
Simple estimate of the width in Gaussian kernel
with adaptive scaling technique

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

https://doi.org/10.24517/00008344URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

1

Simple Estimate of the Width in Gaussian Kernel

with Adaptive Scaling Technique

Satoshi Kitayama
1
, Koetsu Yamazaki

2

1
College of Science and Engineering, Kanazawa University, Kakuma-machi,

Kanazawa, 920-1192, Japan

+81-76-234-4758

kitagon@t.kanazawa-u.ac.jp (Corresponding Author)

2
 College of Science and Engineering, Kanazawa University, Kakuma-machi,

Kanazawa, 920-1192, Japan

Abstract

This paper presents a simple method to estimate the width of Gaussian kernel based on an adaptive

scaling technique. The Gaussian kernel is widely employed in Radial Basis Function (RBF)

network, Support Vector Machine (SVM), Least Squares Support Vector Machine (LS-SVM),

Kriging models, and so on. It is widely known that the width of the Gaussian kernel in these

machine learning techniques plays an important role. Determination of the optimal width is a time-

consuming task. Therefore, it is preferable to determine the width with a simple manner. In this

paper, we first examine a simple estimate of the width proposed by Nakayama et al.. Through the

examination, four sufficient conditions for the simple estimate of the width are described. Then, a

new simple estimate for the width is proposed. In order to obtain the proposed estimate of the

width, all dimensions are equally scaled. A simple technique called the adaptive scaling technique

is also developed. It is expected that the proposed simple method to estimate the width is

applicable to wide range of machine learning techniques employing the Gaussian kernel. Through

examples, the validity of the proposed simple method to estimate the width is examined.

Keywords: Gaussian Kernel, Width, LS-SVM, RBF network

mailto:kitagon@t.kanazawa-u.ac.jp

2

1. Introduction

 Machine learning techniques such as radial basis function (RBF) network,

support vector machine (SVM), support vector regression (SVR), and least

squares support vector machine (LS-SVM) are widely employed in various areas.

These techniques commonly employ the Gaussian kernel. The equivalence

between SVM and ordinary Kriging has been reported under the assumption that

the covariance function is used as the kernel function [1]. The equivalence

between SVM and the regularization neural network has been also reported [2].

This equivalence can be extended to RBF network, considering the suggestions of

Poggio and Girosi [3]. Thus, it is easily assumed that the equivalence between

SVM and RBF network can be established. LS-SVM overcomes the complex

procedure for finding the support vectors of SVM and SVR, and LS-SVM is now

widely studied [4-9]. In SVM and SVR, the support vectors are determined by

solving the quadratic programming (QP) problem, while LS-SVM can find the

support vectors by solving a simpler linear system.

In the Gaussian kernel, the width plays an important role. As an example,

let us consider the regression by RBF network. The effect of the width is shown in

Fig.1 (a) and (b). In Fig.1, the black dots represent the training data, the dashed

line represents the Gaussian kernel, and the solid line denotes the regression. The

following weights are assigned to the training data: w1 = 0.5 at x = 1, w2 = 1.7 at x

= 3, and w3 = 1.3 at x = 5. The difference between the graphs in Fig.1 is the width

of the Gaussian kernel. The widths in Fig.1(a) and (b) are set to 0.5 and 1.0,

respectively. Small value of the width leads to the non-smooth regression, while

the smooth regression can be obtained with large value of the width. It is clear

from Fig.1 that the determination of the width plays an important role.

width=0.5 width=1.0

0 1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

x

f(x)

0 1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

x

f(x)

(a) Small value of the width (b) Large value of the width

Fig.1 Effect of width in the Gaussian kernel

3

 It is possible to determine the optimal width with optimization techniques.

Therefore, optimization with respect to the width will be performed. However, the

task to optimize the width is much time-consuming. When we determine the

width to each Gaussian kernel, the number of decision variables of the

optimization problem is equal to the number of training data. If we have one

hundred training data, the optimization problem has one hundred decision

variables. Thus, we have to solve the optimization problem with one hundred

decision variables. In addition, the function with respect to the width becomes a

multi-modal function due to the Gaussian kernel. This leads to the discussion on

global optimization techniques. Therefore, which are the best global optimization

techniques? In order to avoid the discussions on global optimization techniques, it

is preferable to determine the width in the Gaussian kernel with a simple manner.

Few papers focus on the width in the Gaussian kernel, and some simple estimates

of the width have been proposed [10-13]. These are heuristic approaches, and it

may be difficult to provide rigorous proofs from the mathematical point of view.

In numerical computation, we have to determine the width in some ways, so that it

is an important topic for determining the width with a simple manner. In [10], “p-

nearest neighbours heuristic” is employed to determine the width. In this

approach, it is possible to determine the width to each Gaussian kernel. The

problem of this approach is to determine the parameter p in advance. p is set to 2,

but no clear reasons could be found in [10]. In [11], the nearest neighbor approach

is also employed. In this approach, the minimum distance among the training data

is considered. The width of each Gaussian kernel can be determined by the

product between the minimum distance and a constant parameter. It is also

possible to determine the width to each Gaussian kernel, but a constant parameter

may depend on the problems. In [12], the following simple estimate of the width

is proposed:

max

2

d
r

M
 (1)

where dmax denotes the maximum distance among the training data, and M is the

number of hidden neurons. A similar estimate of the width is also proposed by

Nakayama et al. [13], and is given as follows:

max

n

d
r

nM
 (2)

