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The paper describes the process by which the word alignment task performed within SOMAgent works in
collaboration with the statistical machine translation system in order to learn a phrase translation table.
We studied improvements in the quality of translation using syntax augmented machine translation. We
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also experimented with different degrees of linguistic analysis from the lexical level to a syntactic or
semantic level, in order to generate a more precise alignment. We developed a contextual environment
using the Self-Organizing Map, which can model a semantic agent (SOMAgent) that learns the correct
meaning of a word used in context in order to deal with specific phenomena such as ambiguity, and to
generate more precise alignments that can improve the first choice of the statistical machine translation

nowl

emantic Kohonen Maps
utomatic translator system giving linguistic k

. Introduction

For more than half a century, various aspects of translation have
een studied and considered in order to develop machine transla-
ion (MT). However, it is well-known that MT is a very difficult
ask. The more general the domain or complex the style of the
ext, the more difficult it is to achieve a high quality translation.
oday there is a wave of optimism that is spreading throughout the
T research community, one that has been caused by the revival

f statistical approaches to MT. Very specifically, we refer to the
irth of statistical machine translation (SMT). In contrast to previ-
us approaches based on linguistic knowledge representation, SMT
s based on large amounts of human-translated example sentences
parallel corpora) from which it is possible to estimate a set of statis-
ical models describing the translation process [19]. But there still
ersist several morphology and syntax errors, which derive from
he inability of the model to handle word derivation, multi-word
xpressions, long-dependency syntax relationships, or semantic
isambiguation, among other linguistic phenomena. Without pro-
iding this information to our models, it is only possible to rely on
he indefinite increase in training data to improve current trans-
ation quality. Therefore, additional linguistic knowledge seems to
e almost necessary.
Please cite this article in press as: V.F. López, et al., A SomAgent
doi:10.1016/j.asoc.2010.08.018

The incorporation of syntactic information in SMT is a current
esearch topic. It is based on both syntax and on hierarchy of
hrases. To this end, in [19,41] there appears the need to intro-
uce alternative techniques to include information on morphology
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derivation and verb group information into word alignment algo-
rithms. According to [41], the classification of verb forms can be
improved for large data tasks by adding some granularity to the
classes. For example, classifying all verb forms from a certain verb
into more than just one class.

Most Natural Language Processing (NLP) systems traditionally
use a sequential architecture that represents the classical linguistic
levels. Previous studies have pointed to a distributed architecture
as a means of dealing with this complex related information and
making it available for text analysis. Some of them, such as [1,50,52]
report research on the possibilities of using a multi-agent system
(MAS) [56] in NLP, to represent cooperation among distinct linguis-
tic levels.

In this paper, we study improvements in translation quality
that can be achieved by using the open-source syntax augmented
machine translation (SAMT). By preprocessing with a multi-agent
system, we experimented with different degrees of linguistic anal-
ysis from the lexical level to a syntactic or semantic level in order
to generate a more precise alignment. We developed a contex-
tual environment using the Self-Organizing Map where we model
a semantic agent (SOMAgent) that learns the correct meaning of
a word used in a particular context in order to deal with specific
phenomena such as ambiguity and to generate more precise align-
ments that can improve the first choice of the SMT system.

1.1. Self-Organizing Maps in natural language processing
statistical machine translation, Appl. Soft Comput. J. (2010),

The Self-Organizing Maps (SOMs) devised by Kohonen [23,24]
are used for the extraction of information from a primary multidi-
mensional signal and represent it in two dimensions. Much of the
formal and computational study of written language is centered

dx.doi.org/10.1016/j.asoc.2010.08.018
dx.doi.org/10.1016/j.asoc.2010.08.018
http://www.sciencedirect.com/science/journal/15684946
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n structural aspects, and not on semantics and pragmatics [17]. A
OM is used to resolve ambiguity in [49]. A model for lexical disam-
iguation is presented in [34]. The basic method for creating word
ategory maps was introduced by Ritter and Kohonen [45,46]. Char-
iak [6] presented a scheme for grouping or clustering words into
lasses that reflect the commonality of some property. Pulkki [43]
resents means for modeling ambiguity using SOMs. Contextual

nformation has widely been used in statistical analysis of natural
anguage corpora [17]. In recent years, this statistical approach has
ad considerable success, based on the availability of large paral-

el corpora and other methodological developments (consider e.g.,
21,54]). Tikkala et al. [53] have presented connectionist models for
imulating both normal and disordered word production as well as
hild language acquisition. The study in [28] indicates that con-
ectionist modeling of language acquisition has made significant
rogress since Rumelhart and McClelland’s pioneering model of
he acquisition of the English past tense [47]. However, three major
imitations need to be considered for the further development of
eural network models of language acquisition:

First, some language acquisition models use artificially gener-
ted input representations that are isolated from realistic language
ses.

Second, most previous models have used supervised learning
hrough back-propagation as the basis for network training (see
he models reviewed in [13,44]).

