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Abstract

Technological advances in nanotechnology enabled the use of microelectromechanical systems (MEMS) in various appli-
cation areas. With the integration of various sensor devices into MEMS, autonomously calibrating these sensors become
a major research problem. When performing calibration on real-world embedded sensor network deployments, random
errors due to internal and external factors alter the calibration parameters and eventually effect the calibration quality
in a negative way. Therefore, during autonomous calibration, calibration paths which has low cost and low error values
are preferable. To tackle the calibration problem on embedded wireless sensor networks, we present an energy efficient
and minimum error calibration model, and also prove that due to random errors the problem turns into an NP-complete
problem. To the best of our knowledge this is the first time a formal proof is presented on the complexity of an iterative
calibration based problem when random errors are present in the measurements. We also conducted heuristic tests using
genetic algorithm to solve the optimization version of the problem, on various graphs. The NP-completeness result also
reveals that more research is needed to examine the complexity of calibration in a more general framework in real-world
sensor network deployments.

Keywords: NP-completeness, heuristic algorithms, embedded sensor networks.

1. Introduction

Recent advances in sensor technology enabled low cost,
small sized embedded devices to be integrated into our
daily life. Advanced nanoscale electronics integrated in
microelectromechanical systems (MEMS) are getting in-
creasingly common every day. The advances in the manu-
facturing technology also triggered the use of these devices
embedded in smart nodes called sensor nodes, which even-
tually formed into networks of sensors connected through
wireless communication. Today sensor networks have a
wide application area, from remote temperature monitor-
ing [1] to fault diagnosis [2]. Due to manufacturing defects,
or caused by environmental conditions over time, each sen-
sor needs to be calibrated [3, 4]. Traditionally, calibration
is done in controlled environments, such as laboratories
equipped with specialized calibration hardware based on
well known standards. The calibration can be done by
physically adjusting the hardware, or in a non-intrusive
way by adjusting the parameters of the sensor.

Calibration is known to correct only the systematic er-
rors in measurements. However, systematic errors are
not the only type of error observed in real-world deploy-
ments. The measurement errors are classified as system-
atic and random errors. Each measurement has unpre-
dictable random errors due to environmental noise, preci-
sion of the equipment, or manufacturing defects in the

∗Corresponding author. Tel: +90 232 488 8287, Fax: +90 232
488 8475

Email address: huseyin.akcan@ieu.edu.tr (Hüseyin Akcan)

sensors. Therefore, in real-world deployments, random
measurement errors are inevitable. Furthermore, these
random measurement errors interfere with the calibration
process and alter the calibration parameters.

[5, 6, 7] report results of calibration in real-world sensor
network deployments. Buonadonna et al.[5] states cali-
bration as one of the most challenging tasks in real-world
sensor deployments. The challenges can be summarized as
difficulty of calibrating a massive number of sensors and
inconveniences at physically accessing the sensors as they
may be deployed in harsh or even hostile environments.
Moreover, the sensors are presumed to stay active for long
periods of times after deployment, and therefore expected
to be calibrated periodically due to environmental con-
ditions or internal defects. For these reasons traditional
calibration methods are not directly applicable to sensor
networks. In an attempt to solve this problem, parametric
calibration methods have been proposed [8, 9, 10, 11, 12].
Calibration is also investigated on mobile sensor networks
[13, 14], and source localization in acoustic sensing plat-
forms [15].

In parametric calibration, a calibration function is de-
fined, that maps the output value of a target sensor to a
reference sensor’s reported value by adjusting the param-
eters of the target sensor. The process of calibrating one
sensor against a reference sensor by using a calibration
function is also known as pairwise calibration [9]. Pair-
wise calibration is performed among closeby sensor pairs
so that the correlation among their sensor readings when
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observing the same event is exploited to perform the cal-
ibration. In wireless sensor networks the process of using
pairwise calibration iteratively in such a way that sensors
already calibrated are used to calibrate uncalibrated sen-
sors is known as iterative calibration [12]. The main ad-
vantage of iterative calibration over reference broadcasting
is that iterative calibration does not require all the sensors
in the network to observe the same event at the same time.

