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ABSTRACT 

In this paper, a fuzzy inference system (FIS) is developed to recognize hypoglycaemic 

episodes. Hypoglycaemia (low blood glucose level) is a common and serious side 

effect of insulin therapy in patients with diabetes. We measure physiological 

parameters continuously to provide hypoglycaemia detection for Type 1 diabetes 

mellitus (TIDM) patients. The FIS captures the relationship between the inputs of 

heart rate (HR), corrected QT interval of the electrocardiogram (ECG) signal (QTc), 

change of HR, change of QTc and the output of hypoglycaemic episodes to perform 

the classification. A differential evolution with double wavelet mutation operations 

(DWM-DE) is introduced to optimize the FIS parameters that govern the membership 

functions and fuzzy rules. DWM-DE is an improved differential evolution that 

incorporates two wavelet-based operations to enhance the optimization performance.  

To prevent the phenomenon of overtraining (over-fitting), a validation approach is 

proposed. Moreover, in this problem, two targets of sensitivity and specificity should 

be met in order to achieve good performance.  As a result, a multi-objective 

optimization using DWM-DE is introduced to perform the training of the FIS.  

Experiments using data of 15 children with TIDM (569 data points) are studied.  The 
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real data are randomly organized into a training set with 5 patients (l99 data points), a 

validation set with 5 patients (177 data points) and a testing set with 5 patients (193 

data points). The result shows that the proposed fuzzy inference system tuned by the 

multi-objective DWM-DE can offer good performance of classification. 

 

Keywords: Differential evolution, fuzzy inference system, hypoglycaemia, multi-

objective optimization.  

1. INTRODUCTION 

 

 Hypoglycaemia is the medical term for a body state produced by a low level 

of blood glucose. It is a result of the mismatch between the action of insulin, the 

ingestion of food and the energy expenditure. Hypoglycaemia is less common in non-

diabetic persons, but can occur at any age [1].  Its causes, among others, can be 

excessive insulin produced in the body, inborn errors, medications and poisons, 

alcohol, hormone deficiencies, prolonged starvation, alterations of metabolism 

associated with infection, and organ failure [2]. It has been discussed that diabetic 

patients, especially those who have been treated with insulin, are at risk of developing 

hypoglycaemia.  Most surveys reported that the tighter the glycaemia control and the 

younger the patient, the greater frequency of both mild and severe hypoglycaemia 

would occur [3]. The level of blood glucose to define hypoglycaemia may be different 

for different people, in different circumstances, and for different purposes. Most 

healthy adults maintain fasting glucose levels above 70 mg/dL (3.9 mmol/L), and 

develop symptoms of hypoglycaemia when the glucose level falls below 60 mg/dL 

(3.3 mmol/L) [2]. It has been reported that severe hypoglycaemic episodes are defined 

as documented blood glucose levels being below 50 mg/dL (2.8 mmol/L), and the 
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patients are advised to take necessary medical treatment. In some cases, it is treated 

by injection or infusion of glucagon. In fact, the brain and nervous system need to 

maintain a certain level of glucose in order to function. Two typical symptoms of 

hypoglycaemia arise from the activation of the autonomic central nervous systems 

(autonomic symptoms) and reduced cerebral glucose consumption (neuroglycopenic 

symptoms) [5]. Autonomic symptoms such as headache, extreme hunger, blurry or 

double vision, fatigue, weakness and sweating are activated before neuroglycopenic 

symptoms. Thus, the presence of hypoglycaemia can be evident when autonomic 

symptoms occur. Neuroglycopenic symptoms such as confusion, seizures, and loss of 

consciousness (coma) arise when insufficient glucose is supplied to the brain [6].  

Many cases of hypoglycaemia are presented where the patients are unaware of 

their symptoms. Nocturnal hypoglycaemia is particularly dangerous because it may 

obscure autonomic counter-regulatory responses, so that any initially mild episodes 

may become severe.  It was estimated that 50% of all severe episodes occur at night 

time. Deficient glucose counter-regulation may also lead to severe hypoglycaemia 

even with modest insulin elevation.  Regulation of nocturnal hypoglycaemia is further 

complicated by the dawn phenomenon [7]. This is a consequence of nocturnal 

changes in insulin sensitivity secondary to growth hormone secretion: a decrease in 

insulin requirement approximately between midnight and 5 am followed by an 

increase in requirement between 5 am and 8 am. Thus, hypoglycaemia is one of the 

complications of diabetes most feared by patients. Constructing a model for the 

episodes of hypoglycaemia with respect to some physiological parameters are very 

important for the patients to perform real-time monitoring of their blood glucose level 

