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Abstract 

This paper presents a simple method to estimate the width of Gaussian kernel based on an adaptive 

scaling technique. The Gaussian kernel is widely employed in Radial Basis Function (RBF) 

network, Support Vector Machine (SVM), Least Squares Support Vector Machine (LS-SVM), 

Kriging models, and so on. It is widely known that the width of the Gaussian kernel in these 

machine learning techniques plays an important role. Determination of the optimal width is a time-

consuming task. Therefore, it is preferable to determine the width with a simple manner. In this 

paper, we first examine a simple estimate of the width proposed by Nakayama et al.. Through the 

examination, four sufficient conditions for the simple estimate of the width are described. Then, a 

new simple estimate for the width is proposed. In order to obtain the proposed estimate of the 

width, all dimensions are equally scaled. A simple technique called the adaptive scaling technique 

is also developed. It is expected that the proposed simple method to estimate the width is 

applicable to wide range of machine learning techniques employing the Gaussian kernel. Through 

examples, the validity of the proposed simple method to estimate the width is examined. 
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1. Introduction 

 Machine learning techniques such as radial basis function (RBF) network, 

support vector machine (SVM), support vector regression (SVR), and least 

squares support vector machine (LS-SVM) are widely employed in various areas. 

These techniques commonly employ the Gaussian kernel. The equivalence 

between SVM and ordinary Kriging has been reported under the assumption that 

the covariance function is used as the kernel function [1]. The equivalence 

between SVM and the regularization neural network has been also reported [2]. 

This equivalence can be extended to RBF network, considering the suggestions of 

Poggio and Girosi [3]. Thus, it is easily assumed that the equivalence between 

SVM and RBF network can be established. LS-SVM overcomes the complex 

procedure for finding the support vectors of SVM and SVR, and LS-SVM is now 

widely studied [4-9]. In SVM and SVR, the support vectors are determined by 

solving the quadratic programming (QP) problem, while LS-SVM can find the 

support vectors by solving a simpler linear system.  

In the Gaussian kernel, the width plays an important role. As an example, 

let us consider the regression by RBF network. The effect of the width is shown in 

Fig.1 (a) and (b). In Fig.1, the black dots represent the training data, the dashed 

line represents the Gaussian kernel, and the solid line denotes the regression. The 

following weights are assigned to the training data: w1 = 0.5 at x = 1, w2 = 1.7 at x 

= 3, and w3 = 1.3 at x = 5. The difference between the graphs in Fig.1 is the width 

of the Gaussian kernel. The widths in Fig.1(a) and (b) are set to 0.5 and 1.0, 

respectively. Small value of the width leads to the non-smooth regression, while 

the smooth regression can be obtained with large value of the width. It is clear 

from Fig.1 that the determination of the width plays an important role. 
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Fig.1 Effect of width in the Gaussian kernel 
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 It is possible to determine the optimal width with optimization techniques. 

Therefore, optimization with respect to the width will be performed. However, the 

task to optimize the width is much time-consuming. When we determine the 

width to each Gaussian kernel, the number of decision variables of the 

optimization problem is equal to the number of training data. If we have one 

hundred training data, the optimization problem has one hundred decision 

variables. Thus, we have to solve the optimization problem with one hundred 

decision variables. In addition, the function with respect to the width becomes a 

multi-modal function due to the Gaussian kernel. This leads to the discussion on 

global optimization techniques. Therefore, which are the best global optimization 

techniques? In order to avoid the discussions on global optimization techniques, it 

is preferable to determine the width in the Gaussian kernel with a simple manner. 

Few papers focus on the width in the Gaussian kernel, and some simple estimates 

of the width have been proposed [10-13]. These are heuristic approaches, and it 

may be difficult to provide rigorous proofs from the mathematical point of view. 

In numerical computation, we have to determine the width in some ways, so that it 

is an important topic for determining the width with a simple manner. In [10], “p-

nearest neighbours heuristic” is employed to determine the width. In this 

approach, it is possible to determine the width to each Gaussian kernel. The 

problem of this approach is to determine the parameter p in advance. p is set to 2, 

but no clear reasons could be found in [10]. In [11], the nearest neighbor approach 

is also employed. In this approach, the minimum distance among the training data 

is considered. The width of each Gaussian kernel can be determined by the 

product between the minimum distance and a constant parameter. It is also 

possible to determine the width to each Gaussian kernel, but a constant parameter 

may depend on the problems. In [12], the following simple estimate of the width 

is proposed: 

max

2

d
r

M
       (1) 

where dmax denotes the maximum distance among the training data, and M is the 

number of hidden neurons. A similar estimate of the width is also proposed by 

Nakayama et al. [13], and is given as follows: 

max

n

d
r

nM
       (2) 
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In Eq(2), n denotes the dimensions. Eq.(2) can be regarded as the generalization 

and the extension to n dimensions, in comparison with Eq.(1). Eq.(2) consists of 

three elements: (1) the dimensions, (2) the number of hidden neurons, and (3) the 

