Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Sritzalis, Nadia Nedjah

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Applied Soft Computing 11 (2011) 4384-4398

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

Applied

tin

Real-time CBR-agent with a mixture of experts in the reuse stage to classify and

detect DoS attacks

Cristian I. Pinz6n?, Juan F. De Paz®, Marti Navarro¢, Javier Bajo®*, Vicente Julidan¢, Juan. M. Corchado®

3 Technological University of Panama, Faculty of Computer Systems Engineering, Building No 3, Campus “Dr. Victor Levi Sasso”, Universidad Tecnolégica Ave., Panamd City, Panama
b Departamento Informdtica y Automdtica Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
¢ Departamento de Sistemas Informaticos y Computacion Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

ARTICLE INFO

Article history:

Received 28 April 2010

Received in revised form

20 November 2010

Accepted 1 December 2010
Available online 15 December 2010

Keywords:

Service-oriented architectures
Security

Multi-agent systems
Case-based reasoning

Real time

ABSTRACT

Security is a major concern when service environments are implemented. This has led to the proposal of a
variety of specifications and proposals based on soft computing methods to provide the necessary security
for these environments. However, most proposed approaches focus only on ensuring confidentiality and
integrity, without putting forward mechanisms that ensure the availability of services and resources
offered. A considerable number of attack mechanisms can lead to a web service system crash. As a result,
the web service cannot allow access to authorized users. This type of attack is a so-called denial of
service attack (DoS) which affects the availability of the services and recourses available. This article
presents a novel soft computing-based approach to cope with DoS attacks, but unlike existing solutions,
our proposal takes into account the different soft computing mechanisms that can lead to a DoS attack.
Our approach is based on a real time classifier agent that incorporates a mixture of experts to choose a
specific classification technique depending on the feature of the attack and the time available to solve
the classification. With this scheme it is possible to divide the problem into subproblems, solving the
classification of the web service requests in a more simple and effective way and always within a time
bound interval. This research presents a case study to evaluate the effectiveness of the approach and also

presents the preliminary results obtained with an initial prototype.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Confidentiality, integrity and availability are the main objectives
of any information security model [1]. With specific regard to avail-
ability, the aim is to guarantee that the information, services and
available resources are accessible to authorized users [2]. One of the
priorities of web services is to guarantee the availability of services
and resources. However, all of the specifications that have been pro-
posed for providing security within web services (WS-Security [3],
WS-SecurityPolicy [4], WS-Trust [5], WS-SecureConversation [6],
etc.) only consider the integrity and confidentiality of messages [7]
without much consideration for availability.

One of the increasingly common threats within web service
environments and one that jeopardizes the availability factor are
denial of service (DoS) [7-10]. This type of attack exploits vul-
nerable points within the standard components supporting the

* Corresponding author at: Compaiiia 5, 37002 Salamanca, Spain.
Tel.: +34 639771985; fax: +34 923277101.
E-mail addresses: cristian_ivanp@usal.es (C.I. Pinzén), cofds@usal.es (J.F. De Paz),
mnavarro@dsic.upv.es (M. Navarro), jpajope@upsa.es (J. Bajo), vinglada@dsic.upv.es
(V.]Julidn), corchado@usal.es (Juan.M. Corchado).

1568-4946/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.as0c.2010.12.003

technology. There are several initiatives within this field: [7,11-18].
However, the main common disadvantage that each of these
approaches has is their low capacity to adapt themselves to changes
in the patterns. This reduces the effectiveness of these methods
when slight variations in the behaviors of known attacks occur
or when new attacks appear. Furthermore, most of the existing
approaches are based on a centralized perspective. Because of this
and the focus on performance aspects, centralized approaches can
cause a bottleneck when security is broken, meaning a reduction of
the overall performance of the application. Finally, none of these
approaches consider the limitations or restrictions in response
time.

Response timeis a critical aspect in the majority of Internet secu-
rity systems. With soft-computing systems requiring a response to
be given before a specific deadline, as determined by the system
needs, it is essential that the execution time for each of the tasks
carried out by the soft-computing system is predictable and capable
of guaranteeing correct execution within the time needed for the
given response. For example, if a service request must be resolved
within a specific time, the actual security analysis and execution
of the service should not, in the worst case, exceed the deter-
mined time. For this reason it is necessary that the response times
for analysis, as well as service execution time, are appropriately

C.I. Pinzén et al. / Applied Soft Computing 11 (2011) 4384-4398 4385

temporal bounded. Furthermore, the agent providing the service
and the agent performing the security analysis must both have the
necessary mechanisms for executing tasks in a predictable frame-
work, that is, the agent must be prepared for its execution in a real
time environment. An agent of this kind must accomplish its goals,
responsibilities and tasks with the additional difficulty of tempo-
ral restrictions. Thus, a real-time agent can be defined as an agent
with temporal restrictions in at least one of its responsibilities. A
real-time agent may have its interactions bounded; a modification
that will affect all the communication processes in the multi-agent
system where the real-time agent is located. Some examples of real
time agents are: The ARTIS agent specifically designed to develop
Real-Time Systems [19], The ObjectAgent Architecture developed
by Princeton Satellites in 2001 [20] and time-aware agents pro-
posed by Prouskas and Pitt in 2002 [21].

This study presents a new agent model with a novel perspec-
tive for analyzing and classifying different DoS attack mechanisms.
One of the primary characteristics of the proposed agent is its abil-
ity to make decisions in real time, making it unique in its conception
within the study of DoS attacks. The internal structure of the agent
is based on the case-based reasoning (CBR) model, with the main
difference being that the different CBR phases are time-bounded,
thus enabling its use in real time. CBR can be very suitable for
the application in agent reasoning, where similar problems should
have similar solutions. However, few of the existing approaches
cope with the problem of applying CBR as deliberative engine for
agents in MAS with real-time constraints. Some related examples
are [22,23] where the CBR phases are faster and more dynamic,
allowing for tasks to be carried out quickly. However, in real-time
multi-agent systems this concept also implies that deadlines are
met on time. Therefore, our CBR approach includes a reasoning
cycle that copes with temporal restrictions.

Additionally, the adaptation phase in the CBR system integrated
in the agent proposes a new analysis classification model that is
carried out by a mixture of experts. This new model makes it possi-
ble to divide complicated classification tasks into a series of simple
subtasks, so that the fusion of solutions given by the sub-tasks gen-
erates the final solution. The concept of a mixture of experts was
first proposed by [24]. It involves a system that contains a series
of input data that is distributed over a set of expert classifiers.
Depending on the time available for performing classification, a set
of experts is selected to perform the different analyses. The experts
are selected with a multiple method model [25]. Finally the differ-
ent selected experts generate the predictions and the outputs are
fused to generate a new unique result [26].

The agent proposed in this paper aims to deal with DoS attacks
in web service environments in a time-bound process. This work is
based in our previous research in SQL injection attacks [27,28] in
which we developed a SQLMAS multi-agent architecture. The agent
model presented is incorporated into the SQLMAS architecture in
order to improve the general functioning of the architecture and
incorporates real time capabilities and a new classification mech-
anism based on a mixture of experts.

The rest of the paper is structured as follows: Section 2 presents
the problem that has prompted most of this research work. Sec-
tion 3 shows a general view of the temporal bounded CBR used
as deliberative mechanism in the classifier agent. Section 4 is a
detailed explanation of the classification model designed. Section 5
describes a set of tests to evaluate our proposal. Finally, the results
and conclusion are presented in Section 6.

2. Description of web service security problem

Recently the availability of web services has been threatened
by a well known and studied type of attack known as denial of

service (DoS) [7,9,10]. This type of attack is generally directed
at a particular victim and is fully realized when it manages to
deplete the resources within the server (CPU cycles, RAM) fol-
lowing a high number of requests made within a short period of
time [29]. This type of attack results in the interruption of server
access by authorized users. Furthermore, when the problem of DoS
attacks is produced in a web services environment, the risk of one
of these attacks being carried out increases considerably. Taking
into account the fact that web services are grounded in a series of
known standards [30-32], including HTTP, which is the most com-
mon means of transporting messages, and XML standard, which
is the most commonly used for message coding, we find that the
number of vulnerable points increases due to the inherent flexi-
bility of standards and their open nature, which allows for various
techniques or attack mechanisms to be carried out.

DoS attack mechanisms at web services level generally take
advantage of the costly process that may be associated with certain
types of requests. A detailed study with a list of possible web ser-
vice attacks was presented by [33], and includes attack mechanisms
that can affect the availability of web services. Table 1 presents the
DoS attack mechanisms analyzed within this study, referencing the
previous work of Moradian and Hdkansson [33].

In addition to dealing with DoS attacks within web services that
evaluate the different possible mechanisms at a granular level, the
proposal put forth in this study places great importance on identi-
fying the component within the objective of the web service attack.
A DoS attack mechanism can affect the availability of web services
to a greater or lesser degree depending on the complexity of the
mechanism used and the target component of the attack. One sim-
ple example would be to imagine a type of attack in which the
parser component is blocked during a period of time. It is probable
that the parser component could be activated within minutes of the
attack. However if instead of the attack reaching the parser com-
ponent, it were to reach the database component, it could affect
its integrity, clearly resulting in much more serious consequences.
The attack would seriously impact the availability of data and actual
web service for a much longer period of time. By taking into con-
sideration which component the attack is targeting, it would be
possible to extract the relevant information, allowing us to iden-
tify hidden vulnerabilities within the web service components and
increase ability to make the decisions required for dealing with a
real attack.