In Section 2 we discuss the consequences of iterative
calibration on sensor networks, and present a calibration
model that minimizes the maximum error due to calibra-
tion by using the minimum energy on a wireless sensor
network. In Section 3 we present our genetic algorithm as
a heuristic solution to the given problem, and in Section
4 we show the results of the various experiments we con-
ducted with the genetic algorithm. Finally, we present the
conclusion in Section 5.

2. The Problem Definition

Sensor networks are subject to environmental condi-
tions, and they need to be calibrated periodically, there-
fore the pairwise calibration, which depends on one-to-one
wireless communication among neighbour sensors, should
be done in an energy efficient way. Our main objective
in this paper is to perform energy efficient calibration in
sensor networks while minimizing the post-calibration er-
ror of each sensor. To succeed in our objective, we have
to provide two guarantees during our pairwise calibration:
(1) the calibration path should span all the sensors by us-
ing the minimum energy, (2) throughout the calibration,
the maximum error introduced should be minimized. We
further discuss the reasonability of these two assumptions
below.

(1) In this paper, we are dealing with calibration in a
sensor network setting. One of the main properties of a
sensor network is that it is composed of multiple sensor
devices (could go up to massive amounts), and once de-
ployed they should perform their sensing task without fur-
ther human intervention, as accessing the sensors may not
be possible for all application scenarios. As the sensors
are expected to stay active for long amounts of times, they
are also expected to be calibrated periodically due to ex-
ternal or internal factors. The calibration process, due to
the above mentioned reasons, has to be a self-calibration
process, and once the calibration is performed the process
should cover all the sensors and should be done in an en-
ergy efficient way as the sensors in general are low on bat-
tery power. Therefore we claim that the first assumption
is a reasonable one.

(2) In a sensor network setting, we assume multihop
communication between sensors. This is a widely accepted
assumption for sensor networks, as for large networks the
radio range of nodes does not cover all the nodes, or such
communication is costly compared to multihop communi-
cation. In a multihop communication network, the cali-
bration is done in an iterative manner [12]. In iterative
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Figure 1: Motivational example showing the sensor graph (a), and
two alternative calibration paths (b) and (c).

calibration all sensors are calibrated based on a fixed sen-
sor which might be pre-calibrated or not. Therefore, cal-
ibration follows a path, or a tree structure. On a sensor
graph, there are multiple ways to realize this path, and
each path contributes differently to the post-calibration
error of each sensor. The aim of assumption (2) is to min-
imize the post-calibration error of each sensor introduced
as a result of the calibration process.

2.1. Motivational example

To further clarify the subject we would like to first give
an example on simple pairwise sensor calibration and then
give an example on various iteration paths. Formal defini-
tions of some of the terms used in here will be presented in
Section 2.2. First, assume that we have two sensors x1 and
x2 at hand, with absolute maximum measurement errors
of ε1 and ε2, respectively. Also assume that x1 is already
calibrated against a reference sensor, and we would like
to calibrate sensor x2 using the readings from sensor x1.
During calibration, the reading we get from x1 will be in a
range [x1− ε1, x1 + ε1], and the x2 reading will be again in
range [x2−ε2, x2+ε2]. The calibration function for x2 will
map the reading of x2 to the reading of x1. Therefore, in
the worst case if x1 reports the reading as x1 − ε1 and x2
reports the reading as x2 + ε2, or similarly x1 reports the
reading as x1+ε1 and x2 reports the reading as x2−ε2, the
post-calibration skew of sensor x2 will be |ε1 + ε2|, which
is the sum of the absolute maximum measurement errors.