maximum distance among the training data. In [13], for simplicity, the number of 

hidden neurons is assumed to be the number of training data. This reason will be 

discussed at the beginning of section 3. In addition, this assumption is employed 

to apply Eq.(2) to SVM and SVR [14]. Eqs.(1) and (2) are equally applied to all 

Gaussian kernels, and the width has a constant value. If Eqs.(1) and (2) are 

employed to determine the width in the Gaussian kernels, non-uniform 

distribution of the training data cannot be taken into account. It has been reported 

that Eq.(2) can be applicable to RBF network, SVM, and SVR [14]. If the training 

data are uniformly distributed, it is expected that Eq.(2) will work well. However, 

most real problems show non-uniform distribution of the training data. In such 

cases, it may be difficult to obtain a good classifier and regression with Eq.(2). It 

is important to develop a simple estimate of the width considering the non-

uniform distribution of the training data. 

 In this paper, a new simple estimate of the width in the Gaussian kernel is 

proposed. As described above, Eq.(2) can be regarded as the generalization and 

extension of Eq.(1), and then we mainly focus on Eq.(2). First, Eq.(2) is 

examined, and then four sufficient conditions for the simple estimate of the width 

will be described. According to these sufficient conditions, a new simple estimate 

of the width in the Gaussian kernel is proposed. In order to employ this new 

simple estimate of the width, all dimensions are equally scaled. A simple scaling 

technique, called the adaptive scaling technique, is also proposed. In this scaling 

technique, the scaling coefficient is adaptively adjusted. The proposed estimate of 

the width can deal with the non-uniform distribution of the training data. In 

numerical examples, the proposed estimate of the width with the adaptive scaling 

technique is applied to LS-SVM and RBF network. One application is the 

classifier by LS-SVM and RBF network, and the other is the sequential 

approximate optimization (SAO) by RBF network. In the classifier, three 

character recognition problems are handled. Through this numerical examples, it 

can be found that the proposed estimate of the width is applicable to LS-SVM and 

RBF network. It is apparent from numerical examples that the same constant 

value of the width sometimes leads to wrong results. In other words, the 
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numerical results show that individual assignment of the width to the Gaussian 

kernel is important and valid. The proposed estimate of the width clearly belongs 

to the heuristic approaches, so that it may be difficult to give rigorous proofs. 

Through numerical examples, the validity is examined.  

The remainder of this paper is organized as follows: In section 2, brief 

review of some machine learning techniques is described. In section 3, the width 

in [12] is also examined, and four sufficient conditions for a simple estimate of 

the width are described. Then, a new equation of the width is proposed, and the 

adaptive scaling technique is also described. In section 4, a new simple estimate 

of the width is examined through examples. 

2. RBF network and LS-SVM 

2.1 Radial Basis Function Network 

RBF network is a three-layer feed-forward network. The training data is 

expressed by {xj, yj}( 1,2, ,j m ), and M represents the number of hidden 

neurons. According to [13-15], the output of the network fa(x) is given by 

1
( ) ( )

M

a j jj
f w h


x x      (3) 

where hj(x) is the j-th basis function, and wj denotes the weight of the j-th basis 

function. The regression is given by Eq.(3). The following Gaussian kernel is 

often employed as the basis function. 

2

( ) ( )
( ) exp( )

T
j j

j

j

h
r

 
 

x c x c
x    (4) 

In Eq(4), rj is the width of the j-th basis function, and cj is the center of the j-th 

basis function. The learning of the RBF network is usually accomplished by 

solving the following optimization problem with respect to weights w: 

2 2

1 1
( ( )) min

m M

j a j j jj j
E y f w

 
    x    (5) 

where the second term is introduced for the purpose of regularization. It is 

recommended that j  in Eq.(5) have a sufficiently small value 

(e.g.
31.0 10j
  ) [13]. Thus, the learning of the RBF network is equivalent to 

finding the weight vector w [15]. The necessary condition of Eq.(5) leads to the 

following equation: 
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1( )T T w H H Λ H y     (6) 

where H, Λ, and y are given as follows: 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

M

M

m m M m

h h h

h h h

h h h

 
 
 
 
 
  

x x x

x x x
H

x x x

   (7) 

1

2

0 0

0 0

0 0 0 M







 
 
 
 
 
  

Λ      (8) 

1 2( , , , )T
my y yy       (9) 

 It is clear from Eq.(6) that the learning of the RBF network is equivalent to 

the matrix inversion 1( )T H H Λ . In comparison with direct optimization of 

Eq.(5), the use of Eq.(6) can save the computational time, and results in simple 

calculation. Using the RBF network, it is easy to calculate the weight vector w, 

because the additional learning is reduced to the incremental calculation of the 

matrix inversion. The detailed procedure is found in [15]. 

2.2 Least Squares Support Vector Machine 

Least squares support vector machine (LS-SVM) considers equality 

constraints for the classification problem with a formulation in least squares sense. 

Thus, the solution can be obtained by solving a set of linear equations instead of 

solving QP problem. The extension of classical SVM to SVR is more complex 

because the epsilon insensitive loss function is introduced, while it is very easy to 

extend LS-SVM classifier to the regression version.  

