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Abstract

Many of the existing network theory based artificial immune systems have been applied to data

clustering. The formation of artificial lymphocyte (ALC) networks represents potential clusters

in the data. Although these models do not require any user specified parameter of the number of

required clusters to cluster the data, these models do have a drawback in the techniques used to

determine the number of ALC networks. This paper discusses the drawbacks of these techniques

and proposes two alternative techniques which can be used with the local network neighbourhood

artificial immune system. The end result is an enhanced model that can dynamically determine

the number of clusters in a data set.

Keywords: dynamic clustering, sequential deviation detection, immune networks, clustering

performance measures

1. Introduction

A challenge in data clustering is to determine the optimal number of clusters in the data

set. An approach to validate the number of clusters formed is to visually present the clustering

results. In multidimensional problems where the number of dimensions is greater than three,

visualization of the formed clusters becomes difficult [1, 2]. Another approach to determine the

optimal number of clusters is to execute the clustering algorithm multiple times, each time with

a different number of clusters and validating the clustered data set with a cluster validity index.

The cluster validity index is then plotted as a function of the number of clusters obtained for each

execution of the algorithm. The number of clusters generated from the input parameters with the

highest (or lowest) cluster validity index is then selected as the optimal number of clusters [3, 4].

A drawback of the multiple execution approach is that the technique is computationally expen-

sive and time consuming. Therefore a clustering technique or model which can dynamically

determine the number of clusters in a data set and which is computationally inexpensive will

have an added advantage. Section 2 gives a formal definition of data clustering, the performance
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measures used to measure the quality of the clusters and how these performance measures can

be used to determine the optimal number of clusters in a data set.

Many of the existing network based artificial immune systems (AIS) for data clustering do

not require any user specified parameter of the number of required clusters to cluster the data

[5, 6, 7, 8, 9]. These models are inspired by the network theory of immunology which can be

defined as the formation of self-organizing lymphocyte network structures [10]. These network

structures are a result of the co-operation and co-stimulation between lymphocytes in response

to invading antigens. The number of artificial lymphocyte (ALC) networks formed in existing

network based AIS models represent the number of potential clusters in the data. Thus, each

ALC network structure represents a potential cluster in the data.

There are different techniques used by existing network based AIS models to determine the num-

ber of ALC networks. The first is to use a network affinity threshold with a proximity matrix of

network affinities between the ALCs in the population [5, 6, 8]. A pair of ALCs with a network

affinity below the threshold is linked to form a network. The specified network affinity thresh-

old determines the number of ALC networks. Therefore, specifying the correct network affinity

threshold to obtain the correct or required number of clusters can be a formidable task. Another

technique to determine the number of ALC networks is to take a hybrid-approach by clustering

the ALC population into sub-nets [6, 7, 9]. A drawback to a hybrid-approach is the user specified

parameter of the number of required clusters. Another potential drawback to a hybrid-approach

is that the formed sub-nets might not always contain ALCs with a good or generic representation

of the data. Furthermore, both of these techniques are computationally expensive.

Graaff and Engelbrecht proposed the local network neighbourhood AIS (LNNAIS) with a dif-

ferent ALC network topology [11, 12]. In LNNAIS an ALC’s neighbours are not determined by

network affinity, but by their individual indices in the population of ALCs. A revised version of

the model is discussed in section 4. An ALC in LNNAIS can only link to its immediate neigh-

bours to form an ALC network and there is no need for a proximity matrix of network affinities

(with a network affinity threshold) or the need to take a hybrid-approach to determine the number

of ALC networks. The number of required clusters, K , is determined by pruning the K lowest

calculated network affinities between the ALCs. Even though this technique in LNNAIS is less

computationally expensive than the above discussed proximity matrix and hybrid-approaches, it

shares a mutual drawback of the user specified parameter of the number of required clusters.

In order to address the user specified parameter of the number of required clusters in LNNAIS,

this paper proposes two techniques which can be used with LNNAIS to dynamically determine

the number of clusters in a data set and does not investigate the effect of different network neigh-

bourhood topologies in LNNAIS. The first technique utilises cluster validity indices and is sim-

ilar to the multiple execution approach, though less computationally expensive. The second

technique is based on sequential deviation outlier detection and is discussed in section 5. With

both techniques, the end result is an enhanced LNNAIS model that can dynamically determine

the number of clusters in a data set. Furthermore this paper is more focused on the comparison

between the proposed techniques for LNNAIS and the cluster validity indices used in a multiple

execution of a clustering algorithm to dynamically determine the number of clusters in a data set.

Experimental results of K-means clustering using the multiple execution technique are compared

with the results of the proposed LNNAIS techniques and presented in section 7. The experimen-
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tal results of LNNAIS and K-means clustering are not compared to determine the better of the

two algorithms but to show that the proposed techniques in LNNAIS succeed in finding the op-

timal number of clusters as good as a multiple execution approach using cluster validity indices.

The paper is concluded in section 8 with future work on LNNAIS.

2. Data Clustering and Performance Measures

Clustering of a data set can be defined as the partitioning of the data set in such a way that

patterns or feature vectors within the same partition are more similar compared to patterns across

different partitions. Each partition is referred to as a cluster of patterns and is represented by a

centroid [13]. The most general measure of similarity or dissimilarity between feature vectors is

based on the distance between these vectors. The Euclidean distance is the most commonly used

similarity measure, and is defined as

δ2 (pi,pj) = ‖pi − pj‖2 (1)

where pi and pj are feature vectors. Partitioning of these feature vectors optimises a specific

objective function [14]. The objective function is optimised such that the inter-cluster distance

is maximised and the intra-cluster distance minimised. The inter-cluster distance measures the

separation between clusters and is calculated as

Jinter =
2

K × (K − 1)

K−1
∑

k=1

K
∑

j=k+1

δ (ck, cj) (2)

where K is the number of clusters and ck and cj are the centroids of the k-th and j-th clusters, re-

spectively. The intra-cluster distance measures the compactness of the clusters and is calculated

as

Jintra =

∑K

k=1

∑

∀p∈Ck
δ (p, ck)

|P | (3)

where Ck is the cluster (partition) of patterns grouped with the k-th centroid and P is the data

set. The classical K-means clustering algorithm [15] is an example of a clustering method which

partitions a data set into a number of clusters by means of optimising a specific objective function.

K-means clustering initialises K centroids. A feature vector, p, is assigned to a centroid, c, if

p is most similar to c. Similarity is measured using equation (1). Thus the subset of feature

vectors assigned to a centroid forms a cluster. After all the feature vectors in data set P have

been assigned to a centroid, the centroid of each cluster is recalculated using

ck =
1

|Ck|
∑

∀p∈Ck

p (4)

Algorithm 1 lists the pseudo-code of a basic K-means clustering algorithm [14]. The stopping

criterion for K-means in this paper is based on a specified number of iterations, tmax.

Since the identified number of groups (clusters) and the partitioning of data patterns between

these groups may differ among different clustering algorithms, the quality of the partitioning

needs to be evaluated. The quality of the clusters can be validated with a cluster validity index.
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Algorithm 1 Basic K-means

1: Randomly initialise K centroids

2: while some stopping condition(s) not true do

3: for each feature vector pi ∈ P do

4: Calculate the similarity between pi and ck, k = 1, . . . ,K
5: Assign pi to centroid ck with which pi has the highest similarity

6: end for

7: Recalculate the centroid of each cluster using equation (4)

8: end while

Ray and Turi proposed a validity index which is based on the ratio of intra-clustering distance to

the minimum inter-clustering distance [3]. The proposed index is calculated as [3]

Qratio =
intra

intermin

(5)

where intra is defined in equation (3), intermin is calculated as

intermin = min
k=1,...,K−1
j=k+1,...,K

{δ (ck, cj)} (6)

and δ is the Euclidean distance as defined in equation (1). In the above definition of intra, the av-

erage compactness of the clusters is calculated by averaging over all the distances between each

cluster’s centroid and the feature vectors within that cluster. The definition of intermin simply

calculates the smallest distance between the centroids of the clusters to determine the smallest

separation between clusters. The intra function needs to be minimised for more compact clus-

ters and the intermin needs to be maximised for more separated clusters. Thus, the defined ratio

validity index, Qratio, needs to be minimised to have optimal clustering. Therefore the optimal

number of clusters, K , minimises the value of Qratio.

