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Abstract

Bayesian Networks (BNs) have received significant attention in various academic
and industrial applications, such as modeling knowledge in image processing,
engineering, medicine and bio-informatics. Preserving the privacy of sensitive
data, owned by different parties, is often a critical issue. However, in many
practical applications, BNs must train from data that gradually becomes avail-
able at different period of times, on which the traditional batch learning al-
gorithms are not suitable or applicable. In this paper, an algorithm based on
a new and efficient version of Sufficient Statistics is proposed for incremental
learning with BNs. The standard K2 algorithm is also modified to be utilized
inside the incremental learning algorithm. Next, some secure building blocks
such as secure multi-party multiplication, comparison, and factorial, which are
resistant against colluding attacks and could be applied securely over public
channels like internet, are presented to be used inside the main protocol. Then
a privacy-preserving protocol is proposed for incremental learning of BNs, in
which the structure and probabilities are estimated incrementally from homo-
geneously distributed and gradually available data among two or multi-parties.
Finally, security and complexity analyses along with the experimental results
are presented to compare with the batch algorithm and to show its performance
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and applicability in real world applications.1

Keywords: Security and Privacy Preserving, Bayesian Networks, Incremental
Learning, Data Mining and Machine Learning

1. Introduction

Bayesian Networks are probabilistic graphical models [8] that are trained to
represent the relationship between variables from a dataset [6]. Medical diagno-
sis applications, fraud detection systems, and financial networks widely utilize
such networks to create models and make decision according to the probabilis-
tic independencies among the variables of the underlying databases [7]. For
instance, Fenton and Neil in [11] show the successful application of Bayesian
Networks in risk management.

According to the privacy regulations such as Freedom of Information and
Protection of Privacy Act (FIPPA) [34] in Canada, or the Health Insurance
Portability and Accountability Act (HIPAA) [35] in the United States, indi-
vidual’s private and sensitive data must be secured when protocols are applied
on data used to train BNs. To create the BNs structure and parameters using
training data which is securely shared among two or more parties, they cannot
simply present their own private data to each other, or even to a third party
to run a learning algorithm on the whole data. Therefore, privacy-preserving
protocols are needed to apply in these situations.

In many practical applications, BNs must be trained using data that becomes
available at different points in time. The traditional techniques for training BNs
(e.g. K2 algorithm) are batch in nature, and are not suitable for training on
data that arrives incrementally. To obtain a high level of performance, using
a batch technique would involve accumulating all training data in memory,
and recreating a new BN from scratch using all cumulative data. The time and
memory complexity of retraining on all data would be prohibitive in applications
with large amounts of training data. For instance, selling records in Walmart, as
a chain of large stores, are gradually grow everyday and is not reasonable to store
all data and run the data mining and machine learning algorithms on all data
every time a block of new data becomes available. This is an ubiquitous scenario
in many different fields such as healthcare systems, government applications and
so on. Therefore, incremental learning is needed to efficiently update BNs on
new data, in terms of data storage and processing time.

In this paper, BNs structure is incrementally constructed each time a block
of new training data is available by updating the sufficient statistics of the ex-
isting network structure, and a new structure is created accordingly. Note that
by updating sufficient statistics, the probability table of each node could also
be computed. After reviewing the existing techniques for incremental learning

1Some of the material in this paper has been presented at the 2009 IEEE International
Conference on Privacy, Security, riSk and Trust (PASSAT-09).
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Figure 1: Overview of the Proposed Privacy-Preserving Incremental Bayesian Network Learn-
ing.

of BNs, first an improved version of sufficient statistics, in terms of required
storage and search time, is proposed followed by a specialized K2 algorithm
to be applied in our incremental learning algorithm for BNs. After present-
ing that algorithm, a privacy-preserving protocol and required secure building
blocks, such as secure multi-party multiplication, comparison, and factorial, are
proposed along with their security and complexity analyses and experimental
results. Figure 1 illustrates the contribution of the paper and the relations of its
components. Inside the main protocol of privacy-preserving incremental BNs,
the new incremental learning algorithm is used to update the BNs structure
by using an improved version of sufficient statistics and calling the specialized
K2 algorithm. Also secure building blocks are utilized inside the protocol to
maintain the privacy of the parties involved. These building blocks, which are
indicated as a bold box in Figure 1, are previously proposed by the same authors
in [10].

As a summary, each time a block of new data becomes available, Incremental
BNs algorithm is called with the ordered list of nodes, sufficient statistics of
the previous data, the set of previous candidate lists of parents, and the new
data. Its output is a directed acyclic graph for the BNs and the new updated
sufficient statistics. Inside this algorithm, the specialized K2 algorithm is called
when needed with the current node, its parents set, sufficient statistics of that
node, its predecessors, and the set of candidate parents lists as the inputs. The
output of this algorithm will be the new parents set of the node and its updated
candidate parents lists. Each time we need to compute the score function in
those two algorithms, secure building blocks are used to securely compute this
function without revealing private data of each party to the others.

With this privacy-preserving protocol, it is assumed that data is homoge-
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nously shared and owned by several parties, while these parties want to keep
their sensitive data private. The protocol is also secure against colluding attacks
and could be run over public channels. We show the applicability and efficiency
of the proposed protocol by testing it against several different datasets, various
number of parties involved and reasonable encryption key sizes, 512, 1024 and
2048 bits, to keep the privacy of the protocol strong. Also, the comparison of
the final results of the incremental learning with the batch algorithm, in terms
of efficiency and accuracy, shows its great promise to be applied in real world
applications.

The rest of the paper is organized as follows. In Section 2, the BN is
briefly introduced, along with a brief survey of training algorithms and privacy-
preserving BNs. An improved version of sufficient statistics, an incremental
algorithm for learning BN structure and a modified K2 [3] algorithm which
could exploit that algorithm presented in Section 3. A privacy-preserving pro-
tocol for Incremental Bayesian Networks is presented in Section 4, followed by
the experimental results in Section 5.

2. Techniques for Training BNs

Bayesian Networks, or Belief Networks, are Directed Acyclic Graphs (DAG)
encoding probabilistic relations or dependencies among a set of variables. Each
node of a graph represents a variable, and an arc from one node to another
node shows a conditional dependency between them. Thus, a BNs structure for
a set of variables is formally shown by a pair (Ns, Np), in which Ns = (V,E)
is a DAG containing the set of nodes, V , and the set of edges, E. The set
of probability distributions, Np, which is called the parameters of the BNs, is
defined as Np = {p(xi|πi), xi ∈ V }, where πi is the set of xi’s parents and
p(xi|πi) is the probability distribution of xi conditional upon its parents, πi.

Constructing BNs is NP-hard [2]. There are different batch algorithms for
this learning system. CL algorithm proposed by Chow and Liu [16] estimates the
underlying n-dimensional discrete probability distribution from a dataset. To
approximate the probability distribution, this algorithm generates the product
of n− 1 second order distributions.