 In LS-SVM classifier, the following simple linear system equation can be 

solved:  

1

0 0T b

C

     
     

      

y

α 1y Ω I
    (10) 

where 1 2( , , , )T
my y yy . The element of y is given by { 1, 1}jy    . Ω  is the 

m x m matrix with elements , ( , )i j i j i jy y K  x x . K represents the kernel 

function, and the following Gaussian kernel is widely employed. 
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2

( ) ( )
( , ) exp( )

T

K
r

  
  



x x x x
x x    (11) 

where r  represents the width in the Gaussian kernel. I  represents the unit 

matrix. (1,1, ,1)T1  of the left hand side in Eq.(10) is a m x 1 column vector. 

The following separating hyperplane fa(x) can be obtained by solving Eq.(10): 

1
( ) ( , )

m

a j j jj
f y K b


 x x x    (12) 

The training data is separated by fa(x) = 0.  

Next, let us consider LS-SVM regression version. In LS-SVM regression, 

the following linear system can be solved in order to obtain the regression: 

1

0 0T b

C

     
     

      

1

α y1 Ω I
    (13) 

where 1 2( , , , )T
my y yy  is the column vector of the real values, and the 

element of Ω  is given by , ( , )i j i jK  x x . K represents the kernel function 

given by Eq.(11). LS-SVM regression fa(x) is expressed as follow: 

1
( ) ( , )

m

a j jj
f K b


 x x x    (14) 

By comparing Eqs.(10) and (13) with Eq.(6), it follows that parameter C in LS-

SVM corresponds to j  in RBF network when the number of training data is 

equal to the number of hidden neurons. Therefore, it is recommended that 

parameter C have a sufficiently large value (e.g. C=1000). 

3. Width of Gaussian Kernel and Adaptive Scaling 

Technique 

In this section, a new simple estimate of the width in the Gaussian kernel 

is proposed. In order to develop the new simple estimate of the width, all 

dimensions are equally scaled. The adaptive scaling technique is also described in 

this section. In RBF network, the determination of the appropriate number of 

hidden neurons is also one of the important topics. This leads to the discussion on 

the center of the basis function. There are some methods to determine the center 

of Gaussian kernel such as SOM (Self-Organizing Map), k-means clustering and 

so on. However, the objective of this paper is to propose a simple estimate of the 

width with a simple manner. Then, for simplicity, we assume that the number of 
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hidden neurons is equal to the number of training data (M = m). In RBF network, 

this implies that we set the basis function upon the training data (cj in Eq.(4) is 

replaced as j-th training data xj). This assumption can be extended to LS-SVM for 

the availability of width.  

3.1 Width of Gaussian Kernel 

 Let us consider the K-level full factorial design [16], in which the regular 

interval is given by d . In this case, dmax is given by 

max ( 1)d n K d        (15) 

Fig.2 shows an illustrative example in two dimensions. In this figure, the black 

dots denote the training data.  

d

d

1x

2x

( 1)K d 

( 1)K d 
 

Fig.2 Training data with two dimensions 

In the case of n dimensions, the number of training data, m, is simply calculated as 

follows:  

nm K       (16) 

Eqs.(15) and (16) are substituted into Eq.(2). Here, we solve Eq.(2) with respect to 

r d , and then the following equation can be obtained: 

2

2
1

(1 )

n

n
r

n
d K



 


     (17) 

In Eq.(17), K   is considered. This implies a uniform distribution of the 

training data. Table 1 shows the convergence of r d  at K  .  

 

 



9 

Table 1 Convergence of r d  at K   

Dimension n r /Δd

1 1.000

2 1.000

3 1.201

4 1.414

5 1.621

6 1.817

7 2.003

8 2.181  

It is clear from Table 1 that the same value of r d  can be achieved at 

K   in the cases of n=1 and n =2. However, different values of r d  can be 

obtained in the case of 3n  . It is assumed that the key factor to obtain a good 

classifier and regression is the uniform convergence of r d , which implies 

1r d   at K  . Then, on the basis of Eq.(2), the following sufficient 

conditions for simple estimate of the width are summarized as follows: 

(W1) It is preferable to consider the dimensions, n. 

(W2) It is also preferable to consider the number of training data, m.  

(W3) It is preferable to consider the maximum distance among the training data, 

dmax. 

(W4) 1r d   can be achieved at K    

In order to satisfy the above sufficient conditions, the following simple 

estimate of the width in Gaussian kernel may be valid: 

max
1 2 m n

d
r r r

n m
        (18) 

Since Eq.(18) satisfies the above sufficient conditions at K  , a good 

classifier and regression can be expected. Indeed, Eqs.(15) and (16) are 

substituted into Eq.(18), and we solve it with respect to r d . As the result the 

following equation can be obtained: 

1
(1 )

r

d K
 


     (19) 

It is clear from Eq.(19) that 1r d   can be achieved at K  , and 

the sufficient conditions (W1)~(W4) are satisfied. Note that Eq.(18) can be 

obtained under the assumption that is an uniform distribution of the training data. 