Davies and Bouldin (DB) proposed a cluster validity index that measures the average similar-

ity between each cluster and the cluster most similar to it [16]. The DB-index is calculated as

[17]

QDB =
1

K

K
∑

k=1

max
j=1,...,K

j 6=k

{ 1
2 ς (Ck) +

1
2 ς (Cj)

σ (ck, cj)

}

(7)

where QDB ∈ [0,∞), K is the number of clusters, σ is the Euclidean distance as defined in

equation (1) and ς is the cluster centroid diameter, defined as [18]

ς (Ck) = 2







∑

∀p∈Ck

σ (p, ck)

|Ck|






(8)

where |Ck| is the number of feature vectors in cluster Ck and ck is the centroid of cluster Ck.

In the above definition, QDB has a small value when the distance between centroids ck and

cj is large and the corresponding clusters Ck and Cj of these centroids are compact. Thus, an
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optimal number of K clusters minimises the value of QDB .

Another approach to determine the optimal number of clusters is to execute the clustering algo-

rithm multiple times, each time with a different number of clusters and validating the clustered

data set with a cluster validity index like Qratio or QDB . The cluster validity index is then plot-

ted as a function of the number of clusters obtained for each execution of the algorithm. The

number of clusters generated from the input parameters with the lowest cluster validity index (in

the case of Qratio and QDB) is then selected as the optimal number of clusters [3, 4]. Since

the Qratio index tends to minimize at small values of K , Turi proposed a modification to the

above ratio of intra-clustering distance to inter-clustering distance by multiplying the ratio with

a Gaussian function of the number of clusters [19]. The modified index is calculated as [19]

QRT = Qratio × [c× g (µ, σ) + 1] (9)

where g is a Gaussian function with mean, µ, standard deviation, σ, and c is some constant.

Function g is defined as

g (µ, σ) =
1√
2πσ2

e

[

− (K−µ)2

2σ2

]

(10)

where K is the number of clusters. The Gaussian function penalizes the ratio for small values of

K in favour of larger values of K .

The next section discusses some of the existing data clustering methods to dynamically deter-

mine the number of clusters in a data set.

3. Dynamic Data Clustering Methods

Dynamically determining the optimal number of clusters in a data set is a challenging task,

since a priori knowledge of the data is required and not always available. As discussed in the

previous section, cluster validity indices can be used with a multiple execution of the clustering

algorithm to dynamically determine the number of clusters. A disadvantage of the multiple ex-

ecution approach is that the technique is computationally expensive and time consuming. Other

techniques and clustering models have also been proposed in the literature and are discussed next.

Ball and Hall [20] proposed the Iterative Self-Organizing Data Analysis Technique (ISODATA)

to dynamically determine the number of clusters in a data set. As with K-means clustering,

ISODATA iteratively assigns patterns to the closest centroids. Different to K-means cluster-

ing, ISODATA utilises two user-specified thresholds to respectively merge two clusters (if the

distance between their centroids is below the first threshold) and also split a cluster into two

clusters (based on the second threshold). Even though ISODATA has an advantage above K-

means clustering to dynamically determine the number of clusters in the data set, ISODATA has

two additional user parameters (merging and splitting thresholds) which have an effect on the

number of clusters determined. A similar model to ISODATA is the Dynamic Optimal Cluster-

seek (DYNOC) which was proposed by Tou [21]. DYNOC also follows an iterative approach

with splitting and merging of clusters but at the same time maximises the ratio of the minimum

inter-clustering to the maximum intra-clustering distance. DYNOC also requires a user specified

parameter which determines the splitting of a cluster. SYNERACT was proposed by Huang [22]
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as an alternative to ISODATA. SYNERACT uses a hyperplane to split a cluster into smaller clus-

ters for which the centroids need to be calculated. Similar to ISODATA and DYNOC, an iterative

approach is followed to assign patterns to available clusters. Even though SYNERACT is faster

than ISODATA and does not require the initial location of centroids or the number of clusters to

be specified, SYNERACT does require values for two parameters which have an effect on the

splitting of a cluster.

Veenman proposed a partitional clustering model which minimises a cluster validity index in

order to dynamically determine the number of clusters in a data set [23]. The initial number of

clusters is equal to the number of patterns in the data set. An iterative approach is followed to

determine the splitting and merging of clusters. In each iteration, tests which are based on the

minimisation of the cluster validity index determine the splitting or merging of clusters. The

proposed algorithm has similar drawbacks as the multiple execution approaches, namely that the

model is computationally expensive and has user parameters for the cluster validity index which

influences the clustering results.

Another K-means based model was proposed by Pelleg and Moore [24] and uses model se-

lection. The model is called X-means and initially start with a single cluster, K = 1 (which is

the minimum number of clusters in any data set). The first step is then to apply K-means cluster-

ing on the K clusters which are then split in a second step according to a Bayesian Information

Criterion (BIC) [25]. If the BIC is improved with the splitting of the clusters, the newly formed

clusters are accepted, otherwise it is rejected. These steps are repeated until a user specified up-

per bound on K is reached. X-means clustering dynamically determines the number of clusters

in the data set as the value of K which has the best BIC value. X-means also has a drawback

of a user specified parameter for the upper bound on K . Hamerly and Elkan proposed a similar

model as X-means clustering, called G-means clustering [26]. G-means also starts with a small

value of K but only splits clusters which data do not have a Gaussian distribution. This is also a

drawback of G-means clustering, since it is assumed that the data has spherical and/or elliptical

clusters [26].

There are also other models proposed in the literature which is either based on K-means cluster-

ing or utilises K-means with similar approaches of splitting and merging clusters. These models

are Snob [27] and Modified Linde-Buzo-Gray (MLBG) [28]. All of the discussed models suffer

from either user parameters which influence the clustering results or can only cluster data sets

with specific characteristics.

The following sections discuss the local network neighbourhood artificial immune system (LNNAIS)

and propose two techniques which can be used with LNNAIS to dynamically determine the num-

ber of clusters in a data set.

4. The Local Network Neighbourhood Artificial Immune System

The main difference between LNNAIS and existing network based AIS models is the net-

work topology of the ALCs and an index-based neighbourhood technique. Neighbours of an

ALC in LNNAIS are determined by the indices of the ALCs in the population. An ALC is only

allowed to link to its immediate neighbours to form an ALC network. The remainder of this sec-

tion gives an overview of the LNNAIS algorithm. Since the purpose of this paper is to propose
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a technique to dynamically determine the number of ALC networks in LNNAIS, more emphasis

will be placed on the index-based neighbourhood technique in LNNAIS.

The LNNAIS algorithm is given in pseudo code in Algorithm 2. The stopping criterion for

LNNAIS in this paper is based on a specified number of iterations, tmax. Figure 1 shows a flow

chart for the steps in the LNNAIS algorithm. The following sections discuss each of these steps

in more detail.