Third, neural network models of lexical learning [27] have not
et devised a method for modeling the incremental nature of lexical
rowth.

To address these three problems, a SOM neural network model
f lexicon development was created. This model, referred to as
evLex, is designed to combine the dynamic learning properties
f connectionist networks with the scalability of representation
odels. Previous work by [31], have shown that self-organizing

eural networks, are particularly suitable as models of the human
exicon. Various aspects of modeling translation and language use
ave been considered in [17]. There has recently been considerable

nterest in the models of language evolution (see, e.g., [11]).
The remainder of this paper is structured as follows: the sta-

istical machine translation is described in Section 2. The SAMT is
resented in Section 3. The SOMAgent and our multi-agent system

s further described in Section 4, the experimental work is reported
n Section 5 and the conclusions are briefly outlined in Section 6.

. Machine translation and the statistical approach

SMT as a research area started in the late 1980s with the Candide
roject at IBM, which included the classic IBM word-based model.
heir estimation of a parallel corpus can be found in [3]. When
BM researchers presented the statistical approach to MT, inter-
st among both natural language and speech processing research
ommunities increased. The IBM model included the possibility
f working towards a level of phrases. The evolution from word-
ased models to phrase-based models is described in [21] and
oses MT [59]. Marcu and Wong [32] introduced a joint-probability
odel for phrase translation. As a result, most competitive SMT

ystems, such as the CMU, IBM, ISI, and Google systems, to name
ust a few, use phrase translation. Phrase-based systems came out
head of the participation list at a recent international MT compe-
ition (DARPA TIDES Machine Translation Evaluation 2003–2006
n Chinese-English and Arabic-English). They also appear in the
Please cite this article in press as: V.F. López, et al., A SomAgent
doi:10.1016/j.asoc.2010.08.018

MT model based on tuple N-grams [33], or Ngram-based SMT.
his approach is an evolution of a previous Finite-State Transducer
mplementation of X-grams [4], which adapted speech recognition
ools for speech-oriented MT. The result is a competitive SMT model
hose basic unit is the tuple, composed of one or more words
 PRESS
puting xxx (2010) xxx–xxx

of the source language and for one or more words of the target
language.

In the last year, much effort has been devoted to building
syntax-based models that use either real syntax trees generated by
syntactic parsers, or tree transfer methods motivated by syntactic
reordering patterns. This statistical approach had considerable suc-
cess. Several other strategies have been followed, including systems
based on syntax [35], and those based on the hierarchy of phrases
[8].

3. Syntax augmented machine translation

Defined in [57] as a specific parameterization of the probabilis-
tic synchronous context-free grammar (PSCFG) approach to MT, the
syntax augmented machine translation takes advantage of nonter-
minal symbols used in monolingual parsing, to generalize beyond
purely lexical translation. [9] extends SAMT to include nontermi-
nal symbols from target language phrase structure parse trees. Each
target sentence in the training corpus is parsed with a stochastic
parser [7] to produce constituent labels for target spans. PSCFG are
defined by a source vocabulary Ts, a target vocabulary Tt, and a
shared non-terminal set N, and induce rules of the type:

X = 〈�,˛, �, 〉 (1)

where

• X ∈ N is a nonterminal (initial rule),
• � ∈ (NUTs)∗ is a sequence of nonterminals and source terminals,
• ˛∈ (NUTt)∗ is a sequence of nonterminals and target terminals,
• � is a one to one mapping from nonterminal tokens in � to non-

terminal tokens in ˛, and
•  is a nonnegative weight assigned to the rule.

PSCFG models define weighted transduction rules that are auto-
matically learned from parallel training data. As in monolingual
parsing, such rules make use of nonterminal categories to gen-
eralize beyond the lexical level. These rules seem considerably
more complex than weighted word-to-word rules [3], or phrase-
to-phrase rules [21]. However, they can be viewed as natural
extensions to these well established approaches. [9] pointed out
a procedure for learning PSCFG rules from word-aligned parallel
corpora, using the phrase-pairs as a lexical basis for the grammar.

3.1. Phrase and SAMT rule extraction

Ref. [57] describe a process to generate a PSCFG given parallel
sentence pairs and the use nonterminal labels learned from target
language parse trees. The inputs to the SAMT rule extraction proce-
dure are tuples, 〈f, e, Phrases(a, f, e),�〉, where f is a source sentence,
e is a target sentence, a is a word-to-word alignment associating
words in f with words in e, Phrases(a, e, f), are the set of phrase pairs
(source and target phrases) consistent with alignment a [21,39],
and � is a phrase structure parse tree of e. SAMT rule extraction
associates each phrase pair from Phrases(a, e, f) with a left-hand-
side label, and then applies the rule extraction procedure from [9]
to generate rules with labeled nonterminal symbols. Consistently,
all linguistic rules are included in the mapping table of phrases.

