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Abstract

Due to the hardness of solving the minimum spanning tree (MST) problem in stochastic environments, the
stochastic MST (SMST) problem has not received the attention it merits, specifically when the probability
distribution function (PDF) of the edge weight is not a priori known. In this paper, we first propose a learning
automata-based sampling algorithm (Algorithm 1) to solve the MST problem in stochastic graphs where the
PDF of the edge weight is assumed to be unknown. At each stage of the proposed algorithm, a set of learning
automata is randomly activated and determines the graph edges that must be sampled in that stage. As the
proposed algorithm proceeds, the sampling process focuses on the spanning tree with the minimum expected
weight. Therefore, the proposed sampling method is capable of decreasing the rate of unnecessary samplings
and shortening the time required for finding the SMST. The convergence of this algorithm is theoretically
proved and it is shown that by a proper choice of the learning rate the spanning tree with the minimum
expected weight can be found with a probability close enough to unity. Numerical results show that Algorithm
1 outperforms the standard sampling method. Selecting a proper learning rate is the most challenging issue in
learning automata theory by which a good trade off can be achieved between the cost and efficiency of
algorithm. To improve the efficiency (i.e., the convergence speed and convergence rate) of Algorithm 1, we
also propose four methods to adjust the learning rate in Algorithm 1 and the resultant algorithms are called as
Algorithm 2 through Algorithm 5. In these algorithms, the probabilistic distribution parameters of the edge
weight are taken into consideration for adjusting the learning rate. Simulation experiments show the
superiority of Algorithm 5 over the others. To show the efficiency of Algorithm 5, its results are compared
with those of the multiple edge sensitivity method (MESM). The obtained results show that Algorithm 5
performs better than MESM both in terms of the running time and sampling rate.
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1. Introduction

A minimum spanning tree (MST) of an edge-weighted network is a spanning tree having the minimum sum
of edge weights among all spanning trees. The weight associated with the graph edge represents its cost,
traversal time, or length depending on the context. Minimum spanning tree has many applications in different
areas such as data storage [31, 32], statistical cluster analysis [33, 34], picture processing [35], and especially
in communication networks [36, 37]. In network routing protocols, the minimum cost spanning tree is one of
the most effective methods to multicast or broadcast the massages from a source node to a set of destinations.
In most scenarios, the edge weight is assumed to be fixed, but this does not hold always true and they vary
with time in real applications. For example, the links in a communication network may be affected by
collisions, congestions and interferences. Therefore, the MST problem is generalized toward a stochastic
minimum spanning tree (SMST) problem in which the edge weight is a random variable rather than a constant
value. There have been many studies of the minimum spanning tree problem dealing with the deterministic
graphs and several well-known sequential algorithms such as Boruvka [1], Kruskal [2] and Prim [3], in which
the MST problem can be solved in polynomial time, have been presented. Furthermore, several efficient



distributed [20-24] and approximation [25-27] algorithms have been also proposed to solve the MST problem
in deterministic graphs. However, when the edge weight is allowed to be random (vary with time), this
problem becomes considerably hard to solve. This becomes more difficult if the probability distribution
function (PDF) of the edge weight is not a priori known. Unlike the deterministic graphs, due to hardness the
MST problem has not received much attention in stochastic graphs.

Ishii et al. [4] proposed a method for solving the stochastic spanning tree problem in which the
mentioned problem is transformed into its proxy deterministic equivalent problem and then a polynomial
time algorithm presented to solve the latter problem. In this method, the probability distribution of the edges’
weights is assumed to be known. Ishii and Nishida [5] considered a stochastic version of the bottleneck
spanning tree problem on the edges whose weights are random variables. They showed that, under
reasonable restrictions, the problem can be reduced to a minimum bottleneck spanning tree problem in a
deterministic case. Mohd [6] proposed a method for stochastic spanning tree problem called interval
elimination and introduced several modifications to the algorithm of Ishii et al. [4] and showed that the
modified algorithm is able to obtain the better results in less time. Ishii and Matsutomi [7] presented a
polynomial time algorithm to solve the problem stated in [4] when the probability distribution of the edges
weight is unknown. They applied a statistical approach to a stochastic spanning tree problem and considered
a minimax model of the stochastic spanning tree problems with a confidence region of unknown distribution
parameters. Alexopoulos and Jacobson [8] proposed some methods to determine the probability distribution
of the weight of the MST in stochastic graphs in which the edges have independent discrete random weights,
and the probability that a given edge belongs to a minimum spanning tree. Dhamdhere et al. [9] and Swamy
and Shmoys [10] formulated the stochastic MST problem as a stochastic optimization problem and proposed
some approximation approaches to solve two and multistage stochastic optimization problems.

In [41], Hutson and Shier studied several approaches to find (or to optimize) the minimum spanning
tree when the edges undergo the weight changes. Repeated Prim method, cut-set method, cycle tracing
method, and multiple edge sensitivity method are the proposed approaches to find the MST of the stochastic
graph in which the edge weight can assume a finite number of distinct values as a random variable. To
approximate the expected weight of the optimal spanning tree, Hutson and Shier used the algebraic structure
to describe the relationship between the different edge-weight realizations of the stochastic graph. They
compared different approaches and showed that the multiple edge sensitivity method, which is here referred
to as MESM, outperforms the others in terms of the time complexity and the size of the constructed state
space. Katagiri et al. [38] introduced a fuzzy-based approach to model the minimum spanning tree problem in
case of fuzzy random weights. They examined the case where the edge weights are fuzzy random variables.
Fangguo and Huan [39] considered the problem of minimum spanning tree in uncertain networks in which
the edge weights are random variables. They initially define the concept of the expected minimum spanning
tree and mathematically model (formulate) the problem accordingly. Then, based on the resulting model they
propose a hybrid intelligent algorithm which is a combination of the genetic algorithm and a stochastic
simulation technique to solve the SMST problem. In [44], a new classification is presented for MST algorithms.
This paper generally classifies the existing approaches into deterministic and stochastic MST algorithms.
Deterministic algorithms are further subdivided into constrained and unconstrained classes. In this paper, the
authors propose a heuristic method to solve the stochastic version of the minimum spanning tree problem. In
[39], the Priifer encoding scheme which is able to represent all possible trees is used to code the
corresponding spanning trees in the genetic representation. Almeida et al. [40] studied the minimum
spanning tree problem with fuzzy parameters and proposed an exact algorithm to solve this problem.

The main drawback of the above mentioned SMST algorithms is that they are feasible only when the
probability distribution function of the edge weight is assumed to be a priori known, whereas this assumption
can not hold true in realistic applications. In this paper, we first propose a learning automata-based
approximation algorithm called Algorithm 1 to solve the minimum spanning tree problem in a stochastic
graph, where the probability distribution function of the edge weight is unknown. As Algorithm 1 proceeds,
the process of sampling from the graph is concentrated on the edges of the spanning tree with the minimum
expected weight. This is theoretically proved for Algorithm 1 that by the proper choice of the learning rate the
spanning tree with the minimum expected weight will be found with a probability close enough to unity. To
show the performance of Algorithm 1, the number of samples that is required to be taken from the stochastic
graph by this algorithm is compared with that of the standard sampling method when the approximated value
of the edge weight converges to its mean value with a certain probability. The obtained results show that the
average number of samples taken by Algorithm 1 is much less than that of the standard sampling method. In



Algorithm 1, a learning automaton is assigned to each graph node and the incident edges of node are defined
as its action-set. This algorithm is composed of a number of stages and at each stage a spanning tree of the
graph is constructed by the random selection of the graph edges by the activated automata. At each stage, if
the expected weight of the constructed spanning tree is larger than the average weight of all spanning trees
constructed so far, the constructed spanning tree is penalized and it is rewarded otherwise. The performance
of a learning automata-based algorithm is directly affected by the learning rate. Choosing the same learning
rate for all learning automata to update their action probability vectors may prolong the convergence for
some learning automata and accelerate the convergence to a non-optimal solution for some others. To avoid
this, we also propose four methods for adjusting the learning rate and apply them to Algorithm 1. Algorithm 1
in which the learning rate is computed by these four statistical methods are named as Algorithm 2 through
Algorithm 5. Computer simulation shows that Algorithm 5 outperforms the others in terms of sampling rate
(the number of samples) and convergence rate. To investigate the efficiency of the best proposed algorithm
(Algorithm 5), we compare Algorithm 5 with MESM proposed by Hutson and Shier [41]. The obtained results
show that Algorithm 5 is superior to MESM in terms of running time and sampling rate.

