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A  large  number  of  hybrid  metaheuristics  for  asymmetric  traveling  salesman  problem  (ATSP)  have  been
proposed  in  the  past  decades  which  produced  better  solutions  by exploiting  the complementary  char-
acteristics  of  different  optimization  strategies.  However,  most  of  the  hybridizations  are  criticized  due
to lacking  of  sufficient  analytical  basis.  In this  paper,  a  model  induced  max-min  ant  colony  optimiza-
tion  (MIMM-ACO)  is  proposed  to  bridge  the  gap  between  hybridizations  and  theoretical  analysis.  The
proposed  method  exploits  analytical  knowledge  from  both  the ATSP  model  and  the  dynamics  of ACO
guiding  the  behavior  of  ants  which  forms  the theoretical  basis  for  the  hybridization.  The  contribution  of
this  paper  mainly  includes  three  supporting  propositions  that lead  to  two improvements  in  comparison
with  classical  max-min  ACO optimization  (MM-ACO):  (1)  Adjusted  transition  probabilities  are  developed
by  replacing  the  static  biased  weighting  factors  with  the  dynamic  ones  which  are  determined  by the par-

tial solution  that  ant  has  constructed.  As  a  byproduct,  nonoptimal  arcs  will  be indentified  and  excluded
from  further  consideration  based  on  the  dual  information  derived  from  solving  the  associated  assignment
problem  (AP).  (2)  A  terminal  condition  is  determined  analytically  based  on  the  state  of  pheromone  matrix
structure  rather  than  intuitively  as  in  most  traditional  hybrid  metaheuristics.  Apart  from  the  theoretical
analysis,  we  experimentally  show  that the  proposed  algorithm  exhibits  more  powerful  searching  ability
than classical  MM-ACO  and  outperforms  state  of  art hybrid  metaheuristics.
. Introduction

Asymmetric traveling salesman problem (ATSP) is one of a class
f difficult problems in combinatorial optimization that is repre-
entative of a large number of scientific and engineering problems.
TSP and its variants are commonly used models for formulating
any practical applications in manufacturing scheduling problem.

or example, the scheduling problem in a discrete manufacturing
s mainly concerned with how to determine the sequence of jobs
o as to minimize the total set-up cost. This problem can be easily
ormulated into an ATSP problem. Considerable industrial applica-
ions on the basis of ATSP can be found in [1–4]. Hence, ATSP has
lways been one of the most attractive problems in academic com-
unity. Before the early 1990s, exact algorithms, form the main

tream of solvers. However, solving ATSP optimally is NP-hard and

he exact algorithm may  be difficult to produce a provably opti-

al  solution in a reasonable time. Metaheuristics have found wide
cceptance in the arena where suboptimal or satisfied solutions
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are expected to be generated in a given time period. Among those
metaheuristics ant colony optimization (ACO) which was proposed
by Dorigo and Gambardella [5],  is considered to be one of the most
representative ones [6].  It is an iterative approach in which a num-
ber of artificial ants construct solutions randomly but are guided
by pheromone information that stems from former ants building
good solutions. Blum and Dorigo [7] presented a hyper-cube ACO
by introducing a normalized way for the pheromone value by which
the pheromone values were limited in the interval [0,1]. A survey
was given of recent applications and variants of ACO methods by
Dorigo and Blum [8].

Recently, many hybrid algorithms that combine ACO and other
optimization algorithms have received more and more attention.
These hybrid algorithms can produce better solutions by exploiting
the complementary characteristics of different optimization strate-
gies. Roughly speaking, ACO based hybrid algorithms fall into two
categories. This first category is the hybrid optimization that com-
bines local heuristic search, such as 2-OPT [9] with ACO algorithm.

Cheng and Mao  [10] developed ACS-TSPTW to solve TSP problem
with time window where two local heuristics were embedded to
manage the time window constraints. A hybrid ACO algorithm com-
bined with a mutation and 2-OPT heuristic for generalized TSP was

dx.doi.org/10.1016/j.asoc.2012.04.008
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:pan_cc@sjtu.edu.cn
mailto:panchangchun@gmail.com
dx.doi.org/10.1016/j.asoc.2012.04.008


1 omput

p
s
[
g
m
C
t
O
D
i
c
h
t
s

m
m
b
p
f
s
m
C
e
K
f
i
e
n
a
h
b
a
d
t
p
m
h
e
r
e
h
r

f
e
l
i
f
[
c
l

•

•

366 J. Bai et al. / Applied Soft C

roposed by Yang et al. [11]. A web-based simulation and analy-
is software based on ACO for TSP was developed by Aybars et al.
12]. Puris et al. [13] presented a two-stage ACO in order to obtain
ood exploration of the search space. ACO optimization applied to
ultiple TSP problem can be found in Ghafurian and Javadian [14].

hen and Chien [15] proposed a hybrid algorithm with a combina-
ion of ACO algorithm, Simulated Annealing (SA), Particle Swarm
ptimization (PSO) and Genetic Algorithm (GA) for solving TSP.
ong and Guo [16] developed a cooperative ACO & GA algorithm

n which mutual information exchange between ACO and GA helps
onduct the selection of the best solutions for next iteration. ACO
ybridized with heuristic rules was also investigated by Keskin-
urk et al. [4] to solve sequence-dependent setup parallel machine
cheduling problem.