3.2. Rule generation
statistical machine translation, Appl. Soft Comput. J. (2010),

For the phrase translations on the parallel training data, the
techniques and implementation described in [21] are used. This
phrase table provides the purely lexical entries in the final hierar-
chical rule set that will be used in the decoding process. It then uses
Charniak’s parser [7] to generate the most likely parse tree for each

dx.doi.org/10.1016/j.asoc.2010.08.018
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arget sentence in the training corpus. Next, it determines all phrase
airs in the phrase table whose source and target side occur in each
espective source and target sentence pair. This defines the scope
f the initial rules in the generation of synchronous context-free
rammar (SynCFG) [10].

.3. PSCFG decoding

The sentence specific grammars and language models are used
n a bottom-up chart parsing decoder to perform the search in the
robability space of the terminals for the target language. This is
imilar to a probabilistic context-free grammar and decoding is
herefore an application of chart parsing, instead of the common

ethod of converting the context-free grammar into Chomsky Nor-
al Form and applying a Cocke–Kasami–Younger (CKY+) [5] that

llows efficient decoding for grammars with more than two non-
erminal symbols. The decoder integrates n-gram language models
uring its search, using the Cube Pruning algorithm described in
10] to mitigate the computational impact of this feature.

.3.1. Minimum Error Rate training
The translation quality is represented by a set of the functions

or every rule. These functions are trained via Minimum Error Rate
MER) [38] to maximize translation quality according to a user spec-
fied automatic translation metric, such as BLEU (Papineni et al.[40])
r NIST [12]. The weights of the functions are computed on the basis
f the maximization of the BLEU measure.

. Neural networks as non-parametric classification
tatistical tools

The relationships between neural networks and statistical
ethods have been recently analyzed [42]. In general terms neu-

al networks have shown greater ability to classify than statistical
ools. Moreover they do not need to satisfy the parametric assump-
ions of those techniques.

.1. The Semantic memory of the SOMAgent model

In [18], the main focus is on modeling communities of concep-
ually autonomous agents. An agent is conceptually autonomous
f it learns its representation of the environment by itself, where a
oncept is taken to be simply a means of specifying a relationship
etween language and world. Partial autonomy refers to a setting in
hich the learning process of an agent is influenced in some way by

ther agents. This influence can then serve as a basis for communi-
ation between agents. Thus, although each agent has an individual
epresentation of the environment, the representations are related
hrough the coordinating effort of communication between agents
n situations where all agents have access to similar perceptions of
he environment.

In our model, the environment consists of the context where the
ymbols (words) are represented during the process of learning,
hich implies that coded units should include a group of concur-

ent elements. In linguistics, the concept of the representation of
he context is associated with a number of adjacent words. Thus
imilarity between words is a reflection of similarities of the con-
ext. The basic idea is to teach small context maps so that the
OMAgent [30] can process the contextual information into clus-
ers. Each model vector of the single-word maps corresponds to a
Please cite this article in press as: V.F. López, et al., A SomAgent
doi:10.1016/j.asoc.2010.08.018

articular meaning of the word.
Our agent implements a mechanism of class analysis, i.e., clus-

ering, to represent and identify groups of meanings that are
emantically associated. A class is a set of associated meanings with
central concept, whose members can be concepts or other classes.
 PRESS
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The agent has been used to choose the correct meaning from var-
ious candidates. Therefore the agent is conceptually autonomous,
but it has partial autonomy. For example, in cases where syntactic-
semantic analysis is insufficient to solve a lexical ambiguity, the
agent must collaborate with other agents and take the context into
account.

Given the assumption that some sample data sets are mapped
onto an array that will be called the map, the set of input samples is
described by an n-dimension real vector x(t). Each unit in the map
contains an n-dimension vector m(t). Let Xs be the vector which
represents the symbolic expression of an element and Xc the rep-
resentation of the context. The simplest neuronal model assumes
that Xs and Xc are connected through the same neuronal unit, so
that the vector X (the pattern) is formed by the concatenation of Xs
and Xc:

X =
[
Xs
Xc

]
=

[
Xs
0

]
+

[
0
Xc

]
(2)

The central foundation of the symbolic map is that the two parts
have their own weights during the self-organization process. How-
ever, the size of the context predominates, reflecting the metric
relationships of the members of the set, and implementing a spatial
order that reflects semantic similarities.

To find semantic relationships between words, the semantic or
conceptual space is explicitly modeled with the SOM algorithm
[23]. The algorithm organizes the responses spatially in the map.
The basic steps are:

1. Selection of the winning neuron.
2. Adaptation of the cell with the largest response (the winning

cell), and of its topological neighbours, resulting from the current
input.

3. Spatial concentration of the activity of the net in the cell (and
optionally in its neighbours) that offers the largest response to
the input.