[8] [11] [12].  
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In this paper, a fuzzy inference system (FIS) is developed to model the 

relationship between four physiological parameters and the episodes of 

hypoglycaemia. The physiological parameters are the heart rate (HR), the change of 

HR with time (∆HR), the corrected QT interval (QTc) of the electrocardiogram (ECG) 

signal and the change of QTc with time (∆QTc).  Fuzzy inference is a process of 

making decisions by using fuzzy logic and fuzzy rules. The use of fuzzy logic in rule-

based systems has been a success, with reported applications in climate control, 

medicine, relational database, scheduling, etc. The process of fuzzy inference 

involves the definitions of membership functions, logical operations and fuzzy if-then 

rules. The membership functions formulate the description of linguistic terms for the 

inputs and outputs.  The logical operations and fuzzy if-then rules can easily be 

derived based on human knowledge. FIS uses linguistic control rules obtained from 

experienced human experts to perform decision-making.  Before the FIS can work as 

a classifier of hypoglycaemia for Type 1 diabetes mellitus (T1DM) patients, it has to 

be trained by some data set with known class labels. It is a kind of supervised 

learning. The major objective of the training process is to determine the best 

parameter values for the FIS’s rules and membership functions. The training can be 

regarded as an optimization process.  Traditional optimization methods like the least 

square algorithm and gradient descent methods have the potential problem of trapping 

in some local optima of the solution space.  Hence, evolutionary optimization 

algorithms are being considered in this paper.  An improved differential evolution 

with double wavelet mutation operations (DWM-DE) is proposed as the optimization 

method for the training of the FIS.  

Differential evolution (DE) has been well accepted as a powerful algorithm for 

handling optimization problems during the last decade. Proposed by Storn and Price, 
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DE is a population based stochastic optimization algorithm that searches the solution 

space by using the weighted difference between two population vectors to determine a 

third vector [9] [17] [18]. Owing to the population-based strategy, DE is less possibly 

getting trapped in some locally optimal solution. To enhance the performance of DE, 

we propose the DWM-DE. By applying the wavelet operation in the DE’s mutation 

and crossover, we can have the solution space more widely explored in the early stage 

of the search. We are also more likely to obtain a fine-tuned global solution in the 

later stage of the search by setting a smaller searching space.  The wavelets properties 

enable us to improve the performance of DE in terms of convergence speed, solution 

quality and solution stability statistically.  

To measure the performance of the biomedical classification, sensitivity and 

specificity are introduced.  The sensitivity measures the proportion of actual positives 

that are correctly identified; and the specificity measures the proportion of actual 

negatives that are correctly identified.  In this application, the sensitivity should be 

higher than 70% and the specificity should be higher than 50% in order to obtain a 

reliable classification.  The sensitivity of the hypoglycaemia detection system is more 

significant than the specificity because sensitivity concerns sick people.  It is 

important to assess the abnormal condition for sick people accurately, due to the 

necessity for instant treatment.  Based on these requirements, there are two objectives 

needed to be achieved in the training process.  As a result, a multi-objective 

optimization approach using DWM-DE should be employed to realize the training 

process. Besides, overtraining is another key problem that affects the classification 

performance when constructing the FIS model.  Overtraining refers to the reduction of 

the generalization ability that can occur as a system is trained.  A lot of research has 

been done on reducing the overtraining (over-fitting) when using evolutionary 
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computation algorithms for optimizing system models [20][21].  In this paper, a 

validation strategy is proposed to reduce the risk of overtraining.  This strategy is 

embedded in the training operation and the formulation of the fitness functions in 

DWM-DE. The details will be given in Section 2. 

The organization of this paper is as follows: In Section 2, the details of the 

development of the FIS and the DWM-DE algorithm are presented. The experiment 

results for detecting nocturnal hypoglycaemic episodes in TIDM patients are 

discussed in Section 3.  A conclusion is drawn in Section 4. 

 

2. THE FUZZY INFERENCE SYSTEM WITH DWM-DE 

 

 To realize the detection of hypoglycaemic episodes for the T1DM cases, an 

FIS tuned by DWM-DE is proposed. A block diagram of the FIS is shown in Fig 1. It 

is a 4 inputs and 1 output system.  The physiological inputs are the heart rate (HR), 

the corrected QT interval of the electrocardiogram signal (QTc), the change of heart 

rate (HR) and the change of QTc (QTc). The output is the binary state of 

hypoglycaemia (h), which takes the value of true (+1) or false (−1). The major role of 

the FIS is to model the relationship of HR, QTc, HR and QTc to h so as to perform 

classification. 