The second category is concerned with the combination of exact
ethods and ACO algorithm. A hybrid algorithm called Approxi-
ate Nondeterministic Tree Search (ANTS) is the first to integrate

ranch-and-bound techniques into ACO for quadratic assignment
roblem (QAP) [17]. According to our investigation, algorithms
or ATSP problem that combine ACO and exact methods are very
carce. However, there are a number of schemes that hybridize
etaheuristics other than ACO with exact methods. For example,

hoi et al [18] developed a hybrid algorithm for ATSP problem that
mbedded an integer programming solver into GA. Cowling and
euthen [19] employed a decomposition-recombination scheme

or TSP problem in which the original problem is first decomposed
nto small subproblems. These subproblems are then solved using
xact algorithms and the solutions are re-embedded into the origi-
al problem. Note that most of the hybrids between exact methods
nd metaheuristics are operated in a heuristic way. Although the
ybrid algorithms can produce high performance as mentioned
y the references above, these methods are somewhat unreli-
ble because advantages coming with the hybridization are mostly
emonstrated by means of experimental study. As pointed out by
he “no free lunch theorems for optimization” [20], any elevated
erformance over one class of problems is offset by lower perfor-
ance over another class. In other words, the hybridization in a

euristic manner may  not always produce better solutions. Blum
t al. [21] and Jourdan et al. [22] surveyed and categorized cur-
ent hybrid algorithms. Their statistical results indicate that more
fforts are needed to design hybrids of exact methods and meta-
euristics in a systematic and cooperative way in terms of analytical
esults.

This paper aims to develop a well-suited hybrid algorithm
or ATSP problem in which analytical results can be utilized and
mbedded into ACO algorithm. The information obtained by ana-
yzing both the ATSP model and the dynamics of ACO algorithm
tself is used to guide the search of ants in one of the most power-
ul variant of ACO for TSP problem, i.e., max-min ACO algorithm
23]. Hence, we name the method model induced max-min ant
olony optimization (MIMM-ACO). Specifically, our contributions
ie in two aspects:

Adjusted transition probabilities are developed by replacing the
static biased weighting factors with the dynamic ones. The
dynamic weighting factor is closely dependent on the partial
solution that ant has constructed. The ideal behind it is that we
favor the choice of edges with small residual cost instead of with
the small actual cost. As a byproduct nonoptimal arcs will be
indentified at each step of tour construction using the dual infor-
mation derived from solving the associated assignment problem

(AP) and these arcs will be discarded from future consideration.
A terminal condition is determined analytically based on the state
of pheromone matrix structure. The result comes with a neces-
sary condition for obtaining one optimal solution.
ing 13 (2013) 1365–1375

The rest of the paper is organized as follows. In the next sec-
tion, the relevant background contents about the ATSP formulation
and the MM-ACO optimization are briefly reviewed. Section 3 is
dedicated to the design of MIMM-ACO algorithm in which sev-
eral supporting analytical results are presented. Section 4 presents
some computational results with which we  show that the pro-
posed algorithm has a remarkable performance, in particular on
the running-time efficiency compared with several state of the art
algorithms. Section 5 offers a summary and outlines future work.

2. Preliminaries

Given a directed graph G = (V, A) with vertex/city set

V
def= {1, 2, . . . , n}, arc set A

def= {(i, j)|i, j = 1, 2, . . . , n} and cost ci,j asso-
ciated with each arc (i,j). If ci,j = cj,i for all (i,j) ∈ A then the TSP is
symmetric, otherwise it is asymmetric (ATSP). Formally, ATSP may
be stated as an integer programming (IP) of the following form.

We first explain the notations before present in the IP.

Indices: i,j ∈ V indicate the vertex;
Parameters: ci,j, (i,j) ∈ A indicates travel cost of arc (i,j)
Decision variables: xi,j ∈ {0,1}, (i,j) ∈ A

Objective : Z∗ = min
∑
i ∈ V

∑
j ∈ V

ci,jxij (1)

s.t.∑
i ∈ V

xi,j = 1, j ∈V

∑
j ∈ V

xi,j = 1, i ∈ V
(2)

∑
i,j ∈ S

xi,j ≤ |S| − 1, ∀S ⊂ V, S /= ∅  (3)

xi,j ∈ {0, 1}, i, j ∈ V (4)

where if arc (i,j) is present in a solution, travel occurs from ver-
tex i to j, xi,j = 1; otherwise xi,j = 0. The ATSP involves specifying a
minimum-cost tour that visits each vertex once and returns the
starting one, that is, a Hamiltonian cycle. The objective in (1) is
to minimize the total travel cost. Constraints (2) ensure that each
vertex is visited only once. Constraints (3) are used to eliminate
subtours. Constraints (4) are binary restriction for decision vari-
ables.

For attacking ATSP problem, a number of algorithms have been
developed just as that mentioned in Section 1. The classical MM-
ACO by Stutzle and Hoos [23] is introduced briefly in order to derive
our method smoothly. The pseudocode is given in Fig. 1.