In addition, it is clear from Eq.(16) that numerous training data are required for a 
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good classifier and regression with Eq.(18). In addition, Eq.(18) is applied to all 

Gaussian kernels, so that width has a constant value. As described in introduction, 

a constant value cannot deal with the case of non-uniform distribution of the 

training data. Unfortunately, most real problems show non-uniform distribution of 

the training data, and available training data are also limited. Then, the following 

equation considering the non-uniform distribution of the training data is proposed 

in this paper. 

,max

1

j
j n

d
r

n m



 1,2, ,j m    (20) 

where rj denotes the width of the j-th Gaussian kernel. dj,max denotes the maximum 

distance between j-th training data and another training data in the training set. 

Eq.(20) is applied to each Gaussian kernel individually, unlike Eqs.(1) and (2). In 

Eq.(2), dmax is always constant in both the uniform and non-uniform distribution 

of the training data. This implies that non-uniform distribution of the training data 

cannot be taken into account. In order to consider the non-uniform distribution of 

the training data, dj,max is employed in Eq.(20). j-th training data is already used to 

measure the distance dj,max, and the rest of training data is m-1. Thus, j-th training 

data is deleted among the all training data, and then the denominator in Eq.(20) is 

m-1. 

 We describe the application of Eq.(20) to the Gaussian kernel. As an 

example, let us consider the case of LS-SVM classifier. We must compute 

, ( , )i j i j i jy y K  x x  to solve the linear system. In this case, ,i j  of rj is 

computed as follow: 

, 2

( ) ( )
( , ) exp( )

T
i j i j

i j i j i j i j

j

y y K y y
r

 
   

x x x x
x x  (21) 

3.2 Adaptive Scaling Technique 

As already described, all dimensions should be equally scaled in the 

development of Eq.(20). The following basic equation is used to scale all 

dimensions: 

L
i i

i U L
i i

x x
X s

x x


 


, 1,2, ,i n    (22) 

where xi is the i-th decision variable. xi
U
 and xi

L
 denote the upper and lower 

bounds on the i-th decision variable, respectively. s (>0) in Eq.(22) denotes the 
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scaling coefficient. Here, the scaling coefficient s plays an important factor. If the 

scaling coefficient s is fixed, W4 described above may not be satisfied. In order to 

determine r with a simple manner, d  is set to 1. Please note that r depends on 

d , while 1r d   at K   should be satisfied. In addition, all variables 

should be equally scaled. Under these conditions, there are no guidelines to 

determine d , and then d  is assumed to be 1 to ensure the distance among 

the training data in the scaled space. (There are no mathematical proofs on this 

assumption that d  is equal to 1. This can be obtained through our numerical 

experiences.) Under this assumption, 1r   at K   can be achieved. This 

implies that the minimum width with a simple manner is always greater than 1 

when the decision variables are equally scaled with Eq.(22). As the result, the 

scaling coefficient s should be adaptively adjusted. Then, the adaptive scaling 

technique, in which the scaling coefficient is adaptively adjusted, is proposed. The 

algorithm of this technique is summarized as follows: 

(STEP1) Initial scaling coefficient s (>0) is set up.  

(STEP2) All dimensions are scaled by Eq.(22). 

(STEP3) The width by Eq.(20) is calculated in the scaled space. 

(STEP4) The minimum width rmin is found. 

min
1
min { }j

j m
r r

 
      (23) 

(STEP5) If min 1r  , then scaling coefficient s is updated as follows: 

s s   ( 1  )     (24) 

Otherwise, the adaptive scaling algorithm will be terminated.  

When some new training data are added, the adaptive scaling technique is 

applied again. On the basis of the author’s numerical experiences, 1.1   is 

recommended.  

4. Examples and Discussions 

 The proposed estimate of the width is applied to two problems: First 

example is the classifier by LS-SVM and RBF network, and second one is the 

Sequential Approximate Optimization (SAO) by RBF network. In RBF network, 

the parameter j  in Eq.(8) should be determined, while the parameter C in 

Eq.(10) should be determined in LS-SVM. In RBF network, it is recommended 
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that j  in Eq.(5) have a sufficiently small value (e.g.
31.0 10j
  ) [13], and 

then j  is set to 
31.0 10 . As described in section 2.2, it is possible to consider 

the equivalence between LS-SVM and RBF network when the number of training 

data is assumed to be the number of hidden neurons. As the result, the parameter 

C in LS-SVM is set to 1000. The proposed estimate of the width can be developed 

based on Eq.(2), so that results by the proposed width are compared with ones by 

Eq.(2). In addition, the same parameter values ( j  in Eq.(5) and C in Eq.(10)) are 

employed through numerical examples. Thus, we would like to examine the 

validity of the proposed estimate of the width under same parameter conditions. It 

may be important to use the various parameter values in the numerical examples, 

but the objective of this paper is to propose and examine the simple estimate of 

the width.  

