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Abstract

The demand for different levels of Quality of Service (QoS) in IP networks is growing,

mainly to attend multimedia applications. However, not only indicators of quality have

conflicting features, but also the problem of determining routes covered by more than

two QoS constraints is NP-complete (Nondeterministic Polynomial Time Complete).

This work proposes an algorithm to optimize multiple Quality of Service indices of

Multi Protocol Label Switching (MPLS) IP networks. Such an approach aims at mini-

mizing the network cost and the amount of simultaneous requests rejection, as well as

performing load balancing among routes. The proposed algorithm, the Variable Neigh-

borhood Multiobjective Genetic Algorithm (VN-MGA), is a Genetic Algorithm based on

the Elitist Non-Dominated Sorted Genetic Algorithm (NSGA-II), with a particular fea-

ture that different parts of a solution are encoded differently, at Level 1 and Level 2. In

order to improve results, both representations are needed. At Level 1, the first part of

the solution is encoded by considering as decision variables the arrows that form the

routes to be followed by each request (whilst the second part of the solution is kept

constant), whereas at Level 2, the second part of the solution is encoded by considering

the sequence of requests as decision variables, and first part is kept constant. Pareto-

fronts obtained by VN-MGA dominate fronts obtained by fixed-neighborhood encoding

schemes. Besides potential benefits of the proposed approach application to packet

routing optimization in MPLS networks, this work raises the theoretical issue of the sys-

tematic application of variable encodings, which allow variable neighborhood searches,

as operators inside general evolutionary computation algorithms.

Keywords: Routing, Multiobjective Genetic Algorithm, Variable encoding.
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Chapter

1
Introduction

With the emergence of new technologies, the transmission of multimedia applications

has become an achievable goal. New applications such as videoconferences, Video on

Demand (VoD) or Voice over IP (VoIP) brought the need of some guarantees of network

characteristics regarding the quality of the data flow, such as minimum bandwidth or

maximum delay (De Giovanni et al. , 2004).

However, in the conventional internet traffic it is not possible to predict the path of

packets, i.e, there is no guarantee of communication regularity. For this reason, some

mechanisms were developed for Quality of Service (QoS). They allow differentiation of

the transmitted flows. They also allow the definition of conditions in order to reach a

level of quality from the prioritization of different flows according to their characteristics

and objectives (Paul & Raghavan, 2002).

Recently, several technologies have been proposed to develop approaches of Traf-

fic Engineering for Routing with QoS. According to RFC-3272 (Request for Comments

3272), the Internet Traffic Engineering is defined as an aspect of Internet network engi-

neering that deals with the issue of performance evaluation and optimization of opera-

tional IP networks (Awduche et al. , 2002). Many of these studies deal with routing on

IP networks and MPLS (Multi Protocol Label Switching), using single-objective Genetic

Algorithms (GAs) (Maia et al. , 2007; Andrade, 2008) or deterministic methods, such as

Lagrangian Relaxation (Dias, 2004). As the model of these studies is formulated with a

single objective, search can be biased to a specific goal, leading to solutions that are un-

suitable under other objective viewpoint. For this reason, multiobjetive strategies have

been receiving some attention. However, the use of multiobjective methods applied to

1



2 1. Introduction

the problem of routing on IP networks is not extensive. Nevertheless, most of works

perform the optimization of two objetives (Alvarado et al. , 2005). Other studies use

deterministic methods (Erbas & Erbas, 2003). The current study deals with the opti-

mization of three objetives which, according to (Wang & Crowcroft, 1996), render the

problem NP-complete (Nondeterministic Polynomial Time Complete). For this reason,

techniques based on non-deterministic heuristics are likely to be the most suitable ones.

Santos (2009) proposes a dynamic evaluation for routing in an ambient of MPLS using

multiobjective techniques. That research represents an initial reference for the present

work, employing the same scenarios and objective functions.

MPLS is an example of a technology that makes possible the explicit routing of pack-

ets. It facilitates the provisioning of QoS according to requirements of multimedia ap-

plications. This technology allows the addition of labels to packets in order to identify

them.