Tour Construct solution (T,  C). In MM-ACO algorithm artificial
ants build solutions in terms of the current pheromone matrix T
and the cost matrix C. In the construction phrase an ant incremen-
tally constructs a partial solution by adding an unvisited city to
the partial solution constructed so far until a feasible solution is
obtained. Let sp(r) denote the partial tour with city r being the last
visited city. The choice of the next city to be added is given by the
following rule

k =
{

arg maxu ∈ J(sp(r)){(�r,u)(�r,u)ˇ} if q ≤ q0
usingtransitionprobabilitiesgivenby (6)

(5)
where J(sp(r)) represents the set of cities that the ant positioned
at city r is allowed to add to the current partial tour; �r,u the
pheromone level on arc (r,u); �r,u the static biased weight for the
choice of the arc (r,u), usually set �r,u = 1/cr,u; q a random number
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Fig. 1. The pseudocode of traditional MM-ACO.

niformly distributed in [0,1]; and q0 are  ̌ are two parameters with
0 ≤ q0 ≤ 1),

The transition probabilities is defined by

(k/sp(r)) =

⎧⎪⎪⎨
⎪⎪⎩

(�r,k)(�r,k)ˇ∑
u ∈ J(sp(r))

0

(�r,u)(�r,u)ˇ

otherwise

if k ∈ J(sp(r)) (6)

Apply Pheromone Update (T,  sgb). The global best offline
heromone update is used as that

∀(i, j) : �i,j ← (1 − �)�i,j

∀(i, j) ∈ sgb : �i,j ← �i,j + g(sgb)
∀(i, j) : �i,j = max{�min, �i,j}

(7)

here �,0 < � < 1 is the evaporation rate and g(s),0 < g(s) < +∝ is the
rize function with

 (s) < f (s′) ⇒ g(s) ≥ g(s′) (8)

n ACO algorithm the prize function will determine the maximum
heromone level �max. More specifically, Stutzle and Dorigo [24]
as proven that the maximum pheromone value is bounded asymp-
otically by

max = 1
�

g(s∗) (9)

. Methodology

In this section we will present the proposed strategies and
elated theoretical results and then develop the overall implemen-
ation of MIMM-ACO. Our work primarily consists of the following
spects.

.1. Transition probabilities of MIMM-ACO

In every ant based search procedure the transition probabilities
re of vital importance. Our intention is to promote the search-
ng activity of ants by embedding the domain or model knowledge
nto construction of more reasonable transition probabilities. The
evision of (6) is based on the following proposition.

roposition 1. Given a partial path spdef= {i1, i2, . . . , ip} and a fea-

ible solution s, if f (s) − Z̃∗AP ≤

∑
(i,j) ∈ sp c̄i,j is satisfied then the

ollowing inequality holds

 (s) ≤ Z∗(sp) (10)
ing 13 (2013) 1365–1375 1367

where Z̃∗AP is the optimal solution value of the assignment problem
(AP) defined by (1), (2) and (4) which provides a lower bound of Z*;
c̄i,j, c̄i,j ≥ O is the reduced cost of (i,j) associated with the resulting
AP problem (see Appendix A for more details); Z*(sp) denotes the
optimal solution value of the ATSP that is subjected to containing
sp as a partial solution.

Proof. See Appendix A.

Proposition 1 means that any solution containing sp cannot be
better than s if the condition f (s) − Z̃∗AP ≤

∑
(i,j) ∈ sp c̄i,j holds. It pro-

vides a quantified criterion to indicate during the tour construction
procedure whether the search alone the current path is desirable.
In other words if a tour along the current partial path will lead to an
inferior solution than the current best solution sgb, the march would
be useless. Inspired from Proposition 1, we adjust transition prob-
abilities by replacing the static biased weighting factor dependent
on the actual cost with a dynamic one computed using the resid-
ual cost. Such that original transition probabilities are adjusted and
become

padj(k/sp(r), sp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�r,k)[w(sp(r), k)]ˇ∑
u ∈ Jadj(sp(r))

0

(�r,u)[w(sp(r), k)]ˇ

otherwise

if k ∈ Jadj(s
p(r)) (11)

where w(sp(r),k) denotes a biased weighting factor which is depen-
dent on sp(r) and city k. Specifically, we define

w(sp(r), k)def= max

{
1 −

∑
(i,j) ∈ sp(k)c̄i,j

�G
, wmin

}

sp(k)def= sp(r) ∪ (r, k)

�G
def= f (sgb) − Z̃∗AP

(12)

Jadj(s
p(r))def= J(sp(r)) −

{
k|

∑
(i,j) ∈ sp(k)

c̄i,j ≥ �G
}

(13)

where wmin specifies the smallest biased weighting factor.
Remarks:

• �G  is the current gap between the best upper bound and the
lower bound. Without loss of generality, �G  > O is assumed since
if �G = O we  have got the optimal solution already.
• The weighting factor defined in (12) indicates that ants favor

choice of edges with small residual cost instead of small actual
cost (see (6) for comparison).

The adjusted list of candidate cities defined in (13) shows that
unvisited cites that will result in a inferior solution than sgb must be
left out of consideration. If many of such cites can be excluded, more
attention would be centered on the search space that will produce
solutions better than sgb and the searching efficiency therein will
be improved undoubtedly. Nevertheless, the number of excluding
non-optimal cities is closely relevant to the tightness of the lower
bound.