 Two of the inputs of the FIS are related to the ECG signal.  The ECG signal 

being investigated in this paper involves the parameters in the depolarization and 

repolarisation stages of electrocardiography (Fig. 2).  The concerned points are the Q 

points, R peak, T wave peak and the T wave end. The QT interval is between the Q 

point and the T wave peak.  The QTc signal is obtained by QT/(RR) where RR is the 

interval between two consecutive R peaks.  The heart rate is given by 60/RR. 
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2.1. Fuzzy Inference System  

 

 The physiological parameters (HR, QTc, HR and QTc) are represented as 

linguistic variables governed by membership functions that support fuzzy detections. 

The FIS consists of four major parts: fuzzification, fuzzy inferencing, fuzzy rules and 

defuzzification. 

On doing fuzzification, the inputs are mapped to different membership 

functions by using fuzzy sets.  In this paper, bell-shaped fuzzy membership functions 

are used and defined as follows: 

 (1) 

where x(t) is the non-fuzzy input, m=1, 2,…,mf; mf denotes the number of 

membership functions; m and cm are the standard deviation and the mean value of the 

membership function respectively.  Under the current problem, the membership 

functions for the four inputs are given by: 
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In the inference process, the fuzzified inputs are processed with respect to a rule base, 

which generates the fuzzified output. The rule base contains a set of fuzzy if-then 

rules of the following format: 

Rule : IF           HR(t)      is      f HR,m(HR(t), HR,m, c HR,m) 

            AND     QTc(t)      is      f QTc,m(QTc(t), QTc,m, c QTc,m) 

            AND    ∆HR(t)      is      f ∆HR,m(∆HR(t),∆HR,m, c∆HR,m) 

           AND     ∆QTc(t)     is      f ∆QTc,m(∆QTc(t), ∆QTc,m, c∆QTc,m), 

          THEN   y(t)            is     w. 

 

where  is the rule number, =1,2, …,nr; nr is the number of rules in the fuzzy rule 

base. The value of nr is defined by the following equation: 

nr=(mf) 
n          (6) 

where n = 4 is the number of fuzzy inputs for the FIS.  After fuzzifying the input 

signals, aggregation is then realized to each rule to represent the output as a single 

fuzzy set.  The aggregation output for each rule is defined as follows: 
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During the inference process, we map the fuzzy set outputs of the rules to a 

crisp output by performing a process called defuzzification. In practice, 

defuzzification is a process of generating quantifiable results from the fuzzy sets and 

rules.  In this paper, the output of defuzzification is realized as: 
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where  1  ,1w  is the fuzzy singleton to be determined.  If the output y(t) is 

positive, it means that hypoglycaemia is present. (h(t)= +1). 

 

2.2. Differential Evolution with Double Wavelet Mutations  

 

To implement the optimization process using Differential Evolution, a 

population in the solution space should be randomly generated.  The population of 

solution vectors is then successively updated and swapped until the population 

converges to the optimum within the solution space.  The pseudo code for the 

standard DE (SDE) process is shown in Fig. 3.  In this paper, a DE with double 

wavelet mutation (DWM-DE) is proposed to tune the system parameters of the FIS. 

The pseudo code of the DWM-DE is shown in Fig. 4.  The details of both the SDE 

and the DWM-DE are given as follows.  

 

2.2.1. Standard Differential Evolution (SDE) 

 

 DE attempts to maintain a population of Np vectors for each generation of 

evolution, with each vector contains D elements.  Let Px,g be the population of the 

current generation g, and gi ,x  be the i-th vector in this population: 

 
  .1...,,1,0,

...,,1,0;1...,,1,0,

,,,

max,,





Djx

ggNiP

gijgi

pgigx

x

x
      (9) 

where gmax is the maximum generation number.  Before the population can be 

initialized over the solution space, the boundary of the searching space should be 

specified.  The population should be uniformly and randomly distributed in the 

searching space.  Once initialized, DE creates a mutated vector vi,g for each target 
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vector xi,g by using the mutation operation.  This operation adds a scaled, randomly 

sampled, vector difference to xi,g to form a third vector.  The mutated vector is 

therefore realized by the following equation: 

 grgrgigi F ,,,, 21
xxxv   (10) 

where F is the scaling factor; r1 and r2 are two different integers, which are randomly 

generated from {0, 1, ..., Np1}.  To complement the differential mutation search 

strategy and increase the diversity of the perturbed vectors, DE employs a method 

called uniform crossover for all the mutated vectors.  Each vector element pair xj,i,g 

and vj,i,g generates a new trial vector element uj,i,g, which is realized by the following 

equation: 
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where ]1,0[rC is called the crossover rate, which is a user-defined value that 

controls the fraction of parameters copied from the mutant.  randj(0,1) generates a 