The rest of the paper is organized as follows. The stochastic graph and learning automata theory are
briefly reviewed in section 2. In section 3, our learning automata-based algorithms are presented. Section 4
presents the convergence proof of the first proposed algorithm (Algorithm 1) and studies the relationship
between the learning rate and convergence rate of Algorithm 1. Section 5 evaluates the performance of the
proposed algorithms through simulation experiments, and Section 6 concludes the paper.

2. Stochastic Graph, Learning Automata Theory
To provide the sufficient background for understanding the basic concepts of the Stochastic minimum
spanning tree algorithms which are presented in this paper, the stochastic graphs and learning automata
theory are briefly described in this section.

2.1. Stochastic Graph
An undirected stochastic graph G can be defined by a tripleG =(V,E,W) , where V ={v,,v,,...,v,} is the

vertex set, E <V xV is the edge set, and matrix W, , denotes the probability distribution function of the
random weight associated with the graph edges, where n is the number of nodes. For each edgee ; the

associated weight is assumed to be a positive random variable with probability density function w; ;, which is

K
assumed to be unknown in this paper. An undirected stochastic sub-graph G'=(V',E’,W) is also called a
stochastic spanning tree of G if G’ is a connected sub-graph, G’ has the same edge set asG, and E'cE,
satisfying |E'|=n-1, where |E’| denotes the cardinality of setE'. Let T ={r,7,,7;,...} be the set of all possible

stochastic spanning trees of graph G and VVri denotes the expected weight of spanning tree ;. SMST is defined

as the stochastic spanning tree with the minimum expected weight. In other words, a given stochastic
minimum spanning tree 7” €T is the SMST if and only if Wz~ = minvriET Wt} [4, 7]

2.2. Learning Automaton

A learning automaton [11, 12] is an adaptive decision-making unit that improves its performance by
learning how to choose the optimal action from a finite set of allowed actions through repeated interactions
with a random environment. Learning automaton has shown to perform well in computer networks [43, 46,
48, 49, 50, 51, 52] and solving combinatorial optimization problems [44, 45, 47, 53]. The action is chosen at
random based on a probability distribution kept over the action-set and at each instant the given action is
served as the input to the random environment. The environment responds the taken action in turn with a
reinforcement signal. The action probability vector is updated based on the reinforcement feedback from the
environment. The objective of a learning automaton is to find the optimal action from the action-set so that
the average penalty received from the environment is minimized.

The environment can be described by a triple E = {a, 8, ¢}, where a = {a;, a5, ..., @,.} represents the
finite set of the inputs, § = {f4, B, ---, Bm} denotes the set of the values that can be taken by the reinforcement
signal, and ¢ = {cy, ¢, ..., ¢} denotes the set of the penalty probabilities, where the element c; is associated
with the given action «;. If the penalty probabilities are constant, the random environment is said to be a
stationary random environment, and if they vary with time, the environment is called a non stationary



environment. The environments depending on the nature of the reinforcement signal 8 can be classified into

P-model, Q-model and S-model. The environments in which the reinforcement signal can only take two binary
values 0 and 1 are referred to as P-model environments. Another class of the environment allows a finite
number of the values in the interval [0, 1] can be taken by the reinforcement signal. Such an environment is
referred to as Q-model environment. In S-model environments, the reinforcement signal lies in the interval
[a, b].

Learning automata can be classified into two main families [11, 13-19]: fixed structure learning
automata and variable structure learning automata. Variable structure learning automata are represented by
atriple < fa, T >, where f is the set of inputs, a is the set of actions, and T is learning algorithm. The learning
algorithm is a recurrence relation which is used to modify the action probability vector. Let «;(k) € a
and p(k) denote the action selected by learning automaton and the probability vector defined over the action
set at instant k, respectively. Let a and b denote the reward and penalty parameters and determine the

amount of increases and decreases of the action probabilities, respectively. Let r be the number of actions that
can be taken by learning automaton. At each instant k, the action probability vector p(k) is updated by the

linear learning algorithm given in Equation (1), if the selected action «;(k) is rewarded by the random
environment, and it is updated as given in Equation (2) if the taken action is penalized.

_[pit) +a[1-p;K)] j=i (1)
”f("“)‘{(i—a)pj(k) By
(1-b)p,(k) j=i (2)

pitk+1) {(%1) +(1=b)p; (k) Vj#i

If a = b, the recurrence equations (1) and (2) are called linear reward-penalty (Lgz_p) algorithm, if
a > b the given equations are called linear reward-epenalty (Lgz_.p), and finally if b = 0 they are called linear
reward-Inaction (Lr_;). In the latter case, the action probability vectors remain unchanged when the taken
action is penalized by the environment.

2.3. Variable Action Set Learning Automaton

A variable action-set learning automaton is an automaton in which the number of actions available at
each instant changes with time. It has been shown in [11] that a learning automaton with a changing number
of actions is absolutely expedient and also e-optimal, when the reinforcement scheme is Lgz_;. Such an
automaton has a finite set of n actions, ¢ = {ay, a5, ..., a,.}. A ={A1,4,,...,4,,} denotes the set of action
subsets and A(k) S « is the subset of all the actions can be chosen by the learning automaton, at each instant
k. The selection of the particular action subsets is randomly made by an external agency according to the
probability distribution ¥ (k) = {¥;(k), ¥, (k), ..., ¥n(k)} defined over the possible subsets of the actions,
where W;(k) = prob[A(k) = A;|]A; € A, 1 <i<2"—1].

pi(k) = probla(k) = a;|A(k), a; € A(k)] denotes the probability of choosing action a;, conditioned on
the event that the action subset A(k) has already been selected and «; € A(k) too. The scaled probability p; (k)
is defined as

Loy bik) 3)
pi(k) = 0

where K(k) = Yq,caPi(k) is the sum of the probabilities of the actions in subset A(k), and p;(k) =
probla(k) = a;].

The procedure of choosing an action and updating the action probabilities in a variable action-set
learning automaton can be described as follows. Let A(k)be the action subset selected at instant n. Before
choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in Equation
(3). The automaton then randomly selects one of its possible actions according to the scaled action probability
vector p(k). Depending on the response received from the environment, the learning automaton updates its
scaled action probability vector. Note that the probability of the available actions is only updated. Finally, the
action probability vector of the chosen subset is rescaled as p;(k + 1) = p;(k + 1) - K(k), for all a; € A(k).
The absolute expediency and e-optimality of the method described above have been proved in [11].