Algorithm 2 Local Network Neighbourhood AIS Algorithm

1: Set the maximum size of the ALC population as Bmax

2: Initialise an empty set of ALCs as population B
3: while some stopping condition(s) not true do

4: for each antigen, aj ∈ A, at index position j in A do

5: if |B| ≤ 0 then

6: Initialise a new ALC, b, with the same structure as pattern aj
7: B = B ∪ b

8: end if

9: Calculate the antigen affinity between aj and each bi ∈ B using equation (1)

10: Select bh ∈ B, at index h, as the ALC with highest calculated antigen affinity

11: Proliferate bh as discussed in section 4.2

12: if bh is activated (|Ch| > ǫclone) then

13: Generate a mutated clone, b
′

h, using equation (11)

14: Secrete an antibody, b∗, as discussed in section 4.3

15: Determine the local network neighbourhood of bh using equation (15)

16: Co-stimulate the local network neighbourhood of bh with b∗, as discussed in sec-

tion 4.4

17: end if

18: end for

19: Apply the SDOT or IPT technique on B to determine the number of ALC networks (clus-

ters)

20: end while

4.1. Initializing an ALC, an antigen mutated clone and the ALC population

The ALC population, B, in LNNAIS is initialised as an empty set. The ALC population

expands to a maximum size, Bmax, over time. The patterns in data set, A, that needs to be

partitioned are seen as antigen patterns and are randomly presented to the ALC population. The

ALCs and antigen mutated clones in LNNAIS are encoded with the same structure as the antigen

patterns in A. If patterns in the data set are real-valued (or binary) vectors then the ALCs and

antigen mutated clones are also real-valued (or binary) vectors. ALCs with antigen mutated

clones are used in LNNAIS to adapt to the antigen patterns to form network structures and

eventually cluster the data set. The initialisation of antigen mutated clones and the insertion

of initialised ALCs into B are discussed next.

4.2. Proliferating the Clonal Selected ALC

Each ALC, bi, at index position i in B, contains a set of antigen mutated clones, Ci. An ALC

bh at index h in population B is selected as the ALC with the highest binding affinity (lowest
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Figure 1: Flow chart of LNNAIS algorithm
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Euclidean distance) with an antigen a. The antigen pattern a is then initialised as an antigen

mutated clone, a
′

, by inserting the antigen pattern at the first index position of Ch, which is the

set of antigen mutated clones for bh. This increases the clonal level of bh. The ALC activates

when the clonal level, |C|, exceeds the clonal level threshold, ǫclone, and generates a mutated

ALC clone. The next section discusses the generation of a mutated ALC clone.

4.3. Generating a Mutated Clone of an Activated ALC

An activated ALC, bh, generates a mutated clone, b
′

h, by using

b
′

h = bh +

∑|Ch|
c=1 δ

∗
(

bh, a
′

c, Ch
)(

a
′

c − bh

)

∑|Ch|
c=1 δ

∗ (bh, a
′

c, Ch)
(11)

where

δ∗
(

bh, a
′

, Ch
)

= 1.0−
δ
(

bh, a
′

)

δmax + 1.0
(12)

δmax = maxc=1,...|Ch|

{

δ
(

bh, a
′

c

)}

(13)

a
′

c ∈ Ch (14)

In the above definition, δ∗ calculates the normalised affinity between an antigen mutated clone,

a
′

c ∈ Ch, and an ALC, bh, with respect to the lowest affinity (highest Euclidean distance) in the

set of antigen mutated clones, Ch. The set of antigen mutated clones, Ch, which is contained by

an ALC bh, determines the mutated clone which will be generated when an ALC is activated.

Antigen mutated clones in Ch with a higher binding affinity with ALC bh, have a higher influ-

ence on the mutation of the clone, which results in an ALC clone that is mutated more towards

higher affinity antigen mutated clones in Ch.

The antigen mutated clones in Ch with which b
′

h has a higher affinity than the parent ALC bh,

is added to the clonal set of b
′

h (bind to b
′

h). If more than half of the number of antigen mutated

clones in Ch bind to b
′

h, the parent ALC bh is added as an antigen mutated clone to the clonal set

of b
′

h. The parent ALC is then replaced by b
′

h in B and secreted as a co-stimulating antibody,b∗,

to neighbouring ALCs. If less than half of the number of antigen mutated clones in Ch bind to b
′

h,

the parent ALC bh is suppressed by removing all of the antigen mutated clones in Ch. This pre-

vents frequently activated ALCs from dominating the population. The mutated ALC clone, b
′

h,

is then inserted into Ch; not only to co-stimulate the parent ALC, but also to preserve the memory

of the antigen structure. The mutated ALC clone is secreted as a co-stimulating antibody, b∗, to

neighbouring ALCs. The following section discusses the co-stimulation of neighbouring ALCs

within a local network neighbourhood.

4.4. Determining and Co-stimulating the Local Network Neighbourhood of an Activated ALC

The neighbourhood,Nh,ρ, of an ALC, bh ∈ B, is defined as

Nh,ρ =

{

∀bj ∈ B : min
j=h−(ρ−1),...,h

{ν (h, ρ− 1)}
}

(15)
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where

ρ ≤ |B| (16)

Nh,ρ ⊆ B (17)

bh ∈ Nh,ρ (18)

and ν calculates the average network affinity between ALCs in the population from index posi-

tion h to h+ (ρ− 1) and is defined as

ν (x, y) =

∑y−1
i=x δ (bi,bi+1)

y − x
(19)

The neighbourhood of an ALC, bh, is therefore determined by a network window of size ρ which

starts at position h − (ρ− 1), sliding over the ALC population in search of the highest average

network affinity (minimum average Euclidean distance).

An activated ALC, bh, secretes an antibody, b∗ (as discussed in section 4.3). The secreted

antibody, b∗, then co-stimulates the neighbouring ALCs in Nh,ρ. The immediate neighbours of

bh at indices h − 1 and h + 1, react to the secreted antibody by adding the clonal set of the

antibody to Ch−1 and Ch+1, respectively. The neighbouring ALCs at indices h − 1 and h + 1
can then also be activated and secrete antibodies (as explained in section 4.3). The secreted an-

tibodies of the activated neighbouring ALCs at indices h − 1 and h + 1 will co-stimulate their

immediate ALC neighbours at indices h−2 and h+2, respectively. If a neighbouring ALC is not

activated by the co-stimulation of a predecessor’s antibody, the antibody is inserted into the local

network at the index of the neighbouring ALC, increasing the population size. The neighbouring

ALCs with the highest network affinity in the population, which are not within the local network

neighbourhood, are then merged to stabilise the population size. The process of co-stimulation

continues until the ALCs on the boundary of the local network neighbourhood are co-stimulated

or until a neighbouring ALC is not activated by the co-stimulation of a predecessor’s antibody.

4.5. Determining the Number of ALC Networks in LNNAIS

An advantage of an index-based neighbourhood is that there is no need of a network affinity

threshold with a proximity matrix of network affinities to determine the number of ALC net-

works in LNNAIS. It is also not necessary to follow a hybrid-approach of clustering the ALC

population. An index-based neighbourhood results in the formation of a ring-like network topol-

ogy as illustrated in figure 2.

The required number of ALC networks (or clusters in the data), K , can be determined by sorting

the network affinities in descending order and selecting the first K network affinities in the sorted

set. The K selected network affinities determine the boundaries of the ALC networks. Figure 2

illustrates this technique where K = 3. The edges which are selected as boundaries are pruned

to form separate ALC networks (illustrated as dotted lines in figure 2). The centroid of each of

the formed ALC networks (illustrated as clouds) is calculated using equation (4). A drawback to

this approach in LNNAIS is the user specified parameter K .

Instead of specifying K , the above pruning technique is done with an iterative value of K . First

K is set to 2 where only the top two boundaries are selected for pruning (top two network affini-

ties in the sorted set of network affinities). The quality of the clusters is then measured with a
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Figure 2: Determining the Number of Clusters in LNNAIS
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Figure 3: Plotting the Network Affinities

cluster validity index of choice. The same procedure is followed for K = {3, 4, 5, . . . ,Bmax},

measuring the quality with a cluster validity index for each value of K . The value of K with the

highest (or lowest) cluster validity index is then selected as the optimal number of clusters. It

is also possible to set a minimum and maximum for K , but this can also be seen as a drawback

since two parameters need to be specified. If no minimum/maximum is specified it could also be

a time consuming task (to a lesser extent when compared to the multiple execution technique) to

iterate through all values of K , especially with large values of Bmax. Whether K is bounded by

a minimum/maximum or not, an advantage of the Iterative Pruning Technique (IPT) to dynam-

ically determine the number of clusters is that the LNNAIS model needs not to be executed for

each value of K as in the case of the multiple execution technique. Therefore IPT is computa-

tionally less expensive.