According to the newly generated transition probabilities, the
choice of the next city to be added will be determined by

k =
{

arg maxu ∈ Jadj(sp(r)){(�r,u)[w(sp(r), u)]ˇ} if q ≤ q0

usingtransitionprobabilitiesgivenby (11)
(14)
3.2. Terminal criterion setting of MIMM-ACO

The rule for terminal condition is derived from the proposition
below.
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Fig. 2. The pseudocode of the overall proposed MIMM-ACO algorithm for ATSP
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roposition 2. Let t* be the first time when an optimal solution
as been found s*, then a constant value t0 = ln(ϕ)/ln(1 − �) exists
uch that when t ≥ t* + t0 the following holds

i,j(t) > �k,l(t) (15)

�k,l(t) = �min
∀(i, j) ∈ s∗, ∀(k, l) /∈ s∗

(16)

here ϕ = �min/�max is the ratio of minimum to maximum
heromone value

roof. See Appendix B.

Proposition 2 shows a scenario that after a fixed number of iter-
tions starting from the time when a optimal solution has been
ound, the pheromone matrix will keep a stable structure in which
he pheromone level on the optimal solution is larger than that on
ny other connections and any connections not belonging to the
ptimal solution has the pheromone level with �min. Solutions gen-
rated from a stable pheromone structure will tend to be stable as
ell. Therefore, Proposition 2 provides a reasonable way to define

 terminal condition for ACO, that is after a sequence of �,� ≥ t0
terations without any improvement we terminate the ACO pro-
edure. In our computational experiments, � takes on the value of
1.2–1.5)t0.

.3. Convergence proof of MIMM-ACO

orollary 1. For an arbitrary choice of a small ∈ > 0 and for a
ufficiently large t, it holds that P*(t) ≥ 1 − ∈, and asymptotically
imt→∝P*(t) = 1, where P* is the probability that the algorithm finds
n optimal solution at least once within the first t iterations.

roof. See Appendix C.

.4. Overall algorithm of MIMM-ACO

We summarize the analysis above and present the overall pseu-
ocode of MIMM-ACO in Fig. 2.

In MIMM-ACO method extra initialization procedures are
ncluded in contrast to conventional MM-ACO procedure. These
rocedures include

1) the AP solver to solve the associated AP problem and compute
the residual cost matrix;

2) the so-called “PATCH” proposed by Karp [25] which was  used
to repair an AP solution to an ATSP solution. “PATCH” algorithm
generates the first feasible solution s1.

3) the calculation of t0 using Proposition 2 and �min using its defi-
nition directly.

pecifically, we have

0 =
ln(ϕ)

ln(1 − �)
(17)

min = �̂maxϕ (18)

here

ˆmax = ĝ(s∗)
�

(19)

ˆ(s∗)def= 1

f̂ (s∗)
= 1

(1/2)f  (s1) + (1/2)Z̃∗AP

(20)
 and � are given parameters of ACO.
Note that �̂max in (18) denotes a estimate of �max. As shown by

9) it is hard to get the actual value of �max because the actual value
f g(s*) is unavailable so far. So that, the estimate shown in (20)
problem.

is used to give an approximation of g(s*) that employs a weighted
sum of lower bound and an upper bound.

The additional computational cost of MIMM-ACO compared
with MM-ACO is incurred mostly from the AP solver and the
“PATCH” algorithm. As is known to all, AP solver, for example the
primal-dual algorithm [26], is of runtime complexity O(n3) and
the same as the ‘PATCH’ algorithm. Since both the AP solver or
the “PATCH” algorithm will be run once in the overall MIMM-ACO
procedure, the computational cost is inexpensive. Our experiments
also show that AP problem can be solved very quickly, even for the
instance size up to 1000 the running time would be within several
seconds.

3.5. A numerical example

To increase the comprehensibility of the proposed definition of
transition probabilities, a numerical example from Miller and Pekny
[27] is used to show how the proposed method is conducted. The
ATSP instance is with 8 vertices and the cost matrix is given by

[ci,j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢

∞ 3 8 5 9 8 6 6
0 ∞ 2 1 2 3 9 1
2 4 ∞ 1 4 8 3 2
7 5 3 ∞ 1 8 2 6
6 8 3 3 ∞ 8 2 4
9 4 3 4 4 ∞ 2 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥
⎣ 8 0 8 3 6 3 ∞ 9

6 2 0 1 6 8 0 ∞
⎦
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ig. 3. Comparison of the selection procedure for the next candidate vertex at step

irst, the associated AP problem is solved and then we  get that
ower bound and the associated optimal dual variables (we refer to
ell’Amico and Toth [26] for more details):

˜∗
AP = 14

u
v

]
=

[
3 0 1 1 3 3 0 0
0 0 0 0 0 3 −1 1

]

ompute the residual cost matrix by c̄i,j = ci,j − ui − vj , such that
e have

c̄i,j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ 0 5 2 6 2 4 2
0 ∞ 2 1 2 0 10 0
1 3 ∞ 0 3 4 3 0
6 4 2 ∞ 0 4 2 4
3 5 0 0 ∞ 2 0 0
6 1 0 1 1 ∞ 0 3
8 0 8 3 6 0 ∞ 8
6 2 0 1 6 5 1 ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e  initialize sgb = [1,2,4,5,8,7,6,3] obtained by using some certain
euristic algorithm. Note that sgb can be updated in subsequent

terations. Obviously, we can get the currently best upper bound
(sgb) = 17 and the current gap between the lower bound and the
pper bound �G = f (s) − Z̃∗AP = 3. Assume that an ant is going to
tart to travel from vertex 1. At step one, we get immediately that:

p(1) = {1};