Lam and Bachus [14], and Friedman and Goldszmith [24] use the Minimum
Description Length (MDL) principle [23, 22] as their approach to propose their
own learning algorithm for BNs. In MDL a database is modeled with the mini-
mum length of encoding. Using this approach, BN is encoded as a model with
the minimum bit length.

Bouckaert [25] presents a heuristic algorithm, called B, which uses a hill-
climbing search method to generate BN structure, and variables do not need to
be sorted at the beginning of the algorithm.

Castelo in [26], and Castelo and Coc̃ka in [27] propose algorithm HCMC,
which is similar to algorithm B, because of utilizing a hill-climbing search
method on DAGs. However, unlike algorithm B it considers the inclusion or-
der among BNs. In [28], two protocols are proposed for privacy-preserving
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Naive Bayes, in both horizontally and vertically partitioned data using secure
multi-party computation techniques such as secure sum [32] and secure dot
product [33]. Meng et al. in [29] proposed a privacy-preserving estimation for
the BN parameters, by assuming that the Bayesian network structure has been
already created, and is publicly known to the parties involved. Also, in [30], au-
thors proposed a secure technique to compute the BN parameters on vertically
partitioned data using secure multi-party computation sub-protocols, based on
their previously presented protocol in [31] which securely developed the BN
structure.

K2 algorithm is proposed by Cooper and Herskovits [3]based on a hill-
climbing heuristic search to find an optimized BN structure. The K2 algorithm
starts with a graph of nodes showing the variables of interest, without any
edges. Then, for each node, using a canonical order and a score function, edges
by which the score of the graph increases are added as the parents of the current
node. This process ends when no more parents can be added or the number
of parents reaches a specified threshold, and the next node will be processed in
order.

In this paper the K2 algorithm shown in Algorithm 1 is used as a base
algorithm for the creation of BNs structure. In this algorithm, πi is the set of
parents of a variable xi. At each step, score value of the Predecessor nodes of
the current node, xi, is computed and the node, with the maximum score, say
z, is selected and compared with the current score of xi. If it is greater, z will
be added to the xi’s parents set, and otherwise while loop will end, and the
program continues for the next variable. The score function f(i, πi) is defined

Algorithm 1 K2 Algorithm

1. Input: A dataset D, a set of m nodes with an assumed order, and an upper
bound u on the maximum number of parents of each node

2. Output: A directed acyclic graph for the Bayesian network
3. for i = 1 to m do
4. πi = ∅
5. Scoreold = f(i, πi)
6. OkToProceed = true
7. while OkToProceed and |πi| < u do
8. z = the node in Pred(xi) - πi that maximize f(i, πi

⋃{z})
9. Scorenew = f(i, πi

⋃{z})
10. if Scorenew > Scoreold then
11. Scoreold = Scorenew
12. πi = πi

⋃{z}
13. else
14. OkToProceed = false
15. end if
16. end while
17. end for
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as follows:

f(i, πi) =

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

αijk! (1)

where qi is the number of items in the list of all possible instantiation of πi

in D, and ri is the number of possible values of xi, which is two for binary
attributes. In 1, αijk is the number of records in D in which xi has its kth
value and its parents are instantiated with the jth instantiation in the set of

Cartesian product of all possible values of πi, and Nij =
ri
∑

k=1

αijk .

2.1. Incremental learning techniques for BNs

When new data becomes available, the K2 Algorithm used to train BNs is
not efficient since it must be applied on whole dataset, old and new data. There-
fore, online and incremental algorithms have been introduced for applications
in which new training data arrives at different point in time. The main ideas
behind all these incremental learning algorithms are very similar. Storing a set
of candidate parents is almost the same as storing a frontier list of candidate
networks.

Friedman and Goldszmith in [12] introduce the concept of Sufficient Statis-
tics for the BNs structure, to extract its probability distribution parameters.
This concept is defined as follows: suppose X denotes a vector of variables,
and ND

X
(x) be the number of records in the dataset D such that X = x. The

vector N̂D
X
(x) containing ND

X
for all possible values of X, is called the sufficient

statistics of X.
Now, by using this concept and decomposability property of the score as-

signed to a BN structure of a dataset D, we only need to keep the sufficient
statistics of each node Xi and its possible parent sets Pa(Xi), N

D
Xi,Pa(Xi)

, to
learn the parameters and also to compute the score function of each node and its
parents, to create the BN structure. Cardinality of sufficient statistics, |SS(G)|,
have been discussed in some research papers such as [18]. If we denote M as the
maximum number of parents a node can have, r as the number of nodes, and A

as the average number of possible values a node takes, then for a BN structure
G:

|SS(G)| = r

M
∑

i=0

(

r

i

)

Ai. (2)

Friedman and Goldszmidt [12] propose an approach for incremental learning,
in which they rely on a frontier set of networks, consisting of all the networks
compared in each iteration of the algorithm. The procedure, by maintaining
a set of sufficient statistics (explaining in detail in the next section) records,
selects the structure with the best score among the frontier set of networks.
The frontier set is updated every time algorithm updates the Bayesian network
structure.
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In [13] a generalized approach of K2 algorithm is first proposed, and then
some guidelines are presented to convert that algorithm into an incremental
approach. For each node, a set of parents is maintained and is classified as
alive, asleep, and dead using three different thresholds. Parents sets are stored
in a lattice structure. Two situations are considered for running incremental
algorithm. In the first case, there is a short amount of time for updating the
BNs and therefore a rapid update is applied in which the posterior probabilities
are only updated and parents set are not touched. In the second situation, both
structure and parameters are updated according to new data.

Lam and Bachus in[14] extend their own batch algorithm based on Minimum
Description Length (MDL) approach to incrementally adapt BNs structures
when new data is available. The MDL principle is based on the idea that if the
encoding length of a model and its underlying data is minimum then it is the
best model of that database. There is an implicit assumption in their approach
that the new structure is very similar to the current one. In each iteration of the
algorithm, description length of the whole structure is improved by minimizing
the description length of the subgraph whose topology is changed by the new
data. Thus, a partial structure is learned from the current structure using MDL,
and the new data which includes records containing a subset of the nodes of the
BNs.

Roure, in [15], presents incremental approaches for some BNs, such as Chow
and Liu (CL) [16], K2, and Buntine (B) [25]. Here we only consider the algo-
rithm of K2. Instead of maintaining a set of parents for each node, a set of
candidate parents lists is kept, such that in the k -th list some nodes are ordered
as the candidates for the k -th parent of that node in decreasing order, and the
first item in the list is the current k -th parent of the node. The number of
candidates in each list is a parameter of the algorithm as well as the number of
variables that compared with the current parent to make sure that the current
parent is still the best candidate inside the list. During each iteration of the
algorithm, when no revision is needed for the current parents, the algorithm
checks for possible new parent for each node.