Finally, it is important to understand that the focus of our pro-
posal centers on the classification of web service requests through
SOAP messages. This classification will be carried out by a classi-
fier agent that performs classification based on the data extracted
from the structure and content of the messages. The classifier agent
could be in charge of analyzing the DoS attack mechanisms (Replay
attacks, XDoS attacks), basing the detection of an attack on the
analysis of the behavior of traffic directed at the server where the
web services are located. However, in our proposal that task would
be delegated to a second agent, whose job is to free the classifier
agent of that responsibility. This second agent would work along-
side the classifier agent to detect different DoS attack mechanisms,
forming part of an architecture that is being developed. The fol-
lowing section reviews the most relevant points associated with
the subject.

Bebawy et al. propose the “Nedgty” tool [11], which is based on a
web service firewall model. The targeted optimal operating system
for Nedgty is the Linux OS. Nedgty secures web services by applying
business specific rules in a centralized manner. It works at applica-
tion level as a stand-alone application and its design is a hybrid of
a fully fledged proxy. This solution secures web services by inter-
cepting packets going to the server, determining the specific web
service packets, and checking them for any malicious content. In
addition, it filters out unauthorized requests that originate from

4386

Table 1
Types and targets of attacks including level of damage.

C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398

Attack mechanism

Description

Objective component

Damage level

Recursive Payloads
Evaluating content

and structure of

SOAP messages Oversize payloads

Schema poisoning

Buffer overflow

XML injection

SQL injection
Xpath injection

Evaluating Replay attacks
traffic

XML denial of service attack

A message written in XML can harbor as many elements as
required, complicating the structure to the point of
overloading the parser requiring a high amount of memory
and processing resources

When executed, it reduces or eliminates the availability of a
web service while the CPU, memory or bandwidth are being
tied up by a massive mailing with a large payload

An attacker compromises XML Schema and replaces it with
similar, but modified one

can cause the service to crash

Any element that is maliciously added to the XML structure of
the message can reach and even block the actual Web service
application

An attacker inserts and executes malicious SQL statements
into XML

Xpath to extract an XML database

them repeatedly

Parser Low

Parser Low

Parser Low
This attack targets the SOAP engine through the web server. An Web service application Low
attacker sends more input than the program can handle, which

Web service application Low

Database High
An attacker forms SQL-like queries on an XML document using XML database High
To overload web service an attacker steals messages and sends Parser/web Low

service

application Low

An attacker trying to prevent legitimate users from accessing a
service by flooding the service with thousands of requests

unauthorized IP addresses. A XML Firewall is proposed by [13]. The
architecture of the XML Firewall is divided into three modules: Core
engine, Administrative Interface, and database. The Core engine is
the main component that processes and handles SOAP messages.
Messages that are sent to a web service are intercepted and parsed
to check the validity and authenticity of content. If the content of
the messages does not conform to the policies that have been set,
the messages will be dropped by the firewall. Three successfully
implemented filtering policies, message size filtering, syntax pars-
ing, and XML Schema validation, have been tested with valid and
invalid SOAP messages. Gruschka et al. [7] propose an application
level gateway system “Checkway”. They focus on a full grammat-
ical validation of messages by Checkway before forwarding them
to the server. To do this, they consider that web service messages
are XML documents, which are usually defined by an XML Schema
and written in XML Schema definition language, a grammar lan-
guage for XML. Checkway generates an XML Schema from a web
service description and validates all web service messages against
this schema. The approach presents a centralized model oriented
to detect specific types of attacks inside web services. An adaptive
framework for the prevention and detection of intrusions was pre-
sented in [15]. Based on a hybrid approach that combines agents,
data mining and diffused logic, it is designed to filter attacks that
are either new or already known. Agents that act as sensors are
used to detect violations to the normal profile using data min-
ing techniques such as clustering, association rules and sequential
association rules. The anomalies are then further analyzed using
fuzzy logic to determine genuine attacks so as to reduce false
alarms. If an attack is being detected, a specific component will act
to prevent the attack from happening. Sidharth and Liu [34] propose
an Integrated Application and Protocol-based Framework to tackle
existing WS-Security problems. The proposed IAPF techniques are
targeted to be part of the design and implementation structure of a
web service. In the IAPF approach, the first step involves providing
protection against vulnerabilities in the UDDI protocol. The sec-
ond step involves protecting vulnerabilities in the WSDL protocol.
In the third step, comprehensive protections are built using tech-
niques such as WS-Security to protect vulnerabilities in the SOAP
protocol for end to end communication between two entities. In the
fourth step, protection mechanisms are built to protect SOAP web
services that need to be exposed openly to third party consumers.
The IAPF approach has been presented as a theoretical proposal.

An approach to handling DoS attacks using a twofold mechanism
is presented by [16]. First, an admission control is performed to
limit the number of concurrent clients served by the online ser-
vice. Admission control is based on hiding ports, which renders
online service invisible to unauthorized clients by hiding the port
number on which the service accepts incoming requests. Second,
a congestion control is performed on admitted clients to allocate
more resources to good clients. Congestion control is achieved
by adaptively setting a client’s priority level in response to the
client’s requests in a way that can incorporate application-level
semantics. Experiments show that the techniques incur low perfor-
mance overhead. In addition, the proposed techniques can be easily
deployed in existing web/application servers. An approach to coun-
tering DDoS and XDoS attacks against web services is presented by
[17]. The system requests message authentication and validation
before the requests are processed by the web service providers.
The scheme has two modes: normal mode and the under-attack
mode. A component called “operations provider” decides which
mode the system works in. In the under-attack mode, the service
requests need to be authenticated and validated before being pro-
cessed. Since the system is constructed from web services, it can be
formed and reconfigured easily. Finally, a recent solution proposed
by [18] presents a Service Oriented Traceback Architecture (SOTA)
to cooperate with a filter defense system, called XDetector. XDe-
tector is a Back Propagation Neural Network trained to detect and
filter XDoS attack messages. SOTA is a traceback system based on
web services and able to trace back to the source of the malicious
message. Once an attack has been discovered and the attacker’s
identity known, XDetector can filter out the attack messages.

The approach provided in our study exceeds those of previous
soft computing-based studies with regards to the following char-
acteristics:

e Time response: our focus makes it possible to perform a real time
analysis, which guarantees a response within the time restric-
tions that are associated with the service request. None of the
previously mentioned studies give much attention to this factor,
which may affect the quality of the web service.

e Adaptive ability: our approach includes different types of intel-
ligent agents designed to learn and adapt to changes in attack
patterns as well as new attacks. This includes a temporally bound
CBR engine and a mechanism known as a mixture of experts that

C.I. Pinzén et al. / Applied Soft Computing 11 (2011) 4384-4398 4387

can assign the most appropriate techniques for identifying the
type of attack.

e Scalability: our approach is capable of growing (by means of the
instantiation of new agents) according to the needs of its envi-
ronment.

In addition to these capabilities, once our classifier agent is inte-
grated into a multi-agent architecture, as expected, we will obtain
new advantages such as:

¢ Distributed approach: our classifier agent will be integrated into
a multi-agent architecture that can execute tasks derived from
the classification process in a distributed way.

¢ Balancing the workload: the use of a multi-agent architecture
with a distributed hierarchy makes it possible to distribute the
classification task load throughout the various layers of the hier-
archical architecture.

e Tolerance for failure: the hierarchical design used in the multi-
agent architecture can facilitate error recovery through the
instantiation of new agents.

e Ubiquity: once the classifier agent has been integrated within
the multi-agent architecture, it will be capable of providing an
ubiquitous alert mechanism to notify security personnel in the
event of an attack.

Our proposal provides a much more efficient classification
once the system acquires experience, and a reasonably low time
bounded response. The architecture proposed presents novel char-
acteristics that have not been considered in previous approaches.
The next section presents the real time agent model used to imple-
ment the classifier agent.

3. Real time agent and case-based reasoning (CBR)

This section presents the new model of real time agents with
advanced reasoning capabilities. The agent combines learning and
adaptation capabilities in order to provide a case-based reasoning
system capable of being executed under time bounded restrictions
that occur in real time scenarios.

A real time agent is one that is able to support tasks that should
be performed within a restricted period of time [35]. This char-
acteristic justifies its use in real time systems. In this type of
environment, the validity of the solution is determined not only
by its correct execution, but by its ability to be carried out within
the allotted time frame [36].

The main problem in the architecture of a real time agent (RTA)
is with the deliberation process. This process may use Artificial
Intelligence (Al) techniques as problem-solving methods to com-
pute more intelligent actions. If this is the case, it is difficult to
know the time required, because it can either be unbounded or
have a high variability. If the agent has to operate in a real-time
environment, the agent complexity required to achieve any or
all of these features is greatly increased. Thus a RTA requires an
efficient integration of high-level, deliberative processes within
reactive processes. When using Al methods, it is necessary to pro-
vide techniques that allow their response times to be bounded.
These techniques are mainly based on well-known Real-Time Arti-
ficial Intelligence System (RTAIS) techniques [37,38].

Therefore, it would be interesting to integrate complex delib-
erative processes for decision-making in real-time agents and to
do so in a simple and efficient way. Some of the most important
features of agents are their ability to work autonomously, to adapt
to the environment, to reason, to learn, to predict the future effect
of the performed actions, and to predict the future behavior of the
environment. Intelligent agents may use a lot of reasoning mecha-

nisms to achieve these capabilities, including planning techniques
[39] or case-based reasoning (CBR) techniques [40].

There are many CBR applications to control at least some aspects
of the deliberative process of agents in a MAS developed for spe-
cific purposes [40]. The main assumption in CBR is that similar
problems have similar solutions. Therefore, when a CBR system has
to solve a new problem, it retrieves precedents from its case-base
and adapts their solutions to fit the current situation. This reason-
ing methodology greatly resembles the way people reason about
their experiences. CBR can thus be very suitably applied in agent
reasoning, where similar problems should have similar solutions.
However, few of the existing approaches cope with the problem
of applying CBR as a deliberative engine for agents in MAS with
real-time constraints. If we want to use CBR techniques as areason-
ing mechanism in real-time agents, it is necessary to adapt these
techniques to be executed so that they guarantee real-time con-
straints. In real-time environments, CBR phases must be temporally
bounded to ensure that solutions are produced on time, giving the
system a case-based behavior that is time bound and deliberative.