Figure 1 presents an example on the effects of iteration
paths on the calibration error. In Figure 1(a) one can see
the sensor graph with five sensor nodes where the edges
represent direct communication links among the sensors.
The edges also represent that the vertices attached to the
edges are close enough to calibrate each other. S0 is as-
sumed to be the pre-calibrated sensor, and the remaining
sensors will be calibrated based on this sensor. Also for
each sensor the absolute maximum measurement error is
given as εi values. For brevity, we can assume that all the
edge distances are equal to each other. The problem now is
to find an iteration path or ordering, such that the post-
calibration skew of each sensor and the total calibration
path costs will both be minimized. As the edge distances
are equal to each other, we reduce the problem to only
minimizing the post-calibration skew in this example.
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In Figure 1(b) a possible solution for the iteration path
is presented, where the arrows represent pairwise calibra-
tion among sensors. As a result of the calibration, the
post-calibration skew values of the sensors are the sum
of the absolute maximum errors of each node and can be
given as: ξ1 = |9|, ξ2 = |14|, ξ3 = |12|, ξ4 = |13|, where
the maximum post-calibration skew becomes |14| for the
overall network.

Figure 1(c) shows another possible iteration path on the
same sensor graph. The post-calibration skew of the sen-
sors on this iteration path then becomes: ξ1 = |9|, ξ2 = |1|,
ξ3 = |5|, ξ4 = |2|, where the maximum post-calibration
skew this time is |9|. It is obvious from the example that
the iteration path in Figure 1(c) is a better alternative
compared to the one in Figure 1(b), and different paths
contribute differently to the post-calibration skew of the
sensors. Therefore, even though we cannot control the ran-
dom error in measurements, we can adjust the path in such
a way that the maximum post-calibration skew introduced
in calibration is minimized for the whole network.

In the above example we demonstrated to optimize the
post-calibration skew for the network, where the spanning
tree costs of all the calibration paths were equal to each
other. However, the problem that we propose in this paper
focuses on minimizing both the post-calibration skew and
the spanning tree cost at the same time and therefore is
an intractable problem. We give formal definition of the
problem and the intractability proof below.

2.2. Formal Definition of the Problem

Pairwise calibration in sensor networks can be modeled
as a pre-order traversal of a spanning tree, where the par-
ent sensor is calibrated first (assuming the root is pre-
calibrated), and the children are calibrated based on the
parent. An iteration path for calibration of a sensor j is de-
fined as the path from the root to sensor j on the spanning
tree. As calibration is expected to be done periodically,
an energy efficient spanning tree that can also minimize
the maximum post-calibration error is required. We call
the problem as Minimum-Cost Bounded-Error Calibration
Tree problem. The formal definition of the problem is
stated below.

Definition 2.1 (Calibration function). Given a sensor
j with a nominal sensor reading x′j, an absolute maximum
random measurement error of |εj | and a pre-calibrated ref-
erence sensor r, the calibration function Fj(xj) maps the
reading xj, such that x′j ∈ [xj − εj , xj + εj ], to the output
of sensor r.

Definition 2.2 (Post-calibration skew). The post-
calibration skew (ξj) of sensor j for a given measurement
is the difference between the calibrated value of sensor j
and the actual value x. As such ξj = |x − Fj(xj)|. The
post-calibration skew of a network with n sensors is then
given by max

k=1..n
(ξk).

Theorem 2.3. Let r be a reference sensor, and P be an
iteration path from r to sensor j ∈ [1 . . . n]. The post-
calibration skew of sensor j is then ξj ≤

∑
k∈P

εk.

Proof. The proof is easy to show by induction on the num-
ber of sensors on an iteration path. Assume a path with
n + 1 sensors, where sensors are numbered from 0 to n
based on their distance from reference sensor 0. For the
base case when k = 1 assume that sensor 0 is the reference
sensor with no random error, sensor 1 is calibrated against
the reported value of sensor 0 using calibration function F1

F1(x1)− ε1 ≤ x ≤ F1(x1) + ε1,

where x is the ground truth value. The post-calibration
skew for sensor 1 is then,

ξ1 = |x− F1(x1)| ≤ ε1. (1)

It is easy to see from Eq. 1 that the base case holds. Let
us assume by the inductive hypothesis that the theorem
holds for 1 ≤ k ≤ n so that,