A possible way to deal with various requirements of different applications is the use

of search strategies for finding optimal or suboptimal solutions. Techniques such as

Genetic Algorithms (GAs) and Variable Neighborhood Search (VNS) are examples of

heuristic search strategies that can be used.

GAs (Goldberg, 1989) are search techniques that consider sets of candidates solu-

tions (each solution is an individual, and the set is the population), which vary accord-

ing to two kinds of probabilistic rules: mutation and crossover. Mutations introduce

perturbations into current solutions, producing new ones. Crossovers combine the in-

formation from previous solutions, producing new ones. The current population goes

finally through a selection procedure, that probabilistically increases the frequency of

the best solutions in a new population, reducing the frequency of the worst ones. In

recent years, it has been recognized that a key factor that determines the performance

of GAs is the encoding employed for representation of solutions in the population. This

is due the fact that different encodings induce different neighborhoods, which lead to

different behaviors of the variation mechanisms of mutation and crossover (Carrano

et al. , 2010).

VNS techniques (Mladenovi & Hansen, 1997), however, usually evolve a single so-

lution each time. This solution is subjected to heuristic descent searches that find local

minima in attraction regions. The regions are characterized by connected paths in a

given neighborhood. It allows the algorithm to perform further descent steps after find-

ing a local minimum in a neighborhood, by simply the neighborhood.

This work deals with the problem of packet routing in MPLS networks. In the specific

context of this problem, a new Multiobjective Genetic Algorithm, the VN-MGA (Variable

Neighborhood Multiobjective Genetic Algorithm) is developed. The optimized routing
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tries to minimize the network cost and the amount of rejection of simultaneous requests,

as well as to perform a load balancing among routes. The proposed algorithm allows

to deal with conflicting QoS indicators, described as independent objective functions.

Moreover, the solution sets that are delivered as solutions for the multiobjective prob-

lem provide flexibility for the decision maker to select a specific solution that fits an

operation goal, according to the current state of the network.

The proposed VN-MGA is based on the classical NSGA-II (Deb et al. , 2002) and has,

as a distinctive feature, its crossover and mutation operators inspired in the concept of

variable neighborhood of the VNS techniques. Two different encodings are employed:

a low-level encoding, which encodes explicitly the routes that are followed by each re-

quirement of service, and a high-level encoding, that encodes the permutations of the

several requirements of service, defining the order in which they will be included in the

solution. Crossover and mutation operators, acting in two levels, are able to explore and

to exploit the decision variable space with enhanced efficiency, leading to solutions that

dominate the ones that appear in algorithm versions using only one level. It should be

noticed that the proposed operators are problem-specific. In problems of combinatorial

nature, it has been established that algorithms employing specific crossover and muta-

tion operators can be much more efficient than general-purpose GAs (Carrano et al. ,

2006).

The proposed algorithm is also compared with: (i) a pure VNS algorithm which em-

ploys the same neighborhoods employed in the proposed VN-MGA along with a typical

VNS neighborhood change mechanism; and (ii) an Integer Linear Programming (ILP)

solver. Both algorithms, which are scalar in their original formulation, are adapted to

the multiobjective problem using an ε-constraint procedure (Ehrgott, 2000). The pro-

posed VN-MGA reaches better solutions, when compared with the VNS, and requires a

much smaller computational effort, compared with the ILP.

A group of routing problems has been solved using hybrid approaches (Perboli

et al. , 2008). There are hybrid methods for the vehicle routing problem using Ge-

netic Algorithms and Tabu Search (Perboli et al. , 2008) or combining VND (Variable

Neighborhood Descent) and GRASP (Greedy Randomized Adaptive Search Procedure)

(de Freitas & Montané, 2008). Also problems with other characteristics, such as pipeline

petroleum distribution using GA and VNS (de Souza Filho, 2007), should be mentioned.

Those studies typically combine different algorithms in a literal way, performing steps

from one and other algorithm.

Some preliminary results presented in this thesis were published in a conference

proceedings (Onety et al. , 2011), and a more complete version was published in a

journal (Onety et al. , 2013).



