
K
A
C
Le
M
M
Sc

M
Pa
pr
de
th

he

in
im
th

de
re

he

1

w
ne
co
dy
co
th
in
so
Au

of
fro
en
an

ize
Self-Optimization module for Scheduling using Case-based Reasoning

I. Pereira , A. Madureira

eywords:
utonomic Computing
ase-based Reasoning
arning
eta-heuristics
ulti-Agent Systems
heduling

a b s t r a c t

etaheuristics performance is highly dependent of the respective parameters which need to be tuned.
rameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The
ocess of defining which parameters setting should be used is not obvious. The values for parameters
pend mainly on the problem, the instance to be solved, the search time available to spend in solving
e problem, and the required quality of solution.
This paper presents a learning module proposal for an autonomous parameterization of Meta-
uristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems.
The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defin-
g that systems must continuously and proactively improve their performance. For the learning
plementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In
e use of Case-based Reasoning it is assumed that similar cases have similar solutions.
After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are
scribed. Finally, a computational study is presented where the proposed module is evaluated, obtained
sults are compared with previous ones, some conclusions are reached, and some future work is referred.
It is expected that this proposal can be a great contribution for the self-parameterization of Meta-
uristics and for the resolution of scheduling problems on dynamic environments.
. Introduction

l
i
A
o
t
g
m
r

d
t
i
d
a
d
[

t

The exponential growth of computational capacity together
ith the appearance of network communication, mainly Inter-
t, led companies to invest significantly in infrastructures and
mputational applications. These systems are subject to failures,
namism, overloads, and others, due to exponential growth of its
mplexity. Generally, organizations invest more in maintenance
an in development. With the prediction of a “breaking point”,
 October 2001, Paul Horn, vice-president of IBM Research, gave
me visibility to this problem launching an IBM challenge named
tonomic Computing (AC) [1].
An autonomous system is viewed as a system with the ability

 self-management. The objective of these systems is to free users
m repetitive tasks, enabling a full-time execution, and providing
ough intelligence to be possible to take decisions in order to reach
 objective [2].
In recent years, there has been a growing interest in decentral-
d approaches for the resolution of complex real world problems,
t
f
M
t
s

i

ike Scheduling, as the number of proposed solutions and successful
mplementations is increasing. It is possible to highlight Multi-
gent Systems (MAS), which concern with behaviors’ coordination
f a set of agents, in order to share knowledge, abilities, and objec-
ives, in the resolution of complex problems. Due to the exponential
rowing of system’s complexity, it is important that MAS become
ore autonomous to deal with dynamism, overloads and failures

ecovery.
MAS typically operate in open, complex, dynamic, and unpre-

ictable environments. It is not possible to predict every situation
hat an agent can find so it is necessary that agents have the abil-
ty to adapt to new situations. Since intelligence implies a certain
egree of autonomy, requiring the capacity of taking decisions
utonomously, agents must have the appropriate tools to take such
ecisions. Therefore learning becomes, many times, indispensable
3].

Biological and natural processes have been a source of inspira-
ion for computer science and information technology, which led to
he development of techniques that converge, in general, to satis-
actory solutions in an effective and efficient way, generally named

eta-heuristics (MH) [4]. MH have often been shown to be effec-
ive for difficult combinatorial optimization problems appearing in
everal industrial, economic, and scientific domains [5–10].
Since MH parameterization revealed to be a hard task, requir-
ng expertise knowledge about the application domain and which

dx.doi.org/10.1016/j.asoc.2012.02.009
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:iasp@isep.ipp.pt
dx.doi.org/10.1016/j.asoc.2012.02.009

t
s
v
e
p
t
p

l
S
i
r

d
l
i
S
g
S
f

1

f
s
b
i
t

f
w
c

s
m
o
t
o

k
f
i
n
i

e
S
P
o

(

(
(
(

a
f

t

(

echniques and parameters should be used, it is important to turn
ystems capable of autonomously parameterize themselves. To
alidate this self-parameterization, we use learning about past
xperience, with Case-based Reasoning (CBR) revealing to be a
romising approach. Using CBR, systems can remember past effec-
ively solved cases and autonomously decide which MH and
arameters to use for the resolution of a new similar problem [11].

With this, we propose using MAS, MH, AC, together with
earning capabilities, to improve the resolution of the Dynamic
cheduling problem, with the objective of maximizing the qual-
ty of solutions, minimizing the computational time spent, and also
educing the human intervention.

The remaining sections are organized as follows. Section 2
escribes the Dynamic Scheduling problem and Section 3 presents a

iterature review of AC, MH, MAS, and CBR applications for Schedul-
ng. In Section 4 AutoDynAgents system is presented and the
elf-Optimizing Module is described in Section 5, which was inte-
rated in AutoDynAgents. The computational study is presented in
ection 6 and, finally, the paper presents some conclusions and puts
orward some ideas for future work.

.1. Dynamic Scheduling problem

Scheduling problems arise in a diverse set of domains, ranging
rom manufacturing to transports, hospitals settings, computer and
pace environments, amongst others, most of them characterized
y a great amount of uncertainty that leads to significant dynamism

n the system. Such dynamic scheduling is getting increased atten-
ion between researchers and practitioners [12,13].

The dynamism can arise from requirements of a new user or
rom the evolution of the external environment. In a more general
ay, dynamic changes can be seen as a set of inserted and cancelled

onstraints.
Dynamic optimization problems environments are often impos-

ible to avoid in practice. For these, the optimization algorithm
ust continuously find the optimum in dynamic environments,

r find a robust solution that is capable of operate optimally in
he occurrence of perturbations, instead of simply locate the global
ptimum solution [14].

In spite of all research made so far, the scheduling problem is still
nown to be NP-complete, even for static environments [12]. This
act presents serious challenges to conventional algorithms and
ncites researchers to explore new directions. Multi-Agent tech-
ology has been considered an important approach for developing

ndustrial distributed systems [15].
The scheduling problem treated in this work has some major

xtensions and differences compared to the classic Job-Shop
cheduling Problem (JSSP), named Extended Job-Shop Scheduling
roblem (EJSSP), proposed by Madureira [16]. The main elements
f EJSSP problem can be modeled as:

1) a set of multi-operation jobs J1, . . ., Jn has to be scheduled on a
set of machines M1, . . ., Mn.

2) dj represents the due date of job Jj.
3) tj represents the initial processing time of job Jj.
4) rj represents the release time of job Jj.

The existence of operations on the same job, on different parts
nd components, processed simultaneously on different machines,
ollowed by components assembly operations (multi-level jobs).

Furthermore EJSSP should meet the following restricted condi-

ions:

(a) The existence of different job release dates rj and due dates dj.
(b) The possibility of job priorities definition, reflecting the impor-
tance of satisfying their due dates, being similar to the weight
assigned to jobs in scheduling theory.

(c) Precedence constraints among operations of the different jobs.
d) New jobs can arrive at unpredictable intervals. Jobs can be can-

celled. Changes in task attributes can occur: processing times,
due dates release dates and priorities.

(e) Each operation Oijkl must be processed on one machine of the
set Mi, where pijkl is the processing time of operation Oijkl on
machine Mi.

(f) A machine can process more than one operation of the same
job (recirculation).

(g) The existence of alternative machines, identical or not.

The methods for the resolution of NP-hard combinatorial opti-
mization problems, where Scheduling is included, can be divided
in exact and approximation algorithms [4,13]. In the first, an
exhaustive solutions space search is made and the optimal solution
obtaining is ensured. The second type of algorithms has the objec-
tive to find a good solution in an acceptable period of time, but do
not guarantee the optimal solution. MH are a more representative
class of approximation algorithms, used in this work.

2. Literature review

This section will discuss some efforts related to literature on
applications of different paradigms to the Dynamic Scheduling
problem resolution, such as AC, MH, MAS, and CBR.

2.1. Autonomic Computing applications for Scheduling

Autonomic Computing (AC) is an IBM Grand Challenge proposed
in 2001 by Paul Horn, Senior Vice-President of IBM Research [1].
Horn argues that the Information Technology (IT) industry is on
constant expansion and will soon reach its breaking point. This
can happen because massive data centers are built in organic, ad
hoc ways, resulting in a heterogeneous composition where main-
tenance costs in terms of qualified staff, time and capital can soon
exceed corporate capabilities [2].