Selection of the winning neuron. The learning algorithm iterates
the following sequence:

1. Presentation of a given inputs to all cells.
2. Selection of the cell with the largest response to this input.

Let the vector which represents the actual input be
x = [x1 . . . xn] ∈ Rn and the vector of weights for each cell, i, be
mi = [mi1 . . .min] ∈ Rn. The criterion used to detect the cell that
responds most is based on the Euclidean distance between x
and mi: choose the cell which is nearest and call it mc, then
||x − mc | | = mini | | x − mi | |.

Adaptation procedure. The weight vectors tend to approximate
a form determined by the probability density function of the input
vectors. Lateral interaction can be introduced by the definition of a
group, Nc, of neighbouring cells around cell c. At each learning step,
all the cells of Nc are updated while the rest remain unchanged. The
adaptation process for the best mi is defined by:

mi(t + 1) =
{
mi(t) + ˛(t)[x(t) −mi(t)] i∈Nc(t)
mi(t) i /∈ Nc(t)

where ˛(t) is the learning factor0 <˛(t) < 1.
The overall architecture of multi-agent system is presented

in Fig. 1. The SOMAgent receives perceptual inputs: linguistic
statistical machine translation, Appl. Soft Comput. J. (2010),

expressions. There are potential actions: the agent can disam-
biguate an expression. The perception words are primarily stored
in the working memory. The semantic memory associates contex-
tual information and gives the correct meaning. Communication
between the agents is motivated by the exchange of information

dx.doi.org/10.1016/j.asoc.2010.08.018
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Table 1
English lexicon for the first application.

Words Cat Words Cat

Mary–Peter–Jim 1 Horse–dog–cat 2
Beer–water 3 Lunch–foot 4
Runs–walks 5 Works–talks 6

Table 1. Such class patterns are defined off-line (e.g. 1-5-12, 1-9-
Fig. 1. Architecture of multi-agent system.

elated to linguistic expressions: morphological, syntactical and
emantic information about the lexical items that are necessary
or the resolution of specific tasks.

.2. The multi-agent system

The SOMAgent can be applied to find a map between vocabular-
es of two different languages in machine translation. According to
19], the mapping between any two languages is based on an inter-

ediate level of representation. This knowledge is embedded in
pecific autonomous agents in a multi-agent system. In this section,
e present the SOMAgent perspective from each of those agents.
orphological agent. Our lexical items are stored in a hierarchy of

ictionaries:

. Central dictionary or terms dictionary.

. Idioms.

. Terms that present lexical ambiguities.

Term description is carried out by the feature structure. The
erms dictionary was constructed in declarative form, associating
very term of the source language with its possible translations
nd corresponding morphological, syntactical and semantic infor-
ation [29]. The conjugations of every term are generated through
orphologic rules. Since German has a rich morphology inflection

here are certain types of words that change their morphologic
tructure. The models allow termination groups to bind to bases
hat perform identical inflexion behavior, thus reducing the num-
er of both characters and descriptors stored in the dictionary.
he words appear in the dictionary in degree zero and not their
eclensions.

Syntactical agent. Generalized Phrase Structure Grammar
GPSG) [20] is used at this point. GPSG augments syntactic descrip-
ions with semantic annotations that can be used to compute the
ompositional meaning of a sentence from its syntactic derivation
ree. In order to implement this model, grammar knowledge com-
rising the initial tree models, which represent the structure of
erman sentences and the lexicalization dictionary form the syn-

actical agent knowledge. This agent can be seen as a subsociety
52], formed by agents handling simpler tasks or information asso-
iated with the features (e.g. complements) used in the parsing. This
ubsociety can be dynamically organized according to the problem
t is expected to solve: e.g., to assist in German Spanish transla-
ion. One possible organization for this subsociety is a group of
utonomous agent handlers:

Agent 1, initial trees.
Agent 2, auxiliary trees.
Please cite this article in press as: V.F. López, et al., A SomAgent
doi:10.1016/j.asoc.2010.08.018

Agent 3, lexicalization dictionary.
Agent 4, formalism operation and organization of the working
memory of the subsociety.
Agent 5, morphological and lexical transfer.
Visits–telephones 7 Buys–sells 8
Likes–hates 9 Takes–eats 10
A lot–a little 11 Quickly–slowly 12
Frequently–rarely 13 Good–bad 14

Using German sentences as input, the parsing is performed,
resulting in a decorated abstract syntax tree. The dictionary agent
gets the morphological information from the morphological agent
(agent 5). The dictionary agent must negotiate with agents 1–3. It
sends the set of trees that must be evaluated to agent 4, who tests
all possible combinations with the received information, and sets
the values of the working memory.

The SOMAgent is implemented in C language under the UNIX
operating system and using the Som-pack v3.1.10 software tool
[25].

5. Data and experiments

Two examples are used to test the validity of the method pro-
posed to demonstrate that the SOMAgent can be applied to the
organization of linguistic information. The SOMAgent treats the
organization of words into semantic classes according to their con-
text, in a way that reflects a natural “organization”.