As afirst step, we propose a modification of the classic CBR cycle,
adapting it so that it can be applied in real-time domains. First, we
group the four reasoning phases that implement the cognitive task
of the real-time agent into two stages defined as: the learning stage,
which consists of the revise and retain phases; and the deliberative
stage, which includes the retrieve and reuse phases. Each phase
will schedule its own execution time. Therefore, the designer can
choose to either assign more time to the deliberative stage, or keep
more time for the learning stage (and thus for the design agents
that are more sensitive to updates). These new CBR stages must
be designed as an anytime algorithm [41], where the process is
iterative and each iteration is time-bounded and may improve the
final response.

In accordance with this, our time bounded CBR cycle (TB-CBR)
will operate in the following manner. To begin, the main difference
that can be observed between the classic CBR cycle and the TB-
CBR cycle is the starting phase. Recent changes in the case-base
will commonly affect the potential solution that the CBR cycle is
able to provide for a current problem. Therefore, the TB-CBR cycle
starts at the learning stage, checking if there are previous cases
waiting to be revised and possibly stored in the case-base. In our
model, the solutions provided at the end of the deliberative stage
will be stored in a solution list while a feedback about their utility
is received. When each new CBR cycle begins, this list is accessed
and while there is enough time, the learning stage of those cases
whose solution feedback has been recently received is executed. If
the list is empty, this process is omitted.

After this, the deliberative stage is executed. The retrieval algo-
rithm is used to search the case-base and retrieve a case that is
similar to the current case (i.e., the one that characterizes the prob-
lem to be solved). Each time a similar case is found, it is sent to the
reuse phase where it is transformed into a suitable solution for the
current problem using a reuse algorithm. Therefore, at the end of
each iteration of the deliberative stage, the TB-CBR method is able
to provide a solution for the problem at hand and this solution can
be improved in subsequent iterations if the deliberative stage has
enough time to perform them. Hence, the temporal cost of execut-
ing the cognitive task is greater than or equal to the sum of the
execution times of the learning and deliberative stages (1):

TcognitiveTask z tlearning + Ldeliberative
tleaming = (trevise + tretain) xn (1)
Ldeliberative = (tretrieve + trevise) xm

where tiearning and tgeliberative are the total execution time of the
learning and deliberative stages; ty is the execution time of the
phase x and n and m are the number of iterations of the learning
and deliberative stages, respectively.

4388 C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398

Input: t,00

1.2 if solutionQueue # @ then

solutionQueue # @ do

1.11 if problemQueue % @ then

1.13 repeat

1.19 return bestSolution
1.20 end

1.1 (tlearning:tdcliberativc) +—— timeManager (tma:c)

1.3 while enoughTime(tnow;trcvisc:trctain:tfearning) and

1.4 7 +— pop (solutionQueue)
e {adequate +— analysesResult (r)}Strevise
1.6 if adequate then
1.7 | {retainResult(r)}S‘rm-’n
1.8 end
1.9 end
1.10 end

1.12 problem «— pop (problemQueue)

1.14 {cases «—— push (search(adaptProblem(problem))) }Stretricve
1.15 {solution +— adaptSolution (cases,problem)

1.16 bestSolution «—— bestSolution (solution,bestSolution) }Streuse
1.17 until ~enoughTime (tnow,tretricve treuse tdeliberative)

1.18 solutionQueue «— push (bestSolution)

Algorithm 1. Time bounded CBR algorithm.

According to this temporal restriction, a first view of the TB-
CBR algorithm can be seen in Algorithm 1. This algorithm can
be launched when the real-time agent considers it appropriate
and there is enough time for it to be executed. The real-time
agent indicates to the TB-CBR the maximum time (tmax, Where
tmax = teognitiveTask) that is available to complete its execution cycle.
The time tmax must be divided between the learning and the
deliberative stages to guarantee the execution of each stage. The
timeManager (tmax) function is in charge of completing this task.
Using this function the designer must specify how the real-time
agent acts in the environment. The designer can assign more time
to the learning stage if it desires a real-time agent with a greater
capacity to learn. Otherwise, the function can allocate more time
to the deliberation stage. Regardless of the type of agent, the time-
Manager function should allow sufficient time for the deliberative
stage to ensure a minimal answer.

The first phase of the algorithm executes the learning stage. This
stage is executed only if the real-time agent has the solutions of
previous executions stored in the solutionQueue. The solutions are
stored just after the end of the deliberative stage. The deliberative
stage is only launched if the real-time agent has a problem to solve
in the problemQueue. This configuration allows the agent to launch
the TB-CBR system solely in order to learn (no solution is needed
and the agent has enough time to reason about previous decisions),
to deliberate (there are no previous solutions to consider and there
is a new problem to solve) or both.

The following section presents an agent that incorporates the
TB-CBR mechanism to perform security analysis for web service
requests.

4. Improved security services by means of a real-time agent

This section presents an agent specially designed to incorpo-
rate an adaptation of the previously mentioned TB-CBR model as
a reasoning engine. The aim of the reasoning model is to obtain a

soft computing system to facilitate real time decision making in a
robust manner and low solution cost. The learning phase is elim-
inated since it is now performed by human experts. The TB-CBR
agent utilizes a global case base, which avoids any duplication of
information compiled from the cases or any information contained
in the results of the analysis. Tables 2-4 show the structure of the
cases. Table 2 shows the fields recovered from the analysis of ser-
vice request headers. Table 3 shows the fields associated with the
analysis of service requests that were obtained after the analysis
performed by the parser application.

Finally, Table 4 shows the information obtained after analyzing
the service requests.

From the information contained in these tables, it is possible to
obtain the global structure of the cases. In this way, the information
of each case can be represented by the following tuple:

c= ({%:1...6}U{%:1...27}U(X’Tm:1...6, m:],..2}> (2)

When the system receives a new request, the TB-CBR agent per-
forms an analysis that can determine whether it is an attack, in
which case it identifies the type of attack. The following sections
describe the different stages of the deliberative stage for the TB-
CBR model and identify the analysis and classification functions
of possible attacks on the system. These stages have been tempo-
rally bounded in order to be used in situations containing temporal
restrictions.

Table 2

Header definitions.
Fields Type Variable
IDService Int hy
Subnet mask String hy
SizeMessage Int hs
NTimeRouting Int hy
LengthSOAPAction Int hs
TFMessageSent Int hg

C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398 4389

Table 3
Definition of fields recovered by the parser.

Description Fields Variable
Number of header elements NumberHeaderElement (Int) D1
Number of elements in the body NElementsBody (Int) D2
Greatest value associated to the nesting elements NestingDepthElements(Int) D3
Greatest value associated to the repeated tag within the body NXMLTagRepeated (Int) Da
Greatest value associated with the leaf nodes among the declared parents NLeafNodesBody (Int) Ds
Greatest value of the associated attributes among the declared elements NAttributesDeclared (Int) Dé
Type of SQL command Command_Type (Int) p7
Number of times that the AND operator appears in the string Number_And (Int) Ds
Number of times that the OR operator appears in the string Number_Or (Int) Do
Number of times that the Group By function appears Number_GroupBy (Int) D1o
Number of times that the Order By function appears Number_OrderBy (Int) P11
Number of times that the Having function appears Number_Having (Int) P12
Number of Literals declared in the string Number _Literals (Int) D13
Number of times that the Literal Operator Literal expression appears Number_LOL(Int) Dia
Length of the SQL string Length_SQL_String (Int) Dis
Greatest value associated with the length of the string among the elements or attributes within the body LengthStringValueBody (Int) D16
Total number of incidences during the parsing process TotalNumberIncidenceParsing(Int) D17
Reference to an external entity URIExternalReference (Boolean) Dis
Number of variables declared in hte Xpath expression XpathVariablesDeclared (Int) D19
Number of elements affected in the consulted node XpathNumberElementAffected(Int) D20
Number of literals declared in the XQuery Statement XpathNumberLiteralsDeclared (Int) D21
Number of times the And operator appears in the XQuery Statement XpathNumberAndOperator (Int) D22
Number of times the Or operator appears in the XQuery Statement XpathNumberOrOperator (Int) D23
Number of functions declared in the XQuery Statement XpathNumberFunctionDeclared (Int) D24
Lentgh of the XQuery Statement in a SOAP message XpathLenghtStatement (Int) D25
Cost of processing time (CPU) CPUTimeParsing (Int) D26
Cost of memory size (KB) SizeKbMemoryParser (Int) D27

Table 4

Fields stored as results.
Fields Type Variable
Probability oversize payload Real X11
Attack oversize payload Boolean X12
Probability recursive parsing Real X21
Attack recursive parsing Boolean X22
Probability buffer overflow attack Real X31
Attack buffer overflow attack Boolean X3
Probability XML injection attack Real X4
Attack buffer overflow attack Boolean X42
Probability Xpath injection attack Real X51
Attack Xpath injection attack Boolean Xs)
Probability SQL injection attack Real X61
Attack SQL injection attack Boolean X62

4.1. Retrieve

In the retrieve phase, the real time agent recovers the cases that
it will use to perform classification. The time needed to recover

the different cases to be used is clearly defined and temporally
bounded. The retrieval time for the cases depends on the number of
cases in the case base. If the number is known, it is easy to predict
how much execution time will be used to recover the cases. The
asyntotic cost is linear (O(n)).