4

In Eq(2), n denotes the dimensions. Eq.(2) can be regarded as the generalization

and the extension to n dimensions, in comparison with Eq.(1). Eq.(2) consists of

three elements: (1) the dimensions, (2) the number of hidden neurons, and (3) the

maximum distance among the training data. In [13], for simplicity, the number of

hidden neurons is assumed to be the number of training data. This reason will be

discussed at the beginning of section 3. In addition, this assumption is employed

to apply Eq.(2) to SVM and SVR [14]. Eqs.(1) and (2) are equally applied to all

Gaussian kernels, and the width has a constant value. If Eqs.(1) and (2) are

employed to determine the width in the Gaussian kernels, non-uniform

distribution of the training data cannot be taken into account. It has been reported

that Eq.(2) can be applicable to RBF network, SVM, and SVR [14]. If the training

data are uniformly distributed, it is expected that Eq.(2) will work well. However,

most real problems show non-uniform distribution of the training data. In such

cases, it may be difficult to obtain a good classifier and regression with Eq.(2). It

is important to develop a simple estimate of the width considering the non-

uniform distribution of the training data.

 In this paper, a new simple estimate of the width in the Gaussian kernel is

proposed. As described above, Eq.(2) can be regarded as the generalization and

extension of Eq.(1), and then we mainly focus on Eq.(2). First, Eq.(2) is

examined, and then four sufficient conditions for the simple estimate of the width

will be described. According to these sufficient conditions, a new simple estimate

of the width in the Gaussian kernel is proposed. In order to employ this new

simple estimate of the width, all dimensions are equally scaled. A simple scaling

technique, called the adaptive scaling technique, is also proposed. In this scaling

technique, the scaling coefficient is adaptively adjusted. The proposed estimate of

the width can deal with the non-uniform distribution of the training data. In

numerical examples, the proposed estimate of the width with the adaptive scaling

technique is applied to LS-SVM and RBF network. One application is the

classifier by LS-SVM and RBF network, and the other is the sequential

approximate optimization (SAO) by RBF network. In the classifier, three

character recognition problems are handled. Through this numerical examples, it

can be found that the proposed estimate of the width is applicable to LS-SVM and

RBF network. It is apparent from numerical examples that the same constant

value of the width sometimes leads to wrong results. In other words, the

5

numerical results show that individual assignment of the width to the Gaussian

kernel is important and valid. The proposed estimate of the width clearly belongs

to the heuristic approaches, so that it may be difficult to give rigorous proofs.

Through numerical examples, the validity is examined.

The remainder of this paper is organized as follows: In section 2, brief

review of some machine learning techniques is described. In section 3, the width

in [12] is also examined, and four sufficient conditions for a simple estimate of

the width are described. Then, a new equation of the width is proposed, and the

adaptive scaling technique is also described. In section 4, a new simple estimate

of the width is examined through examples.

2. RBF network and LS-SVM

2.1 Radial Basis Function Network

RBF network is a three-layer feed-forward network. The training data is

expressed by {xj, yj}(1,2, ,j m), and M represents the number of hidden

neurons. According to [13-15], the output of the network fa(x) is given by

1
() ()

M

a j jj
f w h


x x (3)

where hj(x) is the j-th basis function, and wj denotes the weight of the j-th basis

function. The regression is given by Eq.(3). The following Gaussian kernel is

often employed as the basis function.

2

() ()
() exp()

T
j j

j

j

h
r

 
 

x c x c
x (4)

In Eq(4), rj is the width of the j-th basis function, and cj is the center of the j-th

basis function. The learning of the RBF network is usually accomplished by

solving the following optimization problem with respect to weights w:

2 2

1 1
(()) min

m M

j a j j jj j
E y f w

 
    x (5)

where the second term is introduced for the purpose of regularization. It is

recommended that j in Eq.(5) have a sufficiently small value

(e.g.
31.0 10j
 ) [13]. Thus, the learning of the RBF network is equivalent to

finding the weight vector w [15]. The necessary condition of Eq.(5) leads to the

following equation:

6

1()T T w H H Λ H y (6)

where H, Λ, and y are given as follows:

1 1 2 1 1

1 2 2 2 2

1 2

() () ()

() () ()

() () ()

M

M

m m M m

h h h

h h h

h h h

 
 
 
 
 
  

x x x

x x x
H

x x x

 (7)

1

2

0 0

0 0

0 0 0 M







 
 
 
 
 
  

Λ (8)

1 2(, , ,)T
my y yy (9)

 It is clear from Eq.(6) that the learning of the RBF network is equivalent to

the matrix inversion 1()T H H Λ . In comparison with direct optimization of

Eq.(5), the use of Eq.(6) can save the computational time, and results in simple

calculation. Using the RBF network, it is easy to calculate the weight vector w,

because the additional learning is reduced to the incremental calculation of the

matrix inversion. The detailed procedure is found in [15].

2.2 Least Squares Support Vector Machine

Least squares support vector machine (LS-SVM) considers equality

constraints for the classification problem with a formulation in least squares sense.

Thus, the solution can be obtained by solving a set of linear equations instead of

solving QP problem. The extension of classical SVM to SVR is more complex

because the epsilon insensitive loss function is introduced, while it is very easy to

extend LS-SVM classifier to the regression version.

 In LS-SVM classifier, the following simple linear system equation can be

solved:

1

0 0T b

C

     
     

      

y

α 1y Ω I
 (10)

where 1 2(, , ,)T
my y yy . The element of y is given by { 1, 1}jy    . Ω is the

m x m matrix with elements , (,)i j i j i jy y K  x x . K represents the kernel

function, and the following Gaussian kernel is widely employed.