4 1. Introduction

1.1 Motivation

Currently, several technologies have been proposed in order to enable the recognition

of the type of information that is transmitted over IP networks and, therefore, to of-

fer support for the QoS requirements. The technology called MPLS, for instance, is an

effective alternative, since it allows the determination of explicit routes. With the as-

signment of routes, it helps the QoS provisioning with the view to meet the requirement

of multimedia applications. This technology allows the addition of labels to packages,

identifying them. Thereafter, it makes possible to perform routing, considering several

indicators of QoS.

However, different QoS indicators that should be enhanced have conflicting nature.

The minimization of delay, for example, may generate an unbalanced load distribu-

tion due to the concentration of packages on the shortest path links. Moreover, the

problem of determining optimal routes under two or more QoS constraints can become

NP-complete (Wang & Crowcroft, 1996). In this way, the use of deterministic methods is

not an efficient approach for routing. In the specific case of multimedia applications, it

is desirable the assignement of reliable and delay-free routes for the transmission of in-

formation, in order to enable those applications. These routes should consider multiple

QoS requirements, many of them conflicting, such as reducing delays and performing

network load balancing.

A viable alternative to deal with the various conflicting requirements of different

applications is the implementation of search strategies for finding the optimal or sub-

optimal solutions based on heuristics. Through heuristics, it is possible to find solutions

for which the feasibility is guaranteed with a reasonable computational effort. Multi-

objectivs Genetic Algorithms and Variable Neighborhood Search are some examples of

heuristic search strategies.

1.2 Objectives

This work proposes an approach for the optimization of routes on IP networks in an

MPLS domain, based on a Traffic Engineering methodology that is capable of control-

ling some Quality of Service (QoS) parameters. In particular, it proposes specific ge-

netic operators for the problem of ensuring QoS in IP networks, aiming to increase

the probability of generation of feasible individuals during the evolution process. The

methodology is based on a Multiobjective Genetic Algorithm. As an innovative feature,

it has specific genetic operators that consider different neighborhood structures, such as

suggested by the technique of Variable Neighborhood Search. Thus, using this change
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of neighborhood structure, it can explore new areas, not glimpsed before.

This thesis assumes an MPLS-based environment due to its explicit routing with la-

bels on its packages. This environment consequently favors the QoS. The use of multiob-

jective genetic algorithms, in turn, can deal with different QoS indicators of conflicting

nature. These indicators are described as independent objective functions, i.e., there is

no need to adopt a single goal to weight the different metrics. Moreover, the fact that

multiobjective algorithms deliver sets of solutions at the same time, can offer flexibility

to the decision maker, which can analyse the current state of the network and decide in

each moment which objective should be privileged, by choosing different solutions.

The definition of a new method for route generation is a contribution of this work.

The proposed method exploits the fact that, depending on the request order, the route

generation can privilege a particular request that could be impaired if it were in a dif-

ferent priority. The variation of request order, therefore, increases the diversity of solu-

tions, allowing the development of new possibilities of routes.

1.3 Thesis Contributions

As result of this work, we expect to provide a viable methodology for package routing

in MPLS IP networks.

The particular feature of the proposed approach is that solutions are encoded such

that different neighborhoods become defined, allowing the application of principles of

VNS algorithms. In this way, specific VNS-based operators for the GA are able to perform

global search with acceptable computational cost.

In addition to the technological contribution, we expect that the proposed concept of

variable-neighborhood operators for genetic algorithms might become a relevant con-

tribution to the theory of evolutionary computation algorithms.

1.4 Document Outline

This thesis is organized as follows. In Chapter 2, we introduce the basic concepts neces-

sary for understanding the purpose of this research, such as Traffic Engineering, Quality

of Service and MPLS technology. We describe, in the context of Traffic Engineering,

some techniques for obtaining Quality of Service.

In Chapter 3, we present basic concepts about multiobjective optimization. We also

describe a scalarization method, called ε-constraint, which may be solved exactly by

ILP solvers in the case of mixed-integer linear programming problems, which will be

used for extracting benchmarks for the comparison of the proposed method. Afterward,
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we present some discussion about evolutionary computation methods, including genetic

algorithms in single-objective and multiobjective versions. In addition, we present some

discussion about meta-heuristics, focusing on Variable Neighbourhood Search, which is

the main inspiration of the proposed method. Finally, we present a brief discussion

about the issue of Decision Making, in order to contextualize the proposed method.