The cases that have been retrieved during this phase are selected
according to the information obtained from the headers of the pack-
ages of the HTTP/TCP-IP transport protocol from the new case. The
information retrieved corresponds to the service description fields,
and the service requestor’s subnet mask. Assuming that the newly
introduced case is represented by cp+1, the case c,+1 is defined by
the following tuple: cp+1 =({h;/i=1 ... 6}). The new case does not
initially contain information related to the parser.

C
Chyhy, =f(C) = {Cj‘mhz € —

. = Cnt1.hy NCiny = Cnylhy } (3)
-

where ¢;,, represents the case j and hq, a property that is deter-
mined according to the data shown in Table 2, C represents the set
of cases, and f; the retrieval function.

Table 5
Combination of techniques and the execution time associated with each.
Oversize payload Recursive parsing Buffer overflow attack XML injection attack WCET
Light Heavy Light Heavy Light Heavy Light Heavy ms
C v N N J 6.12E-01
C, V v N N 8.86E-01
Cs3 v v N N 8.89E-01
Cy v J J N 8.89E-01
Cs v v v J 8.94E-01
Ce J v v N 1.16E+00
Cy J J J N 1.16E+00
Cg v J J N 1.17E+00
Cy i v N J 1.17E+00
Cio i Vi N N 1.17E+00
Ci1 v v J N 1.17E+00
Ci2 J v N J 1.44E+00
Ci3 i v v Vv 1.44E+00
Cia i v v N 1.44E+00
Cis J v J N 1.45E+00
Cis Vv v N N 1.72E+00

4390 C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398

Table 6
Techniques associated with attacks.

Table 7
Inputs associated with different attack mechanisms.

Light technique Heavy technique

Fields Variable

Neural network
Neural network
Neural network
Neural network
Neural network
Neural network

Oversize payload Decision tree
Recursive parsing Naive Bayes
Buffer overflow attack Decision tree
XML injection attack SMO

Xpath injection attack

SQL injection attack

Recursive parsing
Oversize payload
XML injection attack
Buffer overflow attack
SQL injection attack
Xpath injection attack

{hs, ha, hs, he, pc}

{h3, ha, hs, he, pc}

{hs, ha, hs, he, pc}

{hs, h4, hs, he, pc}

{Ps. P9, P10, P11, P12, P13, P14, P15} U {h3, ha, hs, he, pc}
{P19, P20, P21, P22, P23, P24} U {h3, h4, hs, he, pc}

In the event that the retrieved set is empty, the process contin-
ues with the retrieval of the messages only without considering the
subnet mask.

The process of parsing is carried out at the beginning of the
retrieval phase so that the information is available and can mini-
mize the waiting time during the reuse phase. If the parser exceeds
the time limit set for analyzing the request, it assumes that the
request is malicious and rejects it. By keeping this restriction in
mind it is possible to work in real time and also guarantee the
integrity of the parser when facing malicious requests.

4.2. Reuse

At the beginning of the reuse phase, a number of different tech-
niques of soft computing are applied to the set of retrieved cases,
making it possible to determine if the service requestisaDoS attack,
and if so, what kind of attack it is.

Each type of attack in our proposal (except for Xpath and SQL
injection attacks) can be analyzed by two different techniques. The
first is known as the light technique and is usually a detection algo-
rithm with a low temporal cost, but of low quality as well. Using
the heavy technique, the result of the analysis is much more exact,
but it requires a much higher amount of execution time. Using
these techniques to analyze an attack allows the real time agent
to apply the one that is best suited to its needs, without violating
the temporal restrictions that should be considered when execut-
ing the deliberative stages. The objective is to exploit tolerance for
imprecision, uncertainty to achieve tractability, robustness and low
solution cost. Obviously, the more time that the real time agent has
available to execute the reuse phase, the more detailed the anal-
ysis of the request can be. However, in many cases the real time
agent has a limited amount of time to complete the analysis and
must select which combination of techniques will allow it to com-
plete a full analysis within a period of time that does not exceed
the time limit. Planning which tasks will be used is based on a gen-
eralization of the estimated process, known as design-to-time [25]
planning, which assumes that multiple methods exist to complete
various tasks and the problem consists of designing a solution that
uses all available resources to maximize the quality of the response
within the available time. In order to determine which set of tech-
niques provides the best solution, it is necessary for the length and
quality associated with each technique to be predictable, as seen
from a global perspective that includes all possible combinations of
techniques. Table 5 shows the different combinations of techniques
that can be selected and the worst case execution time. Xpath and
SQL injection attack mechanisms have only one attack technique
that provides the best solution. This is because the seriousness of
the harm that each of these attack mechanisms can inflict makes it
necessary to perform a more thorough analysis.

Algorithm 2 is used to select the combination of techniques that
produce the most optimal results given the time restraint. This
algorithm uses the adaptProblem function shown in Algorithm 1
to select the optimal combination given the amount of time avail-
able. Furthermore, a prior selection of available combinations is
performed as shown in Table 5. Thus, those combinations which
apply the light technique are eliminated for attack techniques in

which there has recently been an intrusion received. To avoid the
excessive use of heavy techniques, the time of 30 min is fixed to
take account of recent attacks. In the event that it is unable to
complete any combination within the indicated time period, the
function indicates this fact in its response and analysis is not per-
formed. The classifier agent should in this case reject the service
request since it cannot guarantee its security.

The different techniques that the classifier agent executes
once the optimal combination of techniques has been determined
include a set of common inputs that are represented by p. and are
defined as follows: pc={p1, p2s, P29, P2, D3, P4, D5, D6, P16» P17, P26,
p27}- The remaining entries vary according to the techniques used,
whichis specified for each one. Table 6 shows the information of the
different soft computing techniques used for each of the attacks.

The information used by different techniques varies according
to the type of attack. Table 7 details the different fields associated
with each of the attacks for Heavy techniques. Light techniques
only use the fields that refer to the request headers, specifically the
following fields {hs, hy, hs, hg}.

In addition to the techniques displayed in Table 6, there is a
global neural network that contains each of the inputs listed in
Table 7 and that is trained for the entire set of cases. This network
will be used in those situations where the response time is critical
and it is not possible to check each case individually.

Fig. 1 shows the mixture of experts as it is carried out. It is pos-
sible to see how input data gathered from the cases are distributed
between the different attack classification techniques. Fig. 1 shows
only one part of the mixture. The complete description of tech-
niques associated with each attack is shown in Table 6.

At the end of the reuse stage, the optimal output is selected, cor-
responding to the maximum values provided by each of the experts,
so that if any exceeds a given threshold, the service request is con-
sidered to be an attack, and classified as such. Keeping in mind
that the classification of each attack mechanism is performed by
an expert, it is possible to determine the type of attack that was
initiated and, additionally, to identify the object at which the attack
was targeted (database, parser, etc.).

Once the analysis is complete, if an attack has been detected, the
service request is rejected and is not sent to the respective provider.
Subsequently, the result of the analysis is evaluated by a human
expert through the revise and retain phase, if it is necessary to store
the case associated with the request.

The following section describes the different techniques for
detecting attacks as listed in Table 6. The description is somewhat
general, without specifying the particular inputs associated with
any type of attack.

4.2.1. Decision tree

This is a knowledge extraction and classification technique
widely used in different arenas, from simple statistics to bioinfor-
matics [42].Itinvolves an advanced technique that has been studied
from avariety of perspectives. Among the different types of decision
trees are: CLS (Concept Learning System) [43], ID3 (Induction Deci-
sion Trees) [44], CART (Classification and Regression Trees) [45],
OC1 (Oblique Classier 1) [46], ASSISTANT [47] o C4.5,]48, C5.0/See5
[48]. The J48 algorithm is a non-parametric test that uses extrac-

C.L Pinzén et al. / Applied Soft Computing 11 (2011) 4384-4398

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

Input : cases, problem
Output: solution

switch time do

case wcet(C1) < time < wcet (Co)
] solution = execute(Ci)
end
case wcet (Cy) < time < wecet(Ca)
| solution =execute(Cs)
end
case wecet (C,,—1) < time < wecet(Cn)
] solution =execute(Cp_1)
end
case wcet(Cn) < time
[solution =execute(C})
end
otherwise
[solution = "Not Enough Time"
end
end
return solution

Inputs

Global Inputs

Particular Inputs

Algorithm 2. adaptProblem function.

Decission tree

7 Oversize Payload

Naive Bayes

Recursive Parsing

MLP

SQL Injection Attack

MLP

Selector of Methods

Fig. 1. Multiple method inputs and outputs.

Combination
Response

4391

4392 C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398

tion rules to explain the classification carried out in the previous
steps and to classify new elements. This method makes it possi-
ble to generate rules and to extract the most important variables
to classify new cases with high performance. Because the results
of the different algorithms are very similar, it is only necessary to
select one that can work with continual variables, such as CART
or J48. We have selected 48 (C,4,5) because it can be used in data
mining libraries.

The J48 algorithm attempts to minimize the width of the deci-
sion tree using heavy search strategies, which require that any
training takes place offline. In summary, the algorithm defines two
terms: gain and rate of gain with respect to the information I(S)
contained in a node S. Using only the gain criteria, attributes with
multiple values are more highly favored given that they can more
easily divide the elements into numerous subsets. To avoid the
effect of favoring attributes with multiple values, the concept of
gain rate is added.

1(S)=-> f¥-log(f) (4)
j=1

where fjs represents the relative frequency of G in class S, j;s =
an/NS, n]s, number of elements in class C; in S and N° the total
number of elements. This criterion is adjusted for continuous or
categorical components.
The earning function is defined as follows:
sy
- _ Pilyes.
G(S. B)=1(5)~ » 2I(S)) (5)

i=1

Brepresents the test that separates the modes from Sin S; ... S;in
order to maximize the value of the function G(S,B), |S;| the number
of elements in node ;.