ξk = |x− Fk(xk)| ≤
k∑

j=1

εj . (2)

We can show that the theorem holds for k+1 by writing
the calibration function Fk+1 for sensor k + 1 against the
reported value of sensor k as:

Fk+1(xk+1)− εk+1 ≤ Fk(xk) ≤ Fk+1(xk+1) + εk+1. (3)

If we rewrite Eq. 2 and add −x to the inequality, we
get,

−x−
k∑

j=1

εj ≤ −Fk(xk) ≤ −x+
k∑

j=1

εj . (4)

If we sum Eq. 3 and 4 and add x − Fk+1(xk+1) to the
inequality, we get,

−
k+1∑
j=1

εj ≤ x− Fk+1(xk+1) ≤
k+1∑
j=1

εj , (5)

so that the post-calibration skew of k + 1 is then,

ξk+1 = |x− Fk+1(xk+1)| ≤
k+1∑
j=1

εj ,

which completes the proof.

As a direct outcome of Theorem 2.3 we can say that the
post-calibration skew is dependent on the iteration path P
of calibration, as the random errors of the sensors on the
iteration path P effect the post-calibration skew. There-
fore different paths create different post-calibration skew
values.
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Definition 2.4 (Calibration Cost). The pairwise cali-
bration cost is the wireless communication cost of sensor
j with sensor i at distance di,j. The total calibration cost
is the sum of all pairwise calibration costs over the entire
network.

The decision version of the Minimum-Cost Bounded-
Error Calibration Tree problem can be stated as:

Definition 2.5 (MBCT). Given a wireless sensor net-
work modeled as an undirected graph G(V,E), and a desig-
nated reference node r ∈ V , where each e ∈ E is assigned
distance values de > 0, and each v ∈ V is associated with a
maximum random measurement error εv, the MBCT prob-
lem is defined as finding a spanning tree over G rooted at
r with total edge cost not greater than a constant C > 0,
while the post-calibration skew of each sensor v ∈ V is
bounded by a positive constant k.

We can show that MBCT is NP-complete by a reduc-
tion from the Exact 3-Cover problem which is shown to
be NP-complete in [16]. In this proof, we follow a similar
reduction as in [17].

Definition 2.6 (Exact 3-Cover). Given a set Y =
{y1, ..., yq} of 3-element subsets of a set X = {x1, ..., x3p},
and q ≥ p, does there exist a subset Y ′ ⊂ Y of pairwise
disjoint sets such that

⋃
y∈Y ′

y = X?

r t

y1 y2 yq-1 yq

x1 x2 x3 x3p-2 x3p-1 x3p

...

...

3
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Figure 2: An instance of MBCT obtained from an instance of Exact
3-Cover. Link costs are given, and εv values are equal to ε for each
sensor.

Lemma 2.7. MBCT is in NP.

Proof. Given a solution T (V,E′), E′ ⊆ E, to the MBCT
problem, it is easy to verify in polynomial number of
steps that T (V,E′) is a spanning tree,

∑
e∈E′

de ≤ C, and

∀ v ∈ V : ξv ≤ k.

Given an arbitrary instance of Exact 3-Cover, an in-
stance G(V,E) of MBCT with r as reference node can be
constructed in polynomial time as shown in Figure 2 by
following the steps below.

V = r ∪ t ∪X ∪ Y
E = (r, t) ∪ {(r, yi) : yi ∈ Y } ∪

{(t, yi) : yi ∈ Y } ∪
{(yi, xj) : xj ∈ yi, and yi ∈ Y, xj ∈ X}

de =

{
3 e ∈ {(r, yi) : yi ∈ Y }
1 otherwise

εv = ε ∀v ∈ V
k = 2ε

C = 5p+ q + 1

We can now prove the sufficiency and necessity parts as
below.

Lemma 2.8. If Exact 3-Cover has a solution then MBCT
has a solution.