However, the algorithm proposed in [15] has some issues in terms of candidate
parents set. For example, if the current k -th parent, say xk of a node can no
longer be its parent because of the new data, its subsequent parents could not
be tested because when the score of these nodes are computed, xk should be
considered as the k -th parent which is not the case. Also, it only searches new
parents for each node only if its current parents are correct. However, a node
could have new parent(s) by considering new data even the currents parent
would be still correct. Another issue is that each parent could be compared
with other candidates by considering new parents set and not the current one.

3. A New Incremental K2 Algorithm

In the computation of sufficient statistics, shown in Section 2, all the possible
parent sets for all the nodes have been counted. However, by considering some
properties of the Bayesian network structure it could be optimized. The first
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property is that in some widely used algorithms such as K2, a total order is
defined for the existing nodes, reducing the search space to create direct acyclic
graph of the network structure.

The second property is that the values of ND
Xi,Pa(Xi)

for the nodes which
cannot have the maximum number of parents could be computed from the
corresponding information of their subsequent nodes. For instance, suppose the
number of parties is 5 and the number of maximum parents is 3. Then, vector
values of the nodes X1, X2, and X3 could be computed from those of X4 or X5.
Thus, we do not need to keep those information in the final sufficient statistics.

By using those two properties the cardinality of the sufficient statistics of a
BN structure G would be reduced to:

|SS(G)| = AM+1
r−1
∑

i=M

(

i

M

)

. (3)

To see the improvement, for example we consider r = 30 and M = 10. The
new sufficient statistics has more than 10 times less items than the one with
the previous formula. This significantly decreases the space needed to store
and speed up the search of the sufficient statistics set for computing score and
parameters of the Bayesian network structure.

Given the Sufficient Statistics of G, an incremental version of the K2 al-
gorithm is proposed to construct BNs. Each time new trained data becomes
available the sufficient statistics of the existing network structure is updated
to create a new structure and adjust parameters accordingly. This algorithm,
receives a node and its correct parent set, and will find other parents using new
sufficient statistics and will also update the candidate lists of the parents. Each
list Ci,l, j+1 ≤ l ≤ k, contains the current l-th parent of Xi, which is no longer
the correct parent, along with all the candidate parents in decreasing order of
their score. The number of nodes in each list could be varied using a threshold
value.

Algorithm 2 shows the steps of this procedure. Inside the first loop from step
6 to 17, each candidate list Ci,l is checked to find the node with the maximum
score to set it as the new l-th parent. Second loop, from step 19 to 29, is almost
the same as that in the previous K2 algorithm except that in each iteration if
a parent is found, its corresponding candidate list is also created to use in the
future run of the algorithms. The K2 algorithm must also be embedded in the
incremental algorithm. In the main algorithm, Algorithm 3, for each node,
using the previous structure and sufficient statistics, the new data, and previ-
ous set of candidate lists of the parents, new network structure and sufficient
statistics are created. First, the sufficient statistics of the whole previous and
new data are computed. Then, for each node, it is checked whether the current
j-th parent is still parent of this node by checking and comparing its score with
those of the other candidate nodes. If it can no longer be a parent, then it comes
out from the inner loop and new K2 algorithm is called to find the new parents
and to update the candidate lists of parents for the current node.
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Algorithm 2 Specialized K2 Algorithm

1. Inputs:
Xi,
πi = {Xi,1, · · · , Xi,j} (correct parents),
SS(Xi),
u (the maximum number of parents for a node),
set of candidate parents lists, {Ci,j+1, · · · , Ci,k} (to be checked to find the
best parent in each list),
Pred(Xi) (to be checked for the new parents)

2. Output:
The new parents set for Xi,
The updated set of candidate parents lists for Xi

———————————————–
3. Scoreold = f(i, πi)
4. l = j + 1
5. NotFound = true
6. while NotFound and l ≤ k do
7. z = arg maxw∈Ci,l

f(i, πi

⋃{w})
8. Reorder Ci,l in decreasing order of the nodes’ score such that z be the

first item of the list.
9. Scorenew = f(i, πi

⋃{z})
10. if Scorenew > Scoreold then
11. Scoreold = Scorenew
12. πi = πi

⋃{z}
13. l = l + 1
14. else
15. NotFound = false
16. end if
17. end while
18. OkToProceed = true
19. while OkToProceed and |πi| < u do
20. z = arg maxw∈Pred(xi)−πi

f(i, πi

⋃{w})
21. Scorenew = f(i, πi

⋃{z})
22. if Scorenew > Scoreold then
23. Create a new list Ci,l containing the list of all candidate nodes for the

l-th parent in decreasing order such that z be the first item in the list.
24. Scoreold = Scorenew
25. πi = πi

⋃{z}
26. else
27. OkToProceed = false
28. end if
29. end while
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Algorithm 3 Incremental Bayesian Network Learning Algorithm

1. Input:
{X1, · · · , Xm} (An ordered list of nodes),
SS(D) (sufficient statistics of the previous data),
D′ (new dataset),
u (the maximum number of parents for a node),
{Ci,1, · · · , Ci,k} (set of previous candidate lists of parents)

2. Output:
A directed acyclic graph for the Bayesian network according to the previous
one and new data,
The new updated sufficient statistics, SS(D)
———————————————–

3. Compute SS(D′)
4. SS(D) = SS(D)

⋃

SS(D′)
5. for i = 1 to m do
6. π′

i = ∅
7. j = 1
8. OkToProceed = true
9. while OkToProceed and j < k do

10. z = the first node in Ci,j

11. if z = arg maxw∈Ci,j
f(Xi, π

′

i

⋃{w}) then
12. π′

i = π′

i

⋃{z}
13. j = j + 1
14. else
15. OkToProceed = false
16. end if
17. end while
18. if j < u then
19. Call K2(Xi, πi, SS(Xi), u,

{Ci,j+1, · · · , Ci,k}, P red(Xi))
20. end if
21. end for
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4. Privacy-preserving Incremental Learning of Bayesian Networks

In this section, we present our protocol for privacy-preserving incremental
learning of BNs when data is horizontally partitioned among several parties.
By privacy-preserving BNs, we mean a protocol by which BNs structure and/or
parameters are constructed from a securely shared data among two or more
parties while each party keeps her own data private. It is assumed, in this
protocol, that the parties are semi-honest, i.e. each party follows the protocol
and sends correct data to the other parties, however she might use intermediate
or final information to compute others’ private data.

The private information is the raw data each party owns and sufficient statis-
tics of those data, and the public knowledge at the end of the protocol are the
candidate parents lists of each node. In the above algorithms we need to se-
curely compute the score function, securely compare computed scores to find the
parents of each node, and construct the candidate lists of parents in decreasing
order of their score values.

Some secure building blocks [10] are used inside the main protocol. Secure
Multi-party Multiplication, Addition and Factorial, and also Secure Product
Comparison are needed in both types of partitioned data. Thus we first discuss
the sub-protocols used inside the main protocol and then bring the protocol for
homogenously partitioned data.