4.1 Application to the classifier by LS-SVM and RBF network 

 The proposed estimate of the width is applied to the classifier by LS-SVM 

and RBF network. The training data is separated by fa(x) = 0. In numerical 

examples, the number of dimensions is set to 2 to visualize the separating curve. 

In this case, the width by Eqs.(1) and (2) has the same constant value. The 

numerical training data used in this section are listed in Table 2. The range of all 

variables is set as follow: 

1 210 , 10x x        (25) 
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Table 2 Numerical training data 

No. x 1 x 2 Label No. x 1 x 2 Label No. x 1 x 2 Label

1 0 6.5 1 1 5 6 1 1 6 5 1

2 -1 6 1 2 4.5 5 1 2 4 5 1

3 -2 5.2 1 3 4 3 1 3 2 5 1

4 -3 4 1 4 3 1 1 4 1 5 1

5 -4 3 1 5 2 0 1 5 -1 5 1

6 -5 1 1 6 1 -2 1 6 -3 4 1

7 -5.5 -1 1 7 0 -4 1 7 -4 3 1

8 -6 -3 1 8 -1 -5 1 8 -5 2 1

9 -5.5 -5 1 9 -2 -6 1 9 -5.5 0 1

10 -4.5 -6.5 1 10 -4 -6.5 1 10 -6 -2 1

11 -3 -6 1 11 -5 -6 1 11 -5.5 -4 1

12 -1.5 -4.5 1 12 -6 -5 1 12 -5 -6 1

13 -0.5 -3 1 13 -6.5 -2 1 13 -3 -5.5 1

14 0 -2 1 14 -6 0 1 14 -1 -6 1

15 0 0 1 15 -5 2 1 15 0 -5.5 1

16 1 2 1 16 -4 4 1 16 1 -4 1

17 1.5 4 1 17 -3 5 1 17 2 -3 1

18 0 -5 1 18 -2 6 1 18 2.4 -1 1

19 1 -6 1 19 -1 6.5 1 19 2.8 1 1

20 3 -5.5 1 20 1 6 1 20 2 3 1

21 4.5 -4 1 21 1.8 4 1 21 5 8 -1

22 5.5 -2 1 22 2 2 1 22 2 8 -1

23 6 0 1 23 1.8 -4 1 23 0 8 -1

24 6.5 2 1 24 2 -6 1 24 -2 8 -1

25 6 4 1 25 3 -6 1 25 -3 7 -1

26 5 6 1 26 4 -5 1 26 -5 6 -1

27 3.5 6.5 1 27 5 -3.5 1 27 -6 4 -1

28 4 8 -1 28 6 -3 -1 28 -7 2 -1

29 6 7 -1 29 5.5 -5 -1 29 -8 0 -1

30 8 5 -1 30 4 -7 -1 30 -8 -3 -1

31 8 1 -1 31 2 -8 -1 31 -7 -6 -1

32 7 -3 -1 32 1 -7 -1 32 -6 -8 -1

33 5 -6 -1 33 0.5 -5 -1 33 -4 -8 -1

34 3 -8 -1 34 -1 -7 -1 34 -2 -8 -1

35 1 -8 -1 35 -3 -8 -1 35 0 -8 -1

36 -1 -6 -1 36 -5 -8 -1 36 2 -7 -1

37 -3 -8 -1 37 -7 -7 -1 37 3 -5 -1

38 -6 -7 -1 38 -8 -5 -1 38 4 -4 -1

39 -7 -5 -1 39 -8 -3 -1 39 5 -2 -1

40 -7.5 -2 -1 40 -8 -1 -1 40 5 0 -1

41 -7 1 -1 41 -7 2 -1 41 4.5 2 -1

42 -6 4 -1 42 -6 4 -1 42 4 3 -1

43 -4 6 -1 43 -4 6.5 -1 43 7 3 -1

44 -2 7 -1 44 -2 8 -1 44 8 4 -1

45 0 8 -1 45 0 8 -1 45 8 6 -1

46 2 8 -1 46 2 7 -1 46 0 3 -1

47 2 6 -1 47 3 5 -1 47 -1 3 -1

48 4 5 -1 48 4 7 -1 48 -3 2 -1

49 5 2 -1 49 6 8 -1 49 -4 0 -1

50 4 0 -1 50 7 6 -1 50 -4 -2 -1

51 3 -3 -1 51 6 4 -1 51 -4 -4 -1

52 1.5 -4.5 -1 52 5 2 -1 52 -2.5 -4 -1

53 1 -3 -1 53 4 0 -1 53 -1 -4 -1

54 2 -1 -1 54 3 -2 -1 54 0 -2 -1

55 3 2 -1 55 3 -4 -1 55 1 1 -1

56 2.5 4 -1 56 4 -3 -1

57 -0.5 3 -1 57 5 -2 -1

58 -1.5 0 -1 58 -1 5 -1

59 -1.5 -2 -1 59 -2 4 -1

60 -2 -4 -1 60 -3 2 -1

61 -4 -5 -1 61 -4 0 -1

62 -4 -2 -1 62 -4.5 -2 -1

63 -3.5 1 -1 63 -4.5 -4 -1

64 -2 3 -1 64 -3.5 -5 -1

65 -0.5 5 -1 65 -2 -4 -1

66 -1 -2 -1

67 0 0 -1

68 1 2 -1

69 0.5 4 -1

Example 1 (Omega ) Example 2 ( Alpha ) Example 3 ( Sigma )