7

2

() ()
(,) exp()

T

K
r

  
  



x x x x
x x (11)

where r represents the width in the Gaussian kernel. I represents the unit

matrix. (1,1, ,1)T1 of the left hand side in Eq.(10) is a m x 1 column vector.

The following separating hyperplane fa(x) can be obtained by solving Eq.(10):

1
() (,)

m

a j j jj
f y K b


 x x x (12)

The training data is separated by fa(x) = 0.

Next, let us consider LS-SVM regression version. In LS-SVM regression,

the following linear system can be solved in order to obtain the regression:

1

0 0T b

C

     
     

      

1

α y1 Ω I
 (13)

where 1 2(, , ,)T
my y yy is the column vector of the real values, and the

element of Ω is given by , (,)i j i jK  x x . K represents the kernel function

given by Eq.(11). LS-SVM regression fa(x) is expressed as follow:

1
() (,)

m

a j jj
f K b


 x x x (14)

By comparing Eqs.(10) and (13) with Eq.(6), it follows that parameter C in LS-

SVM corresponds to j in RBF network when the number of training data is

equal to the number of hidden neurons. Therefore, it is recommended that

parameter C have a sufficiently large value (e.g. C=1000).

3. Width of Gaussian Kernel and Adaptive Scaling

Technique

In this section, a new simple estimate of the width in the Gaussian kernel

is proposed. In order to develop the new simple estimate of the width, all

dimensions are equally scaled. The adaptive scaling technique is also described in

this section. In RBF network, the determination of the appropriate number of

hidden neurons is also one of the important topics. This leads to the discussion on

the center of the basis function. There are some methods to determine the center

of Gaussian kernel such as SOM (Self-Organizing Map), k-means clustering and

so on. However, the objective of this paper is to propose a simple estimate of the

width with a simple manner. Then, for simplicity, we assume that the number of

8

hidden neurons is equal to the number of training data (M = m). In RBF network,

this implies that we set the basis function upon the training data (cj in Eq.(4) is

replaced as j-th training data xj). This assumption can be extended to LS-SVM for

the availability of width.

3.1 Width of Gaussian Kernel

 Let us consider the K-level full factorial design [16], in which the regular

interval is given by d . In this case, dmax is given by

max (1)d n K d   (15)

Fig.2 shows an illustrative example in two dimensions. In this figure, the black

dots denote the training data.

d

d

1x

2x

(1)K d 

(1)K d 

Fig.2 Training data with two dimensions

In the case of n dimensions, the number of training data, m, is simply calculated as

follows:

nm K (16)

Eqs.(15) and (16) are substituted into Eq.(2). Here, we solve Eq.(2) with respect to

r d , and then the following equation can be obtained:

2

2
1

(1)

n

n
r

n
d K



 


 (17)

In Eq.(17), K  is considered. This implies a uniform distribution of the

training data. Table 1 shows the convergence of r d at K  .

9

Table 1 Convergence of r d at K 

Dimension n r /Δd

1 1.000

2 1.000

3 1.201

4 1.414

5 1.621

6 1.817

7 2.003

8 2.181

It is clear from Table 1 that the same value of r d can be achieved at

K  in the cases of n=1 and n =2. However, different values of r d can be

obtained in the case of 3n  . It is assumed that the key factor to obtain a good

classifier and regression is the uniform convergence of r d , which implies

1r d  at K  . Then, on the basis of Eq.(2), the following sufficient

conditions for simple estimate of the width are summarized as follows:

(W1) It is preferable to consider the dimensions, n.

(W2) It is also preferable to consider the number of training data, m.

(W3) It is preferable to consider the maximum distance among the training data,

dmax.

(W4) 1r d  can be achieved at K 

In order to satisfy the above sufficient conditions, the following simple

estimate of the width in Gaussian kernel may be valid:

max
1 2 m n

d
r r r

n m
    (18)

Since Eq.(18) satisfies the above sufficient conditions at K  , a good

classifier and regression can be expected. Indeed, Eqs.(15) and (16) are

substituted into Eq.(18), and we solve it with respect to r d . As the result the

following equation can be obtained:

1
(1)

r

d K
 


 (19)

It is clear from Eq.(19) that 1r d  can be achieved at K  , and

the sufficient conditions (W1)~(W4) are satisfied. Note that Eq.(18) can be

obtained under the assumption that is an uniform distribution of the training data.

In addition, it is clear from Eq.(16) that numerous training data are required for a

10

good classifier and regression with Eq.(18). In addition, Eq.(18) is applied to all

Gaussian kernels, so that width has a constant value. As described in introduction,

a constant value cannot deal with the case of non-uniform distribution of the

training data. Unfortunately, most real problems show non-uniform distribution of

the training data, and available training data are also limited. Then, the following

equation considering the non-uniform distribution of the training data is proposed

in this paper.

,max

1

j
j n

d
r

n m



 1,2, ,j m (20)

where rj denotes the width of the j-th Gaussian kernel. dj,max denotes the maximum

distance between j-th training data and another training data in the training set.

Eq.(20) is applied to each Gaussian kernel individually, unlike Eqs.(1) and (2). In

Eq.(2), dmax is always constant in both the uniform and non-uniform distribution

of the training data. This implies that non-uniform distribution of the training data

cannot be taken into account. In order to consider the non-uniform distribution of

the training data, dj,max is employed in Eq.(20). j-th training data is already used to

measure the distance dj,max, and the rest of training data is m-1. Thus, j-th training

data is deleted among the all training data, and then the denominator in Eq.(20) is

m-1.