4.1. Secure Multi-party Multiplication

In this building block, the product of private input shares, xis, is converted
to the summation of private output shares, yis:

n
∏

i=1

xi =

n
∑

i=1

yi. (4)

This sub-protocol is widely used in other protocols and also in our building
blocks such as secure exponentiation and secure multi-party factorial. A proto-
col has been proposed for this purpose in [9], which uses additive homomorphic
encryption [5]. However that protocol is not secure against collusion attack in
the multi-party case. For instance, in the case of three parties, if the first and
third parties collude, they can easily deduce the second party’s private input.
Here, we propose another protocol to prevent that type of attack. The algorithm
for the two-party case is the same as that in [9] briefly described in Appendix
A, and the multi-party case is presented here.

Suppose Ei is an additive homomorphic encryption established by pi, with
public key ei and private key di. The following are the steps of the algorithm:

1. p1 and p2 run a secure two-party multiplication for their inputs such that:

x1 ∗ x2 = y11 + y21.
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2. Therefore, we have:

x1 ∗ x2 ∗ · · · ∗ xn = (y11 + y21) ∗ x3 ∗ · · · ∗ xn

= (y11 ∗ x3 ∗ · · · ∗ xn) +

(y21 ∗ x3 ∗ · · · ∗ xn)

3. Now, each of

(y11 ∗ x3 ∗ · · · ∗ xn) and (y21 ∗ x3 ∗ · · · ∗ xn)

are multiplication of n − 1 items belong to the parties 1, 3, · · · , n , and
2, 3, · · · , n respectively. Thus, the algorithm in step one would be repeated
until all the parts of the summation are two-party multiplications, and
secure two-party multiplication protocol could be applied.

Therefore, if n parties participate in this protocol, n(n − 1) encryptions and
n(n−1)

2 decryptions are needed to complete the protocol. There are also n(n−1)
messages needed to be communicated between the parties.

To make it clear, we give a simple example for three parties:

1. p1 and p2 run secure two-party multiplication for their inputs, x1 and x2,
that produces y11 and y21 such that:

x1 ∗ x2 = y11 + y21.

2. Therefore, we have:

x1 ∗ x2 ∗ x3 = (y11 + y21) ∗ x3

= (y11 ∗ x3) + (y21 ∗ x3)

3. p1 and p3 run secure two-party multiplication for their inputs, y11 and x3,
yielding:

y11 ∗ x3 = y1 + y31.

4. p2 and p3 do the same for their inputs, y21 and x3, such that:

y21 ∗ x3 = y2 + y32.

5. Now, we have:

x1 ∗ x2 ∗ x3 = (y11 + y21) ∗ x3

= (y11 ∗ x3) + (y21 ∗ x3)

= (y1 + y31) + (y2 + y32)

= y1 + y2 + y3

where y3 = y31 + y32

12



4.1.1. Security Analysis

First, we show that the two-party protocol we have used is in fact secure.
Through this paper, we utilize following notations in our proof:

• pd : Private data.

• ppdm : Privacy-Preserving Data Mining protocol.

• pdpi
: pi’s private data.

• extpi
: The extra information pi can obtain through the underlying pro-

tocol.

• gainpi
: The advantage of pi to get access to any other party’s private

data using a protocol.

• gainsec : The advantage of pi to get access to any other party’s private
data using a protocol by looking at a semantically secure ciphertext, which
is negligible in our case of using an RSA type of encryption.

• pr(pd) : The probability of disclosing the private data pd without using
any privacy-preserving protocol.

• pr(pd|ppdm) : The probability of disclosing the private data pd after using
a privacy-preserving protocol.

• |pr(pd|ppdm) − pr(pd)| : Absolute difference between the probability of
disclosing the private data pd with and without using a privacy-preserving
protocol.

• ǫ : The level of security.

We have to find an ǫ such that:

|pr(pd|ppdm) − pr(pd)| ≤ ǫ

Advantages for p1 and p2 are:

gainp1
= pr(pdp2

|extp1
, ppdm)− pr(pdp2

|extp1
)

gainp2
= pr(pdp1

|extp2
, ppdm)− pr(pdp1

|extp2
)

p2 only receives E1(x1, e1) from p1 which is semantically secure, and therefore:

gainp2
= gainsec

which is negligible.
p1, by decrypting the message received from p2, knows

y1 = (x1 ∗ x2)− y2
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which is the final desired result for this party. Thus gainp1
is at most knowing

her output share, y1. We set:

ǫ = max(gainp1
, gainp2

)

= max(gainp1
, gainsec) = gainp1

Therefore, we have:

pr(pdp2
|extp1

, ppdm)− pr(pdp2
|extp1

) ≤ gainp1

and

pr(pdp1
|extp2

, ppdm)− pr(pdp1
|extp2

) ≤ gainp1

Thus, it proves the maximum advantage of each party is not greater than know-
ing her final output share, which completes the proof.

Now we prove the security of the protocol for three parties. The proof is the
same in general multi-party case. Again, an ǫ has to be determined, such that:

|pr(pd|ppdm) − pr(pd)| ≤ ǫ

Advantages of p1, p2 and p3 are as follows:

gainp1
= pr(pdpj

|extp1
, ppdm)− pr(pdpj

|extp1
)

(j = 2, 3)

gainp2
= pr(pdpj

|extp2
, ppdm)− pr(pdpj

|extp2
)

(j = 1, 3)

gainp3
= pr(pdpj

|extp3
, ppdm)− pr(pdpj

|extp3
)

(j = 1, 2)

p3 only receives E1(y11, e1) from p1, and E2(y21, e2) from p2, which are both
semantically secure, and therefore:

gainp3
= gainsec

which is negligible.
p2, by decrypting the message receiving from p3, knows

y2 = (y21 + x3)− y32

which is the final desired result for this party. p2 also receives E1(x1, e1) from
p1, which is semantically secure. Thus, p2’s gain is at most her final private
output share, y2.

p1, by decrypting the message received from p3, knows

y1 = (y11 + x3)− y31
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which is the final desired result for this party. Also, p1, by decrypting the
message receiving from p2, knows

y11 = (x1 ∗ x2)− y21

y11 is the partial information p1 receives through her communication with p2,
but it could not help this party to reach to p2’s private data because of its
randomness property, same as y21 for p2.

Therefore, gainp1
= gainp2

, and we set:

ǫ = max(gainp1
, gainp2

, gainp3
)

= max(gainp1
, gainsec) = gainp1

Therefore, we have:

pr(pdpj
|extp1

, ppdm)− pr(pdpj
|extp1

) ≤ gainp1

pr(pdpj
|extp2

, ppdm)− pr(pdpj
|extp2

) ≤ gainp1

pr(pdpj
|extp3

, ppdm)− pr(pdpj
|extp3

) ≤ gainp1

Thus, the maximum advantage of each party is not greater than knowing her
final output share, which completes the proof.

To show its security against collusion attack, suppose three parties are in-
volved. We investigate all the scenarios in which two parties collude to access
the third one’s private data.