 



14 

Fig.3 shows the results of separating curves by LS-SVM. In Fig.3, +1 is 

assigned to the white circles and -1 is assigned to the black circles. The left hand 

sides of Fig.3 show the result by Eq.(20), and the right hand sides show the one by 

Eq.(2). The solid line represents fa(x) = 0, which separates the training data. In 

addition, Fig.4 shows the three dimensional view of fa(x). The left hand sides 

show the fa(x) by Eq.(20), and the right hand sides show the one by Eq.(2). 

Example 1 (Omega) 
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Example 3 (Sigma) 
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Fig.3 Separating hyperplane by LS-SVM 

Example 1 (Omega) 

 

Example 2 (Alpha) 
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Example 3 (Sigma) 

 

Fig.4 3D view of LS-SVM classifier 

 

 Next, separating curves by RBF network is obtained with the same training 

data. The objective of this is to examine the availability of the proposed estimate 

of the width to the RBF network. The results are shown in Fig.5. The left hand 

sides of Fig.5 show the results by LS-SVM, and the right hand sides show the 

ones by RBF network. 

RBF networkLS-SVM

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

 



17 

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

RBF networkLS-SVM
 

-10 -5 0 5 10

-10

-5

0

5

10

RBF networkLS-SVM

-10 -5 0 5 10

-10

-5

0

5

10

 

Fig.5 Comparison between LS-SVM and RBF network 

4.2 Application to Sequential Approximate Optimization 

 In this section, the proposed estimate of the width with the adaptive 

scaling technique is applied to sequential approximate optimization (SAO) by the 

RBF network. SAO methodology is widely studied in the structural engineering 

field [17-21]. In the engineering optimization, it is very important to reduce the 

computational costs and the experiments. This is equivalent to the reduction of the 

training data. Thus, it is important to find the global minimum with a little number 

of training data. 

General procedure of the SAO is summarized as follows: 

(STEP1) The training data is distributed.  

(STEP2) The objective is evaluated at training data. Therefore, the regression 

which is called the response surface is constructed. 
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(STEP3) In order to find the optimum of the response surface, optimization 

technique is applied to the response surface. The optimum of response surface is 

often called the approximate optimum. 

(STEP4) The approximate optimum obtained in STEP3 is added as the new 

training data. In addition, a few training data are also added.  

 For better understanding of the SAO procedure, let us consider a following 

example: 

 
5

1
( ) cos 1 min

i
f x i i x i


        (26) 

0 7.5x       (27) 

In the SAO, some training data are distributed, and the function is evaluated at the 

training data. Then, the response surface is constructed by using the training data 

and the function values. In Fig.6, the dashed line shows the original function, and 

solid line represents the response surface. The black dots denote the training data. 

In Fig. 6, three training data are distributed. The global minimum of the response 

surface, which denotes the triangle in Fig.6, can be found.  

 

1 2 3 4 5 6 7

-10

-5

5

10

15 Original function

Response surface

 

Fig. 6 Response surface 

 The global minimum of the response surface is added as the new training 

data. In addition, a few new training data are also added. Then, the response 

surface is constructed with new training data, and the global minimum of the 

response surface can be found. Through this iterative process, the global 

minimum of the original function can be found. The illustrative approximation 

processes are shown in Fig.7.  
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15 Original function

Response surface

dmax  

(a) Response surface at 13 training data 

1 2 3 4 5 6 7
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15
Original function

Response surface

dmax  

(b) Response surface at 23 training data 

1 2 3 4 5 6 7
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-5

5

10

15 Original function

Response surface

dmax  

(c) Response surface at 33 training data 

Fig. 7 Process of approximation of original function 
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 It is clear from Fig. 7 that the training data show non-uniform distribution. 

When Eq.(2) is employed to construct the response surface, dmax is always 

constant. Since the training data is added in the SAO, the number of the training 

data is increased. As the result, the width in the Gaussian kernel will become 

smaller and smaller. On the other hand, dj,maxis employed in the proposed width, 

and then the width in the Gaussian kernel does not always become smaller and 

smaller.  

 The following optimization problem is considered. 

 4 2

1

1
( ) 16 5 min

2

n

i i i

i

f x x x


   x    (37) 

5 5  x       (38) 

The global minimum xG is ( 2.9035, 2.9035, , 2.9035)TG    x . The dimension 

n is set to ten in this numerical example. In this case, the objective function at xG 

is ( ) 391.661Gf  x . The particle swarm optimization (PSO), which is a 

population-based optimization technique, is applied to this problem directly. The 

number of particles is set to 20, and the maximum number of iteration is set to 

500. 20 particles move the positions at every search iteration, in order to find the 

global minimum. In other words, the global minimum can be actually found with 

10000 (= 20 500 ) training data. In section 4.1, the training data is fixed, but the 

training data (=particles) will move in PSO. This point is different in case of 

section 4.1. The PSO results are shown in Table 3 through 10 trials.  