 We describe the application of Eq.(20) to the Gaussian kernel. As an

example, let us consider the case of LS-SVM classifier. We must compute

, (,)i j i j i jy y K  x x to solve the linear system. In this case, ,i j of rj is

computed as follow:

, 2

() ()
(,) exp()

T
i j i j

i j i j i j i j

j

y y K y y
r

 
   

x x x x
x x (21)

3.2 Adaptive Scaling Technique

As already described, all dimensions should be equally scaled in the

development of Eq.(20). The following basic equation is used to scale all

dimensions:

L
i i

i U L
i i

x x
X s

x x


 


, 1,2, ,i n (22)

where xi is the i-th decision variable. xi
U
 and xi

L
 denote the upper and lower

bounds on the i-th decision variable, respectively. s (>0) in Eq.(22) denotes the

11

scaling coefficient. Here, the scaling coefficient s plays an important factor. If the

scaling coefficient s is fixed, W4 described above may not be satisfied. In order to

determine r with a simple manner, d is set to 1. Please note that r depends on

d , while 1r d  at K  should be satisfied. In addition, all variables

should be equally scaled. Under these conditions, there are no guidelines to

determine d , and then d is assumed to be 1 to ensure the distance among

the training data in the scaled space. (There are no mathematical proofs on this

assumption that d is equal to 1. This can be obtained through our numerical

experiences.) Under this assumption, 1r  at K  can be achieved. This

implies that the minimum width with a simple manner is always greater than 1

when the decision variables are equally scaled with Eq.(22). As the result, the

scaling coefficient s should be adaptively adjusted. Then, the adaptive scaling

technique, in which the scaling coefficient is adaptively adjusted, is proposed. The

algorithm of this technique is summarized as follows:

(STEP1) Initial scaling coefficient s (>0) is set up.

(STEP2) All dimensions are scaled by Eq.(22).

(STEP3) The width by Eq.(20) is calculated in the scaled space.

(STEP4) The minimum width rmin is found.

min
1
min { }j

j m
r r

 
 (23)

(STEP5) If min 1r  , then scaling coefficient s is updated as follows:

s s  (1 ) (24)

Otherwise, the adaptive scaling algorithm will be terminated.

When some new training data are added, the adaptive scaling technique is

applied again. On the basis of the author’s numerical experiences, 1.1  is

recommended.

4. Examples and Discussions

 The proposed estimate of the width is applied to two problems: First

example is the classifier by LS-SVM and RBF network, and second one is the

Sequential Approximate Optimization (SAO) by RBF network. In RBF network,

the parameter j in Eq.(8) should be determined, while the parameter C in

Eq.(10) should be determined in LS-SVM. In RBF network, it is recommended

12

that j in Eq.(5) have a sufficiently small value (e.g.
31.0 10j
 ) [13], and

then j is set to
31.0 10 . As described in section 2.2, it is possible to consider

the equivalence between LS-SVM and RBF network when the number of training

data is assumed to be the number of hidden neurons. As the result, the parameter

C in LS-SVM is set to 1000. The proposed estimate of the width can be developed

based on Eq.(2), so that results by the proposed width are compared with ones by

Eq.(2). In addition, the same parameter values (j in Eq.(5) and C in Eq.(10)) are

employed through numerical examples. Thus, we would like to examine the

validity of the proposed estimate of the width under same parameter conditions. It

may be important to use the various parameter values in the numerical examples,

but the objective of this paper is to propose and examine the simple estimate of

the width.

4.1 Application to the classifier by LS-SVM and RBF network

 The proposed estimate of the width is applied to the classifier by LS-SVM

and RBF network. The training data is separated by fa(x) = 0. In numerical

examples, the number of dimensions is set to 2 to visualize the separating curve.

In this case, the width by Eqs.(1) and (2) has the same constant value. The

numerical training data used in this section are listed in Table 2. The range of all

variables is set as follow:

1 210 , 10x x   (25)