To avoid favoring the partitions with branches containing few
elements, the rate of earnings term is introduced in the following
manner:

P(S, B) = —i:'%"'log (%) (6)
i=1

Finally test B is selected from the previous tests since it maximizes
the following criteria:
G(S. B)
P(S, B)

(7)

It is possible to see how processing and calculation time is
high and depends on the number of cases, so that for each pair
of service-subnet masks, the decision tree is stored in the corre-
sponding memory of rules. The memory of rules is defined by a set
of inductive rules defined as follows: R={r; ... r} withrj=(liA ---
Alm) — X; where s =(dss, 0s, %)/dss €{a;}, 0s € O, where g; is the set
of attributes indicated in Table 7, 0={=, #, >, <, <, >}, XjeX. The
memory of rules is fragmented the same way for each of the ser-
vices and for each of the network masks and types of attack, so that
R/C,n, represents the rules associated with the cases belonging
to service i and network mask m. The predicted classification for
the new case cy+1 is carried out from the recovered tree and from
the information on the new case. The final value corresponds to the
correction rate, the total number of classified nodes divided by the
total number of nodes classified by the leaf node associated with
the tree. This value is represented by the following function: mg

i R Neg
my| — | =—*% 8
d (Chmz,an) n ®

where i refers to the type of attack, n;, refers to the number of type
d nodes in the selected leaf note t, and n; is the number of nodes
from leaf node t.

4.2.2. Neural Network

The reasoning memory used by the agent is defined by the fol-
lowing expression: P={p; ... pn} and is implemented by means
of a MLP (Multilayer Perceptron) neural network. Each P; is a rea-
soning memory related to a group of cases according to the service
and subnet mask of the client, as denoted by Pr/Cp,p,. MLP is the
most widely applied and researched artificial neural network (ANN)
model. MLP networks implement mappings from input space to
output space and are normally applied to supervised learning tasks
[49]. Sigmoidal function was selected as the MLP activation func-
tion, with a range of values in the interval [0,1]. It is used to detect
if a SOAP message is classified as an attack or not. The value O rep-
resents a legal message (non attack) and 1 a malicious message
(attack). The sigmoidal activation function is given by

0= 11— (9)

Entries for the neural network corresponding to the case ele-
ments are defined in Table 7. The output corresponds to x". Because
the neurons exiting from the hidden layer of the neural network
contain sigmoidal neurons with values between [0,1], the incoming
variables are redefined so that their range falls between [0.2-0.8].
This transformation is necessary because the network does not deal
with values that fall outside of this range. The outgoing values are
similarly limited to the range of [0.2,0.8] with the value 0.2 cor-
responding to a non-attack and the value 0.8 corresponding to an
attack. Training for the network is carried out by the error Back-
propagation Algorithm [50]. The weights and biases for the neurons
at the output layer are updated by the following equations:

WELE+ 1) = W (E) + (el — YD1 = YWRYD + p(why () — whi(— 1))
(10)

B0t +1) = 62(6) + n(d? — YY1 = y2IP + (OB(t) — 62t — 1))
(11)

The neurons at the intermediate layer are updated by following
a procedure similar to the previous case and using the following
equations:

D b PP
WA(E+1) = wh() + (1 — yP)y

M
x (Z(d‘; — YD1 = YR Wowig I+ pu(wh(£) — wh(t — 19
k=1

(12)

P _ QP P y,P
ej(t+1) —9](t)+77(1 _yj)y]

M
x <Z(d£ — Y01 = YRWhwig) + (67 (1) - 68 (¢ - 1))
k=1

(13)
where wﬁ represents the weight that joins neuron j from the inter-

mediate layer with neuron k from the exit layer, t the moment
of time and p the pattern in question. di represents the desired

value, yi the value obtained for neuron k from the output layer, yj’,’
the value obtained for neuron j from the intermediate layer, n the

C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398 4393

100 +
99 |
98
97
96
95
94
93
92

W Light

W Heavy

91

Buffer
Overflow
Attack

Recursive
Parsing

Qver size
Payload

Injection
Attack

7
XML Xpath sQL
Injection Injection
Aftack Attack

Fig. 2. Percentage of attacks correctly classified.

learning rate and p the momentum. 9{{’ represents the bia value k
from the output layer. The variables for the intermediate layer are
defined analogously, keeping in mind that i represents the neuron
from the input level, j is the neuron from the intermediate level and
M is the number of neurons from the output layer.

When a previously trained network is already available, the
message classification process is carried out in the revise phase. If
a previously trained network is not available, the training is carried
out following the entire procedure and beginning with the cases
related to the service and subnet mask, as shown in Eq. (11).

Pr
C'hl hy

= MLP(Cp,p,) (14)

As with the previous technique, the final classification is car-
ried out according to the information from the memory, i.e., the
networks and the new case. It involves applying a neural network
associated with the case and estimating the output. This is repre-
sented in the following manner:

: pr
my [——— 15
" <C-h1h27 Cni1 > (1)

where i refers to the type of attack. As with the previous case, the
neural network previously trained offline is used for the service,
type of attack and network mask.

4.2.3. Naive Bayes

In this technique, attacks are divided between the type desired
in the study and in the rest of the cases, whether they are attacks
or not. The Naive Bayes [51] is then applied. In order to perform an

Table 8
Description of web services used for the tests.
Input parameter Type
RequestTreamentPatient: consult a treatment for a patient via Internet
IdPatient Int
Start_-Time_Treatment Date
Start_Date_Treatment Date
End_Time_Treatment Date
End_Date_Treatment Date
RequestScheduleDoctor: consult the agenda of a doctor via Internet
IdDoctor Int
Date_Schedule Date
Time_Schedule Date
RequestAppointment: request an appointment with a doctor via Internet
IdDoctor Int
PatientName String
Date_Appointment Date
Time_Appointment Date

Description String

analysis, it is important to consider the type of data, since it is nec-
essary to work with continuous variables or with many categories.
As aresult it is not possible to apply the Bayes classifier in its origi-
nal definition since, by so doing, the final probability for each of the
classes would be zero, because of the existence of variables with a
variety of values.

n
_ _ P(A; = q;|X = a) a;discrete
Pa = PX = a)H { P(A; < g;)X =a) a;continue (16)
i-1
n
—p(C — P(Aj = ajlc=g) a;discrete
Py =P(C= g)H { P(A; > ajlc =g) a;continue (17)
i-1

where X={ag} a=a determined type of attack, g=good,
u=undefined and a; corresponds to each of the fields indicated in
Table 7 for the studied attack.

The final value obtained by the process is calculated as follows:

- P
My (Cims Cny1) = P_a (18)
e

4.2.4. SMO

The Support Vector Machine (SVM) is a supervised learning
technique applied to the classification and regression of elements.
SVM can be applied in a variety of fields such as chemistry, ambient
intelligence, modelling and simulation, and data or text mining. The
algorithm represents an extension of the linear models [52]. SVM
also allows the separation of element classes which are not linearly
separable. For this the space of initial coordinates is mapped in a
high dimensionality space through the use of functions. Due to the

- o o
3] -l T =
’ .
— — o
0 [—_ :
‘
° = Lo
B —t o
o]
w
w |
<
o
< —
==
-
T T T T T T T T T T
> o N X
S R S K ¥ & 4 @Q— N ;§°"
& & & ¥ & & & 92 8
) S 5 &
e g VS
YR ¥

Fig. 3. Boxplots with the number of elements correctly classified.

4394

Table 9

Number of successful classifications obtained for the test and the 5 x 2-Cross-Validation.

C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398

The last column shows the average number of successful classifications.

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 Average
BayesNet 56 56 55 56 57 53 56 57 56 55 56 57 56 56 56 56 55 55 55 53 55.32
NaiveBayes 59 59 59 58 59 58 58 59 59 59 59 58 59 59 59 58 58 59 59 58 58.77
AdaBoostM1 58 58 59 57 60 58 58 57 58 58 60 60 58 59 60 58 59 58 60 60 58.66
DecisionStump 52 54 54 52 54 51 55 54 54 52 52 54 52 53 53 52 52 53 53 52 52.97
148 61 60 62 60 61 60 60 60 61 60 61 60 61 60 61 60 61 60 61 61 60.44
LogitBoost 61 60 60 58 60 60 60 60 59 59 60 60 60 59 60 60 60 60 60 60 59.77
MultiBoostAB 59 59 60 59 54 51 57 55 55 55 59 59 55 54 59 59 59 59 57 57 56.85
OneR 53 57 57 53 55 51 55 55 55 53 55 55 55 55 55 55 55 55 55 55 54.72
SVM 60 61 60 60 60 60 60 60 60 60 60 60 60 60 61 60 60 60 60 60 60.22
Stacking 37 40 40 37 38 39 39 38 39 38 38 39 40 37 37 40 38 39 39 38 38.53

Table 10
Number of successful classifications obtained for the test and 5 x 2-Cross-Validation. The last column shows the average number of successful classifications.
BayesNet NaiveBayes AdaBoostM1 DecisionStump 148 LogitBoost MultiBoostAB OneR SVM Stacking

BayesNet 0.0000 0.0000 0.0000 0.0000 0.0000 0.0171 0.0102 0.0000 0.0000
NaiveBayes 0.0000 1.0000 0.0000 0.0000 0.0000 0.0111 0.0000 0.0000 0.0000
AdaBoostM1 0.0000 1.0000 0.0000 0.0000 0.0001 0.0105 0.0000 0.0000 0.0000
DecisionStump 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
148 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0086 0.0000
LogitBoost 0.0000 0.0000 0.0001 0.0000 0.0002 0.0001 0.0000 0.0553 0.0000
MultiBoostAB 0.0171 0.0111 0.0105 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000
OneR 0.0102 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
SVM 0.0000 0.0000 0.0000 0.0000 0.0086 0.0553 0.0000 0.0000 0.0000
Stacking 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

fact that the dimensionality of the new space can be very high, it is
not feasible to calculate hyperplanes that allow the production of
linear separability. For this, a series of non-linear functions called
kernels is used.