3. Learning Automata-based SMST Algorithms
Let G =(V,E,W) denotes the input undirected stochastic graph, where V is the vertex set, E is the edge set,

and matrix W denotes the probability distribution function of the random weight associated with the graph
edges. A network of learning automata isomorphic to the stochastic graph is formed by assigning to each node
of the graph a learning automaton. The resulting network can be described by a triple<A oW >, where

A={A,A,....,A,} denotes the set of the learning automata, a ={¢;,;,...,a,} denotes the set of action-sets in
which «; ={a;, ;... @), } defines the set of actions that can be taken by learning automata A, for each
a; € a . Since the stochastic graph is undirected, edge e j, corresponds either to the action ¢;; of the learning
automata Ajor to the actionaj of the learning automata A;. Weight w; ;denotes the random weight
associated with edge€ ;, (ie, W(e,j))) - In this paper, it is assumed that W (g j)) be a positive random

variable with an unknown probability distribution. In this algorithm which is hereafter referred to as
Algorithm 1, each learning automaton can be in one of two states: active and passive. Each learning automaton
is initially set to a passive state. The proposed algorithm consists of a number of stages. Stage K of the
proposed algorithm is briefly described in the following steps.

1. SPANNING TREE FORMATION

Repeat the following until either the number of the selected edges is greater than or equal to (n—1) or

there are no more passive automata to be activated

- Choose one of the passive automata at random. MarKk it as active.

—The activated automaton chooses one of its actions according to its action probability vector.

- The random weight associated with the selected action is added to the weight of the spanning
tree that is being formed in the current stage.

- Each passive learning automaton changes its number of actions (or scales its action probability
vector) by disabling the actions that may cause cycle during the formation of the spanning tree
(The process of disabling the actions is described later).

2. DYNAMIC THRESHOLD COMPUTATION
Let us assume that spanning tree 7; is selected at stage k . The average weight of all the constructed

spanning trees until stage k is computed and compared with dynamic threshold T, . At each stagek > 1,
dynamic threshold T, is computed as

Tq = %;V_V(Ti) )

where r is the number of spanning trees constructed so far, andV_V(fi) denotes the average weight of
spanning tree 7; which is defined as
J— 1 ki
wm):k—i;wfi(n (5)
where k; denotes the number of times spanning tree 7; has been constructed, and Wr;(k) denotes the
weight of spanning tree 7; at stage k which is defined as follows
Wa)=>  WEen®) 6)
whereW (€ 1)) is a positive random variable with unknown probability distribution and W (e, (k)
denotes its weight at stage k .

3. UPDATING ACTION PROBABILITY VECTOR

At each stage k, if the average weight of the constructed spanning tree (i.e., V_V(z'i)) is less than or
equal to dynamic threshold T, then the actions chosen by all activated automata are rewarded and



penalized otherwise. In this algorithm, each automaton updates its action probability vector by using
a Lg_, reinforcement scheme. The disabled actions are enabled again and the probability vectors are

updated as described in Subsection 2.3.

4. TERMINATION
Steps 1, 2, and 3 are repeated until the choice probability of a spanning tree (PMST) becomes greater
than a certain threshold T,,; or the stage number exceeds a pre-specified thresholdT,. PMST is

defined as the product of the choice probabilities of the edges of the constructed spanning tree. The
spanning tree which is constructed just before the algorithm stops is the spanning tree with the
minimum expected weight among all spanning trees of the stochastic graph.

Algorithm 1 The first proposed SMST algorithm

01:Input: Stochastic Graph G =<V, E,F >, Thresholds T,, Tpysr

02:Output: The Minimum Spanning Tree

03:T, « 0, k0

04:Let T denotes the constructed spanning tree and w; denotes its weight
05:Begin Algorithm

06: 7 « [ W‘[ «~0

07: Assign an automaton to each node and initially set it to the passive state

08: Repeat

09: Let A denotes the set of activated automata which is initially null
10: While |¢| <|V|-10r A<n Do

11: Select one of the passive automata at random and call it A

12: If ‘Ufi‘ # ¢ Then

13: Automaton A chooses one of its actions (say &) )

14: A A+ A

15: T(—T+e(i,j)

16: W, W, +W(e; j))

17: Each passive automaton prunes its action-set for cycle avoidance
18: Else

19: A A+ A

20: End If

21: End While
22: If |7/ =V|~1 Then

23: Compute the average weight of the selected spanning tree as V_V,
24: If W, <T, Then

25: Reward the selected actions of activated automata

26: Else

27: Penalize the selected actions of the activated automata
28: End If

29: T [k =DTy, +w, J/k

30: Else

31: Do nothing

32: End If

33: k<«k+1

34: Enable all disabled actions

35: Until PMST > Pppyer OF k>T,
36:End Algorithm

Figure 2. The pseudo code of Algorithm 1

As mentioned earlier, at each stage of Algorithm 1 the number of actions that can be taken by a passive
automaton changes (or reduces) with time in such a way that no cycle appears in the spanning tree (see Line
17 of the Algorithm 1 in Figure 2). To avoid the formation of a cycle in the spanning tree, Algorithm 1



performs as follows: Let 7; j denotes the path connecting node v; to nodevj, and pij and qij denote the

choice probability of edge€; j and path 7; ;, respectively. Now, at each stagek, the proposed algorithm

J
removes every edge €., ;) (oreg ) and temporarily disables its corresponding action in the action-set of the
passive automata A, and A, if edge € j is chosen at stage k and both paths 7;, and 7 ;s has been already

constructed by the activated automata. This disabling process is repeated until the stop condition of step 1 is
met. By this, the cycle-freeness of the proposed MST formation algorithm is guaranteed. At each stage,
Algorithm 1 updates the action probability vectors twice. The first time is when the selected actions are
rewarded or penalized, and the second time is when the disabled actions are enabled again at the end of each
stage. In both cases, the action probabilities are updated as described in Subsection 2.3 on variable action-set
learning automata.

3.1. Improvements

In Algorithm 1, all learning automata use the same learning rate remaining unchanged during the
execution of algorithm. Such a learning rate gives the equal importance to all edges of the stochastic graph to
being in the minimum spanning tree. This may prolong the convergence to the optimal solution for some
learning automata and accelerate the convergence to a non-optimal solution for some others. In this section,
we discuss four statistical methods for adjusting the learning rate so as to improve the speed and convergence
rates of Algorithm 1. These methods take into account the probability distribution parameters of the edge
weight for adjusting the learning rate in the course of algorithm.

Method I The number of samples that is required to be taken from a given edge to reach an accurate
estimation of the mean value of its random weight is directly proportional to the variance of the random
variable associated with the edge weight. That is, the sampling rate increases and the learning rate decreases
as the variance of the random weight becomes larger. Therefore, it is expected that the convergence speed of
Algorithm 1 is improved if the learning rate of each graph edge is adjusted based on the variance of its random
weight as given in Equation (7). In this method, the variance must be initially projected to interval (0,1) for
every edge. Algorithm 1 in which the learning rate is adjusted on the basis of Method I is called Algorithm 2.

k

e(i,j) _5
agi j(K)=a/og jy (k) =a- Z[Xe(i,j)(k) —Ye(i,n(k)]z%ke(i,j) -1 (7)

k=1
where K j)denote the number of times edge & j is sampled, Xy j)(K)and X, j,(k) denote the weight of

edge € j) at stagek and its average weight, and a denotes the constant general learning rate.

Method II An edge with a lower average weight is more likely to be a part of the final minimum spanning tree.
That is, the edges having smaller weight need a lower sampling rate than the heavy weight edges. Therefore, it
is expected that the convergence rate of Algorithm 1 increases if the learning rate of every edge is adjusted by
Equation (8). This equation implies that the learning rate of an edge is inversely proportional to its average
weight. The edge with the lowest average weight is rewarded more than the others and so the automaton
converges to it by fewer samples. Like Method I, before applying Equation (8), the mean value must be
projected to interval (0,1) for every edge. Algorithm 1 in which Method II is used to adjust the learning rate is
called Algorithm 3.