• Collusion of p1 and p2: p1 receives

E1(y11, e)
x3 ∗ E1(y31, e)

−1

from p3 and also, because of colluding with p2, receives

E2(y21, e)
x3 ∗ E2(y32, e)

−1

from p2. However, these two parties have no information about x3, y31,
and y32. Thus, by decrypting the above information and having the two
equations:

y11 ∗ x3 − y31 = y1

y21 ∗ x3 − y32 = y2

and those three unknown values, they are not able to access p3’s private
data, except by guessing them.

• Collusion of p1 and p3: p1 receives

E1(x1, e)
x2 ∗ E1(y21, e)

−1

from p2 and also, because of colluding with p3, receives E2(y21, e) from p2.
E2 is semantically secure and thus p1 is not able to get any information
from that. Also, x2 and y21 could not be disclosed to p1 from equation,
x1 ∗ x2 − y21 = y11 alone.
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• Collusion of p2 and p3: p2 receives E1(x1, e) from p1, and also E1(y11, e)
from p3 because of colluding. E1 is semantically secure, and thus p2 is not
able to get any useful information from the encrypted data.

This building block could be run over the public channels. This is because
none of the parties simply sends the encryption of their private data to the
other parties separately, except the owner of the private key. Therefore, even
this party is not able to obtain others’ private data by decrypting the received
messages from the public channel.

4.1.2. Complexity Analysis

• Computation Cost: By denoting n as the number of parties involved in

the protocol, there are n(n+1)
2 encryptions and n(n−1)

2 decryptions in this
building block. By assuming that the computation costs of encryption
and decryption are the same, and denoting each of these costs by α:

Computation cost =n2α.

• Communication Cost: Communication cost for two parties, as we saw
in two party case in Appendix Appendix A, is 2β. By denoting this cost
for n parties as CMM(n), ∀n ≥ 3, and the number of bits exchanged for
each message with β:

CMM(n) = (CMM(⌊n
2
⌋) + CMM(⌈n

2
⌉) +

⌊n
2
⌋ ∗ (⌈n

2
⌉+ 1))β.

For instance, if n = 4, then communication cost of this protocol would be
10β.

4.2. Secure Multi-party Addition

Using this sub-protocol, summation of private input shares, xis, is converted
to the multiplication of private output shares, yis.

n
∑

i=1

xi =

n
∏

i=1

yi. (5)

This protocol, with the same lack of security against collusion attack, is proposed
in [9]. Here, a protocol is presented to counter collusion attacks. The algorithm
for the two-party case is the same as that in [9] and is briefly shown in Appendix
B.

Following are the steps of the algorithm for multi-party case:

1. pn selects n− 1 numbers xn,1, xn,2, · · · , xn,n−1 such that:

xn = xn,1 + xn,2 + · · ·+ xn,n−1.
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2. Each party pi, 1 ≤ i ≤ n− 1, run a secure two-party addition with pn for
their inputs,xi and xn,i, such that:

xi + xn,i = yi,n ∗ yn.

3. Therefore, we have:

x1 + · · ·+ xn = (y1,n ∗ yn) + · · ·+ (yn−1,n ∗ yn)
= (y1,n + · · ·+ yn−1,n) ∗ yn

4. Now

y1,n + · · ·+ yn−1,n

is the summation of n − 1 items belonging to the parties 1, 2, · · · , n − 1.
Thus, the algorithm would be repeated from step one until there is a
summation of two parties, p1 and p2, on which secure two-party addition
could be applied.

The following is an example for the three parties:

1. p3 selects two numbers x3,1 and x3,2 given:

x3 = x3,1 + x3,2.

2. p1 and p3 run secure two-party addition for their inputs, x1 and x3,1:

x1 + x3,1 = y1,3 ∗ y3.

3. p2 and p3 do the same for their inputs, x2 and x3,2:

x2 + x3,2 = y2,3 ∗ y3.

4. Therefore, we have:

x1 + x2 + x3 = (y1,3 ∗ y3) + (y2,3 ∗ y3)
= (y1,3 + y2,3) ∗ y3

5. p1 and p2 run secure two-party addition for their inputs,y1,3 and y2,3, such
that:

y1,3 + y2,3 = y1 ∗ y2.

6. Therefore, we have:

x1 + x2 + x3 = (y1,3 + y2,3) ∗ y3 = y1 ∗ y2 ∗ y3

The security analysis of this protocol is similar to that of the secure multi-party
multiplication.
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4.2.1. Complexity Analysis

• Computation Cost: The number of encryptions and decryptions in this

protocol are (n−1)(n+2)
2 and n(n−1)

2 , respectively. Therefore:

Computation cost =(n− 1)(n+ 1)α.

• Communication Cost: By considering all the messages sent from the
parties, we have:

Communication cost =
(n− 1)(n+ 2)

2
β.

4.3. Secure Product Comparison

In the main protocol we need to compare two products of the private input
shares. In other words, if each party pi has two inputs xi and yi, we need to

compare
n
∏

i=1

xi and
n
∏

i=1

yi to figure out which one is greater than the other one.

To do this, we test the sign of the expression
n
∏

i=1

xi −
n
∏

i=1

yi. The steps of our

algorithm are as follows:

1. All parties run secure multiplication on both series of their inputs such
that:

n
∏

i=1

xi =
n
∑

i=1

ai and
n
∏

i=1

yi =
n
∑

i=1

bi.

2. Each party pi, 1 ≤ i ≤ n, sets :

ci = ai − bi.

3. All the parties run secure addition such that:

n
∑

i=1

ci =
n
∏

i=1

di.

4. Each party pi, 2 ≤ i ≤ n, sends the sign of her final private output share,
di, to p1.

5. p1 counts the number of negative signs of dis, and if it is even then:

n
∏

i=1

xi >

n
∏

i=1

yi.

Otherwise:
n
∏

i=1

xi <

n
∏

i=1

yi

There are two secure multiplications and one secure addition in this protocol.

Therefore, for computational cost, we have 3n(n − 1) encryptions and 3n(n−1)
2

decryptions. Also 3n(n − 1) messages plus n − 1 signs need to be exchanged
among n parties.
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4.3.1. Security Analysis

In this sub-protocol we use secure addition and multiplication. The only
difference is that p1 knows the sign of the private output shares of the other
parties at the end of the protocol, which will not reveal any useful information
to p1. Thus, we set:

ǫ = max(gainp1
, · · · , gainpn

)

= max(gainp1
, gainsec) = gainp1

.

This proves that the maximum advantage of each party is not greater than
knowing the sign of the final output shares of the secure comparison.

4.3.2. Complexity Analysis

• Computation Cost: There are two secure n-party multiplications and
one secure n-party addition in this building block. Thus:

Computation cost =(3n2 − 1)α.

• Communication Cost: By using the communication costs of the sub-
protocols used in this building block, we have:

Communication cost = (
(n− 1)(n+ 2)

2
+

2CMM(n))β

in which CMM(n) is the communication cost of the secure n-party mul-
tiplication protocol.