random value between 0 and 1 for the j-th parameter.  The algorithm also ensures uj,i,g 

gets at least one parameter value as xj,i,g.  Then the population is updated by 

comparing each trial vector gi ,u  to the corresponding target vector xi,g.  If the fitness 

function value of the trial vector is smaller than that of the target vector, replace the 

target vector with the trial vector in the next generation; otherwise the target vector 

retains its place in the population for another generation.  The selection operation is 

therefore realized by the following equation: 
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where f() is the fitness function.  Because of this selection operation, DE is expected 

to have high optimization ability.  When the condition to stop further evolution is 
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satisfied; for example, a preset maximum number of iteration has been reached, the 

algorithm ends with the best solution as the final solution.  

 

2.2.2. Differential Evolution with Double Wavelet Mutation (DWM-DE) 

 

 In the SDE mutation operation, the value of F in (10) is a fixed value within 

the range of [0, 1] depending on the kind of application.  The choice of this value 

relies very much on experience or expert knowledge.  Yet, a fixed value of F takes no 

advantage of the benefit brought by the evolution.  We propose the value of F to 

diminish with the increase of the number of iteration.  Moreover, for some complex 

optimization problem such as finding the minimum point of a multimodal function 

with many local minima, a large number of iterations for solving the problem are 

required.  It reduces the efficiency of the SDE.  This leads to the proposed DWM-DE 

in which the value of F is determined by a wavelet function.   The extent of different 

movements of the trial vectors will then be increased.  More ‘random’ directions for 

the exploration would be generated during the mutation operation.  Moreover, in the 

crossover operation, we proposed a second wavelet mutation that varies the searching 

space based on the wavelet function.  As the wavelet function output is set to be 

inversely proportional to the number of iterations; when the searching population is 

approaching the optimal solution, the effect of the double wavelet mutations will be 

decreasing until the DE ends eventually.  By adopting this method, the effort on 

searching and evaluating those local optima, which could be far away from the global 

optimum, in the later iteration is reduced.  The total number of iterations should also 

decease.  Thanks to the property of the wavelet function, the solution stability is 

enhanced in a statistical sense, i.e. the performance of this hybrid DE on converging 
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to the optimal point is relatively stable despite the presence of many random factors 

during the evolution.   

 

2.2.3. Double Wavelet Mutation 

 

2.2.3.1. Wavelet Function  

 Certain seismic signals can be modelled by combining translations and 

dilations of an oscillatory function called a “wavelet”.  A continuous-time function 

)(x  is called a “mother wavelet” or “wavelet” if it satisfies the following 

properties: 

Property 1: 

0)( 

 dxx  (13)  

In other words, the total positive momentum of )(x  is equal to the total negative 

momentum of )(x . 

Property 2: 



 dxx

2
)(  (14) 

which means most of the energy in )(x  is confined to a finite domain and bounded.  

The Morlet wavelet [16] , as shown in Fig. 7, is an example of a mother wavelet: 

   xex x 5cos2/2  (15) 

The Morlet wavelet integrates to zero (Property 1).  Over 99% of the total energy of 

the function is contained in the interval of –2.5 <x < 2.5 (Property 2).  In order to 

control the magnitude of )(x , a function )(xa  is defined as follows. 
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
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x

a
xa  1
)(  (16) 
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where a is the dilation parameter.  

It follows that )(xa  is an amplitude-scaled version of )(x .  Fig. 8 shows different 

dilations of the Morlet wavelet.  The amplitude of )(xa  will be scaled down as the 

dilation parameter a increases.  This property is used to do the mutation operation in 

order to enhance the searching performance. 

 

2.2.3.2. Operation of DE with wavelet controlled mutation 

 

 The vectors in the population are mutated based on a proposed wavelet 

mutation (WM) operation, which exhibits a fine-tuning property.  First, modify the 

mutation operation (10) as follows. 

 grgrgigi F ,,,, 21
xxxv  , (17) 
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By using the Morlet wavelet in (15) as the mother wavelet, 
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 Referring to Property 1 of (13), the total positive momentum of the mother 

wavelet is equal to its total negative momentum.  Then, the sum of the positive F is 

approximately equal to the sum of the negative F when the number of samples is large 

and   is randomly generated, i.e.   

0
1


N

F
N  

for N , (21) 
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where N is the number of samples.  Hence, the overall positive mutation and the 

overall negative mutation throughout the evolution are nearly the same in a statistical 

sense.  This property gives better solution stability such that a smaller standard 

deviation of the solution values upon many trials can be reached.  As over 99% of the 

total energy of the mother wavelet function is contained in the interval [−2.5, 2.5],   

can be generated from [−2.5a, 2.5a] randomly.  The value of the dilation parameter a 

is set to vary with the value of Tt in order to meet the fine-tuning purpose, where T 

is the total number of iteration and t is the current number of iteration.  In order to 

perform a local search when t is large, the value of a should increase as Tt  increases 

so as to reduce the significance of the mutation.  Hence, a monotonic increasing 

function governing a and Tt  is proposed as follows. 