 

Table 3 Results of direct search by the PSO 

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.

1 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

2 -2.9036 -2.9036 -2.9036 -2.9035 -2.9035 -2.9035 -2.9035 2.7468 -2.9035 -2.9035 -377.5200

3 -2.9046 -2.9027 -2.9021 -2.9038 -2.9032 -2.9047 -2.9015 -2.9043 -2.9029 -2.9049 -391.6600

4 -2.9036 -2.9035 -2.9036 -2.9036 -2.9035 -2.9035 -2.9036 -2.9035 -2.9036 -2.9036 -391.6600

5 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

6 -2.9035 -2.9035 -2.9035 -2.9035 -2.9036 -2.9035 2.7468 -2.9036 -2.9035 -2.9035 -377.5200

7 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

8 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

9 -2.9036 -2.9034 -2.9036 -2.9036 -2.9034 -2.9036 -2.9035 -2.9035 -2.9036 -2.9036 -391.6600

10 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600  

  First, 30 training data are distributed at random. The SAO algorithm in 

[22] is employed to find the global minimum. The maximum number of training 

data is set to 500. Therefore, the SAO algorithm will be started at 30 training data. 

The algorithm will be terminated at 500 training data. Ten trials with different 
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random seed are performed, and these results are listed in Table 4 and 5. Table 4 

shows the result by Eq.(2), while Table 5 shows the result by Eq.(20).  

 

Table 4 The result with the simple estimate by Nakayama 

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.

1 -2.6590 -2.7695 -2.1054 3.0079 -3.2740 -2.7108 -2.6121 -2.3852 2.7003 -0.9410 -314.1416

2 -2.0759 -2.7692 2.2905 -1.9245 2.7989 -2.6619 1.9850 -2.0531 2.4101 -1.4912 -273.9235

3 -2.9410 -2.8063 -3.0479 -2.6390 -2.9142 -2.8250 -2.8031 0.9497 -2.7844 0.7700 -318.2305

4 -2.8926 -2.9712 -2.0732 -3.2507 -2.8878 -2.7514 -3.3558 -1.2210 -2.2069 -1.5235 -324.6039

5 -2.9462 2.5448 -2.9124 -2.7911 -3.0628 2.3251 0.6797 -2.9464 -2.9779 2.7018 -308.3509

6 2.4241 -0.3086 3.1126 -3.6446 -1.6238 -2.6086 -3.4843 1.1949 -0.0281 1.9153 -192.1104

7 -2.8263 -2.9896 2.7270 -3.1419 -2.6376 -2.6945 -2.4389 -3.2174 -1.6055 -3.3261 -347.9492

8 -2.9634 -2.7063 2.5490 -2.6656 -2.5071 -2.9957 -2.9850 2.8242 -3.0073 2.2608 -341.3516

9 -2.6664 2.4891 -2.7121 -2.2098 -2.7480 -0.1432 1.5402 -2.7654 -3.2011 -3.0773 -300.2067

10 -2.3563 -2.7148 -2.7854 -2.6837 2.3436 -1.2683 2.4122 -2.6995 -2.7142 -2.1761 -321.3327  

 

Table 5 The result with the proposed simple estimate 

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.

1 -2.8096 -2.8428 -2.8138 -2.8923 -2.9249 -2.8322 -2.7792 -2.9189 -2.9251 -2.8174 -390.8271

2 -2.8796 -2.7992 -2.9779 -2.9068 -2.8315 -2.9377 -2.9344 -2.9574 -2.9395 -2.8551 -391.1336

3 -2.9828 -2.8559 -2.8442 -2.7923 -2.8739 -2.9228 -2.7560 -2.9362 -2.9070 -2.8233 -390.7393

4 -2.8815 -2.8551 -2.9466 -2.8876 -2.8993 -2.8246 -2.8708 -2.8602 -2.8473 -2.8967 -391.3663

5 -2.9453 -2.9166 -2.7878 -2.8491 -2.8713 -2.7786 -2.9730 -2.7636 -2.9755 -2.9006 -390.5783

6 -2.9192 -2.8345 -2.9351 -2.8462 -2.9019 -2.8998 -2.8975 -2.9197 2.6884 -2.8685 -377.2915

7 -2.9376 2.6801 -2.8858 -2.8898 -2.8615 -2.8626 -2.9049 -2.8773 -2.8294 -2.8921 -377.2669

8 2.6569 -2.9470 -2.9554 -2.8557 -2.8986 -2.9416 -2.8419 -2.8627 -2.9532 -2.8738 -377.1143

9 -2.9211 -2.8614 2.7425 -2.9349 -2.8388 -2.8856 -2.8809 -2.8981 -2.9182 -2.8922 -377.3801

10 -2.8901 -2.8468 -2.8828 -2.9049 -2.9252 2.6898 -2.8235 -2.9735 -2.8813 -2.8938 -377.2004  

4.3 Discussions 

 It is clear from above examples that the proposed estimate of the width 

works well, compared with Eq.(2). In section 4.1, more smooth separating curves 

obtained when the proposed estimate of the width is used. In section 4.1, the 

training data are distributed non-uniformly. In such cases, it is preferable to use 

different widths to each Gaussian kernel. The proposed estimate of the width is 

applicable to such cases, and shows the good results. The result implies that the 

individual assignment of the width to the Gaussian kernel is important and valid. 