Ke(i. )

(i ) (K) = 8/ ptei ) (K) = @ Kegi ) er(i,j)(k) )
k=1

Method III As the algorithm proceeds, the choice probability of the edges of the spanning tree with the
minimum expected weight is gradually increases as that of the others decreases. The growth of the choice
probability of an action means that it is rewarded by the environment. In fact, the choice probability of an
action represents its optimality. In Equation (9), the learning rate of an edge is directly defined on the basis of
its choice probability. This equation increases the convergence speed more and more as the choice probability



increases (or as the algorithm approaches to the end). Algorithm 1 in which the learning rate is computed by
Equation (9) is called Algorithm 4.

i, j)(K)=a- Py j (k) 9)
Method IV Equation (8) can be used in applications that sacrifice the running time in favor of the solution
optimality, while Equation (9) is appropriate for applications that give significant importance to the running
time. Different combinations of the previous methods (Methods I-1II) can be also used for applications in
which a trade-off between the running time and solution optimality is desired. We combined Method II and
Method III in order to improve both the convergence rate and convergence speed of Algorithm 1. This method
is called Method IV and computes the learning rate as given in Equation (10). Algorithm 1 in which Method IV
is used to adjust the learning rate is called Algorithm 5.

ke ij
a-Pei. (k) B &

A, jy(K) = "y =a- P j) (K) K jy er(i,j)(k) (10)
Hegi, 1) (K) k=1

4. Convergence Results

In this section we prove two main results of the paper. The first result concerns the convergence of
Algorithm 1 to the optimal solution when each learning automaton updates its action-set by a linear reward-
inaction reinforcement scheme (Theorem 1). This result represents that by choosing a proper learning rate
for Algorithm 1, the choice probability of the optimal solution converges to one as much as possible. Since
Algorithm 1 is designed for stochastic environments where the environmental parameters vary over time, the
method that is used to prove the convergence of the Algorithm 1 partially follows the method given in [12, 13]
to analyze the behavior of the learning automata operating in non-stationary environments. The second result
concerns the relationship between the convergence error parameter ¢ (i.e. the error parameter involves in
the standard sampling method) and the learning rate of the Algorithm 1 (Theorem 3). The second result aims
at determining a learning rate a(¢) under which the probability of constructing the spanning tree with the

minimum expected weight exceeds 1—-¢.
Theorem 1 Let g; (K) be the probability of constructing spanning tree 7, at stagek . If g(k) is updated according

to Algorithm 1, then there exists a learning rate a*(g) € (0,1) (for every € >0) such that for alla € (0, a*), we
have

Prob[lim, _, g;(k)=1]=21-¢

Proof The steps of the convergence proof are briefly outlined as follows. At first, it is proved that the penalty
probability of each spanning tree converges to the constant value of the final penalty probability, if K is
selected large enough. This property is shown in Lemma 1. Then, it is shown that the probability of choosing
the spanning tree with the minimum expected weight is a sub-Martingale process for large values of k, and so
the changes in the probability of constructing the minimum spanning tree is always nonnegative. Lemmas 2
and 3 show this result. Finally, the convergence of Algorithm 1 to the spanning tree with the minimum
expected weight is proved by using Martingale convergence theorems. Therefore, the following lemmas need
to be proved before stating the proof of the Theorem 1.

Lemma 1 If spanning tree 7;is penalized with probability ¢;(K) at stage K (i.e. ¢;(k)= prob[Wz; >T,]), and
Lim,_,..¢; (k)= ci*. Then, for every & € (0,1) and k > K(¢) we have,

probf|¢; — ¢ (k) > 0] <&

Proof Let ci* denotes the final value of probability c;(k) whenk is large enough. Using weak law of large
numbers, we conclude that

Lim, .. probf|c; —¢;(K)[> £] >0

Hence, for every ¢ < (0,1), there exists a a*(g) €(0,1) and K(g) <o such that for all a<a’ and k > K(&) we

have Proby]| Ci* —C;(k) > 0] < £, and the proof of the Lemma 1 is completed. [



Lemma 2 Let c;(k)= prob[er(k+1)>Tk]and dj(k)=1-cj(k)be the probability of penalizing and

rewarding spanning tree 7 (forall j_i,, . r) atstage k, respectively. If g(k) evolves according to Algorithm

1, then the conditional expectation of 0;(K) is defined as

Efg; (k+1)|q0)1= Y a;(re; kg ) +d; - [ [ o]
j=1 e(m,n)er;
where
o - | POV =R +0- 100 5 e <)
pr (k+1) = pr(k)-(1-a) ;e 7]

where r denotes all constructed spanning trees.
Proof Since the reinforcement scheme that is used to update the probability vectors in Algorithm 1isLg_,, at

each stage k the probability of choosing the spanning tree 7; (i.e., §;(K) ), remains unchanged with probability
¢;(k)(forall j_i»

other hand, when the selected spanning tree 7;is rewarded, the probability of choosing the edges of the

r ), when the selected spanning tree 7; is penalized by the random environment. On the

.....

spanning tree 7; which are in the selected spanning tree 7; increases by a given learning rate as that of the

other edges decreases. To illustrate the proof of the lemma in more detail, we prove it for the minimum
spanning tree of the graph shown in Figure 3. As shown in this figure, graph G has 4 nodes, 5 edges and 8

spanning trees as follows: 7; = {€,,€,,63}, 7, ={€,6,,65}, 73 = {€,,6;,84}, 7, ={€,,8,,65}, 75 = {€,,€;,85},
To = {€1,63,64), 77 =1{6,84,85}, 73 =1{€5,€,4,65}. It is also assumed that7is the spanning tree with the
minimum expected weight of the graph given in figure 3.

Figure 3. Sample graph G and its minimum spanning tree

Let G;(K) be the choice probability of spanning tree 7; at stage k . Therefore we have,

0 (k) = pa (k) p3 (k) pa (k)

0 (K) = P3 (k). (K)-p3 (k)
03(K) = p3(K). py (K)-pz (K)
04 (K) = py (k). p3 (K).p3 (k)
0s(K) = p3(K)-p3(K)-p3 (k)
06 (K) = P2 (K).p3(K).p3 (k)
a; (k) = py(K).p3 (K).p3 (k)
gs(K) = p3(K). p3 (k). p3 (k)



where pij(k)denotes the probability of choosing action ¢;; of automaton A at stage k. The conditional
expectation of q;(k +1), assuming g(k) is updated according to Algorithm 1, is defined as
Efa, (k +1)[ (k)] =

g0l (0 + 0, () 1p3 () + &l — P (k)3 {ph (k) + a1~ Pk} £ph (k) + ali - ph(k ]+
0.(0[e2, () + d, (k)L (K) + a(l - ph (k) } Pl (k)1 - )} {pL (k) +a(l - pl (k) H+

s (0 () -+ d5 () {pA(K)(I — @)} {p3(K) + a1 - Pk} {ph(k) +at - phks]+

04 (0[c4, (00 + d, (k) {pL (K1 - )} {pA(K)(1 @)} {ph(K) + a1 - ph(k)3 ]+

05 () [cs (k) + ds () (P () -+ a1 — pA (k)3 {ph(k) + a(l - pL(K))} {ph ()1 — )} [+

Qe (st (k) + A (k)P (k) +al - Pk} {ph(k) +al - Pk} Pl (k)1 - @)} ]+

6 (0], 6, 0€) + d () A (k) + a1 - ph ()} {ph(k)(1 - @)} {ph(k)(1 - ay} |+

s ()[cx1 () + d (k) {pL k) - )} {p} (k) +a(l - Pl (k) {pL(k)(1 - a)y]

After simplifying all terms in the right hand side of the equation above and some algebraic manipulations,
we obtain

8
Elq, (k+D[qk)]= D a;000c;(k)a () +d; k) [ Jomao]

j=1 e(mnyer,
ok :{pﬂ‘(kﬂ): P (k) +a( = pI(K)) 5 Emn €7
pr (k+1)=py'(k)-(1-a) : Emm £7;j
and hence the proof of the lemma. [ |

Lemma 3 The increment in the conditional expectation of @;(K) is always non-negative subject to g(k) is
updated according to Algorithm 1. That is, Ag;(k)>0.