Instead of sorting the network affinities in descending order, the network affinities can be plotted

against the numbered edges (links) between the ALCs on a graph (as illustrated in figure 3). The

K edges in the graph with the lowest plotted network affinity (highest Euclidean distance) are

then selected as the boundaries of the ALC networks. Note that the network affinities of the

selected edges in figure 3 are outliers compared to the network affinities of the remaining edges.

11



Therefore, to dynamically determine the number of boundaries (clusters) in an ALC population,

the outlier network affinities needs to be identified. The next section discusses and explains a

technique to identify outliers in a set and the application thereof in LNNAIS to dynamically

determine the number of ALC networks.

5. Sequential Deviation Based Outlier Detection

Referring to the definition of data clustering in section 2, each cluster (or centroid) represents

a concept or trend in the data set. Based on a similarity measure, an outlier feature vector is

either not grouped with any cluster or has a major deviation from the centroid of a cluster with

which the outlier is associated. Therefore an outlier is also known as an exception and is defined

as a vector which is not similar to any of the centroids. Outliers are grossly different from and/or

inconsistent with feature vectors of the same data set [29], which can be a result of inherent data

variability [29].

Outlier detection and analysis is referred to as outlier mining and is described as follows [30]: In

a data set of I feature vectors, the expected number of outlier vectors, o, are those feature vec-

tors which are the most dissimilar, exceptional and/or inconsistent compared to the remainder

of the data set. Outlier detection can be categorized into three approaches, namely the statis-

tical approach, distance-based approach and deviation-based approach [29, 30]. Focusing on

the deviation-based approach, there are two techniques in deviation based outlier detection [29],

namely sequential exception and the on-line analytical processing (OLAP) data cube technique.

The first of these two techniques is discussed next and the interested reader is referred to [29] for

more information on the OLAP technique.

The sequential exception technique is based on a process followed by humans to detect an outlier

after being represented with a series of similar feature vectors [31]. An outlier is defined as a

feature vector that deviates from the series.

A sequence of subsets, {S1, S2, . . . , So} is built from a data set, P , consisting of I feature

vectors, i.e. 2 ≤ o ≤ I . Thus, So−1 ⊂ So : So ⊆ S. A function of dissimilarity (not necessarily

distance based) is calculated between each subset. The dissimilarity function is defined as any

function that returns a low value to indicate more similar feature vectors and a high value to

indicate less similar feature vectors [29, 30].

A smoothing factor function is calculated for each subset, So in the sequence. The subset, So,

with the highest smoothing factor becomes the set of outliers, Se [31, 29]. The cardinality of

each subset is used to scale the smoothing factor. The cardinality of a set is defined as the number

of feature vectors in the set [31, 29]. The smoothing factor is calculated as [31]

sf (So) = |So − So−1| × (D (So)−D (So−1)) (20)

where |•| is the cardinality of a set and D is the function of dissimilarity. Thus, the smoothing

factor (sf), calculates the reduction in dissimilarity when removing a subsetSo of feature vectors

from set S. The exception set Se has the highest sf value and is defined as [31]

sf (Se) ≥ sf (So) ∀So ⊂ S (21)
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If all feature vectors in S are similar, the smoothing factor equals zero [31].

In the context of dynamically determining the boundaries between the ALCs in LNNAIS, the

sequential deviation technique can be applied to a sorted set (descending) of network affinities

between the ALCs in LNNAIS. The set of network affinities is sorted to guarantee that the lowest

network affinities (potential outliers with the highest Euclidean distance) forms part of the first

sequential subsets. The first subset, S1, will then contain the lowest network affinity, followed

by S2 which consists of S1 and the second lowest network affinity and so forth. The function of

dissimilarity D (So) in equation (20) is calculated as the variance between the network affinities

in subset So. Therefore the exception set Se contains the lowest network affinities between the

ALCs in LNNAIS and eventually determines the boundaries between the ALCs.

An added advantage of the Sequential Deviation Outlier Technique (SDOT) is that not only is the

technique less computationally expensive but it also has no need for any boundary constraints on

K . K is solely determined by the size of Se. Furthermore, SDOT is a non-parametric technique.

The following section discusses the time complexity of SDOT and IPT.

6. Time Complexity of SDOT and IPT

The time complexity of both SDOT and IPT are based on the complexity of sorting the

network affinities between the ALCs in the ALC population and determining the number of

boundaries between the ALCs in the ALC population of size Bmax. The maximum number of

boundaries in an ALC population of size Bmax is Bmax. The time complexity of sorting the

Bmax network affinities depends on the sorting algorithm used. Assume the time complexity of

the sorting algorithm is some constant, χ1, and that the time complexity of the selected validity

index is χ2. The worst case of time complexity for IPT is when the clustering quality of all pos-

sible boundaries needs to be calculated, giving a time complexity of O (χ2Bmax |A| n) where

|A| is the size of the data set that needs to be partitioned and n is the dimension of data set A.

The Bmax and χ2 parameters are fixed in advance and usually Bmax << |A|. If Bmax << |A|
then the time complexity of IPT is O (|A|) and if Bmax ≈ |A| then the time complexity of IPT is

O
(

|A|2
)

. Focusing on SDOT, the maximum number of smoothing factor function evaluations

is equal to the size of the ALC population, which is Bmax. Assume the time complexity of the

smoothing function is χ3. The worst case of time complexity for SDOT is when the smoothing

factor of Bmax subsets need to be calculated to determine the exception set Se (as discussed in

section 5). This gives a time complexity of O (χ3Bmax) for SDOT. Compared to the time com-

plexity of IPT, the time complexity of SDOT is not influenced by the size of data set A and also

not by the number of dimensions, n.

The following section discusses and compares the results obtained from K-means clustering

using the multiple execution technique to determine the number of clusters in a data set and the

results obtained from LNNAIS using SDOT and IPT to determine the number of clusters in a

data set.

7. Experimental Results

This section compares and discusses the clustering results obtained by K-means clustering,

LNNAIS using IPT, and LNNAIS using SDOT to dynamically determine the number of clusters
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in a data set. K-means utilises the multiple execution technique with the QDB (as defined in

equation (7)) and QRT (as defined in equation (9)) validity indices, referred to as KMDB and

KMRT , respectively. Two of the LNNAIS models utilises the iterative pruning technique with

the same QDB and QRT validity indices as K-means, referred to as LNNDB and LNNRT , re-

spectively. For the QRT validity index, parameter c was set to 10 in all the experiments. The

value of c was found empirically and values of c > 10 have no effect on QRT for all the data sets.

LNNSDOT utilises the sequential deviation outlier technique and thus need no validity index.

All experimental results reported in this section are averages taken over 50 runs, where each

run consisted of 1000 iterations of a data set. The parameter values for each data set were found

empirically to deliver the best performance for each of the algorithms. The value of K was it-

erated from K = 2 to K = 12 for all data sets. Table 1 summarises the parameter values used

by the respective algorithms for each data set. The selection of data sets used to benchmark the

clustering performance and quality of the models represents a good distribution of data clustering

problems with the number of patterns in the range [150, 4601] and the number of features in the

range [2, 57]. All the data sets have overlapping patterns except the hepta data set. The target

data set also contains outlier patterns. The twospiral, hepta, engytime, chainlink and target data

sets are part of a fundamental clustering problems suite [32]. The other data sets were collected

from the UCI Machine Learning repository [33]. The clustering quality of the algorithms (based

on the number of clusters determined by each of the algorithms), is determined by the Qratio

index, Jintra and Jinter performance measures (as defined in equations (5),(3) and (2), respec-

tively). The following hypothesis is defined to determine whether there is a difference between

the clustering quality of two algorithms for a specific data set or not:

• Null hypothesis, H0: There is no difference in the clustering quality, Qratio.