5.1. Word classification with SOMAgent

5.1.1. Lexicon
The lexicon used in the implementation, shown in Table 1, is

formed from words that are meaningful within a particular context
(or domain), but it excludes words which are meaningless (i.e., they
are independent of the domain or they belong to categories such as
articles, prepositions, conjunctions and pronouns). This allows the
net to be trained with a smaller range of errors.

These words define the type of context and comprise nouns,
verbs and adverbs. Each class contains elements such as the name
of a person, animals and inanimate objects. When taking [19] into
account, the resulting view is called semantic holism. In a similar
fashion, the SOM specifies a holistic conceptual space: “the meaning
of a word is not based on some definition but is the emergent result
of a number of encounters where a word is perceived or used in
some context. Moreover, the emergent prototypes on the map are
not isolated instances but they influence each other in the adaptive
formation process”.

5.1.2. Sentence patterns
To study semantic relationships in their pure form, it is recog-

nised that semantic significance should not be inferred from any
semantic pattern used for the encoding of individual words but
only from the context where each word appears. Thus, in the sim-
plest approach, all those words which occur in certain “windows”
are represented by Xc and defined as inputs to the neural network.
In this way vector inputs, X, to the network are created, by using
the form of Eq. (2).

In the self-organizing process, the inputs consist of sequences
of three words selected from certain patterns of classes shown in
statistical machine translation, Appl. Soft Comput. J. (2010),

2, 2-5-14, . . .). Sentences can then be constructed automatically
by randomly selecting words from within each class. Two sample
sentences for the class pattern 1-5-12 could be “Peter runs quickly”
and “Jim walks slowly”.

dx.doi.org/10.1016/j.asoc.2010.08.018
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Table 2
Set of parameters used as input to the training software.

General – values

Net dimension: 10 × 15
Topology: hexagonal
Neighbourhood: bobble
Initial weights: at random

Organization phase Refinement phase

Iterations: 5000 Iterations: 55,000
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Radius: 3 Radius: 1
˛: 00.1 ˛: 00.1

.1.3. Training phase
The training phase consists of the sequential presentation of dif-

erent semantically correct sentences and the adjustment of the
eights described in Table 2 until the net converges. Each word

n the vocabulary is encoded as a random 7-dimensional vector,
ccording to a random number generator, and normalized to unit
ength. Starting from the existing vocabulary, groups of sentences
re generated, each of which has a known meaning (as described
n Table 1). Taking the class patterns, sentences are generated ran-
omly. The sentences are concatenated into a stream and a word in
his stream is selected at random. The context vectors are chosen
nd concatenated to make a 14 dimensional symbol vector, which is
lso normalized. The symbol vector is taken, multiplied by a length
cale factor a = 5 (the relative influence of the symbol over the con-
ext). The input to the Kohonen net, with unsupervised learning,
s used as the symbol vector concatenated with the corresponding
ontext vector, according to the preceding formula (2).

The set of parameters used as input to the training software is
hown in Table 2 and each “winning neuron” was labeled according
o its corresponding word from the vocabulary.

.1.4. Recognition phase
After training, the network becomes topologically ordered. We

an verify that units of the map are actived for each input vector
nd then labeled. Fig. 2 shows how the resulting map separates
he words according to their syntactic type e.g. verbs, nouns and
dverbs which appear in separate zones; each of these zones is
rganized according to semantic similarities, forming “clusters” or
emantic classes. These clusters are formed automatically. They
Please cite this article in press as: V.F. López, et al., A SomAgent
doi:10.1016/j.asoc.2010.08.018

hould contain words that are semantically related, and should be
aximal in the sense that if two terms are semantically related,

hen they will belong to the same class. For example adverbs which
ave opposite meanings appear next to each other on the map.

ig. 2. The resulting map separates the words according to their syntactic type. Each
f these zones is organized according to semantic similarities, forming “clusters”.
 PRESS
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For the analysis of the classes, lexical cohesion exists when
words are used that repeat a conceptual category or that have
semantic associations with one another [36]. These associations
can be considered as a class of situations that cannot be predicted
syntactically. Therefore, language parsers usually have to be able
to separate meanings that share semantic associations. In this con-
text, a class is defined as a set of written patterns that share a similar
semantic context.

5.2. Word alignment with SOMAgent

In this section the SOMAgent can be applied to introducing lin-
guistic information, other than the lexical units, to the process of
building word and phrase alignments. We consider that linguistic
information may be helpful in building better translation models.

The alignment model as part of a whole translation scheme
can also be defined as an independent NLP task. In fact, most new
generation translation models treat word alignment as an inde-
pendent result from the translation model. In [41] the task of
automatic word alignment focuses on detecting, given a parallel
corpus, which tokens or sets of tokens from each language are con-
nected together in a given translation context, revealing thus the
relationship between these bilingual units. In the last few years,
much effort has been devoted to this matter [15,48,58] suggest-
ing a combination of models based on shallow syntactic analysis
(part-of-speech tagging and phrase chunking).