Proof. Define
AGi (k) =E[qi(k +1) | qk)]—g; (k).

From Lemma 2, we have

Ag; (k) = E[q; (k+ D] a(k]-a; () = Y a; (fe; (kg (0 +d; - [ o do1-a; (k)
j=1 e(m,n)er;

where (11
ok :{pﬁ‘(kﬂ): PR +al=pR(K) ; e €7

P (k+1) = py(k)-(1-a) S Cmn) £ 7
where p;'(k)is the probability of choosing edge €mm at stagek. Since the probability with which the

spanning trees are constructed, rewarded or penalized is defined as the product of the probability of choosing
the edges along the spanning trees, we have

Aqi(k):i Hpﬁ“(k){ [Terco- TTerco+ JTdrdo- TTomco

j=1 e(m,n)er; e(m,n)er; e(m,n)er; e(m,n)er; e(m,n)er;

- [Tl

e(m,n)er;
where ;' (K) is defined as given in Equation (11) and c,'(K) is the probability of penalizing edge €(m.n) at stage

kand d'(k)=1-c/'(k). At each stage, Algorithm 1 exactly chooses (n—1) edges of the stochastic graph
forming one of r possible spanning trees.

10



sq0= TTElr®+npmt0l- Tert0

e(m,n)er; e(m,n)er;

The equality above can be rewritten as

agz [TEprasnipmwl-prwn= Tapr® (12)

e(m,n)er; e(m,n)er;

and

ApT () =a- Pl P () (€ (k) — e (k)

S#N
g; (k) €(0,1) for all qe S;, where S, = {ak):0<qi(k) <L zirzlqi(k) =1} and S? denotes the interior of S,.
Hence, p;'(k)e(0,1) forall m,n . Since edge €m.n) €T is the edge with the minimum expected weight which

can be selected by automaton A, , it is shown that ¢{' —c¢ >0 forall S # n. It follows from Lemma 1 that for

large values of k, c{'(k)—c;'(k) > 0. Therefore, we conclude that for large values of k, the right hand side of
the equation above consists of the nonnegative quantities and so we have

[T aenaod et k) -cf (k=0

e(m,n)er; S#N

and from Equation (12),we have

g0z [T a pRtod pl- et -l k)

e(m,n)er; s#Nn

which completes the proof of this lemma. [ |

Corollary 1 The set of unit vectors in S, — S/ forms the set of all absorbing barriers of the Markov process
{00}y, where 87 = {q(k): g (k) € (01D gk =1}

Proof Lemma 3 implicitly proves that {q(k)} is a sub-Martingale. Using Martingale theorems and the fact that
{q(k)} is a non-negative and uniformly bounded function, it is concluded that Lim,_,q; (k) converges to q*
with probability one. Hence, from Equation (11), it can be seen that 0;(k +1) # g;(K) with a nonzero probability
if and only if ¢(k)2{0l}, and q(k+1)=q(k)with probability one if and only if q 0,1} where
Lim_,.0; (k) = q*, and hence the proof is completed. ]

Let T;(Q) be the probability of convergence of Algorithm 1 to unit vector € with initial probability

vector (. I (q) is defined as follows

T;(q) = prob[g; (=) =1]g(0) = g] = prob[q" = & [ §(0) = q]
LetC(S,):S, > Rbe the state space of all real-valued continuously differentiable functions with

bounded derivative defined on S,, where R is the real line. If (.)€ C(S,), the operatorU is defined as

Uy (a) =Ely(atk +1)[ak) =q] (13)
where E[.] represents the mathematical expectation.

11



It has been shown in [13] that operatorU is linear, and it preserves the non-negative functions as the
expectation of a nonnegative function remains nonnegative. In other word, Uy (q) > 0forallqeS,, if w(q)>0
. If the operatorU is applied n (for all n >1) times repeatedly, we have

U™y (@) = Ely(ak + D] a() = q]
Function (q)is called super-regular (sub-regular) if and only ify(q) >Uw(q) (y/(q) SUl//(q)), for all
g €S, . It has been shown in [13] that T;(q) is the only continuous solution of UIL;(q)=T;(q) subject to the
following boundary conditions.
Li(g) =1
Li(e;)=0 ; j=i
Define
"
"

e
$Ix.ql=——
e e

(14)

where x> 0. ¢[X,q] € C(S,) satisfies the boundary conditions above.

Theorem 2 Let y/i(.) € C(S,) be super-regular with /(&) =1and yi(e;) =0 for j =i, then

ZCIEINC)

forall geS,. Ify;(.) € C(S,) is sub-regular with the same boundary conditions, then

wiQ) <T3(a) (15)
forall €S, .

Proof. Theorem 2 has been proved in [12]. [ |

In what follows, we show that ¢[X,q]is a sub-regular function, and &[X,] qualifies as a lower bound
on I;(q) . Super and sub-regular functions are closed under addition and multiplication by a positive constant,
and if ¢(.)is super-regular then —¢(.) is sub-regular. Therefore, it follows that ¢[X, ] is sub-regular if and only
if

—xq;
gx.q]=e 2
is super-regular.
We now determine the conditions under which 6&[X,q]is super-regular. From the definition of operator U
given in Equation (13), we have

X m _am _X mo_
7Xqi(k+1) r _g[e(mlv:)lff'fn rad=pl r a[e(m:!:)[;’?n -l
Ua(xa)=Ee 2 fak)=q|=|D> adje """ £ gdje
j=1 j=1
20 T er+ac-pi 0 [Tcena-an
a6 o e o e
=|gidje @ +qudje o +qudje e
j#i j#i

12



where d j* denotes the final value to which the reward probability d i (k) is converged (for large values of k),

X(gi+a(-g)
a

and e is the expectation of &(X,q)when the minimum spanning tree 7 is rewarded by the
environment .
_X q;(1-a)- H (Pn +ma(1_pn )
X a e(m,n)erj, (pn (l_a))
x ——(gi+a(l-g;)) * e(m,n)erlj
Uuoi(x,q)=|q;d;e 2 +Z q;d;e
j=i

X i X i
Z « ——pjldi+al-a;) Z « ——(pjail-a)
j=i J#=i

where p} >0 is defined as

(py +a(l-py))

. m i
pl= ggmig (pn (1-2))
l ; i=j or (r;nrj)=¢
quij : XQP} : _Xg
Ua(xg-axp=le @ > gdie P ie a Y qdie™ |-e @
j=i j#
6 (X,q) is super-regular if
xqipij ) Xqipij : XQ
T a q*aX(1=0)p; _TZ ¥ aX0iP] Ta
e qudje +e q;d;e <e
j=i j#i
and
x4 xq
Ug(xa)<e 2gdie™ % +e 2 > g;de
j#
If 6,(X, Q) is super-regular. Therefore, we have
UG -G(xa)<|e 2gdie % +e 2 S gidje t |—e 2

j=i
After multiplying and dividing the right hand side of the inequality above by —X(; and some algebraic
simplifications, we have

13



X0 e—x(l—qi) 1

U6, (x,q)—6,(xq) < -xge 2 |gd;] i

— X0 B ji XQ;
;ml_ x(l q;) XG;
i) __ e i
-xgie @ Z a0 —
L ji Qi
;qu_ -x(1-0;)
« € V-1 « €
=-xqe & |(1-g)dj ————- ) 0q;d;
L _X(l_qi) ji
and
e’ -1
V=4’ u=0
1 ; u=0
X4
UG (g -6 <—xge 2 | (1-a;dV[-x1-g)]- q;

ji
=-Xq;6 (X, 9)G;(x,q)
where G;(X, Q) is defined as

G (% &) = (1= )V [-x(1 - 6)]- (Y a0 V[xq;]
Therefore, 6.(X,q) is super-regular if

Gi(%,0)>0
forall €S, .