13

Table 2 Numerical training data

No. x 1 x 2 Label No. x 1 x 2 Label No. x 1 x 2 Label

1 0 6.5 1 1 5 6 1 1 6 5 1

2 -1 6 1 2 4.5 5 1 2 4 5 1

3 -2 5.2 1 3 4 3 1 3 2 5 1

4 -3 4 1 4 3 1 1 4 1 5 1

5 -4 3 1 5 2 0 1 5 -1 5 1

6 -5 1 1 6 1 -2 1 6 -3 4 1

7 -5.5 -1 1 7 0 -4 1 7 -4 3 1

8 -6 -3 1 8 -1 -5 1 8 -5 2 1

9 -5.5 -5 1 9 -2 -6 1 9 -5.5 0 1

10 -4.5 -6.5 1 10 -4 -6.5 1 10 -6 -2 1

11 -3 -6 1 11 -5 -6 1 11 -5.5 -4 1

12 -1.5 -4.5 1 12 -6 -5 1 12 -5 -6 1

13 -0.5 -3 1 13 -6.5 -2 1 13 -3 -5.5 1

14 0 -2 1 14 -6 0 1 14 -1 -6 1

15 0 0 1 15 -5 2 1 15 0 -5.5 1

16 1 2 1 16 -4 4 1 16 1 -4 1

17 1.5 4 1 17 -3 5 1 17 2 -3 1

18 0 -5 1 18 -2 6 1 18 2.4 -1 1

19 1 -6 1 19 -1 6.5 1 19 2.8 1 1

20 3 -5.5 1 20 1 6 1 20 2 3 1

21 4.5 -4 1 21 1.8 4 1 21 5 8 -1

22 5.5 -2 1 22 2 2 1 22 2 8 -1

23 6 0 1 23 1.8 -4 1 23 0 8 -1

24 6.5 2 1 24 2 -6 1 24 -2 8 -1

25 6 4 1 25 3 -6 1 25 -3 7 -1

26 5 6 1 26 4 -5 1 26 -5 6 -1

27 3.5 6.5 1 27 5 -3.5 1 27 -6 4 -1

28 4 8 -1 28 6 -3 -1 28 -7 2 -1

29 6 7 -1 29 5.5 -5 -1 29 -8 0 -1

30 8 5 -1 30 4 -7 -1 30 -8 -3 -1

31 8 1 -1 31 2 -8 -1 31 -7 -6 -1

32 7 -3 -1 32 1 -7 -1 32 -6 -8 -1

33 5 -6 -1 33 0.5 -5 -1 33 -4 -8 -1

34 3 -8 -1 34 -1 -7 -1 34 -2 -8 -1

35 1 -8 -1 35 -3 -8 -1 35 0 -8 -1

36 -1 -6 -1 36 -5 -8 -1 36 2 -7 -1

37 -3 -8 -1 37 -7 -7 -1 37 3 -5 -1

38 -6 -7 -1 38 -8 -5 -1 38 4 -4 -1

39 -7 -5 -1 39 -8 -3 -1 39 5 -2 -1

40 -7.5 -2 -1 40 -8 -1 -1 40 5 0 -1

41 -7 1 -1 41 -7 2 -1 41 4.5 2 -1

42 -6 4 -1 42 -6 4 -1 42 4 3 -1

43 -4 6 -1 43 -4 6.5 -1 43 7 3 -1

44 -2 7 -1 44 -2 8 -1 44 8 4 -1

45 0 8 -1 45 0 8 -1 45 8 6 -1

46 2 8 -1 46 2 7 -1 46 0 3 -1

47 2 6 -1 47 3 5 -1 47 -1 3 -1

48 4 5 -1 48 4 7 -1 48 -3 2 -1

49 5 2 -1 49 6 8 -1 49 -4 0 -1

50 4 0 -1 50 7 6 -1 50 -4 -2 -1

51 3 -3 -1 51 6 4 -1 51 -4 -4 -1

52 1.5 -4.5 -1 52 5 2 -1 52 -2.5 -4 -1

53 1 -3 -1 53 4 0 -1 53 -1 -4 -1

54 2 -1 -1 54 3 -2 -1 54 0 -2 -1

55 3 2 -1 55 3 -4 -1 55 1 1 -1

56 2.5 4 -1 56 4 -3 -1

57 -0.5 3 -1 57 5 -2 -1

58 -1.5 0 -1 58 -1 5 -1

59 -1.5 -2 -1 59 -2 4 -1

60 -2 -4 -1 60 -3 2 -1

61 -4 -5 -1 61 -4 0 -1

62 -4 -2 -1 62 -4.5 -2 -1

63 -3.5 1 -1 63 -4.5 -4 -1

64 -2 3 -1 64 -3.5 -5 -1

65 -0.5 5 -1 65 -2 -4 -1

66 -1 -2 -1

67 0 0 -1

68 1 2 -1

69 0.5 4 -1

Example 1 (Omega) Example 2 (Alpha) Example 3 (Sigma)

14

Fig.3 shows the results of separating curves by LS-SVM. In Fig.3, +1 is

assigned to the white circles and -1 is assigned to the black circles. The left hand

sides of Fig.3 show the result by Eq.(20), and the right hand sides show the one by

Eq.(2). The solid line represents fa(x) = 0, which separates the training data. In

addition, Fig.4 shows the three dimensional view of fa(x). The left hand sides

show the fa(x) by Eq.(20), and the right hand sides show the one by Eq.(2).

Example 1 (Omega)

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

Example 2 (Alpha)

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

15

Example 3 (Sigma)

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

Fig.3 Separating hyperplane by LS-SVM

Example 1 (Omega)

Example 2 (Alpha)

16

Example 3 (Sigma)

Fig.4 3D view of LS-SVM classifier

 Next, separating curves by RBF network is obtained with the same training

data. The objective of this is to examine the availability of the proposed estimate

of the width to the RBF network. The results are shown in Fig.5. The left hand

sides of Fig.5 show the results by LS-SVM, and the right hand sides show the

ones by RBF network.

RBF networkLS-SVM

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

17

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

RBF networkLS-SVM

-10 -5 0 5 10

-10

-5

0

5

10

RBF networkLS-SVM

-10 -5 0 5 10

-10

-5

0

5

10

Fig.5 Comparison between LS-SVM and RBF network

4.2 Application to Sequential Approximate Optimization

 In this section, the proposed estimate of the width with the adaptive

scaling technique is applied to sequential approximate optimization (SAO) by the

RBF network. SAO methodology is widely studied in the structural engineering

field [17-21]. In the engineering optimization, it is very important to reduce the

computational costs and the experiments. This is equivalent to the reduction of the

training data. Thus, it is important to find the global minimum with a little number

of training data.

General procedure of the SAO is summarized as follows:

(STEP1) The training data is distributed.

(STEP2) The objective is evaluated at training data. Therefore, the regression

which is called the response surface is constructed.

18

(STEP3) In order to find the optimum of the response surface, optimization

technique is applied to the response surface. The optimum of response surface is

often called the approximate optimum.

(STEP4) The approximate optimum obtained in STEP3 is added as the new

training data. In addition, a few training data are also added.

 For better understanding of the SAO procedure, let us consider a following

example:

 
5

1
() cos 1 min

i
f x i i x i


      (26)

0 7.5x  (27)

In the SAO, some training data are distributed, and the function is evaluated at the

training data. Then, the response surface is constructed by using the training data

and the function values. In Fig.6, the dashed line shows the original function, and

solid line represents the response surface. The black dots denote the training data.