AC represents a new computation paradigm in which IT systems
have managing mechanisms embedded in the application, with the
objective to automate the management. So, applications must be
able to adapt, accommodate and protect themselves to the changes
in the environment and in the objectives.

AC proposes a broad new field of research related to the
automation of IT management processes, drawing inspiration from
the human autonomous nervous system, since many essential
functions to the welfare and regulation of living beings are not
consciously triggered, e.g., heart beating, digestive system, etc.
However, without an autonomous system to manage these mech-
anisms, the body would stop working or the concentration in other
life aspects would not be possible.

From its inception, the AC concept involves four properties, gen-
erally referred as self-* properties, in which research efforts may be
categorized [2,17]:

• Self-configuration deals with installation, configuration and
integration of IT systems. When a new component is intended
to insert the system, it is autonomously incorporated, like a
new cell incorporates the human body, or even when a per-
son incorporates a population. The installation procedures work

by gathering information about the environment, figuring out
the dependencies among needed tasks and also optimizing per-
formance measures, and finally executing the tasks to perform
changes.

•

•

•

c

2

n
h
t
a
o
v

c
a
c
p
s
s
b
d
t
s

M
r
A

L
m
s
n
f
s

b
o
i
m
p
s
a
b

Self-optimization deals with performance improving of running
systems by leveraging alternative opportunities. This concept
emerges allowing autonomous systems to continuously and
proactively seek for opportunities to improve its execution,
through identification and use of opportunities to become more
efficient in its performance and cost. The system is capable of
monitoring, experimenting, planning and tuning itself, based on
the acquired knowledge of the environment.
Self-healing deals with identification of problematic situations
and recovering from them, minimizing the consequences of fail-
ures or even making a total recovery of the system. It requires
the system to reason how recovering activities can be performed,
how diagnostic information is produced and how new changes
can be affected with minimal cost and maximum benefit.
Self-protection deals with monitoring the environment for
threats and responding to them. This can be made in two ways:
first, protects the system in large scale against malicious and
intrusive attacks and also protects the system against possible
failures resulting from self-healing; second, self-protection must
be able to, based on sensors reports, predict problems that may
occur, to avoid or attenuate them.

Some AC applications for the resolution of scheduling problems
an be found in, e.g. [18–21].

.2. Meta-heuristics applications for Scheduling

The adaption of ideas from different research areas, inspired on
ature, led to the development of Meta-heuristics (MH), which are
euristic methods to solve complex generic problems of combina-
orial optimization. These techniques have the objective of guiding
nd improving the search process in a way to overcome the local
ptimal solutions and obtain solutions with satisfactory quality,
ery close to the optimal solution [4,22].

To solve a problem, it is necessary to choose a MH, which is a
onsidered difficult task, requiring a study about the problem type
nd about the working of the chosen technique. It is also very diffi-
ult to choose a MH to be the best among all, since it depends on the
roblem to solve and each MH has its advantages and drawbacks on
ome scenarios. With this, it is possible to realize that this choice
hould be made based on the results to be obtained, which may
e efficiency, effectiveness, robustness, etc. It is also necessary to
efine the parameters of the chosen MH, which is also a very hard
ask, since it also depends on the problem to solve and requires
ome expertise knowledge.

In the literature, it is possible to find different approaches using
H [4,22], mainly Tabu Search, Simulated Annealing, Genetic Algo-

ithms, Ant Colony Optimization, Particle Swarm Optimization,
rtificial Bee Colony, amongst others.

Tabu Search was introduced by Glover [23] and consists in a
ocal Search strategy with the main objective to escape from local
inimal values. It presents some similarities with human behavior

ince past influences, in a determinant way, the process of searching
ew solutions, as the past experience of a human being defines the

uture decision making. This MH was applied to the resolution of
cheduling problems in, e.g. [21,24–27].

Simulated Annealing is a classic algorithm, proposed in the
eginning of the 80s by Kirkpatrick et al. [28] and Cerny [29]. The
riginal motivation is based on the process in which molten metal
s slowly cooled, with a tendency to solidify in a structure of mini-

um energy. This technique has a statistical basis and is based on

ermitting the movement to a worst solution, relatively to current
olution, with the objective to escape from local optimum. Recent
pplications of this MH to the resolution of scheduling problem can
e found in [21,30–33].
In beginning 70s, John Holland, together with his students and
colleagues, developed researches and studies based on natural
selection of species, reaching a formal model designated by Genetic
Algorithms [34]. These studies were based on genetics and on the
idea presented in Charles Darwin book about the theory of species
origin [35]. In his book, Darwin reports a competition between
individuals of each animal species, refers about the species evo-
lution, and also points that only the fittest ones can survive, with
the nature being responsible for the natural selection. In the 80s,
David Goldberg, a Holland’s student, implemented the first well
successful application of these algorithms [36]. Since then, Genetic
Algorithms were applied with success in the several optimization
problems [21,24,37–39]. However, they shown to be not very suit-
able for scheduling problems because they are not very efficient
finding a near-optimal solution in reasonable time, for example
when compared with Tabu Search and Simulated Annealing, which
work with a single configuration and not with an entire population
of individuals [40].

Ant Colony Optimization is based on ants behavior, i.e., on a
behavior that allows ants to find the shortest path between a food
source and the respective colony [41]. This phenomenon occurs
because ants deposit in the path a substance named pheromone,
and when choosing a path, they opt, with a greater probability, by
the one that have more quantity of pheromone, because that proba-
bly is the shortest, i.e., the trajectory that the higher number of ants
have made. The first system based in this MH was introduced by
Dorigo et al., in 1991, with the designation of Ant System [42]. Ant
Colony Optimization was applied to scheduling problem resolution
in, e.g. [21,43–47].

Particle Swarm Optimization is an evolutionary technique based
on populations, developed by James Kennedy and Russell Eberhart
[48], with the objective to simulate a simplified social system. Ini-
tially, the basic idea was to demonstrate the behavior that flocks of
birds or schools of fishes assume in their random local trajectories,
but globally certain. Flocks of birds or schools of fishes make coor-
dinated and synchronized movements as a way of finding food or as
a mechanism of self-defense. This MH was applied to the resolution
of scheduling problems in, e.g. [21,49–53].

Artificial Bee Colony [54] was proposed by Karaboga in 2005
inspired in the foraging behavior of the bees. Real bees are social
insects living in organized group called hive. In a hive, bees have
some specific tasks performed by specialized individuals. The goal
of this organization is to maximize the amount of nectar in the
colony getting the utmost of the food sources. The basis of this
model are three types of specialized bees: Employed, Onlooker and
Scout, representing a minimal model of the real swarm intelligent
forage selection. Recent Artificial Bee Colony applications on the
resolution of scheduling problems can be found in, e.g. [55–58].

2.3. Multi-Agent Systems applications for Scheduling

Multi-Agent Systems (MAS) derive from Distributed IA and
highlight the agents’ common behaviors, with some degree of
autonomy, and the complexity arising from agents’ interactions.
MAS concern with the coordination of behaviors of a certain com-
munity of agents, in order to share knowledge, capacities, and
objectives for the resolution of complex problems [59].

MAS have come to prominence in the last two decades as an
interesting paradigm for modeling and implementation of some
applications on dynamic and unpredictable environments [60].
Luck et al. [61] have referred that these systems can be the next
great step in computation evolution, like Object Oriented was.
Multi-agent paradigm is emerging for solutions development
of very hard distributed computational problems. This paradigm
is based both on “intelligent” agents activity, which perform com-
plex functionalities, either on the exploitation of a large number of

s
i

t
a
u
s
o
r
b
a
n

t
r
a
a
S
A
t
s
M
b

i

2

t
t
t

a
t
a
w
d

(
(
(
(

a
a
t
b
i
c
s

t
d
m
i
d
t

m
t
s
m
r

imple agents that can produce an overall intelligent behavior lead-
ng to the solution of supposed intractable problems [59].

Considering the inherent complexity of manufacturing sys-
ems, dynamic scheduling is considered a good candidate to apply
gent-based technology. In many implementations of MAS for man-
facturing scheduling, agents model the system resources and the
cheduling of tasks is done in a distributed manner by means
f cooperation and coordination amongst agents [15]. When in
esponse to disturbances, the distributed nature of MAS can also
e a benefit to the rescheduling algorithm by involving only the
gents directly affected, without disturbing the rest of the commu-
ity which can continue with their work.