If we consider a set of patterns marked by T={(x1,y1).,(x2,¥2),
.. (Xm,ym)} where x; is a vector with dimension n, the idea is to
convert the elements x; in a highly dimensional space using the
application of a feature function @(x), so that the original set of
patterns changes to the following &(t)={(P(x1).y1), (P(x2).¥2), - - -
(D(Xm),ym)}, according to the @(x) function selected, @(T) could be
linearly separated.

The following equation is used to perform the classification (19)
[53].

m
class(x;) = signe Z)\iy@(xi)cb(xk) +b (19)

i=1
where A; is a Lagrange multiplier, y; output value for the patter x;,
b constant.

Aswe cansee, there is a product @(x;)®(x,) that,according to the
dimensionality of the new space, can be very costly to calculate. For
this reason, it is necessary to select a series of kernel functions that
canoperate in the original space to perform these calculations with-
out requiring a heavy computational load. Under certain conditions
the product in the feature space has a result that is an equivalent
kernel in the input space, which is (20)

k(x;, x;) = @(x;) - D(¥;) (20)

For all cases k complying with condition (20), the function is said
tobe nuclear. The work [53] presents various nuclear functions such
as linear, polynomial, Gaussian and exponential, by which there are

Table 11
Number of correct, suspicious or incorrect responses and the average execution time
for different combinations.

Correct Suspicious Incorrect Time (ms)
Single algorithm 1457 34 9 0.563
G 1463 14 23 0.611
Cig 1484 12 4 1.722

clearly a variety of nuclear functions that can perform this calcu-
lation simply. For example, in the case of the polynomial function,
the following exists:

k(xi, %) = D(x1) - D) = (1 +x:%)° (21)

Clearly, in order to perform the calculation it is not necessary to
consider the new highly dimensional space, so the operations that
must be performed to classify individuals @(x;)®(x) are limited to
what is indicated on the right of the equation.

To calculate the classifier class (x;) there are algorithms such
as the Sequential Minimal Optimization (SMO) [54] that make is
possible to efficiently perform an iterative calculation of the clas-
sifier function. Performing an iterative calculation facilitates the
temporal bounding of the algorithm since it can temporally bind
the solution.

Mi(C i, ny1) = class(Cpy1) (22)

Nevertheless, although there is an efficient method of calcula-
tion, the classifier is stored in the same manner and is retrieved
to perform the classification in the same way as with the previ-
ous techniques. The inputs vary according to the attack mechanism
being investigated as outlined in Table 7.

1,20E+00
1,00E+00
8,00E-01

6,00E-01

® Mean time

Time/ms

4,00E-01 BWCET

2,00E-01

—l
SMO

—F=

———

0,00E+00

Neural
Network

Decission Naive Bayes
Tree

Fig. 4. Average time and Worst Case Estimated Time (WCET).

C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398 4395

100

90 -
80
70 -
60 -
50 -
40
30 4
20

10

-
o

cs

c1

c10

5 I z °
=

o I8
1ms 1,2ms 1,4ms

MNET mCl mC2 mC3 mC4 mC5 mC6 m(C7

c15

C16

ci

c15

~

I cn

1,6ms 1,8ms 2ms

C8 mC9 mCl0 »C11 ~C12 = C13 C14 = C15 @ Cl6

Fig. 5. Queries made for each combination according to time.

5. Validation test: detection of attacks using of our
classifier agent

In order to evaluate our prototype, we used a description of
three services available from an application currently under devel-
opment for testing purposes. Table 8 lists a description of these
services.

Some technical aspects of the equipment used to conduct
the tests will now be provided. These aspects are an influen-
tial factor on the results obtained, since the performance of the
system is a critical factor when assessing this type of approach.
The prototype, and more specifically the classification mecha-
nism, was tested using a standard PC with a 100 Mbps Ethernet
network connection. The PC used by the classifiers was an HP
Pavilion Intel Core 2 Duo E7200 with 4GB RAM. In order to ini-
tiate requests, we developed a type of requesting agent whose
only function was to initiate a series of requests for web ser-
vices, as described in Table 8. There were a total of three
instances of the requesting agent, each of which was located in
a different network and sent requests using a different subnet
mask.

Both the requesting agent and the real time classifier agent
are executed on the jART platform [55], which is a multi-agent
platform system specially designed to work in real time envi-
ronments. The use of this platform is necessary to guarantee the
execution of tasks with temporal restrictions that must be car-
ried out by the real time classifier agent. At the same time, both
the agent and the platform work in a new real time operating
system.

6. Results and conclusion

The availability of web services has been threatened by a variety
of attack mechanisms that can lead to a denial of service attack that,
in the worst case scenario, can cause authorized users to lose access
to the services and available resources.

This article has presented a novel proposal for detecting and
blocking attack mechanisms in web service requests. The proposal
includes different soft computing classification techniques that are
integrated in a real-time case-based reasoning system, in such a
way that the system guarantees robustness and low solution cost.
The article proposes a new vision in which each attack mechanism
is individually analyzed. This makes it possible to divide the general
problem into smaller sub-problems, which facilitates the applica-
tion of classification techniques according to the characteristics
associated with each attack mechanism. It also makes it possible
to obtain better classification results with regard to both the effec-
tiveness of the classification process and the response time, since
all classification mechanism tasks are temporally bounded.

In order to validate the initial prototype, we proposed a bench-
mark case study that used description 3 from the web services,
designed especially for testing. The service requests were initiated
from an agent specifically developed for that task and they were
classified by a classifier agent. The following section describes in
greater detail the tests that were carried out.

The description for each of these services was used to build a
set of tests to validate the effectiveness of our Classifier agent. The
first set of tests was developed to determine whether the use of a
mixture of experts was able to improve the detection and subse-
quent classification of attack mechanisms. The second set of tests
focused on demonstrating the convenience of using our proposal

Table 12
Comparison of current approaches vs. TB-CBR.
Nedgty XML CheckWay IAPF [34] ID/IP Twofold DDoS and XDoS SOTA and TB-CBR
[11] Firewall gateway framework mechanism defense system XDetector
[13] [58] [15] [16] [17] [18]
Learning No No No No Yes No No Yes Yes
ability
Adaptive No No No No Yes No No No Yes
ability
Positive - No - - - - - Yes Yes
and
negative
False
Time - - Nearly real - - Nearly real Nearly real time - Real time
response time time

4396 C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398

in environments where it is necessary to consider certain temporal
restrictions associated to the process of analysis and classification.

Prior to initiating the tests, the attack classification mechanisms
were analyzed for each use of a light or heavy technique. The analy-
sis demonstrated that the use of heavy techniques provided a better
classification, but with a greater temporal cost. Although this result
was expected and logical, the tests were performed in order to
empirically prove the execution times in the worst case for each
of the different techniques. The time was used to determine which
set of techniques should be applied so as to not exceed the deadline,
which was not exceeded in any of the executions.

The first test compares a series of results obtained for differ-
ent attacks and techniques. In order to perform these tests, 1500
requests were generated, of which 750 were legal and 750 illegal,
distributed in groups of 125, 125, 125, 125, 100 and 150 for each
type of attack: oversize payload, recursive parsing, buffer overflow
attack, XML injection attack, Xpath injection attack and SQL injec-
tion attack, respectively. The techniques indicated in Table 6 were
applied to each attack using the Leave-one-out Cross-Validation
soft computing technique [59,60]. Fig. 2 lists the percentage of
attacks correctly classified for light and heavy techniques. It is clear
that light techniques have a lower rate of correctness than heavy
techniques when dealing with the different attacks for which they
are available.

To compare the different soft computing techniques used in the
light classifier, it was necessary to train the system and carry out
a cross validation following the Dietterich’s 5 x 2-Cross-Validation
Paired t-Test algorithm [61,62] and instead of the Leave-one-out
technique. A detailed analysis was carried out for the different soft
computing methods in a similar way to the oversize payload, recur-
sive parsing attack shown in Table 9. 125 requests were selected
and the 5 x 2-Cross-Validation was carried out. Table 9 shows the
number of successful classifications for the test performed for the
different soft computing techniques taken into account in this
experiment. These techniques are those based on decision trees,
as J48, decision Stump, OneR decision rules, statistic techniques to
provide probabilistic values that can be considered as fuzzy values,
as Naive Bayes and Bayesian network, and the mixture of multiple
classifiers based on boosting or Stacking.

From the results shown in Table 9 it is possible to analyze the
relevance of the differences using the statistic techniques presented
in Dietterich’s 5 x 2-Cross-Validation Paired t-Test algorithm [62].
Once the Paired t-Test was applied, it was possible to obtain the
results shown in Table 10. The results presented in Table 10 indicate
that the j48 method provides better results than the rest of the soft
computing methods for a significance level of 0.05, since the p value
obtained is lower than for the rest of the methods.

Additionally, if the statistical dispersion of the data is analyzed
by means of a box plot in Fig. 3, then it is possible to observe how
the average rate for succesful classifications using the J48 method
is better than those obtained for the rest of the soft computing
methods. This fact, together with fact that the average rate for the
J48 method is higher than the rest of the methods, allows us to
conclude that the J48 soft computing method provides the best
results.

Once the rate of correctness was analyzed, we proceeded to
analyze the results with regard to execution time. A total of 1500
available queries were used to analyze the execution time. We
replicated and analyzed 30,000 executions to calculate the aver-
age execution time. The final result is shown in Fig. 4, which shows
that execution time for the neural network to perform its estimates
is much greater than the other techniques.

Table 11 shows the results obtained. As can be seen, the single
algorithm based on a single neural network carries out the esti-
mation of attack using all input parameters. The neural network
generates the worst estimated result but it is the fastest.