Proof. For a feasible solution Y ′ ⊂ Y of Exact 3-Cover,
there are exactly p yi ∈ Y ′ terms each containing 3 dis-
joint xj terms, such that a solution rooted at r in the cor-
responding instance of MBCT has xj nodes connected to
exactly p non-leaf yi nodes, each also directly connected to
r, while the remaining leaf yi ∈ Y−Y ′ connect to r through
t. Therefore, the total post-calibration skew of each node
is bounded by 2ε, and the total edge cost of the spanning
tree is 3p+ |Y ′| ∗ 3 + |Y −Y ′| ∗ 1 + 1 = 5p+ q+ 1 = C.

Lemma 2.9. If MBCT has a solution then Exact 3-Cover
has a solution.

Proof. For a feasible solution T (V,E′) of MBCT rooted
at r, the {xj , j = 1, . . . , 3p} appear as leaf nodes, and each
xj connects to only one {yi, i = 1, . . . , q}, where these non-
leaf yi nodes are also connected to node r. The remaining
leaf yi nodes are connected to r through t. It is clear that
the maximum post-calibration skew on T (V,E′) is equal
to 2ε. The edge cost of T (V,E′) is not greater than C
if and only if the number of non-leaf yi nodes are equal
to p, such that the sum of edge costs for all xjs, plus the
non-leaf yis, plus the leaf yis and node t are equal to:

C = 3p ∗ 1 + p ∗ 3 + (q − p) ∗ 1 + 1 = 5p+ q + 1.

Therefore, for the instance of Exact 3-Cover, the non-leaf
yi nodes form a feasible solution of 3 element disjoint sub-
sets that cover set X.

Theorem 2.10. The MBCT problem is NP-complete.

Proof. Directly follows from Lemmas 2.7, 2.8, and 2.9.

4



{S0,S1} {S0,S2} {S0,S3} {S1,S7} {S2,S5} {S3,S6} {S7,S8} {S5,S4} {S5,S11} {S5,S10} {S10,S9}

S0

S1

S2

S4

S5

S11

S10

S9

S8S7

S6

S3

S0

S1

S2

S4

S5

S11

S10

S9

S8S7

S6

S3

(a) (b)

(c)

Figure 3: Example graph (a), spanning tree of the graph (b), and the chromosome encoding showing the edges (c).

3. Heuristic Solution

In this section, we present the genetic algorithm [18]
applied to solve the optimization version of the MBCT
problem. In the optimization version, the objective is
to minimize both the post-calibration skew and the to-
tal calibration costs. The genetic algorithm is designed in
five main stages, chromosome encoding, creating an ini-
tial population, crossover, mutation, and fix chromosome
routine. Below we describe the details of each stage.

3.1. Chromosome encoding

In our genetic algorithm each chromosome is encoded
as a list of edges of a valid spanning tree for the sensor
graph. As spanning tree has V − 1 edges for V sensors,
the size of each chromosome is fixed and equal to V − 1.
Figure 3 shows an example graph, its spanning tree and
the chromosome encoding. As seen in Figure 3 (c), each
chromosome is encoded in terms of the edges of the span-
ning tree. Each {Si, Sj} pair in the chromosome represents
an edge between nodes Si and Sj in the graph, and forms
a single gene in the chromosome.

3.2. Creating an initial population

The initial population is created randomly. From the
input graph, various random spanning trees are created,
and each spanning tree is encoded as a chromosome and
included in the initial population. The size of the initial
population is controlled as a parameter, which we cover in
the experiments section.

3.3. Crossover

Crossover is the stage where new child chromosomes are
created from the fittest parents in the population. In the
genetic algorithm, we use roulette wheel selection [19] to
pick the two chromosomes to crossover. Roulette wheel se-
lection algorithm selects the chromosomes randomly based
on their fitness values, where the fittest chromosomes have
a higher chance to be selected for crossover. During the

crossover stage a boolean vector of size V − 1 is created,
and this vector is filled randomly such that, for each gene
in the chromosomes, there is an associated boolean value
in the vector. For all the true boolean values the gene of
the first parent is selected, and for all the false boolean
values in the vector the gene of the second parent is se-
lected. Even though this algorithm performs a random
crossover among the two parent chromosomes, it does not
ensure a valid spanning tree encoding for the newly cre-
ated child chromosome. A process called Fix Chromosome
is applied, as described below in Section 3.5, to convert the
chromosome encoding to a valid spanning tree.