The proposed estimate of the width is applied to RBF network with the same 

training data. The separating curves by RBF network can clearly separate the 

training data, and is qualitatively similar to one by LS-SVM under the parameter 

setting used in this paper. In section 4.2, the proposed simple estimate of the 

width with the adaptive scaling technique is applied to the sequential approximate 

optimization. RBF network is employed to construct the response surface. By 

comparing Table 4 with Table 5, it is clear that better results can be obtained. 
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Through five trials (Trial No.1 – Trial No.5 in Table 5), the approximate global 

minimum could be obtained. In addition, the other trials (Trial No.6 – Trial No.10 

in Table 5) yield quasi-optima. However, the global minimum cannot be obtained 

with Eq.(23). These results also imply that it is preferable to apply a different 

width to each basis function.  

5. Conclusions 

 The Gaussian kernel is widely employed in the machine learning 

techniques. It is important to determine the appropriate width in the Gaussian 

kernel with a simple manner. In this paper, a new simple estimate of the width in 

the Gaussian kernel has been proposed. The proposed estimate could be 

developed by examining the estimate by Nakayama. Through the examination, we 

considered four sufficient conditions for the simple estimate of the width. 

Therefore, it is preferable to consider (1) the dimensions, (2) the number of the 

training data, (3) the maximum distance among the training data, and (4) the 

uniform convergence. Based on these conditions, we first proposed the simple 

estimate of the width. However, this estimate does not consider the non-uniform 

distribution of the training data. Then, we have developed the new simple estimate 

of the width in the Gaussian kernel. The proposed width is applied to each 

Gaussian kernel, and the non-uniform distribution of the training data could be 

also taken into account. In addition, the adaptive scaling technique has also been 

proposed. In this technique, the scaling coefficient is adaptively adjusted, in order 

to determine the width. The proposed estimate of the width has been applied to 

LS-SVM and RBF network. The classifier and SAO have been taken as the 

numerical examples. In the classifier, two-dimensional problems have been 

handled, in order to visualize the separated curves. The training data are uniformly 

distributed. It has been confirmed that individual assignment of the width to the 

Gaussian kernel is important and valid. In the SAO, RBF network is employed to 

construct the response surface. The better result can be obtained by the proposed 

estimate of the width. The determination of the width in the Gaussian kernel still 

remains one of the important topics [23]. The proposed estimate of the width 

clearly belongs to heuristic approaches, and then we could not give rigorous 

proofs. Therefore the proposed estimate of the width is a proposal, and is not an 

absolute one.  
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Appendix 

In section 4.2, particle swarm optimization (PSO) is employed as the 

optimization technique [24]. Several models of PSO have been proposed. The 

most popular among them is the g-best model. In this paper, the g-best model is 

employed. The position and velocity of particle d are represented by k

dx  and k

dv , 

respectively, and k represents the iteration step. The position and velocity of 

particle d at iteration k+1 are calculated by the following equations. 

1
1 1 2 2( ) ( )k k k k k k

d d d d g dw c r c r     v v p x p x    (A1) 

1 1k k k
d d d
  x x v      (A2) 

The coefficient w in (A1) is called the inertia term, and it linearly decreases as the 

search proceeds [25, 26]. Parameters r1 and r2 denote random numbers between 

[0,1]. Weighting coefficients c1 and c2 are recommended to maintain the 

following relationship. 

1 2 4c c        (A3) 

c1=c2=2 is used in this paper, according to [27, 28]. The position vector k
dp , called 

the p-best, represents the best position of particle d until the k-th iteration, and 

k
gp , called the g-best, represents the best position in the swarm till the k-th 

iteration. The basic algorithm of PSO, which is called a g-best model, is described 

briefly below.  

(STEP1) Define the search domain in advance. Determine the swarm population 

size and the maximum search iteration number, kmax. Initialize the iteration 

counter k as k =1. Randomly generate the initial position and velocity of each 

particle in the search domain. 

(STEP2) Calculate the objective function of each particle. 

(STEP3) Select the p-best and g-best. 

(STEP4) Update the velocity and position of each particle by (A1) and (A2). 

(STEP5) Update the inertia term by using following equation.  

max min
max

max

w w
w w k

k


       (A4) 

where, wmax=0.9 and wmin=0.4 are used, in general [29]. 
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(STEP6) If k is less than kmax, the iteration counter is increased as k=k+1, and the 

algorithm returns to STEP2. Otherwise, the algorithm terminates. 
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