• Alternative hypothesis, H1: There is a difference in the clustering quality, Qratio.

A non-parametric Mann-Whitney U test with a 0.95 confidence interval (α = 0.05) was used

to test the above hypothesis. The result is statistically significant if the calculated probability

(p-value is the probability of H0 being true) is less than α. In cases where there is a statistical

significant difference between the clustering quality of two algorithms, the algorithm with the

lowest critical value, z, tends to find clusters in the data set with a higher quality. The results for

each of the data sets used are discussed next.

7.1. Iris data set

Figure 4 illustrates the QRT values where c = 10 for KMRT and LNNRT on the y1-axis at

different values of K . The QDB values for KMDB and LNNDB is illustrated on the y2-axis of

figure 4. Figure 4 highlights that the optimal number of clusters in the iris data set is obtained

by KMRT and LNNRT at K = 4 and by KMDB and LNNDB at K = 2. Therefore, the optimal

range of K is K = 2 to K = 4 for the iris data set. The average number of clusters determined

by LNNSDOT is K = 2.64 which falls within the optimal range of K as determined above.

Figure 6 illustrates for the iris data set the number of clusters respectively determined by the

SDOT and IPT techniques over time. The value of K for IPT rapidly increases to 4 in the first

few iterations and remains at 4 for the most of the remaining iterations. The value of K for SDOT

increases to 2.7 and oscillates between 2.4 and 3.3 around an averageK of 2.64 for the remaining

iterations. Since LNNAIS is a stochastic algorithm which utilises a dynamic population of ALCs,

the affinities between neighbouring ALCs change over time. Thus, it is expected that the network
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Table 1: LNNAIS Parameter Values

Data set Bmax ρ ǫclone
iris 25 3 5

twospiral 20 3 5

hepta 40 3 5

engytime 20 3 10

chainlink 40 3 5

target 30 3 5

ionosphere 20 3 20

glass 20 3 5

image segmentation 30 3 20

spambase 10 5 20
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Figure 4: Optimal number of clusters obtained by K-means and LNNAIS for the iris data set
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Figure 5: Histogram of the number of clusters detected in the iris data set by LNNSDOT

boundaries detected by SDOT to determine the value of K will also differ over time and oscillate

around an average K . Figure 5 illustrates a histogram of the frequency distribution of the number

of clusters determined by LNNSDOT for the iris data set. The figure illustrates that LNNSDOT

has high frequencies at K = 2 and K = 3. The figure also illustrates that for some of the runs

LNNSDOT obtained K = 4 which is still within the optimal range of K for the iris data set.

Table 2 shows the results obtained by the different models to determine the optimal number of

clusters in the iris data set. Referring to table 12, the Mann-Whitney U statistical hypothesis test

rejects H0 that the Qratio means are the same at a 0.05 level of significance between KMRT and

LNNSDOT (z = 7.58, p < 0.001) and between LNNRT and LNNSDOT (z = 6.69, p < 0.001).

Thus, there is a statistical significant difference in the clustering quality, Qratio, of the iris data

set between KMRT and LNNSDOT and between LNNRT and LNNSDOT . LNNSDOT tends to

find clusters in the iris data set with a higher quality.

7.2. Twospiral data set

The optimal range of K as determined by the different models for the twospiral data set is

[3, 12] (as illustrated in figure 7). Furthermore, figure 7 shows that although the optimal number

of clusters in the twospiral data set is obtained by KMDB at K = 12, the majority of the models

obtain the optimal number of clusters in the twospiral data set at K = 4. The average number

of clusters determined by LNNSDOT is K = 4.06 which is similar to the optimal number of

clusters obtained by the majority of the models. Figure 8 illustrates a histogram of the frequency

distribution of the number of clusters determined by LNNSDOT for the twospiral data set. The

figure illustrates that LNNSDOT has high frequencies for 2 ≤ K ≤ 5. Figure 9 illustrates

that for the two spiral data set the IPT technique converges to K = 4 and SDOT oscillates

between K = 3.5 and K = 5 around an average K = 4.2 which is near the value of K

as determined by IPT. The statistical hypothesis test rejects H0 that the Qratio means are the

same between KMRT and LNNSDOT (z = 8.328, p < 0.001). There is thus a statistical

significant difference between the clustering quality of KMRT and LNNSDOT . KMRT tends to
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Figure 6: Convergence of LNNAIS using SDOT and IPT to optimal K for iris data set

Table 2: Descriptive Statistics: Iris

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 0.856 3.927 0.218 0.405

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

KMRT 4.00 0.581 3.048 0.575 0.805

(± 0.00) (± 0.021) (± 0.153) (± 0.165) (± 0.045)

LNNDB 2.00 0.923 3.994 0.233 0.432

(± 0.00) (± 0.097) (± 0.352) (± 0.035) (± 0.072)

LNNRT 4.00 0.618 3.126 0.488 0.798

(± 0.00) (± 0.036) (± 0.221) (± 0.154) (± 0.154)

LNNSDOT 2.64 0.788 3.738 0.364 0.643

(± 0.77) (± 0.109) (± 0.466) (± 0.552) (± 0.858)
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Figure 7: Optimal number of clusters obtained by K-means and LNNAIS for the two spiral data set
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Figure 8: Histogram of the number of clusters detected in the two spiral data set by LNNSDOT
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Figure 9: Convergence of LNNAIS using SDOT and IPT to optimal K for two spiral data set

find clusters in the twospiral data set with a higher quality than LNNSDOT . There is however no

statistical significant difference between the Qratio means of LNNRT and LNNSDOT (statistical

hypothesis test accepts H0, refer to table 12). Table 3 shows the results obtained by the different

models to determine the optimal number of clusters in the twospiral data set.

7.3. Hepta data set

The average number of clusters determined by LNNSDOT for the hepta data set is K = 6.64
which is close to the true number of clusters in the hepta data set (hepta consists of seven clusters)

and falls within the optimal range of K which is [4, 7] (as illustrated in figure 10). Figure 11

illustrates a histogram of the frequency distribution of the number of clusters determined by

LNNSDOT for the hepta data set. Figure 11 highlights that LNNSDOT has the highest frequency

at seven clusters, which is the number of clusters in the hepta data set. Figure 12 illustrates for the

hepta data set the number of clusters respectively determined by the SDOT and IPT techniques

over time. The value of K for IPT converges to 6. The value of K for SDOT oscillates between

K = 6 and K = 7 around an average K of 6.7 for the remaining iterations. Referring to

table 12, there is a statistical significant difference between the clustering quality of KMRT and

LNNSDOT and between LNNRT and LNNSDOT . Although KMRT and LNNRT tend to find

clusters in the hepta data set with a higher quality than LNNSDOT (refer to table 4), LNNSDOT

was able to determine the number of clusters in the hepta data set more accurately.