In Fig. 6, three training data are distributed. The global minimum of the response

surface, which denotes the triangle in Fig.6, can be found.

1 2 3 4 5 6 7

-10

-5

5

10

15 Original function

Response surface

Fig. 6 Response surface

 The global minimum of the response surface is added as the new training

data. In addition, a few new training data are also added. Then, the response

surface is constructed with new training data, and the global minimum of the

response surface can be found. Through this iterative process, the global

minimum of the original function can be found. The illustrative approximation

processes are shown in Fig.7.

19

1 2 3 4 5 6 7

-10

-5

5

10

15 Original function

Response surface

dmax

(a) Response surface at 13 training data

1 2 3 4 5 6 7

-10

-5

5

10

15
Original function

Response surface

dmax

(b) Response surface at 23 training data

1 2 3 4 5 6 7

-10

-5

5

10

15 Original function

Response surface

dmax

(c) Response surface at 33 training data

Fig. 7 Process of approximation of original function

20

 It is clear from Fig. 7 that the training data show non-uniform distribution.

When Eq.(2) is employed to construct the response surface, dmax is always

constant. Since the training data is added in the SAO, the number of the training

data is increased. As the result, the width in the Gaussian kernel will become

smaller and smaller. On the other hand, dj,maxis employed in the proposed width,

and then the width in the Gaussian kernel does not always become smaller and

smaller.

 The following optimization problem is considered.

 4 2

1

1
() 16 5 min

2

n

i i i

i

f x x x


   x (37)

5 5  x (38)

The global minimum xG is (2.9035, 2.9035, , 2.9035)TG    x . The dimension

n is set to ten in this numerical example. In this case, the objective function at xG

is () 391.661Gf  x . The particle swarm optimization (PSO), which is a

population-based optimization technique, is applied to this problem directly. The

number of particles is set to 20, and the maximum number of iteration is set to

500. 20 particles move the positions at every search iteration, in order to find the

global minimum. In other words, the global minimum can be actually found with

10000 (= 20 500) training data. In section 4.1, the training data is fixed, but the

training data (=particles) will move in PSO. This point is different in case of

section 4.1. The PSO results are shown in Table 3 through 10 trials.

Table 3 Results of direct search by the PSO

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.

1 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

2 -2.9036 -2.9036 -2.9036 -2.9035 -2.9035 -2.9035 -2.9035 2.7468 -2.9035 -2.9035 -377.5200

3 -2.9046 -2.9027 -2.9021 -2.9038 -2.9032 -2.9047 -2.9015 -2.9043 -2.9029 -2.9049 -391.6600

4 -2.9036 -2.9035 -2.9036 -2.9036 -2.9035 -2.9035 -2.9036 -2.9035 -2.9036 -2.9036 -391.6600

5 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

6 -2.9035 -2.9035 -2.9035 -2.9035 -2.9036 -2.9035 2.7468 -2.9036 -2.9035 -2.9035 -377.5200

7 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

8 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

9 -2.9036 -2.9034 -2.9036 -2.9036 -2.9034 -2.9036 -2.9035 -2.9035 -2.9036 -2.9036 -391.6600

10 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -2.9035 -391.6600

 First, 30 training data are distributed at random. The SAO algorithm in

[22] is employed to find the global minimum. The maximum number of training

data is set to 500. Therefore, the SAO algorithm will be started at 30 training data.

The algorithm will be terminated at 500 training data. Ten trials with different

21

random seed are performed, and these results are listed in Table 4 and 5. Table 4

shows the result by Eq.(2), while Table 5 shows the result by Eq.(20).

Table 4 The result with the simple estimate by Nakayama

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.

1 -2.6590 -2.7695 -2.1054 3.0079 -3.2740 -2.7108 -2.6121 -2.3852 2.7003 -0.9410 -314.1416

2 -2.0759 -2.7692 2.2905 -1.9245 2.7989 -2.6619 1.9850 -2.0531 2.4101 -1.4912 -273.9235

3 -2.9410 -2.8063 -3.0479 -2.6390 -2.9142 -2.8250 -2.8031 0.9497 -2.7844 0.7700 -318.2305

4 -2.8926 -2.9712 -2.0732 -3.2507 -2.8878 -2.7514 -3.3558 -1.2210 -2.2069 -1.5235 -324.6039

5 -2.9462 2.5448 -2.9124 -2.7911 -3.0628 2.3251 0.6797 -2.9464 -2.9779 2.7018 -308.3509

6 2.4241 -0.3086 3.1126 -3.6446 -1.6238 -2.6086 -3.4843 1.1949 -0.0281 1.9153 -192.1104

7 -2.8263 -2.9896 2.7270 -3.1419 -2.6376 -2.6945 -2.4389 -3.2174 -1.6055 -3.3261 -347.9492

8 -2.9634 -2.7063 2.5490 -2.6656 -2.5071 -2.9957 -2.9850 2.8242 -3.0073 2.2608 -341.3516

9 -2.6664 2.4891 -2.7121 -2.2098 -2.7480 -0.1432 1.5402 -2.7654 -3.2011 -3.0773 -300.2067

10 -2.3563 -2.7148 -2.7854 -2.6837 2.3436 -1.2683 2.4122 -2.6995 -2.7142 -2.1761 -321.3327

Table 5 The result with the proposed simple estimate

Trial x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 obj.