There are different implementations of MAS architectures for
he resolution of Scheduling problem. According to Shen and Nor-
ie [62], it has traditionally been implemented three kinds of MAS
rchitectures: hierarchical, federations, and autonomous. Ouelhadj
nd Petrovic [40] have referred two MAS architectures for Dynamic
cheduling resolution: autonomous and mediator architectures. In
utonomous Architectures, agents represent manufacturing enti-

ies as jobs and resources, and can, autonomously, define their
cheduling plans, react to changes and cooperate among them.
ediator Architectures have mediator agents to coordinate agents’

ehaviors, in order to obtain global scheduling plans.
Some work in Production Systems and Scheduling can be found

n [21,47,63–67].

.4. Case-based Reasoning applications for Scheduling

Case-based Reasoning (CBR) is an AI methodology which aims
o solve new problems by using information about the solutions
o previous similar problems [68]. CBR operates under the premise
hat similar problems can require similar solutions [11].

In CBR, previous solved cases and its solutions are memorized
s cases, saved in a repository (casebase), in order to be reused in
he future [11]. Instead of defining a set of rules or general lines,
CBR system solves a new problem by reusing similar cases that
ere previously solved [69]. CBR consists in a cycle (Fig. 1), usually
escribed as the ‘4 Rs’ cycle [11,70]:

1) Retrieve the most similar case or cases;
2) Reuse the retrieved information and knowledge;
3) Revise the proposed solution;
4) Retain the revised solution to be useful for future problem solv-

ing.

The initial description of a problem (new case) is used to retrieve
case from the casebase. In the Reusing phase, the retrieved case is
nalyzed in order to origin a suggested solution for the new case. In
he Revising phase, this suggested solution is tested, for example,
y executing it in the system, and repaired if it fails. In the Retain-

ng phase, the useful experience is retained for future use, and the
asebase is updated with the new learned case (or by modifying
ome existing cases).

The Retrieving phase starts with a partial problem’s descrip-
ion, and ends when the most similar previous case (or cases) is
iscovered. A very important aspect of this phase is the similarity
easure, which is usually defined by a formula to calculate the sim-

larity between previous cases and the new case [71]. The correct
efinition of similarity measures for real world problems is one of
he greatest challenges in this research area.

In the Reusing phase, it is possible to reuse a solution or a
ethod. In solution reuse, the past solution is not directly copied to
he new case, but there is some knowledge allowing the previous
olution to be transformed into the new case solution. In case of
ethod reuse, it is observed how the problem was solved in the

etrieved case, which has information about the method used for
Fig. 1. CBR cycle [70].

the problem resolution, including an explanation about the used
operators, sub-objectives considered, generated alternatives, fail-
ures, etc. The retrieved method is then reused to the new problem
resolution, in the new context.

The objective of Revising phase is to evaluate the retrieved solu-
tion. If this solution is well succeeded it is possible to learn about
the success, otherwise the solution is repaired using some prob-
lem domain’s specific knowledge. The evaluating task applies the
proposed solution in an execution environment and the result is
evaluated. This is usually a step outside the CBR, once the problem
may be executed in an application.

Finally, the Retaining phase consists in the integration of the
useful information about the new case resolution into the casebase.
It is necessary to know which information is important to retain,
how to retain it, how to index the case for a future retrieve, and
how to integrate the new case in the memory structure.

Burke et al. [71] have referred that CBR is an appropriate
approach for scheduling systems with expertise knowledge, and
emphasize a research potential in dynamic scheduling. CBR appli-
cations for scheduling domain can be found in [11,21,69,71–73].

3. AutoDynAgents system

AutoDynAgents [21,67] is a MAS for the resolution of Dynamic
Scheduling problems with autonomic capacities, in which a com-
munity of agents models a real manufacturing system subject to
perturbations. The system is able to find optimal or near optimal
solutions through the use of MH, deal with dynamism (arriv-

ing of new jobs, cancelled jobs, changing jobs attributes, etc.),
change/adapt the parameters of the algorithm according to the cur-
rent situation, to switch from one MH to another, and perform a

c
m

S
l
i
s
f
c
r
u

F
a
l
c
a
a
m
d

p
j
t
o
c

f
s
a
i
(
o
A

U
r
a
n
l
t
t

T
p
o

Fig. 2. AutoDynAgents global architecture.

oordination between agents through cooperation or negotiation
echanisms.
The approach used by AutoDynAgents for the resolution of

cheduling problems is rather different from the ones found in the
iterature. The EJSSP problem defined in Section 2 is decomposed
nto Single Machine Scheduling Problems (SMSP) [12,13]. In this
ystem, there is a group of Resource Agents, each one responsible
or optimizing the corresponding machine plan through the appli-
ation of MH, obtaining local solutions. Another agent (UI Agent) is
esponsible for gathering those local solutions into a global sched-
le, applying a coordination mechanism.

The coordination between agents can be made in different ways.
irst, it is applied a repair mechanism to shift some operations till
feasible solution can be obtained. Then, a coordination is estab-

ished between related agents in the process, in order to pursuit
ommon objective, through a cooperation or negotiation mech-
nism. These coordination mechanisms are prepared to accept
gents subject to dynamism. More details about the cooperation
echanism can be found in [74] and the negotiation mechanism is

escribed in [75].
There are two classes of dynamic events that can occur:

artial events, which imply variability in the attributes of
obs/operations, such as processing times, due dates or release
imes; and total events, which imply variability in the structure
f neighborhood/population, resulting from new jobs arrivals, jobs
ancellations, machines breakdown, etc.

AutoDynAgents architecture (Figs. 2 and 3) is based on six dif-
erent types of agents. This is a hybrid autonomic architecture,
ince agents can define their scheduling plans, react to changes
nd cooperate among them. According to Horling and Lesser [76],
t can represent a Team Model, if using the cooperation mechanism
Resource Agents cooperate in order to reach a common objective),
r a Market Model, if using the negotiation mechanism (Resource
gents negotiate among themselves using market rules).

In order to allow a consistent communication with the user, a
ser Interface Agent (UI Agent) was implemented. This agent is

esponsible for the user interface and also for the dynamic gener-
tion of the necessary Job and Resource agents, according to the
umber of jobs and machines comprising the scheduling prob-

em, and assigns each task to the respective Job Agent. In the end,
his agent applies the repair mechanism and starts the coopera-
ion/negotiation mechanism.

Job agents process the necessary information about each job.

hey are responsible for the generation of the earliest and latest
rocessing times on the job and automatically separate each job’s
peration for the respective Resource Agent.
Fig. 3. AutoDynAgents agents architecture.

Resource agents are responsible for scheduling the operations
that require processing in the machine supervised by the agent.
These agents implement MH in order to find the best possible singe-
machine schedules/plans of operations and communicate those
solutions to the UI Agent.

Respectively to self-* agents [21], Self-Configuring Agent is
responsible for monitoring the system, with the objective to detect
changes occurred in the schedule, allowing the system to perform
a dynamic adaptation. With this agent, the system is prepared to
automatically handle with dynamism, by adapting the solutions
to external perturbations. While, on one hand, partial events only
require a redefinition of job attributes and re-evaluation of the
objective function, on other hand, total events require changes on
the structure and size of solutions. Therefore, under total events,
the modification of the current solution is imperative, through job
arrival integration mechanisms (when a new job arrives to be pro-
cessed), job elimination mechanisms (when a job is cancelled) and
regeneration mechanisms, in order to ensure a dynamic adaptation
of population/neighborhood.

Self-Optimizing Agent is responsible for autonomously tun-
ing the MH parameters, according to problem’s characteristics and
system’s behavior. This agent receives the initial problem (or the
changes detected by the Self-Configuring Agent) and automatically
chooses the MH and parameters to use. If some dynamism occurs,
the MH and respective parameters may change in run-time. This
tuning of parameters is made through learning and experience,
using a CBR module, each time a new problem (case) appears.
When the new case is solved, it is stored for later use. This Self-
Optimization module is better described in the next section.

Finally, Self-Healing Agent gives to the system the capacity
for diagnosing deviations from normal conditions and proactively
takes actions to normalize them and avoid service disruptions. This
agent monitors other agents in order to provide overall self-healing
capabilities. Since agents may crash for some reason, self-healing
provides one or more agents backup registries in order to grant

storage for the reactivation of lost or stuck scheduling agents with
meaningful results, thus enabling the system to restart from a
previous checkpoint as opposed to a complete reset. With this

n mod

a
o

4

g
s
n
p
s
p
m
t
t

v
b
t
a
s
t
t

p
S
t
M
s

u

Fig. 4. Self-Optimizatio

gent, the system becomes stable, even if some deadlocks or crashes
ccur.