(sp(1)) = {2, 3, 4, 5, 6, 7, 8};

sing (13) we  get that{
k|

∑
(i,j) ∈ sp(1)c̄i,j ≥ 3

}
= {3, 5, 7}

Jadj(sp(1)) = J(sp(1))\{3, 5, 7} = {2, 4, 6, 8}

In traditional ACO, the next vertex will be selected from J(sp(1))
hile in the proposed MIMM-ACO algorithm the next vertex will

e chosen from Jadj(sp(1)). It is obvious that the size of Jadj(sp(1)) is

uch smaller than that of J(sp(1)) and this will definitely lead the

nt to more promising tours. Fig. 3 presents a graphical illustration
hat in traditional MM-ACO the ant at vertex 1 will suffer from 7
hoices while in MIMM-ACO the number of choices is 4.
etween traditional MM-ACO (left side) and the proposed MIMM-ACO (right side).

Using (12) the biased weighting factors w(sp(1),k) can be com-
puted in turn:

w(sp(1),  2) = 1 −
∑

(i,j) ∈ sp(2)c̄i,j

3
=  1

w(sp(1),  4) = 1 −
∑

(i,j) ∈ sp(4)c̄i,j

3
= 1

3

w(sp(1),  6) = 1 −
∑

(i,j) ∈ sp(6)c̄i,j

3
= 1

3

w(sp(1),  8) = 1 −
∑

(i,j) ∈ sp(8)c̄i,j

3
= 1

3

Using (14) the next city can be selected which completes the first
step. The subsequent steps can be done in the same manner and the
process is repeated until the overall tour construction procedure is
finished completely.

4. Computational results and discussions

The computational experiments consist of three parts, the first
part aims to show the evidence that the residual cost is more sig-
nificant than the actual cost for guiding the search of ants. This is
conducted by means of the statistics on the nearest neighbor dis-
tribution (NND) of optimal solutions. The second one is to show
the superiority of the MIMM-ACO compared with several existing
state-of-the art algorithms, i.e., extremal optimization (EO) [28],
cooperative genetic ant systems (CGAS) [16] and MM-ACO [23]
based on benchmark problems. The third one is to do further exper-
iments based on a number of randomly generated and large scale
problems.

4.1. Experiments on nearest neighbor distribution

The NND has been studied for design of good TSP solutions [29].
For every feasible tour s of ATSP its NND can be obtained by statistics
which is defined by
r(k)def= s(k)
n

, k = 1, . . . , n − 1∑
kr(k) = 1

(21)
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Table 1
Parameter setting of MIMM-ACO.

1 The population size of ants m = 10
2 The relative importance of pheromone

versus the biased weight
 ̌ = 2

3  The pheromone value decay parameter � = 0.1
4  The ratio of minimum to maximum

pheromone value
ϕ = 1/n
ig. 4. The nearest neighbor distribution of optimal solutions from 

eidelberg.de/software/TSPLIB95/)  measured by the actual cost matrix (a) and the r

here s(k) is total number of the kth-nearest-neighbors for all arcs
n this tour. For example s(1) means the number of arcs in the
ptimal solution s that belongs to nearest neighbor arcs.

Obviously, r(k) is dependent on the cost type. Different cost defi-
ition between cities will produce different NND even for the same
our of ATSP. In Fig. 4, we present the box plot of r(k) of optimal
olutions for 19 benchmark instances in TSPLIB95 with the actual
ost type (a) and residual cost type (b) respectively.

Fig. 4(a) shows that under the measurement of actual cost, only
6% on average arcs in optimal solutions are the nearest neighbor
onnections and other optimal arcs are mainly scattered through
he 2nd to 11th nearest neighbor connections. With the measure-

ent of residual cost as shown in Fig. 4(b), the number are 83%
n average for the nearest neighbor connections and other optimal
rcs are scattered only through the 2nd to 5th. It means that arc set
elonging to optimal solutions under the measurement of residual
ost tends to be more focused. This present significant evidence
hat the choice of edges with small residual cost is better than the
hoice for edges with small actual cost.
.2. Experiments on benchmark problems

To validate the performance of the proposed algorithm, both
enchmark and randomly generated instances are used as the test
 to “rgb443” (overall 19 instances) in TSPLIB95 (http://comopt.ifi.uni-
al cost matrix (b) respectively.

instances. The experiments on ATSP problems have been executed
on a PC with Pentium(R) Dual 1.80 GHz processor and 2G RAM
memory. The algorithm is coded using Microsoft Visual C++ (ver-
sion 6.0). Some necessary parameters in MIMM-ACO are presented
in Table 1. The first 4 items are quoted directly from Dorigo and
Gambardella [5] due to the similarity of the problems. The 5th item
is based on the statistic NND result directly. The 6th item is chosen
so that under the worst case situation we have
5  The exploitation ratio q0 = 0.85
6 The minimum value of biased weights wmin = 1.001ϕ
7 Terminal condition parameters � = 1.5t0

8 Local search algorithm 2-opt

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table  2
Solution results for benchmark problems in TSPLIB95 (25 runs for each case).