   


ln1ln 





 


wm

T

t

ea  (22) 

where wm  is the shape parameter of the monotonic increasing function, λ is the upper 

limit of the parameter a. 

 The effects of the various values of the shape parameter wm  to a with respect 

to Tt  are shown in Fig. 9.  In this figure,  is set as 10000.  Thus, the value of a is 

between 1 and 10000.  Referring to (20), the maximum value of F is 1 when the 

random number of  =0 and  1a  (at Tt = 0).  Then referring to (17), the vector 

gi ,v  has a large degree of mutation.  It ensures that a large search space for the 

mutated vector is given at the early stage of evolution.  When the value Tt  is near to 

1, the value of a is so large that the maximum value of F will become very small.  For 

example, at Tt =0.9 and 1wm , a = 400; if the random value of   is zero, the value 
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of F will be 0.0158.  A smaller searching space for the mutated vector is then given 

for fine-tuning. 

 

2.2.3.3. Operation of DE crossover with wavelet mutation 

 

 The crossover operation of (11) is done with respect to the elements of the 

trial vector (after mutation) in DE.  In DWM-DE, a second-stage wavelet mutation is 

embedded in the crossover operation. It is realized by adding a second wavelet 

mutation following the original crossover operation.  The details are as follows.  The 

crossover after the first mutation takes place according to (11).  Let  

 giDgigigi uuu ,,1,,1,,0, ,,,  u   (where g is the current generation number and D is the 

number of elements in the vector) be the i-th vector after crossover for the second 

wavelet mutation.  The value of the element giju ,,  is inside the vector element’s 

boundary [ jj parapara maxmin , ].  The mutated crossover vector is given by 

 giDgigigi uuu ,,1,,1,,0, ,,,  u , and   
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1
 (24) 

where the same Morlet wavelet in (15) is used as the mother wavelet and the value of 

a is governed by (22).  Similar to F of (20), a larger value of   at the early stage of 

evolution gives a larger searching space for the solution; when   is small at the later 

stage of evolution, the algorithm gives a smaller searching space for fine-tuning.   
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 After the operations of the double wavelet mutation, the population is updated 

by comparing each trial vector gi ,u  to the corresponding target vector xi,g using the 

method of standard DE as given by (12).  A new population is generated and the same 

evolution process is repeated.  Such an iterative process will be terminated when a 

defined number of iterations has been reached. 

 

2.2.3.4. DWM-DE for Multi-Objective Optimization 

 

In practice, we often have more than one objective to be optimized in a single 

problem.  A multi-objective optimization problem can be formulated as follows. 

Optimize {f1(x), f2(x),…,fm(x)}, where fi(x); i=1,2,…,m, is a single objective function; 

m is the number of objective functions of the problem.  

 Optimizing several objectives simultaneously without considering the 

importance of each objective in the problem is called the Pareto-optimization.  Under 

the Pareto optimization, if a new solution can improve at least one of the objectives 

without declining the other objectives, this solution will be considered as a better 

solution than the original one. If the new solution can improve at least one of the 

objectives, but declining the other objectives, this solution will be considered as a 

poor solution and will be discarded. The objective of the Pareto optimization is to find 

a set of solutions that is not dominated by any one solution. This idea can be 

formulated into the selection operation of DWM-DE as follows: 
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where fi() is the i-th objective function.  The pseudo code of the resulting multi-

objective DWM-DE is shown in Fig. 5. 
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2.2.3.5. Training and Validation 

 

In the proposed system, DWM-DE is employed to optimize the fuzzy 

inference system (FIS) by finding out the best parameters for the fuzzy rules and 

membership functions.  The job of the FIS is to detect the hypoglycaemic episodes 

accurately. To measure the performance of the biomedical classification test, 

sensitivity and specificity are considered. Sensitivity measures the proportion of 

actual positives that are correctly identified, and specificity measures the proportion 

of actual negatives that are correctly identified. The definitions of sensitivity (ξ) and 

specificity (η) are given as follows: 

 
 

(26)

FPTN

TN

NN

N


  

 

(27)

where NTP is the number of true positive, which implies the sick people are correctly 

diagnosed as sick; NFN is the number of false negative, which implies the sick people 

are wrongly diagnosed as healthy; NFP is the number of false positive which implies 

the healthy people are wrongly diagnosed as sick; and NTN is number of true negative 

which implies the healthy people are correctly diagnosed as healthy [14][15]. The 

values of sensitivity (ξ) and specificity (η) are within 0 to 1. If the value of sensitivity 

is equal to 1, it means that the classification process is able to classify all the sick 

people correctly. If the value of specificity is equal to 1, it means that the 

classification process is able to classify all the healthy people correctly. Sensitivity 

 
NTP

NTP NFN
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and specificity evaluate the performance of the system, which are important criteria 

for tuning the FIS. 