In Chapter 4, we mention some related works that have been done, considering

Evolutionary Computation, MPLS, Routing and hybrid methods.

In Chapter 5, we describe the problem tackled in this thesis and its modeling. We

present the VN-MGA, its operators, and the corresponding algorithms.

In Chapter 6, we present some results obtained with this approach. We compare

them with other algorithms.

Finally, conclusions and future developments of the research activity are reported in

Chapter 7.



Chapter

2
Tra�c Engineering and Quality of Service on IP

Networks

This chapter introduces basic concepts from the field of Telecommunication Networks.

They are necessary for understanding the purpose of this research, such as Traffic Engi-

neering, Quality of Service and MPLS technology.

2.1 Tra�c Engineering

The Internet Engineering Task Force (IETF) is a large open international community of

network designers, operators, vendors, and researchers concerned with the evolution

of the Internet architecture and the smooth operation of the Internet. Its mission is to

make the Internet work better by producing high quality, relevant technical documents

that influence the way people design, use, and manage the Internet (IETF, 2013). Rec-

ommendations of IETF are usually published in documents called RFCs (Request for

Comments). According to the scope of this work, we are interested in principles of

Traffic Engineering.

Traffic Engineering (TE) comprises a set of techniques for the management of telecom-

munication networks. By arranging the traffic distributions, it aims at reducing conges-

tion, instability or impaired Quality of Service (Maia, 2006). According to definitions of

RFC-3272 (Awduche et al. , 2002), TE is an aspect of Network Engineering that deals

with issues of evaluation and optimization of performances of IP networks. It is capable

7
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of applying technologies and scientific principles in order to measure, to characterize,

to model and to control the network traffic. Performance measures include delay, delay

variation (jitter), packet loss and throughput.

Figure 2.1 illustrates the packet forwarding with and without TE. In a domain that

does not implement TE, all packets must be forwarded along the shortest path, in this

case, the middle way, which often results in congestion. The existence of congestion

may cause QoS degradation (Maia, 2006).

Figure 2.1: Packet routing in an intra-domain network, represented by the cloud. In (a),
the routing is done with no TE. Packets follow the shortest path, causing an overload of
the link. In (b), the routing has an implementation of TE. It tries to distribute the flow
over the available links, aiming at improving QoS (Maia, 2006).

Among many objectives of TE, it aims at facilitating reliable operations, reducing the

vulnerability to errors, faults and failures that can occur in the infrastructure. Another

important goal of TE is to perform the control and optimization of the routing func-

tion when it sends the traffic through the most effective way of network. Considering

the optimization, it refers to the management of capacity and traffic. Capacity man-

agement includes capacity planning, routing control and resource management such as

bandwidth, buffer size and computational resources. Traffic management refers to the

analysis of traffic conditions, queue management, scheduling and other functions that

regulate traffic flow through the network (Awduche et al. , 2002).

Summarizing the goals, TE includes four basic problems, that is, admission control of

new connections, constraint-based routing, re-routing of established connections, and

network resources planning (Maia, 2006).

The first problem, admission control, determines if a request can be admitted or not.

If so, it selects a route for this connection over the network.

The second problem, constraint-based routing, is responsible for the selection of op-

timal paths that satisfy a given set of constraints and requirements. Metrics used for

constraint-based routing include cost in money, number of intermediate nodes, trans-

mission rate, reliability, delay and jitter. The first step of this process aims at deleting

links with not enough bandwidth for new connections or that somehow do not meet the
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requirements of incoming demand. The second step consists of choosing the “best path”

to be used on the residual network. The best path is not necessarily the shortest path

calculated by an algorithm such as Dijkstra’s, but a path that meets all the requirements

(Awduche et al. , 1999).