. Self-Optimization module

As previously mentioned, MH are very effective for obtaining
ood solutions, and sometimes even optimal solutions, in rea-
onable execution times. But, to be possible to obtain optimal or
ear-optimal solutions, it is required the appropriate tuning of the
arameters, which has revealed to be a hard task, since it needs
ome expertise knowledge about the MH in use and from the
roblem to solve. Sometimes it is necessary to use the trial-error
ethod, and the difficulties increase when exist more than one MH

hat can be used, because it requires an a priori choice of it and only
hen the tuning of its parameters.

Given this, the objective is that AutoDynAgents adopts and pro-
ides self-parameterization of MH respectively to the problem to
e solved, with the possibility that parameters can change in run-
ime. The system must be able to define which MH must be used
nd also define the respective parameters according to the current
ituation being treated. It is even possible to change from one MH
o another, according to current state and previous information,
hrough learning and experience.

In order to provide the system with capacities of self-
arameterization of MH, it is presented, in this section, an AC
elf-Optimization module. This module is capable of monitoring
he system and autonomously tuning the parameters of different
H, taking into account each new single problem emerging in the
ystem.

Since it is impossible to predict each problem to treat, this mod-
le must be capable of learning about its experience during lifetime,
ule – CBR architecture.

e.g., as humans do. To perform this learning mechanism, it is pro-
posed the use of CBR.

The CBR application on this module consists in retrieving the
most similar case of the new problem, regardless the MH to use. So,
it is retrieved the case containing the MH and respective parameters
to use. With this approach it will be possible to know, for example,
which MH is more appropriate for the resolution of a particular
type of problem.

The use of CBR in Self-Optimization module, embedded on an
agent, represents a MAS Team Learning approach, as described by
Panait and Luke [59], since there is only an apprentice involved but
with the objective to discover a subset of behaviors for a team of
agents.

4.1. CBR architecture

The CBR based architecture is presented in Fig. 4. Every new
problem or perturbations occurred lead to a new case in the sys-
tem, and the previous most similar cases are retrieved from the
database. Then, the better case is reused, becoming in a suggested
solution. After the revision of the solution, the case is executed in
the MAS. This revision is made to be possible to escape from local
optimal solutions and stagnation, since it is used some disturbance
in the parameters of the proposed solution. After the conclusion of
the MAS execution, the case is confirmed as a good solution, being
retained on the database as a new learned case, for future use.
4.2. Casebase

The CBR casebase is presented in Fig. 5, with six tables, one for
each MH in use and another for saving the attributes of each case.

Fig. 5. Self-Optimization module – CBR casebase.

Table 1
Casebase – CBR table fields description.

Field Data type Description

ID Integer Primary key of the case, auto-incremented
MH String Name of the used MH
NJobs Integer Number of jobs of the problem (e.g., 10)
NMachines Integer Number of machines of the problem (e.g.,

5)
ProblemType String Problem type (“single-machine”,

“open-shop”, “flow-shop”, or “job-shop”)
MultiLevel Boolean Indicates if the problem has operations

with more than one precedent
CmaxOptimal Integer Optimal makespan value known, if

available
InitSol String Heuristic used to calculate the initial

solution (EDD (Earliest Due Date), SPT
(Shortest Processing Time), or SeqNivel
(increasing ordering of levels of
operations))

ObjFunc String Objective function used (Cmax (makespan
minimization) or WT (Weighted Tardiness
minimization))

Cmax Integer Makespan value obtained from the case
TimeExec Double Execution time, in seconds

Table 2
Casebase – TS table fields description.

Field Data type Description

NeighGen Double Neighborhood generation percentage
SubNeigh Double Sub-neighborhood percentage

S
m
o
t

c

c

Table 3
Casebase – GA table fields description.

Field Data type Description

InitPopGen Double Initial population generation percentage
PopSize Double Population size percentage
NumGen Integer Number of generations
CrossRate Double Crossover rate
MutRate Double Mutation rate

Table 4
Casebase – SA table fields description.

Field Data type Description

InitTemp Double Initial temperature
Alpha Double Alpha factor of temperature reduction
NumIteraK Integer Number of iterations at the same temperature
StopCrit Integer Stopping criteria, number of iterations

Table 5
Casebase – ACO table fields description.

Field Data type Description

NumCol Integer Number of colonies
NumAnts Integer Number of ants per colony
EvapRate Double Pheromone evaporation rate
Alpha Double Heuristic value importance
Beta Double Pheromone importance
StopCrit Integer Stopping criteria, number of iterations

Table 6
Casebase – PSO table fields description.

Field Data type Description

NumPart Integer Number of particles
NumItera Integer Number of iterations
LowLimit Integer Lower limit
UpLimit Integer Upper limit
MinInertia Double Minimum inertia
MaxInertia Double Maximum inertia
C1 Double Cognitive component
TabuListLen Integer Tabu list length
StopCrit Integer Stopping criteria, number of iterations

MH tables are TS, GA, SA, ACO, and PSO, representing Tabu
earch, Genetic Algorithms, Simulated Annealing, Ant Colony Opti-
ization, and Particle Swarm Optimization respectively. Each one

f these tables contains the cases parameters for tuning the respec-
ive technique.

CBR table, as referred before, stores the attributes of each single

ase in the CBR system. The fields are described in Table 1.

The description of each MH field is also presented in Tables 2–6,
orresponding to each parameter defined by the CBR system.

C2 Double Social component
MinVeloc Double Minimum velocity
MaxVeloc Double Maximum velocity

4

fi
a

c
i
A
t
c

a
N
d
v
t

S

t
d
p
c

m
t
v

S

S

a
(

S

S

k
o
o
u
e

S

w

4

r
g

.3. Retrieving phase

The objective of Retrieving phase is to search the casebase,
nding the most similar previous cases, and retrieving them for
nalysis, in order to select one and reuse it in the next phase.

A pre-selection of cases is made in order to only select cases that
an be considered similar enough, i.e., with a similarity over 75%,
n order to ignore cases that are not very similar with the new one.
fter this pre-selection, the cases are analyzed one by one, in order

o select cases that have enough similarity with the new case, by
alculating its similarity measure.

The considered attributes in the proposed similarity measure
re some fields from the CBR table (Table 1), namely NJobs,
Machines, ProblemType, MultiLevel, and CmaxOptimal, which have
ifferent weights (Eq. (1)). The proposed similarity measure is a
alue between zero and one (∈[0,1]), with zero (0) corresponding
o non-similar cases and one (1) corresponding to equal cases.

im = 0.5 × SimNjobs + 0.25 × SimNmachines + 0.15 × SimProbType

+ 0.05 × SimMultiLevel + 0.05 × SimCmaxOpt (1)

It is given a greater importance to the number of jobs and to
he number of machines, since those attributes define the problem
imension, which is a characteristic for MH parameterization. Some
arameters are directly related to the problem dimension and its
omplexity, e.g., stopping criteria.

The proposed similarities of number of jobs and number of
achines are calculated similarly, corresponding to the quotient of

he lower value by the higher value (Eqs. (2) and (3)). Similarities
alues are uniformly distributed in the interval [0,1].

imNjobs = min(Njobs1, Njobs2)
max(Njobs1, Njobs2)

(2)

imNmachines = min(Nmachines1, Nmachines2)
max(Nmachines1, Nmachines2)

(3)

The proposed similarities of problem type and multi-level value
re binary (0 or 1), if the attributes are the same or not, respectively
Eqs. (4) and (5)).

imProbType =
{

0, ProbType1 /= ProbType2

1, ProbType1 = ProbType2

(4)

imMultiLevel =
{

0, MultiLevel1 /= MultiLevel2

1, MultiLevel1 = MultiLevel2
(5)

The proposed similarity of the optimal makespan value, if
nown, is calculated similarly to the number of jobs or number
f machines, if the values of both cases are positive (Eq. (6)). If any
ptimal makespan value is negative that means that the value is
nknown. In those cases the optimal makespan value similarity is
qual to zero.

imCmaxOpt =

⎧⎪⎪⎨
⎪⎪⎩

min(CmaxOpt1, CmaxOpt2)
max(CmaxOpt1, CmaxOpt2)

CmaxOpt1 ≥ 0 and CmaxOpt2 ≥ 0

0, CmaxOpt1 < 0 or CmaxOpt2 < 0

(6)

In the end, a list of most similar cases is retrieved, in order to
ork as a input to the Reusing phase.