3.4. Mutation

Mutation is used in genetic algorithms to avoid local
optimal results. Mutation is applied with a low mutation
probability. In the mutation phase, a randomly selected
edge is removed from the chromosome. Removing an edge
from the chromosome disconnects the spanning tree, there-
fore the chromosome has to be reorganized to represent a
valid spanning tree. The reorganization of the chromosome
is done in the Fix Chromosome section below.

3.5. Fix chromosome

The objective of the Fix Chromosome function is to
ensure the chromosome represents a valid spanning tree,
therefore the chromosome is altered until the objective is
met. In order to do so in the Fix Chromosome function we
use the existing edges in the chromosome, remove the edges
that create cycles, and add random edges to the spanning
tree until the spanning tree has V − 1 edges. This process
is designed similar to Kruskal minimum spanning tree al-
gorithm, but without ordering the edges based on their
weights.

We designed the genetic algorithm to be generic enough
so that it allows the injection of different fitness functions.
The results of using these fitness functions are evaluated
in the experiments section below.
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GeneticAlgorithm(Graph G)

1: /* Fill the population with random chromosomes */
2: for L=1 to PopulationSize do
3: C = CreateNewRandomChromosome(G)
4: Population.add(C)
5: BestFitnessScore ← ∞
6: /* Run for NumberOfIterations */
7: for I=1 to NumberOfIterations do
8: {C1,C2} = RouletteWheelSelection(Population)
9: CWorst = SelectWorstChromosome(Population)

10: CNew = Crossover(C1,C2)
11: if RandomNumber < MutationProbability then
12: CNew = Mutation(CNew)
13: /* FixChromosome makes sure CNew is a spanning tree */

14: CNew = FixChromosome(CNew,G)
15: BestFitnessScore = min(BestFitnessScore,

GetFitnessScore(CNew))
16: Population.add(CNew)
17: Population.remove(CWorst)
18: return BestFitnessScore

Figure 4: The pseudo-code of the genetic algorithm.

The pseudo-code of the genetic algorithm is presented in
Figure 4. The input for the genetic algorithm is the sensor
graph, and other optional parameters such as initial popu-
lation size, number of iterations and mutation probability.
Lines 2 to 4 show the code for new chromosome creation
and random initialization of the population. Line 5 ini-
tializes the best fitness score, which is the outcome of the
algorithm and returned in line 18. Lines 7 to 17 show the
code for the main iteration of the genetic algorithm. The
candidate parent chromosomes are selected using roulette
wheel selection in line 8, and the worst chromosome based
on the fitness value is selected in line 9. The crossover is
performed in line 10, and with a low probability the muta-
tion is performed in lines 11 and 12. The FixChromosome
function, as described above in Section 3.5 is called in line
14. If the new chromosome has a lower fitness value than
the best chromosome found so far, the best fitness score
value is updated in line 15. The new chromosome is added
to the population in line 16, and the worst chromosome is
removed from the population in line 17, keeping the size
of the population constant throughout the iterations. Fi-
nally in line 18 the best fitness score found in the genetic
algorithm is reported back.

4. Experiments

In this section we present the results of our experimen-
tal evaluation for the optimization version of the MBCT
problem. In the optimization version of the MBCT prob-
lem, the objective is to find a spanning tree with respect to
a given reference node over a given graph, such that the to-
tal edge cost of the spanning tree and the post-calibration
skew of each sensor will be minimized at the same time.
We first describe the parameters used in the genetic algo-
rithm and the parameters of the graphs used in the exper-
imentation in Section 4.1. Later, in Section 4.2 we present

the results of applying genetic algorithm to the MBCT
problem for various parameters and fitness functions.