1 -2.8096 -2.8428 -2.8138 -2.8923 -2.9249 -2.8322 -2.7792 -2.9189 -2.9251 -2.8174 -390.8271

2 -2.8796 -2.7992 -2.9779 -2.9068 -2.8315 -2.9377 -2.9344 -2.9574 -2.9395 -2.8551 -391.1336

3 -2.9828 -2.8559 -2.8442 -2.7923 -2.8739 -2.9228 -2.7560 -2.9362 -2.9070 -2.8233 -390.7393

4 -2.8815 -2.8551 -2.9466 -2.8876 -2.8993 -2.8246 -2.8708 -2.8602 -2.8473 -2.8967 -391.3663

5 -2.9453 -2.9166 -2.7878 -2.8491 -2.8713 -2.7786 -2.9730 -2.7636 -2.9755 -2.9006 -390.5783

6 -2.9192 -2.8345 -2.9351 -2.8462 -2.9019 -2.8998 -2.8975 -2.9197 2.6884 -2.8685 -377.2915

7 -2.9376 2.6801 -2.8858 -2.8898 -2.8615 -2.8626 -2.9049 -2.8773 -2.8294 -2.8921 -377.2669

8 2.6569 -2.9470 -2.9554 -2.8557 -2.8986 -2.9416 -2.8419 -2.8627 -2.9532 -2.8738 -377.1143

9 -2.9211 -2.8614 2.7425 -2.9349 -2.8388 -2.8856 -2.8809 -2.8981 -2.9182 -2.8922 -377.3801

10 -2.8901 -2.8468 -2.8828 -2.9049 -2.9252 2.6898 -2.8235 -2.9735 -2.8813 -2.8938 -377.2004

4.3 Discussions

 It is clear from above examples that the proposed estimate of the width

works well, compared with Eq.(2). In section 4.1, more smooth separating curves

obtained when the proposed estimate of the width is used. In section 4.1, the

training data are distributed non-uniformly. In such cases, it is preferable to use

different widths to each Gaussian kernel. The proposed estimate of the width is

applicable to such cases, and shows the good results. The result implies that the

individual assignment of the width to the Gaussian kernel is important and valid.

The proposed estimate of the width is applied to RBF network with the same

training data. The separating curves by RBF network can clearly separate the

training data, and is qualitatively similar to one by LS-SVM under the parameter

setting used in this paper. In section 4.2, the proposed simple estimate of the

width with the adaptive scaling technique is applied to the sequential approximate

optimization. RBF network is employed to construct the response surface. By

comparing Table 4 with Table 5, it is clear that better results can be obtained.

22

Through five trials (Trial No.1 – Trial No.5 in Table 5), the approximate global

minimum could be obtained. In addition, the other trials (Trial No.6 – Trial No.10

in Table 5) yield quasi-optima. However, the global minimum cannot be obtained

with Eq.(23). These results also imply that it is preferable to apply a different

width to each basis function.

5. Conclusions

 The Gaussian kernel is widely employed in the machine learning

techniques. It is important to determine the appropriate width in the Gaussian

kernel with a simple manner. In this paper, a new simple estimate of the width in

the Gaussian kernel has been proposed. The proposed estimate could be

developed by examining the estimate by Nakayama. Through the examination, we

considered four sufficient conditions for the simple estimate of the width.

Therefore, it is preferable to consider (1) the dimensions, (2) the number of the

training data, (3) the maximum distance among the training data, and (4) the

uniform convergence. Based on these conditions, we first proposed the simple

estimate of the width. However, this estimate does not consider the non-uniform

distribution of the training data. Then, we have developed the new simple estimate

of the width in the Gaussian kernel. The proposed width is applied to each

Gaussian kernel, and the non-uniform distribution of the training data could be

also taken into account. In addition, the adaptive scaling technique has also been

proposed. In this technique, the scaling coefficient is adaptively adjusted, in order

to determine the width. The proposed estimate of the width has been applied to

LS-SVM and RBF network. The classifier and SAO have been taken as the

numerical examples. In the classifier, two-dimensional problems have been

handled, in order to visualize the separated curves. The training data are uniformly

distributed. It has been confirmed that individual assignment of the width to the

Gaussian kernel is important and valid. In the SAO, RBF network is employed to

construct the response surface. The better result can be obtained by the proposed

estimate of the width. The determination of the width in the Gaussian kernel still

remains one of the important topics [23]. The proposed estimate of the width

clearly belongs to heuristic approaches, and then we could not give rigorous

proofs. Therefore the proposed estimate of the width is a proposal, and is not an

absolute one.

23

Appendix

In section 4.2, particle swarm optimization (PSO) is employed as the

optimization technique [24]. Several models of PSO have been proposed. The

most popular among them is the g-best model. In this paper, the g-best model is

employed. The position and velocity of particle d are represented by k

dx and k

dv ,

respectively, and k represents the iteration step. The position and velocity of

particle d at iteration k+1 are calculated by the following equations.

1
1 1 2 2() ()k k k k k k

d d d d g dw c r c r     v v p x p x (A1)

1 1k k k
d d d
  x x v (A2)

The coefficient w in (A1) is called the inertia term, and it linearly decreases as the

search proceeds [25, 26]. Parameters r1 and r2 denote random numbers between

[0,1]. Weighting coefficients c1 and c2 are recommended to maintain the

following relationship.

1 2 4c c  (A3)

c1=c2=2 is used in this paper, according to [27, 28]. The position vector k
dp , called

the p-best, represents the best position of particle d until the k-th iteration, and

k
gp , called the g-best, represents the best position in the swarm till the k-th

iteration. The basic algorithm of PSO, which is called a g-best model, is described

briefly below.

(STEP1) Define the search domain in advance. Determine the swarm population

size and the maximum search iteration number, kmax. Initialize the iteration

counter k as k =1. Randomly generate the initial position and velocity of each

particle in the search domain.