7.4. Engytime data set

Table 5 shows the results obtained by the different models to determine the optimal number

of clusters in the engytime data set. Figure 13 illustrates that the optimal range of K for the

engytime data set is 2 ≤ K ≤ 7 (also shown in table 5). LNNSDOT determined the number of

clusters in the engytime data set as K = 3.86. The histogram of the frequency distribution of the

number of clusters determined by LNNSDOT for the engytime data set illustrates that LNNSDOT

has high frequencies for 2 ≤ K ≤ 4 which is within the optimal range of K (refer to figure 14
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Table 3: Descriptive Statistics: Twospiral

Algorithm K Jintra Jinter Qratio QDB

KMDB 12.00 0.212 1.018 0.504 0.812

(± 0.00) (± 0.004) (± 0.024) (± 0.084) (± 0.034)

KMRT 4.00 0.369 0.993 0.437 0.870

(± 0.00) (± 0.003) (± 0.011) (± 0.016) (± 0.031)

LNNDB 3.00 0.477 1.115 0.544 0.992

(± 0.00) (± 0.023) (± 0.146) (± 0.122) (± 0.191)

LNNRT 4.00 0.405 1.021 0.616 1.043

(± 0.00) (± 0.019) (± 0.099) (± 0.149) (± 0.168)

LNNSDOT 4.06 0.427 1.021 0.699 1.116

(± 1.89) (± 0.087) (± 0.088) (± 0.736) (± 0.537)
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Figure 10: Optimal number of clusters obtained by K-means and LNNAIS for the hepta data set
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Figure 11: Histogram of the number of clusters detected in the hepta data set by LNNSDOT
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Figure 12: Convergence of LNNAIS using SDOT and IPT to optimal K for hepta data set
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Table 4: Descriptive Statistics: Hepta

Algorithm K Jintra Jinter Qratio QDB

KMDB 7.00 0.993 4.041 1.112 0.870

(± 0.00) (± 0.199) (± 0.148) (± 0.459) (± 0.247)

KMRT 4.00 1.680 3.902 0.630 1.006

(± 0.00) (± 0.083) (± 0.184) (± 0.419) (± 0.153)

LNNDB 6.98 0.740 4.161 0.371 0.494

(± 0.14) (± 0.122) (± 0.097) (± 0.259) (± 0.219)

LNNRT 5.98 1.019 4.307 0.316 0.661

(± 0.14) (± 0.052) (± 0.146) (± 0.059) (± 0.049)

LNNSDOT 6.64 0.830 4.120 1.015 0.541

(± 1.21) (± 0.397) (± 0.231) (± 4.978) (± 0.365)
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Figure 13: Optimal number of clusters obtained by K-means and LNNAIS for the engytime data set
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Figure 14: Histogram of the number of clusters detected in the engytime data set by LNNSDOT

for frequency distribution). Figure 15 illustrates that IPT obtains K = 4 for all iterations and

SDOT oscillates around an average K of 4.4 over time for the engytime data set. There is no

statistically significant difference between the clustering quality of any of the models (refer to

table 12). Therefore, all models tend to deliver clusters with similar quality. LNNSDOT has

the advantage of dynamically determining the number of clusters in the engytime data set with

similar clustering quality as the other models.

7.5. Chainlink data set

The optimal range of K for the chainlink data set is [8, 12] (as illustrated in figure 16).

Figure 17 illustrates that LNNSDOT has high frequencies for K = 2 and 4 ≤ K ≤ 7 which

are not within the optimal range of K . However, the figure also shows that there are cases

where LNNSDOT determined the number of clusters within the optimal range of K at lower

frequencies. Note that the similarity between the range of determined clusters in figure 17 and

the range of K for the iterative and multiple execution approaches in figure 16 is a coincidence.

Figure 18 illustrates that IPT obtains K = 8 for all iterations and SDOT oscillates around an

average K of 6.5 between K = 5.5 and K = 8 over time for the chainlink data set. The average

number of clusters determined by LNNSDOT for the chainlink data set is K = 5.76 (refer to

table 6). Table 6 shows the results obtained by the different models to determine the optimal

number of clusters in the chainlink data set.

Referring to table 12, the statistical hypothesis test rejects H0 that the Qratio means are the

same between KMRT and LNNSDOT (z = 8.483, p < 0.001). There is thus a statistical

significant difference between the clustering quality of KMRT and LNNSDOT . KMRT tends

to find clusters in the chainlink data set with a higher quality than LNNSDOT . There is also

a statistical significant difference between the Qratio means of LNNRT and LNNSDOT (z =
2.547, p = 0.011). LNNRT tends to find clusters in the chainlink data set with a higher quality

than LNNSDOT .
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Figure 15: Convergence of LNNAIS using SDOT and IPT to optimal K for engytime data set

Table 5: Descriptive Statistics: Engytime

Algorithm K Jintra Jinter Qratio QDB

KMDB 3.00 1.165 3.184 0.396 0.797

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

KMRT 7.00 0.805 3.188 0.502 0.873

(± 0.00) (± 0.004) (± 0.109) (± 0.021) (± 0.017)

LNNDB 2.00 1.833 4.133 0.465 0.910

(± 0.00) (± 0.213) (± 1.032) (± 0.107) (± 0.194)

LNNRT 4.00 1.284 4.020 0.616 1.000

(± 0.00) (± 0.113) (± 0.712) (± 0.226) (± 0.258)

LNNSDOT 3.86 1.381 3.978 0.582 0.992

(± 1.62) (± 0.304) (± 0.808) (± 0.217) (± 0.287)
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Figure 16: Optimal number of clusters obtained by K-means and LNNAIS for the chainlink data set
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Figure 17: Histogram of the number of clusters detected in the chainlink data set by LNNSDOT
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Figure 18: Convergence of LNNAIS using SDOT and IPT to optimal K for chainlink data set

Table 6: Descriptive Statistics: Chainlink

Algorithm K Jintra Jinter Qratio QDB

KMDB 12.00 0.262 1.500 0.367 0.576

(± 0.00) (± 0.009) (± 0.025) (± 0.063) (± 0.017)

KMRT 10.00 0.308 1.509 0.358 0.629

(± 0.00) (± 0.007) (± 0.031) (± 0.028) (± 0.030)

LNNDB 9.00 0.384 1.475 0.629 0.906

(± 0.00) (± 0.018) (± 0.068) (± 0.210) (± 0.144)

LNNRT 8.00 0.427 1.464 0.624 0.962

(± 0.00) (± 0.021) (± 0.057) (± 0.302) (± 0.190)

LNNSDOT 5.76 0.588 1.402 0.770 1.283

(± 2.76) (± 0.184) (± 0.235) (± 0.400) (± 0.666)
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Figure 19: Optimal number of clusters obtained by K-means and LNNAIS for the target data set

7.6. Target data set

The average number of clusters determined by LNNSDOT for the target data set is K =
4.04 which is close to the optimal range of K (as illustrated in figure 19, 5 ≤ K ≤ 8). The

frequency distribution of the number of clusters determined by LNNSDOT for the target data

set is illustrated in figure 20. LNNSDOT has high frequencies for K ≤ 5. Figure 21 illustrates

for the target data set the number of clusters respectively determined by the SDOT and IPT

techniques over time. IPT obtains K = 6 for the majority of the iterations. The value of K for

SDOT oscillates between K = 3 and K = 5.5 around an average K of 4.2 for the remaining

iterations. Table 7 shows the results obtained by the different models to determine the optimal

number of clusters in the target data set.

The statistical hypothesis test rejects H0 that the Qratio means are the same between KMRT and

LNNSDOT (z = 7.835, p < 0.001). There is thus a statistical significant difference between the

clustering quality of KMRT and LNNSDOT and KMRT tends to find clusters in the target data

set with a higher quality than LNNSDOT . There is however no statistical significant difference

between the Qratio means of LNNRT and LNNSDOT (statistical hypothesis test accepts H0,

refer to table 12).

7.7. Ionosphere data set

Table 8 shows the results obtained by the different models to determine the optimal number

of clusters in the ionosphere data set. Figure 22 illustrates that the optimal range of K for the

ionosphere data set is 2 ≤ K ≤ 5 (also shown in table 8).

LNNSDOT determined the average number of clusters in the ionosphere data set as K = 8.28.

