

3.3. Negative log loss (NLL)

When we investigate GP’s results, we also consider the average negative log

estimated predictive density NLL, given by

NLL =
1

Ntst

Ntst∑
n=1

(− log p(ytst
n |xtst

n )) , (12)

where − log p(ytst
n |xtst

n ) = 1
2 log(2πσ2

∗) + (ytst
n −ŷn)2

2σ2∗
, in which case σ2

∗ is the pre-

dictive variance obtained from eq. (7) plus the noise variance σ2
n. A small value

of NLL shows good performance.

With regard to the performance of our models, and their comparison with

previous work [19], the aim of the current study is to obtain a model whose

statistical veracity is confirmed where, on the test set, low values of both NMSE

and NLL are obtained, as well as high values of both ION and the correlation

coefficient (CORR).

4. Experimental results

Prior to the application of modeling methods using the trainable regression

models, established methods (eqs. (1) and (3)) used to generate QSPR models

were applied to the whole dataset. The results of this analysis are summarized

in Table 2, where eq. (1) is denoted as Potts; eq. (3) is denoted as Moss.

Table 2 shows the results using the two QSAR forms discussed in this paper.

The results are the averages on the ten independent test sets. For comparison,
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Table 2: The results on test sets using different QSAR models.

Models NMSE ION (%) CORR
low better high better high better

Naive 1.08± 0.13 0 -
Moss 1.46± 0.28 −34.71± 18.45 0.21± 0.21
Potts 5.75± 1.14 −430.33± 74.38 0.18± 0.22

Table 3: The results on test sets using different machine learning methods with only two
features.
Models NMSE ION (%) CORR NLL

low better high better high better low better
Naive 1.08± 0.13 0 - -
KNN 0.87± 0.14 19.27± 6.74 0.44± 0.15 -
SLN 1.07± 0.17 1.54± 4.11 0.21± 0.16 -
MIXEXP 1.03± 0.14 4.76± 6.76 0.28± 0.12 -
GPR 0.98± 0.11 9.85± 5.92 0.32± 0.13 3.06± 0.48

Table 2 also shows results from the Naive model. In general, all QSAR predic-

tions are less robust than naive predictions, especially with Potts’ QSAR form.

Table 3 shows results obtained using computational modelling methods from

the machine learning field with MW and log P as descriptors. One can see

that all four methods have improved on the naive predictions, with K-nearest-

neighbour giving the best results. The average of the optimal number of neigh-

bours, K, was equal to 8.4. Not surprisingly, the single layer network, which

is a simple linear regression model, performed worst. However, it should be

noted that the SLN still produced a statistically more robust model than either

QSPR model assessed. The mean weights from ten separate runs of SLN with

two features, are 0.18(±0.05) and −0.38(±0.03) for log P and MW . The bias

in each run is almost zero. This shows that the SLN gives more weights to MW

than log P compared with eqs. (1) and (3).

Results obtained with five compound descriptors are shown in Table 4. Com-

paring with Table 3, one can see that all four regression modelling methods

have improved their performance when using five features rather than two.

This would suggest the importance of these terms - solubility parameter and
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Table 4: The results on test sets using different machine learning methods with all five features.

Models NMSE ION (%) CORR NLL
low better high better high better low better

KNN 0.63± 0.11 42.04± 7.59 0.67± 0.08 -
SLN 0.87± 0.12 20.12± 5.37 0.50± 0.12 -
MIXEXP 0.44± 0.24 59.28± 22.03 0.81± 0.10 -
GPR 0.30± 0.07 72.62± 5.03 0.86± 0.05 1.48± 0.13
GPRARD 0.30± 0.06 71.99± 5.53 0.86± 0.04 1.50± 0.21

hydrogen-bonding descriptors - in the prediction of percutaneous absorption.

Comparison of SLN results shown in Tables 3 and 4 indicates improvements in

all performance metrics when five descriptors are used instead of two. This sug-

gests that the use of five descriptors can potentially improve predictions, even

on a linear model of this type.

Of the models summarised in Table 4 the Gaussian process regression and its

modified form, GPRARD, give the best performance. There is no significant dif-

ference between the results obtained from these two methods. Figure 3 displays

a box plot of normalised mean squared errors from ten independent test sets

on the Naive model, the Moss QSAR form, and those four computational mod-

elling methods with five features. It shows that the Gaussian process regression

with five features (GPRf5) gives the lowest upper quartile, median and lower

quartile values on NMSE. Although the mixture of experts with five features

(MIXEXPf5) has comparable low median and lower quartile values, its upper

quartile value and the largest NMSE value are much bigger than those obtained

from GPRf5. It suggests that GPRf5 has a relatively stable and robust perfor-

mance. On the other hand, one can see the QSAR form (Moss) has the highest

lower quartile, median and upper quartile values. Both K-nearest-neighbour

with five features (KNNf5) and single layer network with five features (SLNf5)

were relatively stable, but in general not as good as GPRf5 and MIXEXPf5.