(STEP2) Calculate the objective function of each particle.

(STEP3) Select the p-best and g-best.

(STEP4) Update the velocity and position of each particle by (A1) and (A2).

(STEP5) Update the inertia term by using following equation.

max min
max

max

w w
w w k

k


   (A4)

where, wmax=0.9 and wmin=0.4 are used, in general [29].

24

(STEP6) If k is less than kmax, the iteration counter is increased as k=k+1, and the

algorithm returns to STEP2. Otherwise, the algorithm terminates.

References:

1. W. An, Y. Sun, An Equivalence between SILF-SVR and Ordinary Kriging, Neural Processing

Letters, 23 (2006) 133-141.

2. P. Andras, The Equivalence of Support Vector Machine and Regularization Neural Networks,

Neural Processing Letters, 65 (2002) 97-104.

3. T. Poggio, F. Girosi, Networks for Approximation and Learning, Proc. of the IEEE, 78(9)

(1990) 1481-1497.

4. J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers, Neural

Processing Letters, 9 (1999) 293-300.

5. J.A.K. Suykens, J.D. Brabanter, L. Lukas, J. Vandewalle, Weighted Least Squares Support

Vector Machines: Robustness and Sparse Approximation, Neurocomputing, 48 (2002) 85-

105.

6. Z. Wang, S. Chen, New Least Squares Support Vector Machines Based on Matrix Patterns,

Neural Processing Letters, 26 (2007) 41-56.

7. H.M. Chi, O.K. Ersoy, Recursive Update Algorithm for Least Squares Support Vector

Machines, Neural Processing Letters, 17 (2003) 165-173.

8. D. Anguita, A. Boni, Digital Least Squares Support Vector Machines, Neural Processing

Letters, 18 (2003) 65-72.

9. R. Zhang, W. Wang, Y. Ma, C. Men, Least Square Transduction Support Vector Machine,

Neural Processing Letters, 29 (2009) 133-142.

10. N. Benoudjit, M. Verleysen, On the Kernel Widths in Radial-Basis Function Networks,

Neural Processing Letters, 18 (2003) 139-154.

11. A. Saha, J.D. Keeler, Algorithms for Better Representation and Faster Learning in Radial

Basis Function Networks, Advances in Neural Information Processing Systems 2 (1989)

Edited by Touretzky, D.S., 482-489.

12. Haykin, S. Neural Networks: A Comprehensive Foundation, Macmillan College Publishing

Company, (1994), pp.236-284.

13. H. Nakayama, M. Arakawa, R. Sasaki, Simulation-Based Optimization Using Computational

Intelligence, Optimization and Engineering, 3 (2002) 201-214.

14. H. Nakayama, Y. Yun, M. Yoon, Sequential Approximate Multiobjective Optimization Using

Computational Intelligence, Springer, 2009.

15. M.J.L. Orr, Introduction to Radial Basis Function Networks,

http://www.anc.ed.ac.uk/rbf/rbf.html (On-line available)

16. R.H. Myers, D.H. Montgomery, Response Surface Methodology, Wiley,New York, 1995.

17. M.J. Sasena, P.Y. Papalambros, P. Goovaerts, Exploration of metamodeling sampling criteria

for constrained global optimization, Engineering Optimization, 34(3) (2002) 263-278.

18. G.G. Wang, Adaptive Response Surface Method Using Inherited Latin Hypercube Design

Points, Journal of Mechanical Design, 125 (2003) 210-220.

http://www.anc.ed.ac.uk/rbf/rbf.html

25

19. H. Kurtaran, A. Eskandarian, D. Marzougui, N.E. Bedewi, Crashworthiness Design

Optimization Using Successive Response Surface Approximations, Computational

Mechanics, 29 (2002) 409-421.

20. G.G. Wang, S. Shan, Review of Metamodeling Techniques in Support of Egnieering Design

Optimization, Journal of Mechanical Design, 129 (2007) 370-380.

21. A.A. Muller, A. Messac, Extended Radial Basis Functions: More Flexible and Effective

Metamodeling, AIAA Journal, 43(6) (2005) 1306-1315.

22. S. Kitayama, M. Arakawa, K. Yamazaki, Sequential Approximate Optimization Using Radial

Basis Function network for engineering optimization, Optimization and Engineering, (2010),

(On-line available)

23. H.J. Wang, C.S. Leung, P.F. SUM, G. Wei, Kernel Width Optimization for Faulty RBF

Neural Networks with Multi-node Open Fault, Neural Processing Letters, 32 (2010) 97-107.

24. J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers, 2001.

25. G. Venter, J.S. Sobieski, Particle Swarm Optimization, AIAA Journal, 41(8) (2003) 1583-

1589.

26. S. Kitayama, M. Arakawa, K. Yamazaki, Penalty Function Approach for the Mixed Discrete

Non-Linear Problems by Particle Swarm Optimization, Structural and Multidisciplinary

Optimization, 32(3) (2005) 191-202.

27. P.C. Fourie, A.A. Groenwold, The Particle Swarm Optimization Algorithm in Size and Shape

Optimization, Structural and Multidisciplinary Optimization, 23-4 (2002) 259-267.

28. J.F. Schutte, A.A. Groenwold, Sizing Design of Truss Structures Using Particle Swarms,

Structural and Multidisciplinary Optimization, 25 (2003) 261-269.

29. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A Particle Swarm

Optimization for Reactive Power and Voltage Control Considering Voltage Security

Assessment, IEEE Trans Power Systems, 15(4) (2000) 1232–1239