4.4. Secure Exponentiation

In this building block, we convert an exponentiation with a positive base,
when each part, base and exponent, is privately owned by a different party.
Suppose, x1 ∈ p1, x2 ∈ p2, and x1 > 0. We want to find two private output
shares, z1 and z2, for these parties such that:

xx2

1 = z1 ∗ z2. (6)

The following are the steps of the protocol.

1. p1 computes ln(x1).

2. p1 and p2 run secure multiplication on their inputs, ln(x1) and x2, to find
their private output shares, y1 and y2, respectively such that ln(x1)∗x2 =
y1 + y2.

3. Now we have:

xx2

1 = expln(x
x2

1
) = expx2∗ln(x1)

= expy1+y2 = expy1 ∗ expy2 .

Thus, expy1 and expy2 are the final private output shares for p1 and p2,
respectively.
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4.4.1. Security Analysis

This sub-protocol is just a version of secure multiplication with two differ-
ences. First is the input of the first party which is ln of her input. Second is
the final private outputs which are exp of the outputs. Therefore, there is no
difference on their security analyses.

4.5. Secure Multi-party Factorial

Using this sub-protocol, multiple parties are able to cooperatively produce
their own private output shares, u1, · · · , un from their private input shares,
x1, · · · , xn, such that:

(

n
∑

i=1

xi

)

! =

n
∏

i=1

ui. (7)

In this protocol, we use Stirling’s approximation for factorial and the previously
mentioned building blocks, secure addition, multiplication and exponentiation.
According to that approximation, for a large number l, we have the following
equation:

l! ≈
√
2πl(

l

exp
)l. (8)

Also, in the K2 algorithm we do not need to compute the exact results of the
score function. Rather, in each step we just have to compare these results and
select the largest one. Therefore, we can use this approximation inside the K2
algorithm.

Without loss of generality and for simplicity of the formula, we show the
two-party case of the protocol, which can easily be generalized to the multi-
party case by using the multi-party versions of our building blocks. The steps
of the protocol are as follows:

1. p1 and p2 run secure addition on their inputs, x1 and x2, to find their
private output shares, y1 and y2, respectively, such that:

x1 + x2 = y1 ∗ y2.

Note that p2 has to select y2 as a positive random number. Therefore, y1
is also positive because x1 and x2 are both positive, and we can run secure
exponentiation in the next two steps on y1 and y2.

2. p1 and p2 run secure exponentiation on their inputs, y1 and x2, to find
their private output shares, s1 and s2, respectively, such that:

yx2

1 = exps1 ∗ exps2 .

3. p1 and p2 run secure exponentiation on their inputs, x1 and y2, to find
their private output shares, t1 and t2, respectively such that:

yx1

2 = expt1 ∗ expt2 .
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4. Both of the values (
√
2πy1∗yx1

1 ∗exps1+t1−x1) and (
√
y2∗yx2

2 ∗exps2+t2−x2)
are the final output shares for p1 and p2, respectively.

We can show the correctness of the algorithm as follows:

l! ≈
√
2πl(

l

exp
)l

=
√

2π ∗ (x1 + x2)

(

x1 + x2

exp

)x1+x2

=
√

2π ∗ (y1 ∗ y2)
(

y1 ∗ y2
exp

)x1+x2

=
√

2πy1y2 ∗ exp−x1 ∗ exp−x2 ∗
yx1

1 ∗ yx2

1 ∗ yx1

2 ∗ yx2

2

=
√

2πy1y2 ∗ exp−x1 ∗ exp−x2 ∗
yx1

1 ∗ (exps1 ∗ exps2) ∗ (expt1 ∗ expt2) ∗ yx2

2

= (
√

2πy1 ∗ yx1

1 ∗ exps1+t1−x1) ∗
(
√
y2 ∗ yx2

2 ∗ exps2+t2−x2)

= u1 ∗ u2

where u1 and u2 are respectively substitutes for

(
√

2πy1 ∗ yx1

1 ∗ exps1+t1−x1)

and

(
√
y2 ∗ yx2

2 ∗ exps2+t2−x2).

Thus, to run secure factorial among n parties n(n − 1) secure multiplications
and one secure addition will be done.

4.5.1. Security Analysis

First, note that p1 and p2 have the following data communications during
the algorithm:

p1 : E(x1, e) −→ p2

p2 : (E(x1, e) ∗ E(x2, e))
y
−1

2 −→ p1

p2 : E(x1, e)
ln(y2) ∗ E(t2, e)

−1 −→ p1

p1 : E(ln(y1), e) −→ p2

p2 : E(ln(y1), e)
x2 ∗ E(s2, e)

−1 −→ p1

Now, we have to find an ǫ such that:

|pr(pd|ppdm) − pr(pd)| ≤ ǫ
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Advantages of p1 and p2 are:

gainp1
= pr(pdp2

|extp1
, ppdm)− pr(pdp2

|extp1
)

gainp2
= pr(pdp1

|extp2
, ppdm)− pr(pdp1

|extp2
).

p2 receives two encrypted messages from p1 using homomorphic encryption E1

which is semantically secure, and therefore:

gainp2
= gainsec

which is negligible.
p1, by decrypting the messages receiving from p2, knows

y1 such that (x1 + x2) = y1 ∗ y2
s1 such that yx2

1 = s1 ∗ s2
t1 such that yx1

2 = t1 ∗ t2

which are the final desired results for p1 to create her private output share.
Thus gainp1

is at most knowing her output share, u1. We set:

ǫ = max(gainp1
, gainp2

)

= max(gainp1
, gainsec) = gainp1

Therefore:

pr(pdp2
|extp1

, ppdm)− pr(pdp2
|extp1

) ≤ gainp1

pr(pdp1
|extp2

, ppdm)− pr(pdp1
|extp2

) ≤ gainp1

Thus, the maximum advantage of each party is not greater than knowing her
final output share, which completes the proof.

4.5.2. Complexity Analysis

• Computation Cost: One secure n-party addition and n(n − 1) secure
two-party multiplications have to be executed in this sub-protocol. Thus:

Computation cost =(n− 1)(4n+ 1)α.

• Communication Cost: By using the communication costs of the sub-
protocols used in this building block, we have:

Communication cost =
(n− 1)(5n+ 2)

2
β.

4.6. Protocol for Horizontally Partitioned Data

In this section, a privacy-preserving BNs protocol is presented for horizon-
tally partitioned data. In this configuration each party owns some records of the
whole dataset. We use secure factorial and secure product comparison inside
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K2 algorithm to preserve the privacy of the parties involved. Since each party
has the values for all the variables for some records, she can compute and main-
tain the sufficient statistics of her own data, and thus the value of each record
of the sufficient statistics of the whole dataset would be the summation of the
corresponding values from the sufficient statistics owned by all the parties.

In steps 3, 7 and 20 of the new K2 algorithm and step 11 of the incremental
algorithm, the score function has to be computed for different sets of items.
This function, in the horizontal case, is converted to the following equation:

f(i, πi) =

qi
∏

j=1

(

n
∑

k=1

αkij0

)

! ∗
(

n
∑

k=1

αkij1

)

!