To perform the detection of hypoglycaemic episodes accurately, the proposed 

system should be able to obtain high values of sensitivity and specificity. The FIS 

learns the characteristic of the relationship between the system inputs and output 

through some known dataset.  Traditionally, the dataset is divided into two sets, one is 

used for training the system and the other is used for testing the trained system. 

However, on using this approach, a phenomenon called overtraining may easily 

occur. Overtraining refers to the reduction of the generalization ability that can occur 

as the system is trained. To overcome this problem and to reduce the risk of 

overtraining, a validation strategy is proposed in this paper.  Hence, a validation set is 

introduced such that the dataset is divided into three sets. While the training set is 

used to train the FIS, the validation set is used to validate the training result. Then, the 

testing set is used to test the trained system performance. The main objective of 

introducing the validation set is to balance the training effect on both the training set 

and the validation set. As a result, it can avoid the training result being obtained from 

over fitting with a single data set only. 

 To train the system with the known dataset, a fitness function should be used 

to guide the training process and achieve good performance. A proper choice of the 

fitness function can help the training process achieve a good result. As the validation 

process is introduced, the number of fitness functions needed to be optimized is 

increased under the multi-objective approach. We consider four fitness functions for 

training  the FIS. 
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where ξtrain is the sensitivity of the training set; ξval is the sensitivity of the validation 

set; ξtarget is the target value of sensitivity; ηtrain is the specificity of the training set; ηval 

is the specificity of the validation set; ηtarget is the target value of specificity.  The 

maximum value of each fitness function is equal to 1. These fitness functions are used 

to train both the training set and validation set for approaching all the target values as 

much as possible.  In the proposed system, the target values of the sensitivity and 

specificity (ξtarget and ηtarget) are not constant.  They are dynamically updated by some 

conditions along the search process of the DWM-DE as given by the pseudo code in 

Fig. 6.  At the beginning of the optimization, some initial values are assigned to the 

two target values, which are both set at 0.10 in this paper.  If the sensitivity of both 

the training set (ξtrain) and validation set (ξvalid) meet the target value of sensitivity 

(ξtarget), ξtarget will be increased by 0.01.  The same method is also applied to the target 

value of specificity (ηtarget).  The updating of ξtarget and ηtarget continue until the end of 

the DWM-DE training and validation process.  The objective of this operation is to 

balance the training effect of both the training set and validation set.  For instance, if 

currently ξtarget = 0.65, ξtrain= 0.68 and ξval= 0.88; according to the training and 

validation process both f1 and f3 are kept at 0.65 and ξtarget for the next iteration is 
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changed to 0.66.  We can see that although ξval is much larger that ξtrain, the DWM-DE 

takes it as the same. As a result, the training process will not bias on the training set or 

the validation set. The overtraining problem can be alleviated. A more reliable FIS 

could then be developed. 

 

 

3. Experiment Results and Discussions 

 

Fifteen children with TIDM (14.6 ±1.5 years) volunteered to join a 10-hour 

overnight hypoglycaemia study at the Princess Hospital for Children in Perth, 

Western Australia.  Each patient was monitored overnight for the natural occurrence 

of nocturnal hypoglycaemia.  Data were collected with approval from Woman’s and 

Children’s Health Service, Department of Health, Government of Western Australia, 

and with informed consent. 

In this study, we measure the required physiological parameters, while the 

actual blood glucose levels (BGL) are collected as reference using Yellow Springs 

Instrument (YSI) blood glucose analyers. The parameters used for the detection of 

hypoglycaemia are the HR, QTc, ∆HR and ∆QTc.  The actual blood glucose profiles 

for 15 TIDM children are shown in Fig. 10.  In this figure, all the data are taken at the 

same starting time and the duration of data taking for each patient is around 400−480 

minutes.  The responses from 15 TIDM children show significant blood glucose 

changes during the hypoglycaemia phase against the non-hypoglycaemia phase.  

Normalization is used to reduce the patient-to-patient variability and to enable group 

comparison.  It is done by dividing the patient’s heart rate and corrected QT interval 

by his/her corresponding values at time zero. 
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In this paper, the meaning of hypoglycaemia is suggested as BGL<3.3mmol/l.  