Instance name Performance comparison among algorithms

MIMM-ACO MM-ACO EO CGAS

Deviation over
optima (%)

Running time
(s)

Deviation over
optima (%)

Running time
(s)

Deviation over
optima (%)

Running time
(s)

Deviation over
optima (%)

Running time
(s)

ft17 0.0% 0.01 0.0% 0.01 0.0% 0.01 0.0% 0.01
ft53  0.0% 3.53 0.22% 3.17 0.0% 3.85 0.35% 6.78
ft70 0.0%  9.85 1.71% 10.15 0.0% 8.93 0.0% 15.32
ftv33 0.0%  6.12 0.0% 9.75 0.0% 4.78 0.0% 28.73
ftv35  0.0% 5.35 0.0% 15.37 0.0% 7.35 0.0% 21.35
ftv38  0.0% 8.64 0.0% 10.96 0.0% 7.83 0.0% 29.79
ftv44  0.0% 9.37 0.0% 12.35 0.0% 8.21 0.0% 37.63
ftv47  0.0% 7.52 0.0% 10.08 0.0% 9.37 0.0% 29.70
ftv55 0.0%  6.38 0.0% 18.63 0.0% 5.06 0.0% 18.41
ftv64 0.0%  15.37 0.0% 27.65 0.0% 16.42 0.0% 29.25
ftv70  0.03% 64.53 5.78% 61.25 0.72% 32.26 0.75% 69.54
ftv170 0.05% 108.28 0.25% 96.73 0.28% 103.27 0.0% 128.76
kro124 0.0% 33.25 1.64% 54.21 0.35% 20.86 0.0% 78.52
p43 0.0%  8.35 0.08% 9.38 0.13% 5.47 0.0% 7.53
ry48p  0.0% 7.83 0.0% 7.97 0.0% 5.45 0.0% 12.35
rgb323 0.0% 0.01 1.3% 96.75 0.06% 87.12 0.13% 103.28
rgb358 0.0% 0.01 0.75% 75.37 0.00% 69.65 0.35% 96.49
rgb403 0.0% 0.01 1.35% 104.39 0.00% 85.32 0.31% 147.83
rgb443 0.0%  0.01 1.73% 90.65 0.00% 76.14 0.0% 143.76
Aver.  val. 0.004% 15.50 0.78% 37.66 0.08% 29.33 0.10% 52.89
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ote that Devitation over optima
def= ((f (s) − opt)/opt) × 100%; the best results are hi

here wmax = 1 (the largest biased weight) that is implied by
12). This means that we prefer an arc with high pheromone
evel to an arc with large biased weight if the extremal case
ccurs.

The computational results for the overall 19 benchmark prob-
ems are listed in Table 2. The relative deviation over optimum
nd the running time are reported as the criterion for comparison.
o make the numerical results reliable 25 runs are implemented
or each instance. Averaged performance results are presented.
able 2 illustrates that the proposed MIMM-ACO overwhelms over
he MM-ACO in terms of both the relative deviation and the run-
ing time. As far as “relative deviation” is concerned MIMM-ACO is
nly slightly better than EO and CGAS. However, the running time
f CGAS is much longer than that used by the proposed method
nd the EO. The reason is that CGAS is a kind of combination of AS
ant system) and GA. The advantage of this hybridization for ATSP

s still ambiguous and more running time has to be used so as to
xploit different characteristics of the two algorithms. For the last
our instances, the lower bound solution happens to be a feasible
olution and therefore is the optimal solution, which means that

able 3
verage solution results for class a1 (25 runs for each case).

Problem size Performance comparison among algorithms for class a1

MIMM-ACO MM-ACO 

Deviation
over LB. (%)

Running
time (s)

Deviation
over LB. (%)

Runnin
time (s

100 0.15% 9.13 0.17% 22.10
200  0.03% 8.35 0.04% 25.83
300  0.02% 12.74 0.03% 56.35
400  0.03% 15.58 0.01% 42.38
500 0.012% 18.75 0.35% 64.21
600  0.01% 19.23 0.87% 83.25
700  0.12% 35.34 0.43% 105.37
800 0.15% 21.37 0.23% 231.89
900  0.01% 25.69 0.56% 287.63
1000 0.00%  10.01 0.82% 301.24
Aver.  val. 0.05% 17.62 0.35% 112.02
ted in boldface italics.

these problems are solved optimally in the preprocessing phrase of
the MIMM-ACO.