The frequency distribution of the number of clusters determined by LNNSDOT for the ionosphere

data set illustrates that LNNSDOT has high frequencies for 8 ≤ K ≤ 11 which is not within

the optimal range of K (refer to figure 23 for frequency distribution). Figure 24 illustrates for
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Figure 20: Histogram of the number of clusters detected in the target data set by LNNSDOT
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Figure 21: Convergence of LNNAIS using SDOT and IPT to optimal K for target data set
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Table 7: Descriptive Statistics: Target

Algorithm K Jintra Jinter Qratio QDB

KMDB 5.00 0.533 2.313 0.326 0.653

(± 0.00) (± 0.012) (± 0.102) (± 0.013) (± 0.014)

KMRT 5.00 0.533 2.313 0.326 0.653

(± 0.00) (± 0.012) (± 0.102) (± 0.013) (± 0.014)

LNNDB 7.98 0.538 3.076 0.569 0.836

(± 0.14) (± 0.075) (± 0.343) (± 0.477) (± 0.284)

LNNRT 6.00 0.661 2.806 0.539 0.894

(± 0.00) (± 0.117) (± 0.417) (± 0.178) (± 0.225)

LNNSDOT 4.04 0.878 2.841 0.577 1.024

(± 2.04) (± 0.208) (± 0.751) (± 0.438) (± 0.860)

Table 8: Descriptive Statistics: Ionosphere

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 2.289 3.156 0.730 1.484

(± 0.00) (± 0.098) (± 0.413) (± 0.039) (± 0.153)

KMRT 4.00 2.085 3.438 0.877 1.776

(± 0.00) (± 0.065) (± 0.481) (± 0.164) (± 0.283)

LNNDB 2.00 2.888 4.083 0.720 1.437

(± 0.00) (± 0.278) (± 0.642) (± 0.100) (± 0.257)

LNNRT 5.00 2.473 4.277 0.911 1.755

(± 0.00) (± 0.272) (± 0.517) (± 0.180) (± 0.258)

LNNSDOT 8.28 2.251 5.012 2.791 1.956

(± 2.12) (± 0.322) (± 0.424) (± 6.519) (± 1.737)
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Figure 22: Optimal number of clusters obtained by K-means and LNNAIS for the ionosphere data set

0

10

20

30

40

50

2 3 4 6 7 8 9 10 11 12 13

N
u
m
b
er

o
f
ru
n
s

Number of clusters detected

Figure 23: Histogram of the number of clusters detected in the ionosphere data set by LNNSDOT
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Figure 24: Convergence of LNNAIS using SDOT and IPT to optimal K for ionosphere data set

the ionosphere data set the number of clusters respectively determined by the SDOT and IPT

techniques over time. The value of K for IPT rapidly increases to 5 in the first few iterations

and remains at 5 for the majority of the remaining iterations. The value of K for SDOT rapidly

increases to 8 and oscillates between K = 7 and K = 9 around an average K of 8 for the

remaining iterations. Even though there is a difference in the optimal range of K between the

models, there is no statistically significant difference between the clustering qualities of any of

the models (refer to table 12). Therefore, all models tend to deliver clusters with similar quality at

different optimal number of clusters. LNNSDOT has the advantage of dynamically determining

the number of clusters in the ionosphere data set with similar clustering quality as the other

models.

7.8. Glass data set

Figure 25 shows that the optimal number of clusters in the glass data set is obtained by KMDB

and LNNDB at K = 2 and by KMRT and LNNRT at K = 4. Therefore the optimal range of

K as determined by the different models for the glass data set is [2, 4]. Figure 27 illustrates that

the value of K for IPT rapidly increases to K = 4 and SDOT oscillates around an average K of

3.6 in range [3; 4.5] over time for the glass data set. Table 9 shows the results obtained by the

different models to determine the number of clusters in the glass data set. The average number

of clusters determined by LNNSDOT is K = 3.34 which falls within the optimal range of K .

A histogram of the frequency distribution of the number of clusters determined by LNNSDOT

for the glass data set is illustrated in figure 26. LNNSDOT has high frequencies for K ≤ 5.

Referring to table 12, the Mann-Whitney U statistical hypothesis test rejects H0 that the Qratio

means are the same between KMRT and LNNSDOT (z = 3.364, p < 0.001) and between

LNNRT and LNNSDOT (z = 1.996, p = 0.046). LNNSDOT tends to find clusters in the glass

data set with a higher quality than KMRT and LNNRT .
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Figure 25: Optimal number of clusters obtained by K-means and LNNAIS for the glass data set

Table 9: Descriptive Statistics: Glass

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 1.531 3.879 0.397 1.007

(± 0.00) (± 0.100) (± 0.546) (± 0.019) (± 0.116)

KMRT 4.00 1.212 4.263 0.572 1.025

(± 0.00) (± 0.056) (± 0.627) (± 0.152) (± 0.149)

LNNDB 2.00 2.354 5.792 0.427 0.892

(± 0.00) (± 0.484) (± 1.379) (± 0.121) (± 0.236)

LNNRT 4.00 1.575 5.197 0.512 1.055

(± 0.00) (± 0.208) (± 0.769) (± 0.161) (± 0.266)

LNNSDOT 3.34 2.003 5.998 0.493 0.875

(± 1.56) (± 0.518) (± 0.929) (± 0.310) (± 0.291)
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Figure 26: Histogram of the number of clusters detected in the glass data set by LNNSDOT
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Figure 27: Convergence of LNNAIS using SDOT and IPT to optimal K for glass data set

33



0

2

4

6

8

10

12

14

16

2 4 6 8 10 12

0

1

2

3

4

5

6

7

Q
R
T

Q
D
B

K

KMDB

LNNDB

KMRT

LNNRT

Figure 28: Optimal number of clusters obtained by K-means and LNNAIS for the image segmentation data set

7.9. Image Segmentation data set

Table 10 shows the results obtained by the different models to determine the optimal number

of clusters in the image segmentation data set. Figure 28 shows that the optimal number of

clusters in the image data set is obtained by KMDB and LNNDB at K = 2, by KMRT at K = 9
and LNNRT at K = 3. The average number of clusters determined by LNNSDOT is K = 3.28
which falls within the optimal range of K . Figure 30 illustrates that IPT obtains K = 3 for all

iterations and SDOT oscillates around an average K of 3.2 in range [2.6; 3.7] over time for the

image data set. The frequency distribution of the number of clusters determined by LNNSDOT

for the image segmentation data set is illustrated in figure 29. LNNSDOT has high frequencies

for K ≤ 5. Referring to table 12, the Mann-Whitney U statistical hypothesis test rejects H0

that the Qratio means are the same between KMRT and LNNSDOT (z = 6.89, p < 0.001) and

between LNNRT and LNNSDOT (z = 2.337, p = 0.019). LNNSDOT tends to find clusters in

the image segmentation data set with a higher quality than KMRT and LNNRT .

7.10. Spambase data set

The average number of clusters determined by LNNSDOT for the spambase data set is

K = 2.4 which is close to the optimal range of K (as illustrated in figure 31, 2 ≤ K ≤ 4).

In figure 31, note that QRT < 0 for LNNRT where K ≥ 10. QRT values less than zero indi-

cates that LNNRT was unable to cluster the data set into the corresponding K clusters. Since

Bmax = 10 for data set spambase (refer to table 1), the number of clusters K ≥ 10 is more

than the number of available ALCs in the population. The frequency distribution of the num-

ber of clusters determined by LNNSDOT for the spambase data set is illustrated in figure 32.