The detection of hypoglycaemia episodes using these input variables is based on a 

fuzzy inference system trained by the obtained clinical dataset.  In effect, it estimates 

the presence of hypoglycaemia at a sampling period of ks, based on the currently 

sampled data and the data sampled one period before.  The sampling period is 5-10 

minutes and approximately 35-40 data points from each patient were used. The whole 

data set is divided into a training set, a validation set and a testing set; each with 5 

patients randomly selected.  With these 15 patients, the numbers of data points for 

training, validation, and testing are 199, 177, and 193 respectively.  The whole data 

set, which includes both the hypoglycaemia data part and non-hypoglycaemia data 

part, is used to measure the classification performance in terms of sensitivity and 

specificity. 

 

For comparison and analysis purposes, 8 different approaches [10][13][19] are 

used to tackle the TIDM problem.  They are:  

i) The proposed fuzzy inference system with 4 inputs (HR, QTc, ∆HR 

and ∆QTc) tuned by DWM-DE (FIS-DWM-DE-4) with the 

proposed training and validation. 

ii) An evolved fuzzy inference system with 2 inputs (HR and QTc) 

tuned by DWM-DE (FIS-DWM-DE-2) with the proposed training 

and validation. 

iii) A fuzzy inference system with 4 inputs (HR, QTc, ∆HR and ∆QTc) 

without validation (FIS-4- w/o-v). 

iv) A fuzzy inference system with 2 inputs (HR and QTc) without 

validation (FIS-2- w/o-v). 
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v) A linear multiple regression with 4 inputs (HR, QTc, ∆HR and 

∆QTc) (LR-4) 

vi) A linear multiple regression with 2 inputs (HR and QTc) (LR-2) 

vii) An evolved multiple regressions with 2 inputs (EMR2).   

viii) A feed-forward neural network (FFNN). 

 

In i) and ii), DWM-DE is used to optimize the fuzzy rules and membership 

functions of the FIS.  The settings of the DWM-DE parameters are given as follows. 

• Shape parameter of the wavelet mutation ( ): 1 

• Parameter λ for the monotonic increasing function: 10000. 

• Initial population: It is generated uniformly at random. 

• Crossover probability constant: = 0.5 

• Maximum number of iteration: 5000 

• Population size: 100 

For the 2-input FIS, three different numbers of membership functions (mf) have 

been used for testing: mf = 3, 5 and 8; and the numbers of rules are 9, 25 and 64 

respectively.  For the 4-input case, only mf = 3 and 5 have been used; and the numbers 

of rules are 81 and 625 respectively. 

The averaged results out of 50 trials from the proposed system under different 

numbers of inputs and membership functions are shown in Table 1.  The sensitivity 

and specificity of the training dataset, validation dataset and testing dataset are 

reported in this table.  The td in Table 1 shows the number of parameters for tuning in 

different cases.  As the numbers of inputs and membership functions increase, the 

numbers of parameters for tuning increase rapidly.  It is found that the case of 4 inputs 

and 5 membership functions offers the best testing result.  The best results out of the 

wm

rC
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50 trials are given in Table 2.  We can see that the FIS model can offer more than 

75% in sensitivity and 55% in specificity, which are higher than the common clinical 

classification requirements (sensitivity > 70% and specificity > 50%).  As the number 

of inputs increase, more information could be offered to the FIS to perform better 

classification.  Moreover, the classification performance of the FIS increases when the 

number of membership function increases thanks to the greater degree of freedom of 

the FIS.  Despite the above advantages, the numbers of parameters for tuning will also 

increase rapidly.  It makes the training process more computationally demanding.  

The DWM-DE is employed to handle the training process in order to improve the 

solution quality, solution stability and the rate of convergence.   

 

4.  Conclusion 

 In this paper, a fuzzy inference system (FIS) has been developed to recognize 

the hypoglycaemic episodes.  The FIS models the relationship between the heart rate, 

corrected QT interval of the electrocardiogram (ECG) signal and the hypoglycaemic 

episodes to perform the classification.  Differential evolution with double wavelet 

mutation operations (DWM-DE) has been employed to optimize the parameters in the 

FIS.  An experiment using data of 15 children with TIDM (569 data points) is studied.  