.4. Reusing phase
In the Reusing phase, a case from the list of most similar cases
eturned by the Retrieving phase is selected. The respective sug-
ested solution works as a candidate solution to solve the new case.
With this, the MH and respective parameters are returned to be
used in the resolution of the new case.

First, it is checked if the list of retrieved cases is empty or not. If it
is empty, it means that there are not cases similar enough with the
new case (minimum similarity of 75%), being used the parameters
pre-defined by the user/expert in the graphical interface. These pre-
defined parameters are a starting point for the resolution of future
cases similar with the new case.

If the list is not empty, it is selected the best cases considering
effectiveness/efficiency criteria, or the most similar case, if there are
not good enough cases. When there are cases very similar with each
other (Eq. (7)), it is necessary to calculate the ratio between Cmax-
Opt and Cmax (Eq. (8)), in order to detect the best effective/efficient
cases. When there are not cases very similar with each other, it is
selected the most similar case among all.

min(SimCase1, SimCase2)
max(SimCase1, SimCase2)

> 0.95 (7)

RatioCasei = CmaxOptCasei

CmaxCasei
(8)

After the selection of the best cases considering effective-
ness/efficiency criteria, it is randomly selected a case. With this, it
is granted the selection of a good case, instead of selecting the best
case among all. This is important, since it avoids stagnation and
also the choice of the same case often (cycle), because in that way
the system could not evolve. If the best case among all is selected,
it would be selected always the same, unless new cases always
obtain best results, which does not happen due to the randomness
underlying MH.

If there are not cases with enough effectiveness/efficiency ratio,
it is selected the most similar case (the case with higher similarity).

4.5. Revising phase

In this phase, the suggested solution is adapted, since the direct
use of solutions leads the system to stagnation and it could not
evolve to better results. So, to avoid local optimal solutions and
system’s stagnation, we propose an algorithm that applies some
diversity and perturbation to the suggested parameters, using a
global credit approach to assign different credit to the different
parameters.

If the reused case has a similarity more than 95%, then the global
credit is assigned with a minimum value of 15 (Eq. (9)). If not, the
global credit is inversely proportional to the similarity of the reused
case. This means that the less similar a case is, more perturbation
should be included in the suggested MH parameters.

GlobalCredit =
{

15, SimCasei
≥ 0.95

10 + (1 − SimCasei) × 100, SimCasei
< 0.95

(9)

After initializing the global credit, it is randomly distributed to
each parameter, according to the importance of the parameter. Usu-
ally, the parameter specifying the number of iterations is the most
important, but it depends on the MH in use. After this distribution,
the parameters are updated and the revised MH is returned.

The parameters update is made like illustrated in Eqs. (10) and
(11), for integer and float values, respectively. Integer values are
rounded to units and float values are rounded to the second decimal
unit.

Parami = Parami + round

((
Parami × CreditParami

)
, 0

)
(10)
100

Parami = Parami + round

((
Parami × CreditParami

100

)
, 2

)
(11)

b
s

4

i
m
A
d
s
k

t
o

5

O
g
t
s
c

S
b
L
[
l
m

i
w
c
i
6
6

w
C

t
e
u
c
f
w
w
r
O
t
o
r

t
S
p
o
p
p
s

Fig. 6. Computational study – percentage of average results evolution.
With this procedure, the system is able to introducing pertur-
ation in the suggested solutions, being possible to escape from
tagnation and evolve to better results.

.6. Retaining phase

The objective of Retaining phase is to store the new solved case
n the casebase. This retention is made in two phases. First, the

akespan and execution time values are collected from the MAS.
fter that, a new record in the CBR table is created, with the case
ata, being also created a new record on the MH table, used to
olve the problem. These two records are related by their primary
ey.

With this phase, the CBR cycle is concluded. In the next execu-
ion, the solved case will be available to be used in the resolution
f a new case.

. Computational study

The computational study pretends to analyze if the Self-
ptimization module improves the effectiveness of AutoDynA-
ents system and how good is its contribution. It is not analyzed
he efficiency because it is not expected to obtain better results,
ince a new module is incorporated in the system, with increasing
omputational effort.

For this study, it were used all instances from OR-Library Job-
hop Scheduling problems [77] (a total of 82 instances), proposed
y Adams, Balas and Zawack [78], Fisher and Thompson [79],
awrence [80], Applegate and Cook [81], Storer, Wu and Vaccari
82], and Yamada and Nakano [83]. These instances cover prob-
ems with 10, 20, 30, and 50 jobs, processed by 5, 10, 15, and 20

achines.
AutoDynAgents system, including Self-Optimizing module, was

mplemented using Java, with the Hibernate framework to work
ith the database developed in HSQLDB. The machine used for the

omputational study is a HP Z400 Workstation, with the follow-
ng main characteristics: Intel® Xeon® CPU W3565 @ 3.20 GHz,
GB RAM, Samsung HD103SJ disk with 1TB, and Windows 7
4-bit.

The MH used for the implementation and computational study
ere Tabu Search, Genetic Algorithms, Simulated Annealing, Ant
olony Optimization, and Particle Swarm Optimization.

The computational study is divided in three main phases. In
he first phase were obtained results of 5 executions (runs) for
ach instance, before the introduction of Self-Optimization mod-
le, with a default parameterization for each MH. The two best
ases and the best average value for each instance were retrieved,
rom the obtained results, in order to initialize the CBR casebase,
orking as a starting point for the next phase. In the second phase,
ith the objective to analyze the CBR evolution, were obtained

esults of 30 executions for each instance, after integrating the Self-
ptimization module. Finally, in third and last phase, and similarly

o the first phase, results from 5 executions for each instance were
btained, in order to compare them with the previous obtained
esults from the first phase.

At this point, three main objectives arise. First, understand how
he proposed Self-Optimization module can evolve in its lifetime.
econd, understand if CBR usage is worth or not, analyzing the com-
arison between obtained results before and after the integration

f Self-Optimization module. Finally, this computational study also
ermits to understand how the system works in the presence of
erturbations, and so, a dynamic EJSS problem resolution is pre-
ented.
Fig. 7. Computational study – percentage of best results evolution.

5.1. Self-Optimization module evolution

To evaluate the evolution of the proposed Self-Optimization
module, two main aspects were analyzed: the evolution of average
makespan values and the evolution of best makespan values.

As previously explained, in this phase the system was exe-
cuted 30 runs for each instance, resulting in a total of 2460
executions/cases. For each instance were obtained the results after
10, 20 and 30 executions.

According to the evolution of average results (Fig. 6), it is pos-
sible to understand that, after 20 executions, 44% of results were
better than compared with the results obtained in the first 10 exe-
cutions. It already represents a signal of evolution of the module.
After 30 executions, the average results were improved by 38% and
51% when compared with the first 10 and 20 executions respec-
tively. It might be strange since the percentage compared with 10

executions is lower than the percentage compared with 20 exe-
cutions, but the explanation is that the average results can be
deteriorated during lifetime. However it represents an interesting

Fig. 8. Computational study – percentage of Meta-heuristics global use.

F
r

s
w

c
a
t
c
o
i

o
a
b
u
u
r

t
t
t
S

F

Fig. 10. Computational study – percentage of obtained results improvement.
ig. 9. Computational study – percentage of Meta-heuristics use obtaining the best
esults.

ignal of system evolution, since in only 30 executions the results
ere improved by 50% in average.

Analyzing the best results evolution (Fig. 7) it is possible to con-
lude that, after 20 executions, the results were improved by 41%
nd after 30 executions were improved by 57% (comparing with
he first 10 executions) and 32% (comparing with the first 20 exe-
utions). It also seems promising since the improvement of best
btained results after the 30 executions is better than 50% compar-
ng with the first obtained results.

With this evaluation, it is also possible to conclude about the use
f MH. Since the Self-Optimization module automatically choose
nd parameterize a MH according to the problem to solve, it might
e interesting understand which MH were more used by the mod-
le. Two aspects could be analyzed: the percentage of MH global
se (Fig. 8) and the usage percentage of each MH obtaining the best
esults (Fig. 9).