Each length-scale in GPRARD for the corresponding individual compound

descriptors is shown in Table 5. It shows that all five descriptors have a

similar length-scale, with HD having the shortest length-scale. Since length

scale is inversely related to the relevance of the descriptor, this suggests that
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Figure 3: Box plot of normalised mean squared errors from ten independent test sets on six
different models with five features.

Table 5: Lengthscales with five features.

MW SP log P HA HD
lengthscale 0.79± 0.10 1.04± 0.29 0.99± 0.12 2.02± 4.23 0.55± 0.20

all inputs are fairly equally relevant to the task. However, HA gives a rel-

atively bigger mean length-scale with a large standard deviation. One out-

lier is with HA, where the results on the test set with the trained model are

NMSE = 0.43, ION(%) = 58.14, CORR = 0.81, and NLL = 2.01. Comparing

this results with the last row in Table 4, it can be seen that all these perfor-

mance measurements are worse than the mean values. This suggests that in

this particular case the trained GPRARD model did not capture the underlying

distribution very well.

The dependency of molecular descriptors on skin permeability is shown in

Figures 4-9, where each of the descriptors is plotted separately. Figure 9 shows

the effect of both log P and MW on log Kp. Variables not shown in a particular

plot were set to their median values. The central line represents the predic-

tion, and the outlying lines the 95% confidence intervals. It can be seen from
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Figure 4: Dependency of permeability log Kp on MW for the final model.

this model that permeability increases with MW (0−150), decreases thereafter

(150− 320) and then increases slightly again (Figure 4). This last increase may

be an artifact of the Gaussian process due to the small number of data points

present in this part of the plot (and the associated increase in variance at such

points in the plot), or it may indicate a particular effect, such as ionisation, on

the data. The relationship between log P and log Kp (Figure 5) is not linear and

a bell-shaped distribution is observed in the data (see Figure 1). A similar trend

is observed between log Kp and SP (Figure 6). The permeability coefficient de-

creases from 7 to 15 and increases thereafter, falling away at around 30. This

matches the SP associated with the stratum corneum, and suggests that per-

meability is at its lowest where it reflects the solubility in the stratum corneum

best, suggesting a bimodal inverse relationship between SP and log Kp.

Figures 7 and 8 show the influence of HA and HD on log Kp. Figure 9 is

an insight into why the original linear regression models perform poorly across

the full range of log P values. The contour plot clearly shows the relationship

between MW , log P and log Kp is highly non-linear.
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Figure 5: Dependency of permeability log Kp on log P for the final model.
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Figure 6: Dependency of permeability log Kp on SP for the final model.
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Figure 7: Dependency of permeability log Kp on HA for the final model.
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Figure 8: Dependency of permeability log Kp on HD for the final model.

20



0 100 200 300 400 500 600

−4

−2

0

2

4

6

8

MW

Lo
gP

 

 

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

Figure 9: Dependency of permeability log Kp on MW and log P for the final model. Asterisks
represent training data points; lines mark the median values of the descriptors shown in the
plot.

5. Discussions

Most methods which have yielded models of percutaneous absorption have

involved the use of quantitative structure-permeability relationships (QSPRs).

While some of these models (i.e. those derived in [33] ) used non-linear methods,

the vast majority of models employed linear representations of the data. This

field has been reviewed extensively, and the reader is directed to detailed reviews

of this subject ([9] and [17]). An advantage of the models derived (those of the

“Potts and Guy” form, where permeability is commonly seen to be a function

of log P and molecular weight) is the ease of use, as the relevant molecular

parameters can be easily determined - in the case of log P , this is either carried

out in a laboratory or by computational methods. However, one of the criticisms

made against any model that does not conform to this type is that it is difficult

to use and, if complex mathematics or molecular descriptors are involved, the

models will have limited applicability to an audience who may not have access

to the costly software often required to develop such models.
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The use of Gaussian processes takes this to an extreme, as it does not directly

result in a quantitative, descriptive output (such as a “Potts and Guy”-type

equation) that may be interpreted appropriately by those interested in percuta-

neous absorption. However, the use of related methods, including length-scale

analysis [14], provides additional details of the importance of particular molec-

ular descriptors. Moss et al., [19] explored the viability of the GP approach

for modelling skin absorption data, and demonstrated its statistical superiority

over a series of other models. In particular, the QSPR-type models (specifically,