4.1. Experimental Setup

We conducted our experiments on various sized ran-
domly generated graphs. The details of the graphs are
presented in Figure 5.

Graph
name

#of nodes
Avg. node
degree

Std. node
degree

n25 25 5 2

n50 50 5 2
n100 100 5 2

n250 250 5 2

n500 500 5 2
n750 750 5 2

n1000 1000 5 2

Figure 5: Graph names, number of nodes, average and standard devi-
ation of the node degrees of the graphs used in the experimentation.

On each graph, we run polynomial time algorithms to
find the minimum total calibration cost and the minimum
post-calibration skew values. In order to calculate the min-
imum total calibration cost (MIN COST ) we run Kruskal
minimum spanning tree algorithm. MIN COST gives us
a lowerbound for the total calibration cost of the graph.
Similarly, we calculate the minimum post-calibration skew
(MIN ERROR) of the graph using a modified version of
the Dijkstra’s shortest path algorithm. MIN ERROR
gives us a lowerbound for the post-calibration skew of the
graph. Similarly, MAX COST and MAX ERROR are
the upperbounds for the total calibration cost and the
post-calibration skew values for any given graph. These
values are used to calculate the fitness functions used in
the genetic algorithm, as shown in Figure 6.

Parameter
name

Parameter calculation

MIN COST Minimum total calibration cost

MAX COST
Upperbound for the total calibration cost of
a spanning tree

MIN ERROR Minimum post-calibration skew

MAX ERROR Upperbound for the post-calibration skew

norm cost
(cost−MIN COST )∗100

(MAX COST−MIN COST )

norm error
(error−MIN ERROR)∗100

(MAX ERROR−MIN ERROR)

Function name Functions

F1 0.9 ∗ norm cost+ 0.1 ∗ norm error

F2 0.5 ∗ norm cost+ 0.5 ∗ norm error

F3 (cost−MIN COST )2

MIN COST
+

(error−MIN ERROR)2

MIN ERROR

F4 0.1 ∗ norm cost+ 0.9 ∗ norm error

Figure 6: Fitness functions used in the experimentation.

In order to evaluate the effects of the fitness functions,
we tested our genetic algorithm with four different fitness
functions. The details of the fitness functions are presented
in Figure 6.
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Figure 7: Experiments showing the post-calibration skew and the total calibration cost of the four different fitness functions on various graphs.

4.2. Simulation results

In this section we present the simulation results of the
various experiments we conducted. First, we tested four of
the fitness functions on all the graphs presented in Figure
5. The results of the experiments can be seen in Fig-
ure 7. In all the figures, the minimum total calibration
cost (MIN COST ) and its corresponding post-calibration
skew value, and the minimum post-calibration skew value
(MIN ERROR) and its corresponding total calibration
values are presented as MST and MET , respectively. The
number of iterations, population size and the mutation
probability are selected as 50000, 400, and 0.1 respectively.
These parameters for the initial experiments are selected
as average values based on our previous experimentation
with the problem. The analytical selection process of the
parameters are described in more detail below. All the ex-
periments are conducted 10 times and the minimum fitness
results are reported.

As seen in Figure 7, function F1 minimizes the calibra-
tion cost while sacrificing from the post-calibration skew
value. In smaller graphs however, as in n25 (Fig.7(a)),
the calibration cost of F1 is close to MST , while the
post-calibration skew is lower than MST , which clearly
outperforms the MST . Function F4 on the other hand
tries to minimize the post-calibration skew in trade with
higher calibration cost values. However, similar to F1, in
smaller graphs F4 also can achieve post-calibration skew
values close to MIN ERROR with much smaller calibra-
tion cost values, which is a valid alternative to the MET .
Functions F2 and F3 achieves a balance between the cal-
ibration cost and the post-calibration skew values. Both
functions try to minimize both the calibration cost and the
post-calibration skew values at the same time, therefore,

these two functions are the main functions we are particu-
larly be interested in this paper. As we can see again from
Figure 7, for smaller graphs, F2 and F3 minimizes both
the calibration cost and the skew values and the results
generated are on the lower side of a line drawn between
points MST and MET . However, for larger graphs, due
to the intractable nature of the problem, minimizing both
of the objectives at the same time is harder to do. This
result alone hints that there is still room for research for
minimizing both objectives at the same time, especially on
larger graphs.