Fig. 8 represents the global use percentage of MH. The first thing
o notice is the reduced use of ACO. The reason for this fact can be
hat ACO revealed to be very ineffective and it was used not many
imes. GA was also used in a very few times. The most used MH was

A, followed by TS and PSO.

Analyzing the percentage of obtaining best results, like shown in
ig. 9, it is possible to reach almost the same conclusions. ACO was
Fig. 11. Computational study – percentage of Meta-heuristics global use.

not selected anytime and GA was few times used. SA was the MH
that obtained more best results, but a difference occurs after 10 and
20 executions. PSO is the second one, contrary to the conclusions
reached in analyzing average results percentage.

5.2. Performance evaluation

In this subsection it is analyzed the comparison of results
before and after the integration of Self-Optimization module. It
is possible to analyze both makespan and execution times opti-
mization criteria. Since computational times were deteriorated
due to the higher processing charge (because a new module was
introduced), it was only analyzed the evolution of makespan value
(Fig. 10).

Fig. 10 represents the systematization of the percentage of
improvement of average and best obtained results, after running
the system by 5 executions (before and after the integration). So,
the results were improved by 22% and 26% for average values and
best values respectively. We consider it a very good evolution of the
results, since the previous obtained results were considerate to be
already very good. So, with the obtained improvements together
with the ability of providing a self-parameterization of MH, we
believe that the integration of Self-Optimization module is worth.

Similarly to the previous subsection, it is possible to understand

the usage of MH. For the global use (Fig. 11), SA continuous to be
the most used, followed by TS and PSO, and ACO the less used. GA
is also very few times used.

Fig. 12. Computational study – percentage of Meta-heuristics use for 10 jobs prob-
lem instances.

F
l

p
P
t

w
o

i
n

i
f
a

o
a

p
p
a
S

r
o
v
W

Fig. 14. Computational study – percentage of Meta-heuristics use for 20 jobs prob-
lem instances.

Fig. 15. Computational study – percentage of Meta-heuristics use for 30 jobs prob-
lem instances.
ig. 13. Computational study – percentage of Meta-heuristics use for 15 jobs prob-
em instances.

It is also possible to analyze the MH usage through classes of
roblems, related to their dimension. For 10 jobs problems (Fig. 12),
SO was the most used, followed by SA and TS, respectively. GA was
he less used.

For 15 jobs problem instances (Fig. 13), SA was the most used,
ith 59% of usage, followed by TS and PSO. ACO was the less used,

nly with 1% of usage.
For instances with 20 jobs (Fig. 14), and similarly to 15 jobs

nstances, SA was the most used, followed by TS and PSO. ACO was
ot used at all.

For 30 jobs problem instances (Fig. 15), and similarly to 10 jobs
nstances, PSO was the most used, followed by SA and TS. The dif-
erence is in the usage of GA and ACO, since ACO was not used at
ll, like in 20 jobs instances.

For problem instances with 50 jobs (Fig. 16), and in opposite to
ther instances classes, TS was the most used, followed by SA, GA
nd PSO. ACO was not used, similarly to 20 and 30 jobs instances.

An interesting conclusion reached is about the using of GA. It is
ossible to observe that the GA use increased proportionally with
roblem dimension. Also, in problems with 50 jobs, GA was used in
lmost 25% of the cases, with TS being the most used MH, relegating
A to the second place.

Finally, analyzing the percentage of MH use obtaining the best

esults (Fig. 17), it is possible to compare before and after the use
f CBR based module. Comparing the two moments, the results are
ery similar, with the main differences in the use of GA and ACO.
ith the integration of Self-Optimization module, ACO does not
Fig. 16. Computational study – percentage of Meta-heuristics use for 50 jobs prob-
lem instances.

obtain any best result and GA only obtains 6%. TS, SA, and PSO are
used in almost the same number of executions, so no differences

are verified in this evaluation.

However, it can indicate two aspects. The first is that the param-
eterization of MH is becoming better, since the percentage of MH
use is almost the same but the results were improved in 26% of

Fig. 17. Computational study – percentage of Meta-heuristics usage obtaining the
best results, before and after CBR integration.

Table 7
Dynamic EJSSP – jobs data.

Jobs Products Priorities Release date Due date

J1 P1 3 0 55
J2 P2 2 2 70
J3 P3 2 1 85
J4 P4 1 5 65
J5 P5 3 0 72
J6 P1 1 6 85
J7 P3 1 6 98

Table 8
Dynamic EJSSP – occurred events.

Time Event type Job Attributes

5 Job cancellation J4
12 Update of release

and due date
J6 dt rel = 28; dt due = 88

t
r
S
e

b
G
e
S

5

p
T
i
a

p
r
E

d
j
O

Table 9
Dynamic EJSSP – obtained results.

Meta-heuristic Objective
function

Cmax Execution
time

Initial Plan ACO Cmax 149 6.21
First Event SA Cmax – –
Second Event SA WT – –
15 Priority update J7 prior = 3
30 Job arrival J8 prior = 1; dt rel = 32; dt due = 87

he cases. Another aspect that can be happening is the more cor-
ect use of MH according to the problem characteristics, with the
elf-Optimization module choosing and parameterizing a more
ffective technique.

It is possible to observe that SA is the most used MH, followed
y TS and PSO, with a small difference of use about them. ACO and
A were the less used, which we can assume that they are the less
ffective MH in solving scheduling problems, in AutoDynAgents
ystem.

.3. Dynamic EJSS problem

In this subsection it is described the resolution of a dynamic EJSS
roblem using AutoDynAgents with the Self-Optimization module.
his problem instance, which is an example of a dynamic problem
n order to illustrate how the system works, is composed of 7 jobs
nd 8 machines and is better explained in [84].

Table 7 describes the data of the jobs processed in this dynamic
roblem. It is possible to notice different priorities and different
elease and due dates for each job, which are characteristics of
JSSP’s.

Table 8 describes the list of occurred events in the simulation of

ynamic problem. On time instant 5 it was made a cancellation of

ob J4. On time instant 12 release and due dates for J6 were changed.
n time instant 15 it was changed the priority of J7. And in time
Third Event TS WT – –
Final Plan GA Cmax 165 7.14

instant 30 a new job arrives. Job J8 has the same structure than job
J1.

Initially it was made an off-line execution of the problem,
obtaining an initial plan. The events were processed using this
initial plan and a final plan was reached. The obtained results
of the initial and final plans are presented on Table 9, also as
the MH and objective functions used in the resolution of the
events.

It is possible to notice that the Self-Optimizing module works
similarly with and without dynamism. Whenever an event occurs,
it represents a new case occurring in the system, allowing the MH
swapping and respective parameterization, according to the cur-
rent situation. With this module, the system becomes more robust
when dealing with dynamic events.

6. Conclusions and future work

This paper envisaged the application of a learning module for the
resolution of Scheduling problems. The proposed module is based
on the AC Self-Optimization concept, with the objective to self-
parameterize MH considering the importance of this issue in the
process of designing and implementing those techniques. With this
Self-Optimization module, the system is able to choose and param-
eterize MH autonomously, for the resolution of static or Dynamic
Scheduling problems. The implementation of the learning process
is based on CBR, which uses previous similar cases to solve new
cases.

Analyzing the obtained results from the computational study,
it was possible to reach some conclusions about results’ improve-
ment and MH usage. With the proposed Self-Optimization module,
AutoDynAgents system’s obtained results were improved by 22%
and 26%, for average values and best values respectively. We con-
sider it a very good evolution, since the previous obtained results
were considerate to be already very good. It was also possible
to conclude about the MH usage. Simulated Annealing, followed
by Tabu Search and Particle Swarm Optimization, was the most
used MH by the Self-Optimization module. Ant Colony Optimiza-
tion was the less used and Genetic Algorithms was also few times
used (except when solving 50 jobs instances). A curious conclu-
sion reached was about the use of Genetic Algorithms, since it was
possible to observe that their usage increased proportionally with
problem dimension. We believe that the results can improve during
the lifetime of the system and that the proposed module is a signifi-
cant contribution for MH self-parameterization since the objective
of this module is more about robustness than about finding the
optimal solutions.

The proposed module can also be applied to the resolution
of dynamic problems since each occurrence of perturbation cor-
responds to a new case. The system becomes more robust and
effective in the resolution of scheduling problems with the exist-
ence of dynamic events, which represents an improvement of the
system.
For future work we expect a extensive study of the proposed
CBR module and the implementation of other learning techniques,
to compare with this proposal.