Our approach exploits the possibility of working with align-
ments at different levels of granularity, from the lexical to the
semantic level, as [41], suggests. Therefore, assuming we are able
to extract a set of tuples from a given parallel text, we can use the
SOMAgent to estimate the bilingual model and to perform a corpus
preprocessing for SMT in an Automatic German–Spanish Transla-
tor prototype. The aim of our linguistic agents is to participate in a
society of entities with different skills, and to collaborate in word
alignment to learn a phrase translation table. The most recently
published methods on extracting a phrase translation table from a
parallel corpus start with a word alignment.

For those cases where the society of linguistic agents is not
sufficient to find the correct alignment and where contextual infor-
mation is required to resolve ambiguity, the SOMAgent receives
the linguistic expressions, and the semantic memory associates
contextual information and gives the correct meaning.

5.2.1. Lexicon
In this case it is possible to create a parallel vocabulary set with

all the words from the central dictionary that present lexical ambi-
guities and whose translations have to be determined from their
context. A random vector is associates with each word. The vocab-
ulary used for this specific example consists of nouns, ambiguous
verbs and objects. The ambiguous verbs will define the fundamen-
tal context as indicated by the number on the right hand side. As
shown in Table 3, the total number of contexts is 14.

The aim is to classify all the ambiguous verbs into more than
just one class. The classification can be improved by adding some
semantic granularity to the classes.

5.2.2. Sentences patterns
The Syntactical Agent divides the sentence into subject, verb,

and object. The network inputs are enriched with features beyond
the lexical ones, such as part-of-speech (PoS). The SVMTool [14,60]
has been used for PoS-tagging and to provide data views at the word
statistical machine translation, Appl. Soft Comput. J. (2010),

level (WP word and PoS).
The Kohonen net is trained with data linguistically annotated

using the SOMAgent, with a large set of sentences that reflect every
type of context in the corpus. Let us take, for example, a subset of
German verbs that have double meanings and whose true mean-

dx.doi.org/10.1016/j.asoc.2010.08.018
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Table 3
German lexicon for the final application.

Words Cat

Peter-Paul-Andreas 1
Klavier-Gitarre-Flöte 2
Fuˇball-Karten-Schach 3
Film-Szene 4
Draht-Rohr-Stange 5
Feuer-Licht-Kerze 6
Durst 7
Programm-Kassette-Aufnahme 8
Schule-Kurs-Uni 9
Freund-Museum-Mutter 10
spielt 11
dreht 12
löscht 13
besucht 14

Table 4
Sentence patterns generated.
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and a noun. Considering these two words, which have the same
lexical realization, the use of a single token adds noise to the word
alignment process. The Syntactical Agent represents this informa-
tion, by syntactic label (by means of linguistic data views) [16], as

Table 6
“Peter spielt Fu�ball” (Peter plays football).
“Peter spielt Karten” (Peter plays cards).
“Peter spielt Schach” (Peter plays chess).

ng can only be selected from their context. The input for the map
onsist of theses words and their context.

.2.3. Training phase
We consider the use of a subset of words in German, in a number

f contexts from real-life situations. To illustrate the idea of using
he SOM to find a mapping between ambiguous verbs from two
ifferent languages, we use the German verb “spielen” (to play)
hich has two meanings represented by different Spanish verbs:

ither “tocar”, which appears in the context of playing a musical
nstruments Klavier, Gitarre, Flöte (Cat = 2), or “jugar” which appears
n the context of playing a game, Fußball, Karten or Schach (Cat = 3).

Because the sentence patterns are generated based on the pat-
erns of contexts shown in Table 3, sensible sentences are created
overing every context. For example, with the pattern 1-11-3, a
oun from context (1) the verb from context (11) and a game from
ontext (3) are used. Sentences are created such as the ones shown
n Table 4.

These sentences, by following the steps of the SOM algorithm
23], form a file of input data vectors for doing the training, creating
he semantic memory with the semantic classes specified in Table 5.

.2.4. Recognition phase
After training, the network becomes topologically ordered, and

t is posible to verify what units of the map are activated for each
nput vector. The units are then labeled, with the principal semantic
Please cite this article in press as: V.F. López, et al., A SomAgent
doi:10.1016/j.asoc.2010.08.018

lasses, taking the best answer for conducting via automatic model
lustering to reduce the ambiguity.

In this way a trained net is created with the principal classes or
ith the active regions defined. A class is active if it contains any

able 5
emantic class for the network.

Class Verb in Spanish Verb in German

1 tocar Spielt
2 jugar Spielt
3 filmar dreht
4 torcer dreht
5 apagar löscht
6 quitar löscht
7 borrar löscht
8 ir besucht
9 visita besucht
Fig. 3. Nine classes were created without any type of supervision. Each class repre-
sents a specific meaning in Spanish that corresponds to the same verb in German,
which is close on the map.

of the meanings included in the training for ambiguous cases. Each
class represents the meaning of the verbs according to the context.
As shown in Fig. 3, nine classes were created, without any type
of supervision. The resulting map separates the words according to
their semantic similarities. Each class represents a specific meaning
in Spanish that corresponds to the same verb in German, which is
close on the map.