From Equation (16), it follows that & (X, 0) is super-regular if we have

Visx-g)) _ 2%
V[xq;] (1-q)d;

fi (X’ q) =

The right hand side of the inequality (18) consists of the nonnegative terms, so we have

*

d; 1 d; d’
3 min| =L S q-t<(S g j
( iiiqjjnjliin[d?Js(l—qi) joi 10 g S( j¢iq1jf?2i{d;]

Substituting Zjii q; by (1-0;) in the above inequality, we can rewrite it as

qi — .
mm[ J Zm ; d' < max[dj J
J# Zﬁlqj J# di

From Equation (18), it follows that & (X, Q) is super-regular if we have

fi(X,q)anlgf(d}“/df“)

For further simplification, let employ logarithms. Let

A, ) =1n f;(x,q)
It has been shown in [13] that

14

X4 _
e 1]
X0 -1
X

d]-‘)\/[xqi]]

(16)

(17)

(18)



—ﬁﬁvwmuSAmmygjonmm

dH (u)
du ’
Therefore, we have

I _VIx(-q)]

H@u)= H@u)=InV(u)

< <V[=x]
VI[X] VIxq]
and
#=max[diJ (19)
VIx] sl d,

Let X be the value of x for which Equation (19) is true. It is shown that there exists a value of x>0
under which the Equation (19) is satisfied, if (dj/di)is smaller than 1 for all j#i. By choosing x=X"
Equation (19) holds true. Consequently, Equation (17) is true and € (X,q) is a super-regular function.
Therefore,

_qu

el === -1
a_]

is a sub-regular function satisfying the boundary conditions given in Equation (14). From Theorem 2 and
Inequality (15), we conclude that

AIx,q]<Ti(q) <1

From definition of ¢[X,q], we see that given any ¢ > 0 there exists a positive constant a’ <1 such that

l-e<g[xql<Li(@ <1

forallo<a<a’.
Thus we conclude that the probability with which Algorithm 1 constructs the spanning tree with the
minimum expected weight is equal to 1 as k converges to infinity, and so Theorem 1 is proved. ]

Theorem 3 Let G;(K) be the probability of constructing minimum spanning tree 7; at stagek , and (1-¢) be the
probability with which Algorithm 1 converges to spanning tree 7. If g(k) is updated by Algorithm 1, then for

every error parameter ¢ € (0,1) there exists a learning rate a € (&, Q) so that

Xa dj
e _| = max i d_l

where 1-e7% =(1-e7)-(1-¢) and ¢; =[q;(k) | k=0].

Proof It has been proved in [13, 17] that there always exists a X >0 under which Equation (19) is satisfied, if
d;/di <1 forall j #i.Hence, it is concluded that

_qu
4Ix,q1<T; () < 1 —°

where @ is the initial choice probability of the optimal spanning tree 7;. From Theorem 1, we have for each

0O<a<a’ the probability of converging Algorithm 1 to the spanning tree with the minimum expected weight
is (1-&)where a (¢) €(0,1). Therefore, we conclude that

_ A~ X
l—e * 1 ¢ (20)

—X

1-e
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It is shown that for every error parameter ¢ € (0,1) there exists a value of x under which Equation (19)
is satisfied, and so we have

It is concluded that for every error parameter ¢ € (0,1) there exists a learning rate a € (¢,q) under which

the probability of converging Algorithm 1 to the spanning tree with the minimum expected weight is greater
than (1-¢)and hence the proof of the theorem. ]

5. Numerical Results

To study the efficiency of the proposed algorithms, we have conducted three set of simulation
experiments on four well-known stochastic benchmark graphs borrowed from [41, 42]. The first set of
experiments aims to investigate the relationship between the learning rate of Algorithm 1 and the error rate
in standard sampling method. These experiments show that for every error rate ¢, there exists a learning rate
a* such that for a < a* algorithm 1 construct the spanning tree with the minimum expected weight. This set
of experiment is conducted on stochastic graphs Alex2-B and Alex3-B [41]. The second set of simulation
experiments compare the performance of the SMST algorithms proposed in this paper (Algorithm 1 to
Algorithm 5). These experiments are conducted on Alex2-B and Alex3-B too. The third set of experiments aims
to show the efficiency of Algorithm 5 which is the best proposed algorithm in comparison with MESM
(multiple edge sensitivity method)[41]. In all three set of experiments conducted in this paper, the
reinforcement scheme by which the action probability vector is updated isL, ,. Each algorithm stops if the

probability of the constructed spanning tree (PMST) is equal to or greater than 0.95 or the number of
constructed spanning trees exceeds a pre-defined threshold 100,000. For each experiment, the results are
averaged over 100 different independent runs.

5.1. Experiment I

This set of experiments is conducted on two sparse graphs called Alex2 and Alex3. Alex2 comprises 9
nodes and 15 edges, and Alex3 has 10 nodes and 21 edges. The discrete random variable associated with the
edge weight of Alex2 and Alex3 has two and three states in mode A and B, respectively. The probability
distribution of the random weight assigned to the edges of Alex2 and Alex3 tends toward the smaller edge
weights. In other words, the higher probabilities are assigned to the edges with smaller weights. Such a biased
distribution is more pragmatic for modeling the network dynamics than a simple uniform distribution. The
first set of experiment compares the efficiency of Algorithm 1 with the standard sampling method in terms of
the sampling rate. To do so, by Theorem 3, the learning rate corresponding to each confidence level 1 — ¢ in
initially computed (see Tables 1 and 2). Then, Algorithm 1 is run with the obtained learning rate and its
sampling rate is measured. Finally, the sampling rate of Algorithm 1 is compared with that of the standard
sampling method to obtain the same confidence level.

The number of samples that the standard sampling method takes from Alex2-B and Alex3-B to obtain a
confidence level 1 — ¢ has been computed and shown in Tables 1 and 2, respectively. To do this, we varied ¢
from 0.01 to 0.5 and computed the minimum required number of samples for every edge of the graph in
standard sampling method subject to probf| X, —u|<d]=1-&, whered =0.001[29]. According to the
standard sampling method presented in [46], to obtain a confidence level 1—¢ for the MST, we need to build a

confidence with level 1—-¢; for each edge €; such that Y1 ¢; = . We assume that the edges of the stochastic
graph all have the same confidence level 1—¢&,. Therefore, selecting g, = ¢/(n—1), where n denotes the number
of vertices of the stochastic graph, guarantees a confidence level 1—-¢ for the MST[30, 46].