Parameter
name

Description
Tested
range

Fitness function
Fitness function used in
the genetic algorithm (See
Fig. 6)

F2, F3

Graph name
Name of the graph the test
is conducted on (See Fig. 5)

n250, n500,
n750, n1000

Iteration
The number of iterations
for the genetic algorithm

5000 - 100000

Population Size
The size of the population
for the genetic algorithm

200 - 5000

Mutation Proba-
bility

The mutation probability
of the genetic algorithm

0.05 - 0.3

Figure 8: Genetic algorithm parameters used in experimentation

Based on the observation we make above, we conducted
more tests to see the effects of the simulation parameters
on the success of the genetic algorithms, specifically for
fitness functions F2 and F3. Figure 8 lists the various
parameters and their short description that we use in our
simulations.

In Figure 9 we observe how the number of iterations in

7



 14

 15

 16

 17

 18

 19

 20

 21

 22

 0  20000  40000  60000  80000  100000

F
it
n
e
s
s

Iteration

n1000

n750

n500

n250

(a) Function F2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  20000  40000  60000  80000  100000

Iteration

n1000

n750

n500

n250

(b) Function F3

Figure 9: Change of the fitness value with number of iterations for
functions F2 (a), and F3 (b). The y-dimension for both graphs
represent the fitness value for the corresponding fitness function.
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Figure 10: Change of the fitness value with population size for func-
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the simulation change the fitness value for fitness functions
F2 (in Figure 9(a)) and F3 (in Figure 9(b)). The popula-
tion size and the mutation probability for this experiment
is selected as 200 and 0.1, respectively. As we see from the
figures, for all graphs, the fitness value decreases and we
achieve better results as the number of iterations increases.

Similarly, in Figure 10, we observe the effects of the
population size on the success of the genetic algorithm,
for functions F2 (Fig. 10(a)) and F3 (Fig. 10(b)), on vari-
ous graphs. The iteration number and the mutation prob-
ability for this experiment is selected as 50000 and 0.1,
respectively. Fitness function F2 achieves better results
with lower population sizes, although the population size
effects the performance slightly when fitness function F3
is used.

Finally, in Figure 11, we changed the mutation prob-
ability in the genetic algorithm and observed the effects
on the fitness value for fitness functions F2 (Fig. 11(a))

and F3 (Fig. 11(b)). The population size and the num-
ber of iterations for this experiment is selected as 200 and
10000, respectively. Even though for fitness function F2
the change in the mutation probability alters the fitness
value slightly, overall based on our observation from the
simulations we can conclude that the mutation probabil-
ity does not have a significant effect on the solution of the
MBCT problem.

To summarize, in this section we presented the experi-
mental results of the genetic algorithm to solve the opti-
mization version of the MBCT problem. We performed
our tests for various graphs and genetic algorithm specific
parameters. We observed that on relatively small graphs
the algorithms clearly finds close to optimal results, how-
ever, for larger graphs due to the NP-hard nature of the
problem, achieving close to optimal results are harder.

5. Conclusion

In this paper, we present an energy efficient and min-
imum error iterative calibration based model for wireless
sensor networks and prove that in real-world deployments
where random errors are inevitable, the problem turns into
an NP-complete problem, independent from the magni-
tude of the random error. To the best of our knowledge
this is the first time the complexity of an iterative cali-
bration based model is analyzed for real-world sensor de-
ployments. We also developed a genetic algorithm based
heuristic solution to solve the optimization version of the
MBCT problem, and evaluated the algorithm on various
graphs.
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