In order to analyze the final efficiency of the system, we forced
it to function under various conditions so that we could determine
the variation in the correctness rate and the average execution time
for the 1500 requests. To accomplish this, a variable deadline takes
a value from one that is equal to the time that the classifier agent
needs to perform an analysis using the C; combination (the fastest),
and another slightly greater value that the agent needs to complete
the analysis indicated by the combination C;g. Table 11 shows the
results obtained. Clearly, the unique algorithm created by a unique
neural network that can produce an attack estimate under all the
worst case input parameters is the estimate for the worst case, but
also the fastest estimate. The fact that it is the fastest is that combi-
nation C; also includes two networks, albeit more simple, that can
estimate two of the attacks. With regards to the correctness rate,
the most efficient combination is Cg, which is the heaviest.

For the second test a set of 100 queries were selected and
then classified according to different pre-determined deadlines.
The results are shown in Fig. 4. For the deadlines with a low value,
the fastest combinations were primarily used, while deadlines with
a high value used the heaviest combinations. Fig. 5 includes a NET
(Not Enough Time) column. This column represents the number
of queries that were unable to be analyzed within the given time
constraints. The number of NET requests decreases as the dead-
line increases since it is possible to apply light techniques for those
cases where it is not possible to apply the heavy techniques, which
have a greater computational cost.

In addition to the techniques presented in this article, there are
others that can perform similar classifications such as CART [56,57],
which can also be used in the case study. Nevertheless, the primary
objective of this study is to integrate the most well-known classi-
fication techniques in a real time environment, not to carry out an
exhaustive analysis of existing techniques. The analysis could have
been completed in a less temporally restrictive manner, but there
would be no guarantee of complying with all the temporal restric-
tions. However, similar classification results would be obtained.

Finally, Table 12 presents a theoretical comparison of TB-CBR
with current approaches aimed at detecting DoS attacks in web ser-
vices environments. Those parameters that could not be evaluated
are marked with a hyphen.

As can be seen in the comparative table, TB-CBR provides new
important capacities such as a learning capacity and also adapt-
ability which provide our new approach with incremental learning
and a flexibility to adapt to attack techniques. Additionally, TB-CBR
is one of the only approaches that aims to work in circumstances
where response time is critical. If it is true that the use of a CBR
that has been temporally bounded, we limit the time for obtaining
the optimum analysis, although because of the need to complete
the analysis before a given time for this to be valid, we are obliged
to limit the deliberation process of the CBR system. Even so, using
the TB-CBR system, an algorithm with anytime characteristics, we
are guaranteed that the obtained result is the optimum attending
to the time available to carry out the analysis.

The results are promising and allow us to conclude that our
approach can be considered as a solid alternative to prevent and
detect DoS attacks in web service environments. However, there
is still much work to be done, especially with regard to checking
the validity of our approach in heterogeneous real environments.
These are our next challenges.

Acknowledgements

This work has been partially supported by the JCYL-2002-
05 Project, SAO71A08 Spanish Project, the Spanish govern-
ment (TIN2009-13839-C03-01), FEDER and CONSOLIDER-INGENIO
(2010 CSD2007-00022), the Generalitat Valenciana (PROME-

C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398 4397

TEO/2008/051) and the Professional Excellence Program 2006-
2010 IFARHU-SENACYT-Panama.

References
[1] M. Stamp, Information Security: Principles and Practice, Wiley InterScience,

[2] H.F.Tipton, M. Krause, Information Security Management Handbook, sixth edi-
tion, Auerbach Publications, Boston, MA, USA, 2007.

[3] A.Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker, Web Services Security: SOAP
Message Security 1.1 (WS-Security 2004), 2006.

[4] G.Della-Libera, M. Gudgin, P. Hallam-Baker, M. Hondo, H. Granqvist, C. Kaler, H.
Maruyama, M. McIntosh, A. Nadalin, N. Nagaratnam, R. Philpott, H. Prafullchan-
dra, J. Shewchuk, D. Walter, R. Zolfonoon, Web services security policy language
Version 1.0 (WS-SecurityPolicy), 2005.

[5] S.Anderson,]. Bohren, T. Boubez, M. Chanliau, G. Della, B. Dixon, Web Services
Trust Language (WS-Trust), 2004.

[6] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Libera, B. Dixon, Web
Services Secure Conversation Language (WS-Secure Conversation) Version 1.1,
2004.

[7] N.Gruschka, M. Jensen, N. Luttenberger, A stateful web service firewall for BPEL,
in: IEEE International Conference on Web Services, 2007, pp. 142-149.

[8] A. Householder, A. Manion, L. Pesante, G.M. Weaver, Managing the Threat of
Denial-of-Service Attacks, CERT® Coordination Center - Carnegie Mellon Uni-
versity, 2001.

[9] C.L.Schuba, I.V. Krsul, M.G. Kuhn, E.H. spafford, A. Sundaram, D. Zamboni, Anal-
ysis of a denial of service attack on TCP, in: Proceedings of the IEEE Symposium
on Security and Privacy (SP'97), IEEE Computer Society, Washington, DC, USA,
1997, p. 208.

[10] E.G. Im, Y.H. Song, An adaptive approach to handle DoS attack for web ser-
vices, in: S.B. Heidelberg (Ed.), Intelligence and Security Informatics, 2005, pp.
634-635.

[11] R. Bebawy, H. Sabry, S. El-Kassas, Y. Hanna, Y. Youssef, Nedgty. Web services
firewall, in: IEEE International Conference on Web Services (ICWS’05), Orlando,
Florida, 2005, pp. 597-601.

[12] J. Wang, Defending against denial of web services using sessions, in: IEEE/IST
Workshop on: Monitoring, Attacking Detection and Mitigation, 2006.

[13] Y.-S. Loh, W.-C. Yau, C.-T. Wong, W.-C. Ho, Design and implementation of an
XML Firewall, in: International Conference on Computational Intelligence and
Security, 2006, pp. 1147-1150.

[14] S. Padmanabhuni, V. Singh, K.M.S. Kumar, A. Chatterjee, Preventing service ori-
ented denial of service (PreSODoS): a proposed approach, in: IEEE International
Conference on Web Services (ICWS'06), IEEE Computer Society, Washington,
DC, USA, 2006, pp. 577-584.

[15] C.G. Yee, W.H. Shin, G.S.V.R.K. Rao, An adaptive intrusion detection and pre-
vention (ID/IP) framework for web services, in: International Conference
on Convergence Information Technology (ICCIT'07), IEEE Computer Society,
Washington, DC, USA, 2007, pp. 528-534.

[16] M.Srivatsa, A.lyengar,]. Yin, L. Liu, Mitigating application-level denial of service
attacks on web servers: a client-transparent approach, ACM Transactions on
Web 2 (2008) 1-49.

[17] X. Ye, Countering DDoS and XDoS attacks against web services, in: IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, IEEE Com-
puter Society, Washington, DC, USA, 2008, pp. 346-352.

[18] A. Chonka, W. Zhou, Y. Xiang, Defending grid web services from XDoS attacks
by SOTA, in: EEE International Conference on Pervasive Computing and Com-
munications, IEEE Computer Society, Los Alamitos, CA, USA, 2009, pp. 1-6.

[19] C. Carrascosa, A. Terrasa, F.A. Garcia, A. Espinosa, V.J. Botti, A Meta-Reasoning
Model for Hard Real-Time Agents, CAEPIA, 2005, pp. 42-51.

[20] D.M. Surka, M.C. Brito, C.G. Harvey, The real-time object agent software archi-
tecture for distributed satellite systems, in: Proceedings of the IEEE Aerospace
Conference, 2001, pp. 2731-2741.

[21] K. Prouskas,]. Pitt, Towards a real-time architecture for time-aware agents,
in: First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), ACM, New York, NY, USA, 2002, pp. 92-93.

[22] A.Ram,].C.Santamaria, Continuous case-based reasoning, Artificial Intelligence
90 (1997) 25-77.

[23] S. Ontafion, K. Mishra, N. Sugandh, A. Ram, On-line case-based planning, Com-
putational Intelligence 26 (2010) 84-119.

[24] R.A. Jacobs, ML.L Jordan, SJ. Nowlan, G.E. Hinton, Adaptive mixtures of local
experts, Neural Computation 3 (1991) 79-87.

[25] AJ.Garvey, V.R. Lesser, Design-to-time real-time scheduling, IEEE Transactions
on Systems, Man and Cybernetics 23 (1993) 1491-1502.

[26] A. Subasi, EEG signal classification using wavelet feature extraction and a mix-
ture of expert model, Expert Systems with Applications 32 (2007) 1084-1093.

[27] C.I Pinzén, Y. De Paz,]. Bajo, A multiagent based strategy for detecting attacks
in databases in a distributed mode, in: J.M. Corchado, S. Rodriguez, J. Llinas,
J.M. Molina (Eds.), International Symposium on Distributed Computing and
Artificial Intelligence (DCAI'8), Springer, Berlin/Heidelberg/Salamanca, Spain,
2008, pp. 180-188.

[28] J.Bajo,].M. Corchado, C. Pinzén, Y.D. Paz, B. Pérez-Lancho, SCMAS. A distributed
hierarchical multi-agent architecture for blocking attacks to databases, Inter-
national Journal of Innovative Computing, Information and Control (2008).

[29] K. Zhao, K. Yang, M. Zhang,]. Wang, L. Hu, Denial of service attack simula-
tion based-on CASL, in: IEEE International Workshop on Anti-counterfeiting,
Security, Identification, 2007, pp. 266-269.

[30] E. Pulier, H. Taylor, Understanding Enterprise SOA, Manning Publications Co.,
Greenwich, CT, USA, 2005.