Table 1. The total number of samples taken from Alex2-B for standard sampling method

Confidence Level For MST

Edge 0.5 0.6 0.7 0.75 0.8 0.85 0.9 <30 i
er 299 366 323 314 282 365 555 i VY
e 359 473 451 475 412 345 324 44 YA
€3 761 600 843 694 700 665 572 #1) vy
es 307 314 357 337 404 282 259 Y4 fov
es 295 394 289 294 373 336 265 Y4 fo.
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es 547 492 491 526 410 424 535 Fry 4.
e 380 254 179 403 299 346 310 B av)
es 331 315 319 302 403 368 514 YOA fov
e 291 398 424 301 346 351 342 TEY 14
e 686 538 360 671 604 704 667 700 VY
en 327 321 344 549 531 477 450 aF¥ FY7
en 293 276 379 274 336 447 373 ¥uv Yo
e 386 497 632 507 456 527 554 FFA 1)
e 463 452 686 448 562 567 550 Veo a4y
eis 329 447 365 376 462 452 410 TYY fro

Total 6062 6141 6449 6479 6586 6663 6686 FARY V¥as

Table 2. The total number of samples taken from graph 2 for standard sampling method
Ed Confidence Level For MST

g¢ 05 0.6 0.7 0.75 0.8 0.85 0.9 e 5L
e1 315 273 288 394 275 249 471 FFa aYy
e 459 473 519 397 481 552 473 44 7oA
es 460 401 338 436 293 344 401 Fr¥ FAY
es 346 514 351 413 395 476 401 Yve £va
es 751 557 551 601 482 580 679 A4 V.
€6 364 304 284 268 372 320 286 Yoy Ye¥
er 359 365 292 328 326 459 492 YAY FF)
es 279 268 240 248 319 318 353 YAS £y
e 390 421 438 386 448 544 390 Yy ae
e 304 392 467 405 352 407 428 F¥7 A
en 229 317 333 390 479 364 342 £ FYF
en 524 410 490 580 438 428 406 a0 fry
e 305 294 265 371 426 347 302 YAA fof
e 400 410 443 337 377 353 434 YAA aes
e 293 248 357 333 372 466 483 YVA £4
e 705 507 692 474 552 482 509 200 aay
e1 398 439 434 529 504 441 512 ary £rY
es 327 254 342 347 340 434 444 FYY ray
e 503 412 351 469 464 509 420 Fo¥ YAS
e 704 765 530 706 505 556 666 v o #
ez 337 400 463 494 373 343 410 FY) A

Total 8761 8433 8478 8917 8582 8981 9310 TATH VY

Using the numerical methods, parameter x can be determined by solving equation e ™% + e™*(1 — &) —

& = 0 derived from Equation (20) for every error rate €. Then, learning rate a is calculated for the obtained

. . d; . .
parameter x by solving equation % = maxj#(d—’i). In this experiment, we changed error rate € from 0.5 to

0.01 (or convergence rate form 50% to 99%) and computed the corresponding learning rate for Alex2-B and
Alex3-B. Then, we ran Algorithm 1 over these two benchmark graphs and measured the sampling rate of
algorithm. The obtained results are shown in Tables 3 and 4. These tables also include the sampling rate of the
standard sampling method to achieve the same confidence level taken from Tables 1 and 2. From the results
given in Tables 3 and 4, it can be seen that the sampling rate of Algorithm 1 is much less than that of the
standard sampling method for the same confidence level (1 — ¢€) in both Alex2-B and Alex3-B.

Table 3. Sampling rate of Algorithm 1 and the standard sampling method for Alex2-B

Sampling Rate

Convergence Rate Sampling Rate - -
Algorithm 1 Standard Sampling Method
0.50 0.1300 79 6062
0.60 0.1051 93 6141
0.70 0.0800 161 6449
0.75 0.0680 252 6479
0.80 0.0580 332 6586
0.85 0.0500 426 6663
0.90 0.0340 664 6686
0.95 0.0207 1391 6884
0.99 0.0106 3658 7455

Table 4. Sampling rate of Algorithm 1 and the standard sampling method for Alex3-B

Convergence Rate

Learning rate

Sampling Rate

Algorithm 1

Standard Sampling Method

0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95

0.0945
0.0710
0.0592
0.0440
0.0412
0.0379
0.0256
0.0183

17

152
281
492
672
741
1391
2442
3902

8761
8433
8478



0.99 0.0089 5611 10343

5.2. Experiment II

This set of experiments is conducted to compare the performance of the learning automata-based SMST
algorithms presented in this paper. In these experiments, the learning rate changes from 0.005 to 0.07 and
each algorithm is executed on Alex2-B and Alex3-B. The obtained results are shown in Tables 5 and 6. In these
tables, for each algorithm the reported results include the total number of the samples taken from the graph
(ST), the total number of the samples taken from the spanning tree with the minimum expected weight (MST),
and the percentage of the converged runs (i.e., the percentage of runs converged to the minimum spanning
tree) (PC).

From the results of Experiment I, the following points can be made. The experiments show that for all
proposed algorithms the total number of converged runs increases and the sampling rate increase as the
learning rate of algorithm decreases. For example, the convergence rate is 78% and the number of samples is
255 if Algorithm 1 is executed on Alex2-B with learning rate 0.07, whereas they are 98% and 4405 when the
learning rate increases to 0.009 (see Table 3).

Comparing Algorithm 1 and Algorithm 2, we observe that the sampling rate and the convergence rate of
Algorithm 2 are much less than those of Algorithm 1. The reason for such a reduction in sampling rate of
Algorithm 2 is the fact that in this algorithm the learning rate of an edge is adjusted based on the variance of
its random weight as given in Equation (7). That is, the number of samples that Algorithm 2 takes from the
edges having small variance is significantly less than that of Algorithm 1. The results also show that for the
same convergence rate, the sampling rate of Algorithm 2 is lower than Algorithm 1.

From the results given in Tables 5 and 6 for Algorithm 3, it is concluded that this algorithm is capable of
improving the convergence rate of Algorithm 1. This is because Algorithm 3 takes into consideration the mean
of the random weight of an edge to adjust its learning rate as described in Method II. This means that the
edges with smaller mean have a larger learning rate. On the other hand, it is clear that the edge with a lower
average weight is more likely to be a part of the final minimum spanning tree. Therefore, the edges of the
minimum spanning tree are rewarded more with a larger learning rate and so Algorithm 3 converges to the
optimal solution with a higher rate than Algorithm 1.

Comparing the results of different algorithms, it can be seen that the convergence speed of Algorithm 4
is significantly higher than that of the other algorithms as expected. This reduces the sampling rate of
Algorithm 4 as compared to the others. In this algorithm, the learning rate of the edge increases as its choice
probability increases. Therefore, the learning rate of the edges belonging to the minimum spanning tree and
so the convergence speed of algorithm (to the optimal solution) increases as algorithm proceeds.

As a combination of Algorithm 3 and Algorithm 4, Algorithm 5 inherits both higher convergence rate
and convergence speed from these algorithms. From the results shown in Tables 5 and 6, it is obvious that the
convergence rate of Algorithm 5 is much higher than that of Algorithm 3. The obtained results also show that
for the same convergence rate the sampling rate of Algorithm 5 is lower than that of Algorithm 4.