A

O
a
e
O

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

cknowledgements

This work is supported by FEDER Funds through the “Programa
peracional Factores de Competitividade – COMPETE” program
nd by National Funds through FCT “Fundação para a Ciência
a Tecnologia” under the project: FCOMP-01-0124-FEDER-PEst-
E/EEI/UI0760/2011.

eferences

[1] P. Horn, Autonomic Computing IBM’s Perspective on the State of Information
Technology, IBM Research, 2001.

[2] J. Kephart, D. Chess, The vision of autonomic computing, Computer Magazine
(January) (2003).

[3] E. Plaza, J.L. Arcos, F. Martin, Cooperative case-based reasoning, in: G. Weiss
(Ed.), Distributed Artificial Intelligence Meets Machine Learning, Lecture Notes
in Artificial Intelligence, Springer, 1996.

[4] T. Gonzalez, Handbook of Approximation Algorithms and Metaheuristics,
Chapman&Hall/Crc Computer and Information Science Series, 2007.

[5] H.Md. Azamathulla, F.-C. Wu, A.Ab. Ghani, S.M. Narulkar, N.A. Zakaria, C.K.
Chang, Comparison between genetic algorithm and linear programming
approach for real time operation, Journal of Hydro-environment Research 2
(3) (2008) 172–181.

[6] H.Md. Azamathulla, A.Ab. Ghani, Genetic programming to predict river pipeline
scour, ASCE, Journal of Pipeline System and Engineering Practice 1 (3) (2010)
127–132.

[7] Z. Ahmad, H.Md. Azamathulla, N.A. Zakaria, ANFIS-based approach for the esti-
mation of transverse mixing coefficient, IWA-Water Science & Technology 63
(5) (2011) 1004–1009.

[8] K.Y. Chan, M.E. Aydin, T.C. Fogarty, Main effect fine-tuning of the mutation
operator and the neighbourhood function for uncapacitated facility location
problems, Soft Computing 10 (11) (2006).

[9] K.Y. Chan, C.K. Kwong, T.S. Dillon, Y.C. Tsim, Reducing overfitting in man-
ufacturing process modeling using a backward elimination based genetic
programming, Applied Soft Computing 11 (2) (2011) 1648–1656.

10] K.Y. Chan, T.S. Dillon, C.K. Kwong, Modeling of a liquid epoxy molding process
using a particle swarm optimization-based fuzzy regression approach, IEEE
Transactions on Industrial Informatics 7 (1) (2011) 148–158.

11] G. Beddoe, S. Petrovic, J. Li, A hybrid metaheuristic case-based reasoning system
for nurse rostering, Journal of Scheduling 12 (2) (2009) 99–119.

12] K.R. Baker, D. Trietsch, Principles of Sequencing and Scheduling, John Wiley &
Sons, Inc., 2009.

13] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Fourth edition,
Springer, 2012.

14] H. Aytug, M.A. Lawley, K. McKay, S. Mohan, R. Uzsoy, Executing production
schedules in the face of uncertainties: a review and some future directions,
European Journal of Operational Research 16 (1) (2005) 86–110.

15] L. Monostori, J. Váncza, S. Kumara, Agent based systems for manufacturing,
CIRP Annals-Manufacturing Technology 55 (2) (2006) 697–720.

16] A. Madureira, Meta-heuristics application to scheduling in dynamic environ-
ments of discrete manufacturing, Ph.D. Dissertation, University of Minho,
Braga, Portugal, 2003 (in Portuguese).

17] M. Parashar, S. Hariri, Autonomic Computing: Concepts, Infrastructure, and
Applications, CRC Press, 2006.

18] S. Whiteson, P. Stone, Towards autonomic computing: adaptive job routing and
scheduling, in: Proceedings of the 16th Conference on Innovative applications
of Artificial Intelligence (IAAI’04), 2004, pp. 916–922.

19] J. Abawajy, Autonomic job scheduling policy for grid computing, Lecture Notes
in Computer Science 3516 (2005) 213–220.

20] K. Ross, N. Bambos, Job scheduling for maximal throughput in autonomic com-
puting systems, in: International Workshop on SelfOrganizing Systems, 2006.

21] A. Madureira, I. Pereira, Self-Optimization for Dynamic Scheduling in Manu-
facturing Systems, Technological Developments in Networking, Education and
Automation, Springer, Netherlands, 2010, pp. 421–426.

22] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and
conceptual comparison, ACM Computing Surveys 35 (2003) 268–308.

23] F. Glover, Future paths for integer prog. and links to artificial intelligence, Com-
puters & Operations Research 5 (1986) 533–549.

24] G. Vilcot, J.-C. Billaut, A tabu search and a genetic algorithm for solving a bicri-
teria general job shop scheduling problem, European Journal of Operational
Research 190 (2) (2008) 398–411.

25] X. Wang, L. Tang, A tabu search heuristic for the hybrid flowshop schedul-
ing with finite intermediate buffers, Computers & Operations Research 36 (3)
(2009).

26] J.-Q. Li, Q.-K. Pan, Y.-C. Liang, An effective hybrid tabu search algorithm for
multi-objective flexible job-shop scheduling problems, Computers & Industrial
Engineering 59 (4) (2010) 647–662.

27] J.-Q. Li, Q.-K. Pan, N. Suganthan, T.J. Chua, A hybrid tabu search algorithm

with an efficient neighborhood structure for the flexible job shop scheduling
problem, The International Journal of Advanced Manufacturing Technology 52
(2011) 683–697.

28] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 671–680.

[

[

29] V. Cerny, A thermodynamical approach to the travelling salesman problem: an
efficient simulation algorithm, Journal of Optimization Theory and Applications
45 (1985) 41–51.

30] S.-W. Lin, J. Gupta, K.-C. Ying, Z.-J. Lee, Using simulated annealing to schedule
a flowshop manufacturing cell with sequence-dependent family setup times,
International Journal of Production Research 47 (12) (2009) 3205–3217.

31] P.-H. Chen, S.M. Shahandashti, Hybrid of genetic algorithm and simulated
annealing for multiple project scheduling with multiple resource constraints,
Automation in Construction 18 (4) (2009) 434–443.

32] B. Naderi, R. Tavakkoli-Moghaddam, M. Khalili, Electromagnetism-like mech-
anism and simulated annealing algorithms for flowshop scheduling problems
minimizing the total weighted tardiness and makespan, Knowledge-Based Sys-
tems 23 (2) (2010) 77–85.

33] R. Zhang, C. Wu, A hybrid immune simulated annealing algorithm for the job
shop scheduling problem, Applied Soft Computing 10 (2010) 79–89.

34] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michi-
gan, 1975.

35] C. Darwin, On the Origins of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle of Life, 1859.

36] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, 1989.

37] H. Zhou, W. Cheung, L. Leung, Minimizing weighted tardiness of job-shop
scheduling using a hybrid genetic algorithm, European Journal of Operational
Research 194 (3) (2009) 637–649.

38] J.J.M. Mendes, J.F. Gonçalves, M.G.C. Resende, A random key based genetic algo-
rithm for the resource constrained project scheduling problem, Computers &
Operations Research 36 (2009) 92–109.

39] L. De Giovanni, F. Pezzella, An improved genetic algorithm for the distributed
and flexible job-shop scheduling problem, European Journal of Operational
Research 200 (2) (2010) 395–408.

40] D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufacturing
systems, Journal of Scheduling (2008).

41] V. Maniezzo, L.M. Gambardella, F. De Luigi, Ant colony optimization, in: G.C.
Onwubolu, B.V. Babu (Eds.), New Optimization Techniques in Engineering,
Springer, 2004, pp. 101–117.

42] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: an autocatalytic optimizing,
Technical Report, TR91-016, Politecnico di Milano, 1991.

43] Z. Haipeng, G. Mitsuo, F. Shigeru, K.K. Woo, Hybrid ant colony optimization for
job-shop scheduling problem, Faji Shisutemu Shinpojiumu Koen Ronbunshu
20 (2004) 304–305.

44] M. Yoshikawa, H. Terai, A hybrid ant colony optimization technique for
job-shop scheduling problems, in: Proceedings of the Fourth International
Conference on Software Engineering Research, Management and Applications
(SERA’06), 2006.