[31] E. Cerami, Web Services Essentials Distributed Applications with XML-RPC,
SOAP, UDDI & WSDL, first edition, O'Reilly & Associates, 2002.

[32] M. Gudgin, M. Hadley, N. Mendelsohn,].-]. Moreau, H.F. Nielsen, A. Karmarkar,
Y. Lafon, W3C Recommendation: SOAP Version 1.2 Part 2: Adjuncts, second
edition, 2007.

[33] E. Moradian, A. Hakansson, Possible attacks on XML web services, Inter-
national Journal of Computer Science and Network Security 6 (2006) 154-
170.

[34] N. Sidharth, J. Liu, A framework for enhancing web services security, in:
31st Annual International Computer Software and Applications Conference
(COMPSAC’07), IEEE Computer Society, Washington, DC, USA, 2007, pp. 23-
30.

[35] V. Julidn, V. Botti, Developing real-time multi-agent systems, Integrated
Computer-Aided Engineering 11 (2004) 135-149.

[36] J.A. Stankovic, Misconceptions about real-time computing: a serious problem
for next-generation systems, IEEE Computer 21 (1988) 10-19.

[37] A. Garvey, V. Lesser, A survey of research in deliberative real-time artificial
intelligence, Real-Time Systems 6 (1994) 317-347.

[38] V.J. Botti, C. Carrascosa, V. Julidn, J. Soler, Modelling agents in hard real-time
environments, in: 9th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW’99), Springer-Verlag, London, UK, 1999, pp.
63-76.

[39] A. Martens, A.M. Uhrmacher, Adaptative tutoring processes and mental plans,
in: S.A.a.G.G. Cerri, F. Paraguacu (Eds.), Proceedings of Intelligent Tutoring
Systems—ITS, Springer, Berlin, 2002, pp. 71-80.

[40] A.Aamodet, E. Plaza, Case-based reasoning: foundational issues, methodological
variations, and system approaches, Al Communications 7 (1994) 39-59.

[41] T. Dean, M.S. Boddy, An analysis of time-dependent planning, in: 7th National
Conference on Artificial Intelligence, 1988, pp. 49-54.

[42] J.M. Corchado, J.F. De Paz, S. Rodriguez, J. Bajo, Model of experts for decision
support in the diagnosis of leukemia patients, Artificial Intelligence in Medicine
46 (2009) 179-200.

[43] E.B. Hunt,]. Marin, P.J. Stone, Experiments in Induction, Academic Press, New
York, 1966.

[44]].R. Quinlan, Discovering rules by induction from large collections of examples,
in: E.U. Press (Ed.), Expert Systems in the Micro-electronic Age, Edinburgh,
Scotland, 1979, pp. 168-201.

[45] L. Breiman, J. Friedman, CJ. Stone, R.A. Olshen, Classification and Regression
Trees, Wadsworth and Brooks, Belmont, CA/Monterey, CA, USA, 1984.

[46] N.N. Murthy, B.M. Mehtre, K.P.R. Rao, G.S.R. Ramam, P.K.B. Harigopal, K.S.
Babu, Technologies for E-Commerce: An Overview, 2001. Available from:
http://www.cmcltd.com/brochures/products\ _solutions/techecom-paper.pdf.

[47] B.Cestnik, . Kononenko, I. Bratko, Assistant 86: a knowledge-elicitation tool for
sophisticated users, in: Progress in Machine Learning-2nd European Working
Session on Learning (EWSL 87), Bled, Yogoslavia, 1987, pp. 31-45.

[48] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San
Francisco, CA, USA, 1993.

[49] M. Gallagher, T. Downs, Visualization of learning in multilayer perceptron net-
works using principal component analysis, IEEE Transactions on Systems, Man
and Cybernetics, Part B: Cybernetics 33 (2003) 28-34.

[50] Y. LeCun, L. Bottou, G.B. Orr, K.R. Miiller, Efficient BackProp, in: Neural Net-
works: Tricks of the Trade, Springer, Berlin/Heidelberg, 1998, p. 546.

[51] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Willey and
Sons, New York, 1973.

[52] V. Vapnik, A. Lerner, Pattern Recognition Using Generalized Portrait Method,
1963, pp. 774-780.

[53] O.lvanciugc, in: K.B. Lipkowitz, T.R. Cundari (Eds.), Applications of Support Vec-
tor Machines in Chemistry, John Wiley & Sons, 2007, pp. 291-400.

[54] J.C. Platt, Fast Training of Support Vector Machines Using Sequential Minimal
Optimization (1999), pp. 185-208.

[55] M. Navarro, V. Julian, J. Soler, V. Botti, jART: a real-time multi-agent plat-
form with RT-Java, in: 3th International Workshop on Practical Applications
of Agents and Multi-Agent Systems (IWPAAMS’2004), Universidad de Burgos,
2004, pp. 73-82.

[56] H.R. Bittencourt, R.T. Clarke, Use of classification and regression trees (CART)
to classify remotely-sensed digital images, in: Proceedings IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS’03), 2003, pp.
3751-3753.

[57] W.W. Cohen, Fast effective rule induction, in: Proceedings of the Twelfth
International Conference on Machine Learning, Morgan Kaufmann, 1995, pp.
115-123.

[58] N. Gruschka, N. Luttenberger, Protecting web services from DoS attacks by
SOAP message validation, in: Security and Privacy in Dynamic Environments,
Springer, Boston, 2006, pp. 171-182.

[59] G. Cawley, N. Talbot, Efficient leave-one-out cross-validation of kernel fisher
discriminant classifiers, Pattern Recognition 36 (11) (2003) 2585-2592.

[60] H. Wang, G. Li, E. Li, comparative study of boundary-based intelligent sam-
pling approaches for nonlinear optimization, Applied Soft Computing (2011)
doi:10.1016/j.asoc.2010.08.002.

[61] E. Mezyk, O. Unold, Mining fuzzy rules using an artificial immune
system with fuzzy partition learning, Applied Soft Computing (2011)
doi:10.1016/j.as0c.2010.06.012.

[62] T.G. Dietterich, Approximate statistical tests for comparing supervised classi-
fication learning algorithms, Neural Computation (1998) 1895-1923.

4398

C.I. Pinzon et al. / Applied Soft Computing 11 (2011) 4384-4398

Cristian L. Pinzén (PhD student) is currently completing
a PhD in Computer Science at the University of Salamanca
(Spain) and obtained a Master’s degree in Intelligent
Systems in the same university in 2007. He obtained a
Bachelor in Computer Sciences Degree at the Techno-
logical University of Panama in 2003 and a Technical
Engineering in Systems Computer Sciences Degree at
the same university in 2000. He has been co-author of
published papers in several journals. His studies are sup-
ported by the Professional Excellence Program 2006-2010
IFARHU-SENACYT-Panama.

Juan Francisco De Paz (PhD student) is currently com-
pleting his studies of PhD in Computer Science at the
University of Salamanca (Spain). He is assistant professor
at the University of Salamanca. He obtained a Techni-
cal Engineering in Systems Computer Sciences Degree in
2003, anEngineering in Computer Sciences Degree in 2005
at the University of Salamanca and a Statistics Degree in
2007 in the same university. He has been co-author of
published papers in several journals.

Marti Navarro (PhD student) is a researcher at the GTI-IA
Research Group of the Valencia University of Technol-
ogy, Spain. His research interests include multi-agent
systems, agent architectures, multiagent system method-
ologies and real-time agents. Contact: Departamento de
Sistemas Informaticos y Computacién, Univ. Politécnica
de Valencia, Camino de la Vera S/N, 46022, Valencia, Spain.

Javier Bajo (PhD) received a PhD in Computer Science and
Artificial Intelligence from the University of Salamanca
in 2007. At present he is associate professor at the Pon-
tifical University of Salamanca (Spain). He obtained an
Information Technology degree at the University of Val-
ladolid (Spain) in 2001 and an Engineering in Computer
Sciences degree at the Pontifical University of Salamanca
in 2003. He has been member of the organising and scien-
tific committee of several international symposiums such
as CAEPIA, IDEAL, and HAIS. and is co-author more than
100 papers published in recognized journals, workshops
and symposiums.

Vicente Julidn (PhD) is an associate professor at the
Department of Information Systems and Computation at
the Valencia University of Technology and a researcher
at the GTI-IA Research Group of the Valencia Univer-
sity of Technology, Spain. His research interests include
multi-agent systems, agent architectures, multiagent sys-
tem methodologies and real-time agents. He received his
PhD in Computer Science from the Valencia University
of Technology, Spain. Contact: Departamento de Sistemas
Informaticos y Computacién, Univ. Politécnica de Valen-
cia, Camino de la Vera S/N, 46022, Valencia, Spain.

Juan M. Corchado (PhD) received a PhD in Computer
Science from the University of Salamanca in 1998 and
a PhD in Artificial Intelligence (Al) from the University
of Paisley, Glasgow (UK) in 2000. At present he is dean
at the Faculty of Computer Sciences, associate professor
and director of the Intelligent Information System Group
(http://bisite.usal.es) and director of the MSc programs in
Computer Science at the University of Salamanca (Spain).
Previously he was sub-director of the Computer Science
School at the University of Vigo (Spain, 1999-2000) and
researcher at the University of Paisley (UK, 1995-1998).
He has been a research collaborator with the Plymouth
Marine Laboratory (UK) since 1993. He has led several
Artificial Intelligence research projects sponsored by Spanish and European public
and private institutions and has supervised seven PhD students. He is the co-author
of over 130 books, book chapters, journal papers, technical reports, etc. published
by organisations such as Elsevier, [EEE, IEE, ACM, AAAI Springer Verlag, and Morgan
Kaufmann. Most of these present practical and theoretical achievements of hybrid
Al and distributed systems. He has been president of the organising and scientific
committee of several international symposiums.