For those cases in which the SOMAgent is called on to collaborate
in solving the ambiguity, it uses the results of the previous agents
as input: the semantic agent searches for meanings associated with
each word, forming key sentences with the combination of words in
German which could not be disambiguated. These words are then
fed into the network as input, thus allowing the network to classify
each word within the active classes, taking the best answer as the
correct meaning and the best alignment. We build a single transla-
tion model from the union of alignments from the data views and
the SOMAgent work.

To illustrate, let us assume the case of word alignment possibil-
ities illustrated in Table 6. For the sentence Peter spielt Fußball we
take, the German verb spielen (to play) which has two meanings
represented by different Spanish verbs: either tocar, which appears
in the context of playing musical instruments Klavier, Gitarre, Flöte,
or jugar which appears in the context of games, Fuˇball, Karten or
Schach. In addition, the lexical item spielen is shown as both a verb
statistical machine translation, Appl. Soft Comput. J. (2010),

A case of word alignment possibilities on top of lexical units (A) and linguistic data
(B).

(A)
Peter spielt Fu�ball, Peter spielt Gitarre,
↙ ↙ ↙ ↙ ↙ ↙
Peter juega futball, Peter toca guitarra,
and Peter liebt romantische Spiele
↙ ↙ ↙ ↙ ↙
y Peter loves romantic plays

(B)
Peter spielt Fu�ball, Peter spielt Gitarre, (B)
NN VBZ NN NN VBZ NN
↙ ↙ ↙ ↙ ↙ ↙
Peter juega futball, Peter toca guitarra,
PN VB NN PN VB NN
and Peter liebt romantische Spiele
CC NN VBZ JJ NNS
↙ ↙ ↙ ↙ ↙
y Peter (encantan) románticas obras
CC NN VB JJ NNS

dx.doi.org/10.1016/j.asoc.2010.08.018
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Table 7
Result of the aligned one.

German reference Spanish reference

Peter spielt Fu�ball Peter juega futball.
Peter spielt Gitarre Peter toca guitarra.

Table 8
Training set.

Spanish German

Sentences 40K 40K
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using the SOMAgent and not using it. The value of the scoring met-
Words 1.31 1.47
Length average 18.10 31.11
Vocabulary 41.12 21.10

pielen VBZ and spielen NNS. This allows us to distinguish between
he two cases.

In Table 7 we can see the best alignment for the sentence Peter
pielt Fuˇball. The net finds the true meaning of the German verb
pielt, aligning this entry inside the active classes, which in this
ase is class 2 (to play) whose meaning is jugar in Spanish. For the
entence Peter spielt Gitarre. The better alignment for spielt is tocar
n Spanish (class 1).

A better translation for the sentence Peter liebt romantische Spiele
s Peter loves romantic plays the better alignment for romantische
piele is obras románticas in Spanish. Representing this verb, by
yntactic label, as spielen VBZ and spielen NNS would allow us to dis-
inguish between the two cases. By inspecting translation models
e confirmed the better adjustment of probabilities.

The results of the previous examples demonstrate that the
OMAgent can be used to better estimate the bilingual model.
lthough this significant improvement in MT quality can be
eported, taking into account the short time spent in the devel-
pment of the linguistic tools using the SOM, where the tasks to
etermine the correct meaning of a word used in context emerge
rom the statistical properties of the training examples.

In addition, these translation models are smaller (between 50%
nd 60%) than the models based on lexical items alone. The reason
s that we are working with semantic classes and the union of align-

ents from different data views, thus adding more constraints to
he phrase extraction step.

.3. Experimental work

We present the experimental results for a German to Spanish
ranslation task, based on a set of sentences from the full DWDS
orpus [62] of the news domain. The results were obtained using
nly the first 40K lines of the corpus. The statistical data set of the
orpus can be seen in Table 8.

For phrase extraction we used Moses MT. There were 4.8M
oses style phrases that were extracted with the system. The first

reliminary step requires the preprocessing of the parallel data
sing SOMAgent, so that the sentence is aligned and tokenized.
he primary purpose is to deal with specific phenomena such
s ambiguity and to generate more precise alignments. The tok-
nized output is formed from words that are meaningful within a
articular context (or domain), but it excludes words that are mean-

ngless because they are independent of the domain and belong
o categories such as articles, prepositions, conjunctions and pro-
ouns
Please cite this article in press as: V.F. López, et al., A SomAgent
doi:10.1016/j.asoc.2010.08.018

The training data were provided for the sentences aligned (one
entence per line), in two files, one for the German sentences and
ne for the Spanish sentences. A phrase-based translation model
as built from the output of the multi-agent systems to extract the
Fig. 4. Paired bootstrap resampling result on 100 samples. For 285 samples we
draw the conclusion that SOMAgent preprocessing system is best with at least 97%
statistical significance.

purely lexical phrases, which were later used to create the gram-
mar for the SAMT. Then, the script that forms part of the Moses
MT System grow-diag-final aligned was run, and the word-to-word
lexical relative frequencies [9] were created. To continue with the
experiments we followed the directive that is available on-line in
open-source SAMT system, [61], which consists of three parts:

1. Extraction of statistical translation rules from a training corpus:
to extract purely lexical phrases by SOMAgent, which were later
used to create the grammar of the SAMT.