4.3. Experiments on randomly generated problems

Aside from the last four large-scale problems the EO seems to
compete with our method. Hence, the following numeric results
on the randomly generated instances will be used to show that the
improvement by our method is significant. We  adopt the generat-
ing mode proposed by Carpaneto et al. [30]. Two classes of ATSP
instances are considered as follows:

(a1) ci,j uniformly random in [1,103];
(t1) ci,j uniformly random in [1,103] with triangle inequality
enforced;
Tables 3 and 4 show the results for class a1 and class t1 respec-
tively. (Larger values of instance size for problems of class t1
have not been considered because of the excessive computing
time for the regularization of the cost matrices.) The performance

EO CGAS

g
)

Deviation
over LB. (%)

Running
time (s)

Deviation
over LB. (%)

Running
time (s)

 0.13% 15.31 0.00% 35.18
 0.35% 23.47 0.31% 82.35
 0.34% 27.85 0.54% 75.87
 0.87% 30.29 0.06% 105.53
 0.85% 43.27 0.02% 110.26
 0.23% 53.91 0.08% 152.54
 0.35% 87.65 0.05% 186.73
 0.38% 76.32 0.01% 192.35
 0.57% 101.35 0.05% 203.47
 0.32% 153.26 0.01% 187.31

 0.44% 62.27 0.11% 113.16
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Table 4
Average solution results for class t1 (25 runs for each case).

Problem size Performance comparison among algorithms for class t1

MIMM-ACO MM-ACO EO CGAS

Deviation
over LB. (%)

Running
time (s)

Deviation
over LB. (%)

Running
time (s)

Deviation
over LB. (%)

Running
time (s)

Deviation
over LB. (%)

Running
time (s)

100 0.03% 12.38 0.15% 27.72 0.35% 30.14 0.06% 50.31
200  0.02% 9.54 0.17% 32.53 0.23% 35.87 0.01% 43.87
300 0.01%  15.32 0.03% 57.84 0.02% 47.65 0.04% 87.64
400 0.03% 22.13 0.01% 69.76 0.01% 53.29 0.02% 107.45
500  0.02% 19.45 0.05% 65.92 0.73% 87.65 0.15% 135.46

0.75 

N n of lo

m
t
d
t
c
r
r
w
(
b
n

F
t

Aver.  val. 0.02% 15.76 0.08% 5

ote that Deviation over LB.
def= ((f (s) − Z̃∗

AP
)/Z̃∗

AP
) × 100% where LB. is the abbreviatio

easures are in terms of the deviation over the known optima (or
he lower bound) and the running time. One can observe that the
eviation difference among the algorithms is trivial when applied
o class a1 and class t1.  However, the difference in time effi-
iency among these algorithms is significant. MIMM-ACO holds
emarkable searching efficient compared with the other three algo-
ithms. The reason is that for randomly generated instance there

ould be a high probability of getting a tight lower bound Z̃∗AP

the detailed theoretical basis behind the scenario has been studied
y Frieze and Sorkin [31]). The tight bound will lead to a sig-
ificant reduction in the search space by removing non-optimal
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ig. 5. The averaged nearest neighbor distribution of optimal solutions for 20 instances 

erms  of actual cost matrix.
0.27% 50.92 0.06% 84.94

wer bound and, the best results are highlighted in boldface italics.

arcs out of consideration and that is exactly the domain knowl-
edge that the model tells. By using the domain/model information
ants are guided to search the most promising solution space by
avoiding useless search. While for EO, its performance is strongly
dependent on the assumption that the NND of optimal solution
follows a scale-free distribution. If it is not the case, its perfor-
mance would be degraded correspondently. Fig. 5 presents the

averaged NND scenario of optimal solution for class a1 (Fig. 4(a))
and for class t1 (Fig. 4(b)). One can observe that the NND of optimal
solutions to these kinds of instances do not subject to a scale-free
distribution.
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r rank:k

ribution in terms of

0 12 14 16 18 20

r rank:k

tribution in terms of
1

(a)

(b)

from class a1 (a) and from class t1 (b) respectively and both NNDs are obtained in
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Fig. A1. The mapping of ATSP solution

. Conclusion

In this paper, we have proposed a novel hybrid metaheuris-
ic algorithm for ATSP problem with analytical mechanisms. The

IMM-ACO optimization utilizes the information acquired from
oth the ATSP problem and the employed algorithm itself. It pro-
ides an analytical way to incorporate exact methods with ACO and
hus is capable of improving the searching efficiency in a definite
ay. The idea behind it is that any well-suited algorithm requires

ne should have deep understanding and explicit knowledge of the
roblem. The more information one has, the more efficient the algo-
ithm would be. However, the knowledge coming from the lower
ound structure is always associated with the structure of the par-
icular problem being solved. This puts forward a new interesting
roblem on selection of good lower bound structures to provide

n-depth insight into the problem under consideration. This also
oints out a good direction for the future research.
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ppendix A.

roof. We  first give the formal definition of the associated AP
roblem before proving Proposition 1. The AP problem is formu-

ated as

˜∗
AP = min

∑
i ∈ V

∑
j ∈ V

ci,jxij (A.1)

∑

.t. j ∈V xi,j = 1, i ∈ V∑

i ∈ V xi,j = 1, j ∈ V
(A.2)

 ≤ xi,j ≤ 1 (A.3)
with 6 cities

P solution with a example of 6 cities.

Because the constraint matrix defined by (A.2) is totally unimodular
[26], The AP is actually a linear programming so that we can use
(A.3) equivalently. Therefore, the dual problem can be defined by

Z̃∗AP = max
∑
i ∈V

ui +
∑
j  ∈V

vj (A.4)

s.t. ci,j − ui − vj ≥ 0, i, j ∈ V (A.5)

Such that the residual cost c̄i,j
def= ci,j − ui − vj is obtained.