((

n
∑

k=1

αkij0

)

+

(

n
∑

k=1

αkij1

)

+ 1

)

!

(9)

where, αkijr ∈ pk for r ∈ {0, 1}. After applying secure factorial building block
on each part of the Equation (9) as follows:

(

n
∑

k=1

αkij0

)

! =

n
∏

k=1

ukij0

(

n
∑

k=1

αkij1

)

! =

n
∏

k=1

ukij1

((

n
∑

k=1

αkij0

)

+

(

n
∑

k=1

αkij1

)

+ 1

)

! =

n
∏

k=1

ukij2

we have a new function g(i, πi), as an approximation of f(i, πi), given by:

g(i, πi) =

qi
∏

j=1

(

n
∏

k=1

ukij0

)(

n
∏

k=1

ukij1

)

(

n
∏

k=1

ukij2

)

=

qi
∏

j=1

n
∏

k=1

ukij0 ∗ ukij1

ukij2
=

qi
∏

j=1

n
∏

k=1

wkij =

n
∏

k=1

zk

such that ukijl ∈ pk, and following substitutions:

ukij0 ∗ ukij1

ukij2
= wkij and

qi
∏

j=1

wkij = zk

where zk, for 1 ≤ k ≤ n, is the private output share of pk.
Now, for each result of the score function we have a multiplication of the

private shares owned by the parties. The next step is to compare them and
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find the one with the maximum value. For instance for two parties p1 and p2, if
x1, y1 ∈ p1 and x2, y2 ∈ p2, we have to securely compare x1 ∗x2 and y1 ∗ y2. For
this part, the secure product comparison is used, and the item corresponding
to the greatest number is added to the set of parents for the current node.

The overhead cost of the proposed privacy-preserving K2 algorithm is due
to the use of the secure factorial and the secure product comparison protocols.
If we assume that the maximum number of parents for each node is 2, then the
maximum number of executions of secure factorial and secure comparison are
m2 −m+ 1 and (m− 1)2, respectively.

4.6.1. Security Analysis

As we see in the K2 algorithm, the parties have data communication in
steps 3, 7, and 20 in Algorithm 2 and 11 in Algorithm 3 for computing score
functions, and in steps 7, 10, 20, and 22 in Algorithm 2, and 11 in Algorithm 3 for
comparisons between the products of the private values. Other steps are publicly
executed. According to the composition theorem [4, 1], if the main protocol
is partitioned into sub-protocols such that the output of one sub-protocol is
the input of the next and all intermediate results are kept private, then the
whole protocol would be privacy-preserving. In our main protocol, inputs for
computing the score function are private shares of the parties. Output shares,
by using secure factorial, are also private and are in turn the inputs for the
secure product comparison. This sub-protocol is also secure and at the end,
only the node or attribute name with the greater value for the score function is
determined. Note that the names of the attributes are available to all parties.
Therefore the whole protocol remains privacy-preserving.

5. Experimental Results

Experiments in this section seek to show the performance improvement of
incremental learning compared to the batch algorithm. Datasets used in this
experiment are ASIA [20], ADULT [21], and ALARM [19]. The first one is an
academic model and the next two are real datasets, widely used in various papers
as experimental data. Results are produced from 10 independent replications via
10-fold cross-validation, and execution time for different set of configurations are
compared between incremental and batch algorithms. First we apply standard
batch learning protocol on an online database such that each time algorithm
runs on the whole dataset, including existing and new data. Then, incremental
algorithm is applied in each step such that new data is only used along with
some information maintained from the existing data in the previous step, such
as sufficient statistics, and the result is compared with the result of using batch
method to investigate the correctness of the extracted Bayesian Networks and
the overall spending time on each method.

One important parameter in the incremental algorithm is the number of
items in each list of candidate parents of each node. The more items are kept in
each list, the faster the incremental algorithm would be. We test our protocol
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Table 1: Execution time (in Seconds) of Asia model with different key lengths and methods.

Key Method
Number of Parties

2 3 4 6

512

Non-Inc 32.53 94.04 166.50 404.38
S=2 22.73 65.85 117.15 284.98
S=3 19.61 56.86 101.40 246.87
S=4 19.14 55.51 99.00 241.03

1024

Non-Inc 188.61 545.17 969.24 2354.70
S=2 131.80 381.78 682.23 1660.24
S=3 113.69 329.68 590.63 1438.56
S=4 111.00 321.89 576.68 1404.57

2048

Non-Inc 875.27 2529.88 4499.10 10930.51
S=2 611.63 1771.70 3166.92 7707.10
S=3 527.59 1529.92 2741.78 6678.14
S=4 515.13 1493.78 2677.00 6520.35

with different size of those lists to find an optimum value for this parameter.
However, depending on the underlying application and dataset, this can be
specified by the user to find the desire network structure. Therefore, there is a
trade-off between the execution time and the accuracy of the generated network
structure. The complexity of techniques is measured in terms of the execution
time requires for training the BNs. The quality of the proposed technique is
measured in terms of the similarity of BNs learned through incremental learning
to those learned through batch learning. It is also measured in terms of the
fitness of BNs with respect to independent test data.

In each experiment, underlying dataset is securely shared between 2, 3, 4,
and 6 parties. The implementation is done with Java, in which Remote Method
Invocation (RMI) technique is used for data communication. We used machines
with 2.66 GHZ CPU, 2.98 GB RAM, and Windows XP Professional. The system
is tested with key bit lengths of 512, 1024, and 2048.

The first experiment is performed on ASIA [20] model, also called Chest
Clinic, which is a network of a small medical example, indicating whether a
patient has bronchitis, tuberculosis, or lung cancer depending on her/his history
for X-ray result, dyspnea, visit-to-Asia and smoking status. Figure 2 shows
the Bayesian network, containing 8 nodes, and Table 1 shows the performance
results of this experiment. In this table performance results of different methods,
batch and incremental with different number of items in the parents candidate
lists, S, and for each key length, are shown. Each execution time for batch
method is for 11 times of running the K2 algorithm, and for incremental method
is for one batch algorithm and 10 running of the incremental protocol each time
new data is added to the dataset. Results indicate that the execution time
will positively decrease using incremental method, especially with the larger
value of S, compare with the batch algorithm. This is because of applying the
protocol on a smaller dataset and previously generated sufficient statistics from
the original data, and also checking the candidate parent lists first, before calling
K2 algorithm which is more time consuming.

The next experiment is for Adult [21] model, also known as Census Income
dataset, which predicts whether income exceeds $50K/yr based on census data,
and the experiment results are shown in Table 2.
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Figure 2: ASIA model.

Table 2: Execution time (in Seconds) of Adult model.