45] L.-N. Xing, Y.-W. Chen, P. Wang, Q.-S. Zhao, J. Xiong, A knowledge-based ant
colony optimization for flexible job shop scheduling problems, Applied Soft
Computing 10 (3) (2010) 888–896.

46] B. Yagmahan, M. Yenisey, A multi-objective ant colony system algorithm for
flow shop scheduling problem, Expert Systems with Applications 37 (2) (2010)
1361–1368.

47] W. Xiang, H.P. Lee, Ant colony intelligence in multi-agent dynamic manufac-
turing scheduling, Engineering Applications of Artificial Intelligence 21 (2008)
73–85.

48] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Procedures of the IEEE
International Conference on Neural Networks, 1995.

49] H. Liu, A. Abraham, O. Choi, S.H. Moon, Variable neighborhood particle swarm
optimization for multi-objective flexible job-shop scheduling problems, in: 6th
international Conference, SEAL 2006, Springer, China, 2006.

50] P. Pongchairerks, V. Kachitvichyanukul, A particle swarm optimization algo-
rithm on job-shop scheduling problems with multi-purpose machines,
Asia-Pacific Journal of Operational Research (APJOR) 26 (2) (2009) 161–184.

51] D.Y. Sha, C. Hsu, A hybrid particle swarm optimization for job shop scheduling
problem, Computers & Industrial Engineering 51 (4) (2006) 791–808.

52] G.G. Yen, B. Ivers, Job shop scheduling optimization through multiple inde-
pendent particle swarms, International Journal of Intelligent Computing and
Cybernetics 2 (1) (2009) 5–33.

53] H. Liu, A. Abraham, A.E. Hassanien, Scheduling jobs on computational grids
using a fuzzy particle swarm optimization algorithm, Future Generation Com-
puter Systems 26 (8) (2010) 1336–1343.

54] D. Karaboga, An Idea Based On Honey Bee Swarm For Numerical Optimiza-
tion, Technical Report-TR06 (Erciyes University, Engineering Faculty, Computer
Engineering Department), 2005.

55] P. Pansuwan, N. Rukwong, P. Pongcharoen, Identifying Optimum Artificial Bee
Colony (ABC) Algorithm’s Parameters for Scheduling the Manufacture and
Assembly of Complex Products, in: Second International Conference on Com-
puter and Network Technology (ICCNT), 2010, pp. 339–343.

56] R. Xiao, T. Chen, Enhancing ABC Optimization with Ai-Net Algorithm for solving
project scheduling problem, in: Seventh International Conference on Natural
Computation (ICNC), vol. 3, 2011, pp. 1284–1288.

57] G. Zhou, L. Wang, Y. Xu, S. Wang, An effective artificial bee colony algorithm for
multi-objective flexible job-shop scheduling problem, in: D.-S. Huang, Y. Gan,

P. Gupta, M.M. Gromiha (Eds.), ‘ICIC (2)’, Springer, 2011, pp. 1–8.

58] A. Banharnsakun, B. Sirinaovakul, T. Achalakul, Job shop scheduling with the
best-so-far ABC, Engineering Applications of Artificial Intelligence (2011).

59] L. Panait, S. Luke, Cooperative multi-agent learning: the state of the art,
Autonomous Agents and Multi-Agent Systems (2005) 387–434.

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[
[

[

[

[

[

[
instances, in: R. Manner, B. Manderick (Eds.), Parallel Instance Solving from
Nature 2, North-Holland, Amsterdam, 1992, pp. 281–290.
60] F. Zambonelli, H. Parunak, Towards a paradigm change in computer science
and software engineering: a synthesis, The Knowledge Engineering Review 18
(4) (2004).

61] M. Luck, P. McBurney, O. Shehory, S. Willmott, Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing), 2005.

62] W. Shen, D.H. Norrie, Agent based systems for intelligent manufacturing: a state
of the art survey, International Journal of Knowledge and Information Systems
1 (2) (1999) 129–156.

63] W. Shen, D.H. Norrie, J.P.A. Barthes, Multi-agent Systems for Concurrent Intel-
ligent Design and Manufacturing, Taylor & Francis, London, 2001.

64] T.C.E. Cheng, C.T. Ng, J.J. Yuan, Multi-agent scheduling on a single machine with
max-form criteria, European Journal of Operational Research 188 (2) (2008)
603–609.

65] K. Lee, B.-C. Choi, J. Leung, M. Pinedo, Approximation algorithms for multi-
agent scheduling to minimize total weighted completion time, Information
Processing Letters 109 (16) (2009) 913–917.

66] J. Leung, M. Pinedo, G. Wan, Competitive two-agent scheduling and its appli-
cations, Operations Research 58 (2) (2010) 458–469.

67] A. Madureira, I. Pereira, N. Sousa, P. Ávila, J. Bastos, Scheduling a Cutting
and Treatment Stainless Steel Sheet Line with Self-Management Capabilities,
Computational Intelligence for Engineering Systems: Emergent Applications,
Springer, 2011.

68] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers Inc, 1993.
69] S. Petrovic, Y. Yang, M. Dror, Case-based selection of initialisation heuristics for

metaheuristic examination timetabling, Expert Systems with Applications 33
(2007) 772–785.

70] A. Aamodt, E. Plaza, Case-based reasoning: foundational issues, methodological
variations, and system approaches, Artificial Intelligence Communications 7
(1994) 39–52.
71] E.K. Burke, B.L. MacCarthy, S. Petrovic, R. Qu, Knowledge Discovery in a Hyper-
Heuristic for Course Timetabling Using Case-Based Reasoning PATAT 2002,
2002.

72] S. Oman, P. Cunningham, Using case retrieval to seed genetic algorithms, Inter-
national Journal of Computational Intelligence and Applications (2001) 71–82.

[

73] E. Xia, I. Jurisica, J. Waterhouse, V. Sloan, Runtime estimation using the case-
based reasoning approach for scheduling in a grid environment, in: Proceedings
of ICCBR’2010, 2010, pp. 525–539.

74] A. Madureira, I. Pereira, N. Sousa, Collective intelligence on dynamic manufac-
turing scheduling optimization, in: Proceedings of the IEEE Fifth International
Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA
2010), Liverpool, 2010, pp. 1693–1697.

75] A. Madureira, N. Sousa, I. Pereira, Negotiation mechanism for self-organized
scheduling system, in: Third World Congress on Nature and Biologically
Inspired Computing (NaBIC), 2011, pp. 291–296.

76] B. Horling, V. Lesser, A survey of multi-agent organizational paradigms, Knowl-
edge Engineering Review 19 (4) (2004) 281–316.

77] OR-Library, http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.
78] J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop

scheduling, Management Science 34 (1988) 391–401.
79] H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop

scheduling rules, in: J.F. Muth, G.L. Thompson (Eds.), Industrial Scheduling,
Prentice Hall, 1963, pp. 225–251.

80] S. Lawrence, Resource Constrained Project Scheduling: An Experimental Inves-
tigation of Heuristic Scheduling Techniques (Supplement), Graduate School of
Industrial Administration, Carnegie-Mellon University, 1984.

81] D. Applegate, W. Cook, A computational study of the job-shop scheduling
instance, ORSA Journal on Computing 3 (1991) 149–156.

82] R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing instances
with application to job shop scheduling, Management Science 38 (1992)
1495–1509.

83] T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale job-shop
84] A. Madureira, I. Pereira, N. Sousa, Self-organization for Scheduling in Agile
Manufacturing, in: Proceedings of the 10th IEEE International Conference on
Cybernetic Intelligent Systems, London, 2011, pp. 38–43.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

	Self-Optimization module for Scheduling using Case-based Reasoning
	1 Introduction
	1.1 Dynamic Scheduling problem

	2 Literature review
	2.1 Autonomic Computing applications for Scheduling
	2.2 Meta-heuristics applications for Scheduling
	2.3 Multi-Agent Systems applications for Scheduling
	2.4 Case-based Reasoning applications for Scheduling

	3 AutoDynAgents system
	4 Self-Optimization module
	4.1 CBR architecture
	4.2 Casebase
	4.3 Retrieving phase
	4.4 Reusing phase
	4.5 Revising phase
	4.6 Retaining phase

	5 Computational study
	5.1 Self-Optimization module evolution
	5.2 Performance evaluation
	5.3 Dynamic EJSS problem

	6 Conclusions and future work
	Acknowledgements
	References