LNNSDOT has high frequencies for K ≤ 3. Figure 33 illustrates that IPT obtains K = 2 for all

iterations and SDOT oscillates around an average K of 2.45 in range [2.2; 2.7] over time for the

spam base data set. Table 11 shows the results obtained by the different models to determine the

optimal number of clusters in the spambase data set. The statistical hypothesis test rejects H0 that

the Qratio means are the same between KMRT and LNNSDOT (z = 8.269, p < 0.001). There is
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Table 10: Descriptive Statistics: Image Segmentation

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 101.487 238.922 0.439 0.861

(± 0.00) (± 3.313) (± 83.995) (± 0.041) (± 0.024)

KMRT 9.00 58.442 322.656 0.688 1.021

(± 0.00) (± 0.675) (± 10.779) (± 0.083) (± 0.035)

LNNDB 2.00 168.497 1148.026 0.155 0.551

(± 0.00) (± 33.481) (± 253.897) (± 0.047) (± 0.199)

LNNRT 3.00 137.827 881.290 0.316 1.000

(± 0.00) (± 15.718) (± 141.104) (± 0.253) (± 0.602)

LNNSDOT 3.28 142.847 975.017 43.919 88.577

(± 1.27) (± 21.735) (± 215.461) (± 291.181) (± 613.169)
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Figure 29: Histogram of the number of clusters detected in the image segmentation data set by LNNSDOT
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Figure 30: Convergence of LNNAIS using SDOT and IPT to optimal K for image data set
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Figure 31: Optimal number of clusters obtained by K-means and LNNAIS for the spam base data set
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Figure 32: Histogram of the number of clusters detected in the spam base data set by LNNSDOT
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Figure 33: Convergence of LNNAIS using SDOT and IPT to optimal K for spam base data set
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Table 11: Descriptive Statistics: Spambase

Algorithm K Jintra Jinter Qratio QDB

KMDB 2.00 216.058 2003.263 0.108 0.586

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

KMRT 4.00 129.353 2165.832 0.229 0.727

(± 0.00) (± 0.000) (± 0.000) (± 0.000) (± 0.000)

LNNDB 2.00 771.637 8288.589 0.095 0.546

(± 0.00) (± 317.716) (± 2462.940) (± 0.031) (± 0.077)

LNNRT 2.00 475.834 7639.878 0.071 0.655

(± 0.00) (± 282.100) (± 2648.505) (± 0.053) (± 0.171)

LNNSDOT 2.40 651.896 10416.929 0.076 0.548

(± 0.57) (± 382.136) (± 2798.913) (± 0.042) (± 0.222)

thus a statistical significant difference between the clustering quality of KMRT and LNNSDOT

and LNNSDOT tends to find clusters in the spambase data set with a higher quality than KMRT .

There is however no statistical significant difference between the Qratio means of LNNRT and

LNNSDOT (statistical hypothesis test accepts H0, refer to table 12).

For completeness table 12 also shows whether there is a statistical significant difference between

the clustering quality of KMRT and LNNRT for all the data sets. Referring to table 12, for two

of the data sets (engytime and ionosphere) LNNSDOT and LNNRT tend to deliver clusters with

a similar quality as KMRT . Out of the remaining eight data sets, both LNNSDOT and LNNRT

deliver clusters of a higher quality than KMRT for five of the data sets. Comparing LNNSDOT

with LNNRT , for five of the data sets (twospiral, engytime, target, ionosphere and spambase)

LNNSDOT tends to deliver clusters with a similar quality as LNNRT . Out of the remaining

five data sets, LNNSDOT delivers clusters of a higher quality than LNNRT for four of the data

sets. In general LNNSDOT tends to deliver clusters of similar or higher quality for all data sets,

followed by LNNRT and KMRT .

Table 12: Statistical Hypothesis Testing between All Models for all data

sets based on Qratio as performance criteria (α = 0.05; with continuity

correction; unpaired; non-directional)

Data set z of A z of B p Outcome Lowest z

Model A Model B

iris

LNNSDOT KMRT -7.58 7.58 < 0.001 Reject H0 LNNSDOT

LNNRT KMRT -3.209 3.209 0.001 Reject H0 LNNRT

LNNSDOT LNNRT -6.69 6.69 < 0.001 Reject H0 LNNSDOT

twospiral

LNNSDOT KMRT 8.328 -8.328 < 0.001 Reject H0 KMRT

LNNRT KMRT 7.704 -7.704 < 0.001 Reject H0 KMRT

LNNSDOT LNNRT -0.5 0.5 0.617 Accept H0 LNNSDOT

Continued on next page38



Model A Model B z of A z of B p Outcome Lowest z

hepta

LNNSDOT KMRT -6.787 6.787 < 0.001 Reject H0 LNNSDOT

LNNRT KMRT -8.145 8.145 < 0.001 Reject H0 LNNRT

LNNSDOT LNNRT -4.391 4.391 < 0.001 Reject H0 LNNSDOT

engytime

LNNSDOT KMRT 1.017 -1.017 0.309 Accept H0 KMRT

LNNRT KMRT 1.551 -1.551 0.121 Accept H0 KMRT

LNNSDOT LNNRT -0.855 0.855 0.393 Accept H0 LNNSDOT

chainlink

LNNSDOT KMRT 8.483 -8.483 < 0.001 Reject H0 KMRT

LNNRT KMRT 8.566 -8.566 < 0.001 Reject H0 KMRT

LNNSDOT LNNRT 2.547 -2.547 0.011 Reject H0 LNNRT

target

LNNSDOT KMRT 7.835 -7.835 < 0.001 Reject H0 KMRT

LNNRT KMRT 8.145 -8.145 < 0.001 Reject H0 KMRT

LNNSDOT LNNRT -0.221 0.221 0.825 Accept H0 LNNSDOT

ionosphere

LNNSDOT KMRT 0.955 -0.955 0.340 Accept H0 KMRT

LNNRT KMRT 1.169 -1.169 0.243 Accept H0 KMRT

LNNSDOT LNNRT 0.283 -0.283 0.777 Accept H0 LNNRT

glass

LNNSDOT KMRT -3.364 3.364 < 0.001 Reject H0 LNNSDOT

LNNRT KMRT -1.965 1.965 0.049 Reject H0 LNNRT

LNNSDOT LNNRT -1.996 1.996 0.046 Reject H0 LNNSDOT

image segmentation

LNNSDOT KMRT -6.89 6.89 < 0.001 Reject H0 LNNSDOT

LNNRT KMRT -7.18 7.18 < 0.001 Reject H0 LNNRT

LNNSDOT LNNRT -2.337 2.337 0.019 Reject H0 LNNSDOT

spambase

LNNSDOT KMRT -8.269 8.269 < 0.001 Reject H0 LNNSDOT

LNNRT KMRT -8.269 8.269 < 0.001 Reject H0 LNNRT

LNNSDOT LNNRT 1.275 -1.275 0.202 Accept H0 LNNRT

8. Conclusion and Future Work

This paper presented two techniques which can be used with LNNAIS to dynamically deter-

mine the number of clusters in a data set. These techniques are the iterative pruning technique

(IPT) and the sequential deviation outlier technique (SDOT). Although both of these techniques

are computationally less expensive than the multiple execution approaches, the IPT technique

either needs a specified range for K or needs to iterate through all possible edges (to a maximum

of Bmax) which makes the technique parameter dependent in the former case and slightly more

computationally expensive than SDOT in the latter. An advantage of IPT is that the technique
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can use any cluster validity index to determine the number of clusters. The SDOT technique nei-

ther uses a cluster validity index nor does it require any boundary constraints on K . SDOT is a

non-parametric technique. This is an advantage, since it is not always feasible to visually inspect

to formed clusters and a specified range for K might not contain the optimum number of clusters.

LNNRT , LNNDB (both using IPT with QRT and QDB , respectively) and LNNSDOT (using

SDOT) were applied on different data sets to determine the optimal number of clusters. These

results were compared to the results obtained from K-means clustering which used the multiple

execution approach to determine the optimal number of clusters in each data set. Based on the

Qratio index, in general LNNSDOT tends to deliver clusters of similar or higher quality for all

data sets, followed by LNNRT and KMRT .

Since the LNNSDOT model is computationally less expensive and is able to dynamically de-

termine the number of clusters in a data set, the model can be seen as an enhancement to the

LNNAIS model. Future work on the LNNSDOT model includes the application of the model

in clustering non-stationary environments. Due to the possibility of the LNNSDOT model to

dynamically determine the number of clusters, the model might indicate the division or merging

of clusters in a non-stationary environment. The definition of a non-stationary environment and

the stability of the LNNSDOT model in such an environment need to be investigated.

References

[1] M. Halkidi, Y. Batistakis, M. Vazirgiannis, Cluster validity methods: part i, ACM SIGMOD Record 31 (2002)

40–45.
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