Key Method
Number of Parties

2 3 4 6

512

Non-Inc 93.40 269.81 476.80 1157.28
S=2 49.56 143.48 254.96 619.96
S=3 44.95 130.18 231.49 563.02
S=4 41.96 121.59 216.49 526.76

1024

Non-Inc 541.59 1564.11 2775.16 6737.51
S=2 287.36 831.91 1484.62 3611.33
S=3 260.64 754.80 1348.03 3279.89
S=4 243.31 705.03 1260.83 3069.08

2048

Non-Inc 2513.31 7258.31 12881.88 31275.11
S=2 1333.51 3860.57 6891.63 16764.26
S=3 1209.52 3502.74 6257.59 15225.75
S=4 1129.12 3271.77 5852.83 14247.25
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Figure 3: A Logical Alarm Reduction Mechanism (ALARM) model.

Table 3: Execution time (in Minutes) of Alarm model.

Key Method
Number of Parties

2 3 4 6

512

Non-Inc 16.01 46.19 81.42 197.44
S=2 7.29 21.05 37.20 90.31
S=3 5.79 16.73 29.61 71.90
S=4 4.11 11.89 21.10 51.30

1024

Non-Inc 92.82 267.74 473.76 1149.15
S=2 42.25 122.03 216.55 525.75
S=3 33.56 96.98 172.35 418.66
S=4 23.82 68.94 122.88 298.78

2048

Non-Inc 430.72 1242.47 2199.10 5334.17
S=2 196.07 566.29 1005.18 2440.52
S=3 155.73 450.05 800.04 1943.42
S=4 110.56 319.91 570.40 1386.97

The last experiment is done for ALARM [19] model, stands for A Logical
Alarm Reduction Mechanism, which is a medical diagnostic system for patient
monitoring. It is a nontrivial belief network with 8 diagnoses, 16 findings and
13 intermediate variables. Figure 3 shows the Bayesian network, and Table 3
contains the performance results of that. Same situation as the previous model
is applied.

As it can be seen in the experiment results, by using incremental protocol
we can significantly reduce the overall execution time, especially when we are
dealing with large number of parties and with large key bit length to strongly
preserve the security of the protocol. This time saving is more sensible in large
networks, such as Alarmmodel with 37 nodes in here, after running the protocols
during the growth of the underlying dataset. Figure 4 shows the comparison of
the execution times of the batch algorithm and incremental protocol with differ-
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Figure 4: Comparison chart of batch and incremental protocols for ALARM model, with
different number of parties, different size of parents candidate list, and key bit length of 1024.

ent parameters after 101 runs of the protocols on data for the Alarm model. For
batch algorithm we run the protocol 101 times and for the incremental meth-
ods we run the batch algorithm at the first time and then run the incremental
protocol for 100 times, each time new data is added to the dataset.

To compare the results of our incremental K2 algorithm with the result of
the batch algorithm, we run the protocol on 16 testing data chunks. At the end
of each step the total number of edges and also the fitness of the created edges in
the incremental approach are compared with those using batch algorithm. Fig-
ures 5 and 6 illustrates the comparison charts for the last experiment, ALARM
model. As it is shown in Figure 5, there is a relatively big difference between
the number of edges between the incremental and batch approaches in the first
couple of steps. This means that incremental algorithm is not very suitable at
first, especially with the large value of S, the number of items in the parents
candidate lists. This could be seen in any real world applications. Suppose a
batch algorithm is applied on a large dataset, and after a period of time a block
of data, which is very small compare with the original dataset, becomes avail-
able. Now the result of applying batch algorithm, which runs on both original
and new data, could be far different from the one from incremental method.
This might happen because of a very different pattern in the new data from the
original one. However, after some duration this bias will be low or even disap-
peared by coming more data and running incremental algorithm in long term.
This fact could be also observed from the comparison chart for fitness of the
edges inside constructed BNs structures using batch and incremental methods
in Figure 6.

28



404244464850erof ed ges Batc hS=2S=3S=4
3032343638 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16N umb

Running st eps (Numberof It erat io ns)
Figure 5: Comparison chart of edges inside created BNs structures using batch and incremental
K2 algorithm for ALARM model.
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Figure 6: Comparison chart for fitness of the edges inside constructed BNs structures using
batch and our incremental algorithm for ALARM model.
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6. Conclusions and Future Work

Incremental learning algorithm for stream and online data to construct
Bayesian Networks is considered in this paper when data is privately and hor-
izontally shared among two or more parties, by improvement on computation
of Sufficient Statistics and providing an incremental and efficient version of K2
algorithm. Secure building blocks, such as secure multi-party multiplication,
product comparison and factorial, which are resistant to colluding attacks and
are secure in dedicated as well as public channels are also proposed to utilize
in the main protocol to preserve the privacy of the parties involved. Experi-
mental results indicate that the efficiency will significantly increase by using the
new version of incremental K2 algorithm an improved computation of Sufficient
Statistics. Applying the proposed algorithms and protocols on real-world appli-
cations, in which privacy and efficiency are crucial factors and data is gradually
growing, would be suitable to show the applicability of these methods and to
find obstacles and new directions to improve these types of privacy-preserving
protocols.
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Appendix A. Secure Two-party Multiplication

1. p1 selects an additive homomorphic encryption E, keeps the private key
d and sends the public key e to p2.

2. p1 encrypts her input x1, E(x1, e), and sends it to p2.

3. p2 powers the received value to her input x2, E(x1, e)
x2 , and randomly

selects her, nonzero, output share y2

4. p2 computes iy2 = E(y2, e)
−1, and sends back E(x1, e)

x2 ∗ iy2 to p1.

5. p1 decrypts the received value from p2 and sets it as her output share y1.

Appendix A.1. Correctness Analysis

y1 = D(E(x1, e)
x2 ∗ E(y2, e)

−1, d)

= (x1 ∗ x2)− y2

⇒ y1 + y2 = x1 ∗ x2

Appendix A.2. Complexity Analysis

• Computation Cost: There are two encryptions and one decryption in
this building block. Therefore:

Computation cost =3α.

• Communication Cost: Considering the previous notations:

Communication cost =2β.

The notations we employed in this section are also used in the similar sections
in the rest of this thesis.
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Appendix B. Secure Two-party Addition

1. p1 selects an additive homomorphic encryption E, keeps the private key
d and sends the public key e to p2.

2. p1 encrypts her input x1, E(x1, e), and sends it to p2.

3. p2 encrypts her input x2, E(x2, e), and randomly selects her nonzero out-
put share y2

4. p2 computes iy2 = y−1
2 , and sends back (E(x1, e) ∗ E(x2, e))

iy2 to p1.

5. p1 decrypts the received value from p2 and sets it as her output share y1.

Appendix B.1. Correctness Analysis

y1 = D((E(x1, e) ∗ E(x2, e))
y
−1

2 , d)

= (x1 + x2) ∗ y−1
2

⇒ y1 ∗ y2 = x1 + x2

Appendix B.2. Complexity Analysis

• Computation Cost: Similar to the secure two-party multiplication,
there are two encryptions and one decryption in this protocol. There-
fore:

Computation cost =3α.

• Communication Cost: Its communication cost is also the same as that
in protocol 1:

Communication cost =2β.
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