2. CKY+ style chart-parser employing the statistical translation
rules to translate test sentences.

3. A minimum-error-rate optimization and scoring tool (integrated
into the chart parser) to tune the parameters of the underlying
log-linear model on a held-out development corpus.

The target set of the training corpus was processed by the Char-
niak Penn Treebank parser [7]. The Penn Treebank has a vocabulary
of 61 elements.

We trained the language model by using the MER beam-search
decoder engine, which fit the weights of the characteristic func-
tions and generates the translations N-best and 1-best [55]. In the
optimization process, the iterations number was limited to 10 and
the 1000-best list was extracted. Finally we performed other sets of
experiments with a phrase-based translation model using the same
sentences but without preprocessing. We used the BLEU measure
as the criterion for optimizing the maximize translation quality.

5.3.1. Statistical significance
According to [22] the evaluation of machine translation systems

has changed dramatically in the last few years. Instead of report-
ing human judgment of translation quality, researchers now rely
on automatic measures, most notably the BLEU score. Since it has
been shown that the BLEU score correlates with human judgment,
an improvement in BLEU is taken as evidence of improvement in
translation quality. But the BLEU measure does not lend itself to an
analytical technique for assessing statistical significance; we use
the bootstrap resampling methods [22] for this.

Using the paired bootstrap resampling method we can compare
two systems. We translate the same test set with and with-
out SOMAgent preprocessing, and measure the translation quality
statistical machine translation, Appl. Soft Comput. J. (2010),

rics lies in comparing the quality of the two different translation
systems.

As in [22] we used a small collection of translated sentences,
and repeatedly (1000 times) created new virtual test sets. We then

dx.doi.org/10.1016/j.asoc.2010.08.018
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Table 9
Evaluation of the translation from German to Spanish using SAMT-SOMAgent.
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Baseline 43.20 9.16 36.89 49.45 58.50
SAMT 46.39 9.18 32.98 48.47 62.36
SAMT-SOMAgent 48.00 9.35 33.20 47.54 62.27

erform experiments using the BLEU score to compare both sys-
ems. Results are displayed in Fig. 4. For each set, we compute the
valuation metric score for both systems and note the best system.

We estimate statistical significance for 100 different test sets
ith 300 sentences each (the same test samples used in previ-

us experiments). For 285 samples we draw the conclusion that
he SOMAgent preprocessing system is the best with at least 97%
tatistical significance. The collection of translated sentences with
OMAgent preprocessing system is statistically different from the
ollection of translated sentences without SOMAgent, especially
LEU (48% vs. 46%).

The BLEU score difference on the 300 sentence test set is 2%
see to Table 9). According to [22] a small 300 sentence test set is
ften sufficient to detect the superiority of one of the systems with
tatistical significance. Even for small test sets of 300 sentences,
e can reliably draw the right conclusion, if the true BLEU score
ifference is at least 2–3%.

Finally, we compare the result for the same set of tests carried
ut using the same tools (automatic measures) with and without
OMAgent preprocessing. Table 9 presents MT results for the test
et for the German-to-Spanish task for both variants. It is compared
o a baseline variant based only on lexical items [16].

For our final evaluation we selected a set of two classic metrics,
LEU and NIST, and the variants corresponding to different families:
PER [26], mWER [37] and METEOR [2].
In the case of SAMT-SOMAgent all metrics significantly out-

erform the baseline and SAMT system. We suspect this may be
ecause the SOMAgent generates more precise alignments from
ifferent data views with linguistic knowledge according to their
ontext (semantic classes).

. Conclusions

The diagram described in the paper was created using a MAS to
pply a corpus preprocessing, which enabled the use of a quality
pen source SAMT. We applied the SomAgent to estimate the bilin-
ual model and experimented with different degrees of linguistic
nalysis, from the lexical level to syntactic or semantic level, in
rder to generate a more precise alignment. Our work confirms the
easibility of the SOMAgent to automatically determine the correct

eaning of a word used in context and to collaborate in the use of
word alignment to learn a phrase translation table.

This approach confirms the idea that the linguistic information
ay be helpful, especially when the target language has a rich
orphology (e.g. Spanish). Nevertheless, with regard to the compu-

ational cost, the SAMT system with SOMAgent gives poorer results.
owever, this model offers a methodology that also illustrates the

ormation of a terminological mapping between two languages
hrough an emergent conceptual space, and that can improve the
rst choice of the translator.
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