those by [25] and [16]) were shown to be significantly worse, in terms of their

descriptive statistics, than single layer networks or Gaussian processes. This

perhaps reflects the nature of the dataset employed in QSPR studies, which

was derived from [7]. This dataset - a substantially expanded form of which

is used herein - is predominately comprised of data points at the lower end

of the scale, in terms of physicochemical descriptors. Moss et al [19] likened

this to the up-slope of a Gaussian distribution curve, which may explain why

such statistically acceptable models were developed from this dataset. However,

in expanding this dataset, particularly with molecules that are predominately

lipophilic (i.e. those which may reside on the down-slope of a Gaussian distribu-

tion), Moss et al [19] were able to develop a model of percutaneous absorption

that not only modelled better, in a statistical sense, but which fitted empirical

and experimental observations of skin absorption, which is not considered to

be a linear process in the context of the molecular descriptors. This is due to

the nature of the stratum corneum skin barrier and its interaction of exogenous

chemicals.

Classical QSPR-based models of percutaneous absorption output a defined

mathematical relationship between permeability (as Kp or J). This provides

mechanistic information regarding the significant physicochemical descriptors

of a molecule that influence its percutaneous absorption. It is also transpar-

ent, allowing a wide range of users to apply the model for their needs. Clearly,

the GP model does not allow the same breadth of use due to its “black box”

approach. However, this method does offer a different approach to the issue
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of modelling percutaneous absorption. One must consider that the use of such

models extends beyond merely being a tool for researchers to estimate the per-

meability of their novel compounds. Clearly, as the vast body of work in this

field, some of which is cited herein, demonstrates, these models offer a deep and

quite specific mechanistic understanding of percutaneous absorption. While us-

age of, in particular, the Potts and Guy (1992) equation [25] is common, this

body of research has provided detailed and invaluable information on the mech-

anism of percutaneous absorption. We feel therefore that the GP approach,

while currently limited by its “black box” approach compared to QSPR-based

models, offers significant advantages over the previously employed methods, as

highlighted in the previous section. It should also be noted that the use of GP

methods is a novel approach to the problem of modelling skin absorption. Work

of this type, and using such methods, has only begun to be published ([14], [19])

in the field of percutaneous absorption.

The present study expands the concept of non-linear modelling of skin ab-

sorption. Figure 1 shows a visualisation of the dataset and its inherently Gaus-

sian distribution. Figure 2 shows the results from canonical correlation analysis,

which demonstrates clearly the lack of a linear relationship between the vari-

ables. Clearly, the use of these methods show that the inherent nature of the

dataset is non-linear, suggesting that non-linear methods of analysis would be

the most appropriate in accurately predicting skin absorption.

In the prediction of percutaneous absorption, both the method used to de-

rive a model, and the physicochemical descriptors associated with such models,

have varied significantly despite the perception of the applicability of the generic

algorithm associated with Potts and Guy’s (1992) work. Indeed, Potts and Guy

subsequently re-analysed the dataset associated with their initial work [26] and

found that, for a subset of the dataset, hydrogen-bonding was an important

descriptor for permeability for a specific class of molecules. Other researchers

have explored the importance of a range of molecular descriptors to percuta-

neous absorption.

In studies such as this the nature of the dataset can play a key role in the
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nature of the resulting model. For example, a comparison of the Potts and Guy

studies ([25], [26]) indicates very clear difference in the output based on the

nature of the dataset used. Similarly, the study by Moss and Cronin [18] saw

the removal of the steroid data from the Flynn ([7]) dataset (the Scheuplein

data ([31])) and the substitution of additional data that had been collated by

others ([12]). This saw, for example, the inclusion of eight values for estradiol,

where only one had been included in the Flynn dataset ([7]). When the model

was recomputed an equation very similar to the Potts and Guy ([25]) equation

resulted. However, the Moss and Cronin ([16]) equation importantly found that

steroids were no longer listed as outliers due to the re-modelling.

This is an important point in considering the nature of the dataset used in

this study. For example, it infers that simply increasing the number of chemicals

in the dataset may have little or no effect on the quality of the resulting model

and that the distribution of the data (shown, for example, in Figures (1) and (2))

is of greater significance in terms of representative modelling of percutaneous

absorption. It should also be noted that the dataset employed in this study is

one of the largest used in any study modelling skin absorption.

While absent from the widely accepted Potts and Guy model [25], hydrogen-

bonding has been considered as a key influence in percutaneous absorption for

just over thirty years ([28]). Development of the solvatochromic theory in ex-

plaining partition phenomena ([13]) and epidermal permeability ([1], [29]) sug-

gested that, among other physicochemical properties, both hydrogen-bonding

acceptor and donor properties of a molecule play key roles in determining pen-

etrant permeation.

Roberts et al., [30] showed that the introduction of even one hydrogen-

bonding group to a molecule resulted in a substantial decreases in permeability.