Table 5. Comparison of the proposed algorithms on Alex2-B for different learning rates

Learning Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5

rate ST MST PC ST MST PC ST MST PC ST MST PC ST MST PC

0.005 6052 4471 100 542 239 88 37905 21871 100 2615 858 100 28103 10267 100
0.006 5821 3887 100 480 246 88 30029 16175 100 2177 665 99 23174 9027 100
0.007 5050 3104 99 455 181 87 29511 17387 100 1851 584 99 19570 7440 100
0.008 4967 3318 100 347 159 85 26670 15982 100 1577 491 98 17291 6050 100
0.009 4405 2372 98 319 149 86 21589 14043 100 1415 426 97 15627 5468 100

0.01 3337 1889 97 266 125 85 17881 11520 100 1338 414 97 14179 5185 100
0.02 1250 697 94 138 69 83 9505 6227 100 774 296 96 7508 3152 100
0.03 921 439 91 82 44 81 5261 3323 100 455 167 96 4930 2070 100
0.04 489 272 84 63 35 78 4760 3118 100 342 120 95 4132 1915 100
0.05 395 249 83 56 26 71 3471 2326 98 293 94 92 3295 1550 100
0.06 267 143 79 45 23 68 3173 2090 99 253 89 93 2733 1277 100
0.07 255 127 78 44 17 70 2394 1529 97 209 84 91 2332 1106 100

Table 6. Comparison of the proposed algorithms on Alex3-B for different learning rates

Learning Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
rate ST MST PC ST MST PC ST MST PC ST MST PC ST MST PC
0.004 11001 6410 100 1905 861 89 43721 28090 100 3956 838 100 40951 20255 100
0.005 8583 4560 100 1461 637 88 42422 27869 100 3298 694 99 32734 17378 100
0.006 7693 3706 98 1093 454 87 36816 25758 100 2637 592 98 27052 15038 100
0.007 7041 2931 99 887 374 88 35016 25886 100 2273 505 98 23499 13046 100
0.008 6276 3814 97 908 371 85 31200 23409 100 2164 459 98 20154 10952 100
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0.009 5402 3176 95 641 238 82 23663 15983 100 1823 415 96 17951 9983 100

0.01 5258 2855 94 511 237 76 20664 13579 100 1615 318 97 16191 9014 100
0.02 3203 1329 90 310 137 69 13332 9769 100 865 219 96 8010 4556 100
0.03 1148 548 86 157 79 62 7376 5293 100 598 156 94 5691 3298 100
0.04 857 422 80 141 81 59 5276 3798 100 469 118 92 4293 2533 100
0.05 532 261 72 107 52 56 4839 3525 99 369 97 90 3397 2011 100
0.06 400 178 68 98 49 52 3259 2292 100 303 79 88 2890 1677 100
0.07 278 140 67 65 41 55 3064 2222 98 261 71 88 2461 1432 100

5.3. Experiment III

From the results of Experiment II, we observe that Algorithm 5 considerably outperforms the others
both in terms of the convergence rate and sampling rate. The aim of the third set of experiments (Experiment
II) is to investigate the performance of the best proposed algorithm (Algorithm 5) as opposed to multiple
edge sensitivity method (MESM) proposed by Hutson and Shier [41]. In Experiment III, in addition to the
sparse graphs Alex2 and Alex3, all algorithms are also tested on two complete graphs with 5 and 6 vertices
called K5 and K [41, 42]. The edge weight distribution of complete graphs K5 and K, can take 4 and 3 states,
respectively. The probability distribution functions of Ky and K, are defined in two different modes E; and E,.
In mode E;, the variance of the random edge weight is small, while in mode E, it is large. The learning rate of
Algorithm 5 is set to 0.07 by which this algorithm always converges to the spanning tree with the minimum
expected weight. In this experiment, the metrics of interest are the average running time of algorithm (in
second) that is shown in Table 7, and the sampling rate of algorithm (i.e., the total number of samples that
must be taken from the graph) which is shown in Table 8.

Table 7. The average running time of algorithms (in second)

Graph Vertices Edges MESM Algorithm 5
Alex2-A 9 15 7.231 1.912
Alex2-B 9 15 28.12 2.821
Alex3-A 10 21 14.01 2.015
Alex3-B 10 21 31.14 3.480

Ks-E1l 5 10 8.450 2.211

Ks-E2 5 10 12.98 3.665

Kq-E1 6 15 53.87 7.010

Kq-E2 6 15 69.44 9.150

Table 7 shows the average running time of Algorithm 5 and MESM for benchmarks Alex2, Alex3, K5 and
K, in second. Form the results, it can be seen that Ks and K, are more time consuming in contrast with Alex2
and Alex3. This is because of the larger state space of the complete graphs Ky and K as compared to Alex2
and Alex3. In fact, to find the optimal solution in a larger state space, a larger number of samples must be
taken. Comparing the results of Algorithm 5 and MESM given in Table 7, it is obvious that the running time of
Algorithm 5 is meaningfully shorter than that of MESM, specifically for complete graphs. It must be note that
by choosing learning rate 0.07 the percentage of the converged runs is 100 for Algorithm 5, while the
convergence rate of MESM to the optimal solution is at most 90 percent. However, the running time of MESM
is very longer than that of Algorithm 5. This is because MESM constructs the large state space of the problem
and this in itself takes a long time for moderate size or even small stochastic graphs. Furthermore, finding the
optimal state from an extremely large state space requires a lot of time. While, Algorithm 5 only constructs the
parts of the problem state space in which the probability of finding the optimal or near optimal solutions is
higher. Besides, as Algorithm 5 proceeds, the constructed problem state space becomes finer and finer as the
choice probability of the non-optimal solutions converges to zero.

Table 8. The average sampling rate of different algorithms

Graph Vertices Edges MESM Algorithm 5
Alex2-A 9 15 23412 1814
Alex2-B 9 15 80981 2332
Alex3-A 10 21 36915 2045
Alex3-B 10 21 90440 2461

Ks-E1 5 10 53902 3110

Ks-E2 5 10 62411 4137

Kq-E1 6 15 60787 7045

K¢-E2 6 15 71192 8972
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Table 8 includes the results of the simulation experiments conducted to measure the sampling rate of
Algorithm 5 and MESM. From the obtained results, we observe that the sampling rate of Algorithm 5 is much
less than that of MESM. This is because Algorithm 5 focuses on the sampling from the edges of the optimum
spanning tree (avoids unnecessary samples) by excluding the non-optimal edges (the edges that do not belong
to the optimal spanning tree) from the sampling process at each stage. In MESM, sampling from the very huge
state space of the stochastic problem results in a mush higher sampling rate compared to Algorithm 5. Briefly
speaking, the higher convergence rate and lower sampling rate of Algorithm 5 confirm its superiority over
MESM.

6. Conclusion

In this paper, we first presented a learning automata-based algorithm called Algorithm 1 for finding a
near optimal solution to the MST problem in stochastic graphs where the probability distribution function of
the edge weight is unknown. The convergence of the proposed algorithm was theoretically proved.
Convergence results confirmed that by a proper choice of the learning rate the probability of choosing the
spanning tree with the minimum expected weight converges to one. Algorithm 1 was compared with the
standard sampling method in terms of the sampling rate and the obtained results showed that this algorithm
outperforms it. Then, to improve the convergence rate and convergence speed of Algorithm 1, we proposed
four methods to adjust the learning rate of this algorithm. The algorithms in which the learning rate is
determined by these four statistical methods were called as Algorithm 2 through Algorithm 5. Simulation
experiments showed that Algorithm 5 performs better than the other algorithms in terms of the sampling and
convergence rates and Algorithm 1 has the worst results. To show the performance of the best proposed
SMST algorithm (Algorithm 5), we compared its results with those of the multiple edge sensitivity method
(MESM) proposed by Hutson and Shier [41]. Experimental results confirmed the superiority of Algorithm 5
over MESM both in terms of the running time and sampling rate.
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