According to dual theory of the linear programming theory [32]
the following properties hold

Z̃∗AP = Z̃∗AP +
∑

(i,j) ∈ R

c̄i,jxi,j

c̄i,jxi,j = 0, ∀(i, j)

(A.6)

where R is the index set of non-basic arcs.
Since any feasible, infeasible or partial solution in ATSP has a

counterpart solution to AP problem (see Fig. A1 for an example
with graphic illustration), we denote Z̃∗AP(sp) as the optimal solution
value of the AP that must contain sp as a partial assignment solution.
Because

∑
(i,j) ∈ sp c̄i,j represents a lower bound on the increase of

Z̃∗AP corresponding to the inclusion of sp in the solution of AP, it
yields immediately that

Z̃∗AP +
∑

(i,j) ∈ sp c̄i,j ≤ Z̃∗AP(sp)

Z̃∗AP ≤ Z̃∗AP(sp) ≤ Z∗(sp)
Z∗ ≤ Z∗(sp)

(A.7)

So, with (A.7) we have that

f (s) ≤ Z̃∗AP +
∑

(i,j) ∈ sp

c̄i,j ⇒ f (s) ≤ Z̃∗AP(sp) ⇒ f (s) ≤ Z∗(sp)

�

Appendix B.

Proof. The proof is a slightly modified version from results
of Stutzle and Dorigo [24]. The proof is conducted by giving a
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ound on the length of t0. Assuming the worst case situation that
(i, j) ∈ s∗, �∗

i,j
(t∗) = �min and ∃(k, l) /∈ s∗, �∗

k,l
(t∗) = �max, and using

he global pheromone updating rule the pheromone trail at (t∗ + t̂)
ecomes

∗
i,j(t
∗ + t̂) = (1 − �)t̂ �min +

t̂−1∑
i=0

(1 − �)ig(s∗)

= (1 − �)t̂ �min +
g(s∗)

�
(1 − (1 − �)t̂) (B.1)

ombining (9) it yields

∗
i,j(t
∗ + t̂) = (1 − �)t̂(�min − �max) + �max (B.2)

hile the value of �k,l(t∗ + t̂) equals

k,l(t
∗ + t̂) = max(�min, (1 − �)t̂ �max) (B.3)

olving the inequality �∗
i,j

(t∗ + t̂) > �k,l(t∗ + t̂) leads to

1 − �)t̂(�min − �max) + �max > max(�min, (1 − �)t̂ �max) (B.4)

rom our standpoint, we are more interesting in the case that

k,l(t∗ + t̂) = (1 − �)t̂ �max, then we have

1 − �)t̂(�min − �max) + �max > (1 − �)t̂ �max ⇒ t̂ >
ln(1/(2 − ϕ))

ln(1 − �)
(B.5)

herefore, any transition period with the length larger than
n(1/(2 − ϕ))/ln(1 − �) leads to (15).

For any (k,l) /∈ s* under the extreme case the pheromone trail at
teration t∗ + t̃ holds �k,l(t∗ + t̃) = max(�min, (1 − �)t̃ �max)

So,

k,l(t
∗ + t̃) = �min ⇒ (1 − �)t̃ �max ≤ �min ⇒ t̃ ≥ ln(ϕ)

ln(1 − �)
(B.6)

herefore, any transition period with the length larger than
n(ϕ)/ln(1 −�) leads to (16).

From (B.5) and (B.6) we conclude that (15) and (16) will be
atisfied if we take

0 = max

{
ln(ϕ)

ln(1 − �)
,

ln(1/(2 − ϕ))
ln(1 − �)

}
= ln(ϕ)

ln(1 − �)
(B.7)

ecause ln(ϕ) < ln(1/(2 − ϕ)) always holds when 0 < ϕ < 1.

�

ppendix C.

roof. The proof is quite simple and is similar to the proof in
tutzle and Dorigo [24]. The newly employed mechanism in ACO
s thoroughly based on rigorous theoretical analysis. At least one
ptimal solution is preserved. We  can guarantee that any feasi-
le choice for some ant located in some city including the optimal
hoice is conducted with a probability pmin > 0. See (11) and assume
hat the one ant positioned in city r, a trivial lower bound for pmin(r)
nder the worst case situation can be calculated as

min(r) ≥ p̂min(r) = wmin�min

wmin�min + (nr − 1)�max
(C.1)

here nr is the number of all allowable connections derived from

ity r or the neighborhood size of city r.

Rewrite (C.1) and then we have

ˆmin(r) = wminϕ

wminϕ + (nr − 1)
(C.2)

[

[

ing 13 (2013) 1365–1375

See from (C.2) that p̂min(r) is a decreasing function on nr which
means the smaller the neighborhood size, the larger the probability
bound. Let nmax = max{nr|r = 1, 2, . . .,  n}. Then it leads to

∀r, p̂min(r) > p̄min =
wminϕ

wminϕ + (nmax − 1)
> 0 (C.3)

Then, any generic solution s′, including any optimal solution s*, can
be produced with a probability p̂ > (p̄min)n > 0. Such that a lower
bound for P*(t) is given by

P̂∗(t) = 1 − (1 − p̂)t (C.4)

By choosing t sufficiently large, the results are proved.

�
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