To alleviate the effect of overtraining (over-fitting), a validation approach has been 

proposed.  To embed the validation process in the training operation of the FIS, the 

multi-objective approach of DWM-DE is employed.  The classification result shows 

that the proposed FIS performs well and is able to meet the common clinical 

classification requirement.  To conclude, the FIS could possibly model the 

relationship between the episodes of hypoglycaemia and the physiological parameters 

of heart rate (HR), corrected QT interval of the electrocardiogram (ECG) signal 
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(QTc), change of HR and change of QTc.  There are two limitations for the proposed 

system, i) for patients with diabetes, the proposed method only works if they have not 

any heart problems that affect the heart rate and QT interval; otherwise, the 

performance might be affected; ii) as stated at the end of Section III, the number of 

parameters for tuning is large when we opt for good performance.  This will increase 

the computational demand for realizing the proposed algorithm. 

 As directions of future research and development, different system modelling 

methods could be investigated, which could be tuned by the proposed DWM-DE to 

enhance the classification performance for hypoglycaemia detection.  Example tools 

might include Support Vector Machines (SVM), Neural Networks and Type-2 Fuzzy 

Systems.  Moreover, other types of physiological signals could be considered in order 

to make hypoglycaemia detection more reliable.  Recently, the 

Electroencephalography (EEG) signal is under active investigation.  
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Table 1. Results of the proposed system (average of 50 trials). 

 

 
 

Table 2. Best testing results for hypoglycemic detection from different approaches 
with sensitivity of around 75%. 

 
  

No of 
Inputs 

mf td Testing Training Validation 
ξ η ξ η ξ η 

2 3 21 70.37% 40.32% 80.65% 40.08% 86.89% 43.68% 
5 45 72.22% 40.15% 80.66% 43.81% 82.43% 42.64% 
8 96 72.07% 40.71% 81.55% 44.02% 79.00% 43.13% 

4 3 105 73.56% 44.98% 82.54% 41.94% 86.30% 45.45% 
5 665 74.92% 53.64% 83.45% 40.66% 90.07% 50.45% 

 

Method Sensitivity Specificity 
FIS-DWM-DE-4 75.92% 55.14% 
FIS-DWM-DE-2 74.92% 47.12% 

   
FIS-4-w/o-v 75.00% 51.64% 
FIS-2- w/o-v 73.21% 52.58% 

LR-4 51.78% 51.64% 
LR-2 50.00% 51.17% 

FFNN-2 64.26% 52.50% 
MR-2 62.31% 53.10% 
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Fig. 1.  Fuzzy Inference System (FIS). 
 

 

 
Fig. 2.  ECG Signal. 

 

 

 

Fig. 3.  Pseudo code for SDE. 

Inference 
Engine 

Fuzzy-Rule 

 
Fuzzification 
 

 
Defuzzification 

DWM-DE 

HR 
QTc 
∆HR 
∆QTc 

h 

begin 
Initialize the population 
while (not termination condition) do 
begin 
            Mutation operation by equation (10) 
           Crossover operation by equation (11) 
           Evaluation of the fitness function 
           Select the best vector by equation (12) 
end 
end 
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Fig. 4.  Pseudo code for DWM-DE. 

 

Fig. 5.  Pseudo code for Multi-Objective DWM-DE. 

 

Fig. 6.  Pseudo code for the training and validation. 

 

begin 
Initialize the population 
while (not termination condition) do 
begin 

Mutation operation by equation (10) 
Update the new value of F by equation (20) 
Crossover operation by equation (11) 
Modifying the trial population vectors  based on 
equation (23) 
Evaluation of the fitness function 
Select the best vector by equation (12) 

end 
end 

begin 
Initialize the population 
while (not termination condition) do 
begin 

Mutation operation by equation (10) 
Update the new value of F by equation (20) 
Crossover operation by equation (11) 
Modifying the trail population vectors  based on 
equation (23) 
Evaluation of the fitness functions 
Select the best vector by equation (25) 

end 
end 

begin 
Initialize the target value 
ξtarget=0.10 

ηtarget= 0.10 
while (not termination condition) do 
begin 
         Output (ξtrain,ξval) by Equation (26) and DWM-DE 
         Output (ηtrain,ηval) by Equation (27) and DWM-DE 
         Output (f1) by Equation (28) 
         Output (f2) by Equation (29) 
         Output (f3) by Equation (30) 
         Output (f4) by Equation (31) 
if(f1=ξtarget& f3=ξtarget) 
thenξtarget=ξtarget+ 0.01 
if(f2=ηtarget& f4=ηtarget) 
thenηtarget =ηtarget + 0.01 
end 
end 
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Fig. 7.  Morlet wavelet. 

 

 

 

Fig. 8.  Morlet wavelet dilated by different values of a (x-axis: a, y-axis: )(xa .) 
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Fig. 9.  Effect of the shape parameter  to a with respect to . 

 
 
 

 
Fig. 10.  Actual BG-Level profiles in 15 T1DM children. 
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