Addition of further groups resulted in further decreases, which were non-linear.

In general, they found that acids seemed to diffuse more slowly than alcohols or

phenols, and suggested that hydrogen-bonding was the key factor in diffusion

across the stratum corneum, whereas lipophilicity (i.e. log P ) was more impor-

tant for partitioning. This phenomenon may be related to the acidity constant,
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pKa, of the penetrant and its ionisation state, and suggests that ionisation may

have a substantial role in understanding how hydrogen-bonding influences skin

absorption. The results in the current study, particularly those shown in Figure

7, would also suggest that the introduction of a hydrogen-bonding group onto

a potential penetrant exerts a significant influence on permeability. Indeed, the

trend shown in this figure follows closely the argument used by Roberts and

co-workers in their study.

The role of hydrogen-bonding in skin absorption has also been explored by

other authors (i.e. [29], [24], [22]). While it is difficult to directly compare

such studies to other approaches (specifically, those used to develop “Potts and

Guy”-type models of skin permeation) due to differences of dataset composition

and mathematical approaches, it may be argued that the use of methods that

do not properly consider the nature of whichever dataset is used undermines

the veracity of any resultant model.

While Moss et al. [19] compared the statistical accuracy of Gaussian pro-

cesses, single linear networks and QSPRs, they did not explore in detail the

effect of particular physicochemical descriptors on the resultant models. This

is explored in the current study, where models developed with five molecular

descriptors (log P , MW , HA, HD, SP ) performed significantly better than

those developed with two descriptors (log P and MW ). In addition, Table

5 summarises the length-scales from GPRARD analysis for each of individ-

ual physicochemical descriptors. It shows that, with the exception of HA, all

parameters contribute relatively equally to the development of the predictive

model. The length-scale for HA is higher than for the other descriptors, but

this value is swamped by a very large standard deviation. This might suggest

an error associated with the ionisation state of a chemical and may indicate

the importance of normalising the Kp values from the dataset to percentage

ionisation state. While this is not a straightforward task, and one which may

skew other parameters (due to considerations of, for example, solubility and the

effect on log P ) it may provide an understanding of the mechanistic importance

of hydrogen-bonding and ionisation in percutaneous transport.
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It also demonstrates the difficulty of separating a group of such inter-dependant

descriptors and yielding specific mechanistic information that relates to a spe-

cific molecular functionality. For example, while du Plessis et al. [22] indicated

that hydrogen-bonding was important for permeability, they were unable to

fully decouple any such effects from other parameters, including molecular sym-

metry and the substitution of the molecules in their dataset, and suggested that

this may be due to the similarity of lipophilic molecular features in their data.

Further, while Magnusson et al. [15] indicated that molecular weight was the

main parameter for predicting flux (a term related to permeability, Kp, and the

concentration of a permeant) across skin, they also suggested that melting point

and HA are also of significance.

The main focus of this study is in developing and validating the use of GP

methods, and also in showing how they compare to existing models. This study,

in common with a large number of other studies, focuses on Kp. While more

recent studies, notably Magnusson et al. [15] use flux (as Jmax) we have focused

on Kp in this study in order to allow ready comparisons with classical studies in

this field, such as Potts and Guy [25]. This is an important aspect of validating

the novel GP method and comparing it directly with existing benchmarks.

Recently, other novel methods have been employed in this field. For exam-

ple, Fransch [8] used a 4-parameter algebraic model to examine percutaneous

absorption. This differs significantly from the work reported herein, which is

fundamentally different to Fransch’s approach in that it is a statistical-based ap-

proach to modelling. In addition, it should be noted that Frasch uses a model

based on the structural organisation of mouse stratum corneum, including the

covering of the upper and lower surfaces of the stratum corneum with a lipid

film. The work in the current manuscript makes no such assumptions.

6. Conclusions

The results presented herein suggest substantial limitations to current QSPR-

type models, both in terms of the significance of the descriptors used and the

manner in which the data is interpreted and analysed. They indicate that, in
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terms of statistical performance, the following rank order is observed: GP >

Mixture of Experts > SLN > QSPR. The distribution of the dataset has been

shown in this study to be non-linear, and that increasing the number of descrip-

tors improves the model significantly. It should be noted that the dataset used

herein is different from those used to produce QSAR-type models, as it contains

more lipophilic members. Further, analysis of the descriptors used suggests

that they are all of similar weighting and all contribute to the models produced.

This is consistent with previous observations reported in the literature, where

hydrogen-bonding in particular is an important factor in skin permeability. As

shown in Figure 9, the results should be treated with caution due to the limita-

tions of the dataset, and any interpretation should be made with this, and an

underlying knowledge of the nature of the Gaussian process, in mind.
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