The third problem, re-routing of established connections, is the process in which

some traffic flows are re-routed in order to improve network efficiency. The network

administrator may periodically modify the routing of traffic flows due to new network

conditions. For example, a traffic flow can be re-routed into a secondary path in case of

failure in the primary path, or in the case of a higher priority traffic using the main path

resources. When a fault occurs, if there were no re-optimization, the network could

become increasingly distant from the optimal point (Andrade, 2008).

The last problem, network resource planning, includes planning of link capacities

and sizes of buffers. It aims at providing the network ability to comply with new traffic

demands. The planning of network resources should consider the possibility of future

demands, which can be estimated from the historical data of network traffic (Girish

et al. , 2000).

The RFC-3272 states that TE has not a goal that is reached only once. Instead, its

achievements are continuous, obtained in an iterative process. The reason for this is

that the optimization objectives may change over time whenever new requirements are

imposed. Due to the complexity of those tasks, the TE requires a continuous develop-

ment of new technologies and methodologies for enhancing network performance.

TE can also be seen from a control perspective. This aspect of control can be clas-

sified as pro-active and reactive. Pro-active control consists of a preventive action that

avoids unfavorable network states. Reactive control responds correctively and adap-

tively, dealing with events that have already occurred in the network.

One of the major challenges of TE is the capability of automated control and of per-

forming adjustments for significant changes in the current network state, while keeping

its stability. Therefore, it is important to assess its performance in order to determine

the effectiveness of the chosen methods. Results of assessments can help to identify

problems and to predict potential problems. Moreover, they can guide the network in

a re-optimization procedure. This evaluation can be achieved in many different ways.

The main techniques include analytical methods, simulation and empirical methods

based on measurements. In the case of analytical methods or simulations, the net-

work nodes and links are modeled in order to capture relevant operational features

such as topology, bandwidth, buffer space, and nodal service policies (link scheduling,

packet prioritization, buffer management, etc.). Analytical traffic models can be used

to describe dynamic characteristics and behavior of traffic, such as burstiness, statistical
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distributions and dependence.

Another important objective of TE is to combat congestion at a reasonable cost. A

network resource is considered congested if the arrival packet rate exceeds the output

capacity of the resource over an interval of time. Congestion may result in some of

the arrival packets being delayed or even dropped. Congestion increases transit delays,

jitter, packet loss, and reduces the predictability of network services (Awduche et al. ,

2002).

Considering that performance evaluation is not a trivial issue, several techniques are

used to simplify the analysis, such as abstraction, decomposition and approximation. A

simplification of concepts such as available bandwidth and effective buffer, for example,

can approximate nodal behaviors at packet level and simplify the analysis at connection

level. For instance, techniques of network analysis using queuing models and approx-

imation schemes based on asymptotic and decomposition techniques can render the

analysis more tractable.

Simulations can be used to evaluate the network performance or to verify and val-

idate analytical approximations. However, they can be computationally expensive and

not very clear. Thus, the analysis of network performance should involve a hybrid com-

bination of analytical techniques, simulations and empirical methods.

As a general rule, according to the RFC 3272, concepts and mechanisms of TE must

be sufficiently specific and well-defined for known requirements and, at the same time,

flexible and extensible to future demands. For this purpose, it is necessary to clearly

define the context in which the TE is applied, specifying the appropriate rules for each

question. Hereafter, we present the contexts that are applied in Chapter 4 to the prob-

lem addressed in this study.

2.1.1 Context of TE

The use of a TE methodology is important to establish scenarios in which the rules of

Traffic Engineering are applied. Awduche et al. (2002) proposed in RFC-3272 the use

of contexts, which delimit issues to be addressed and how they should be evaluated.

Network Context

According to Awduche et al. (2002), Network Context defines the universe of discourse

and, in particular, the situation which the TE problem occurs. This context includes

the structure, network policies, constraints and characteristics, quality attributes and

optimization criteria.

Network elements and resources may have specific characteristics that restrict the
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manner that demands are handled. Network resources may be equipped with traf-

fic control mechanisms, which should be used to control, for example, various packet

processing activities within a given resource, to arbitrate contention for access to the

resource by different packets, and to regulate traffic behavior through the resource.

Details about packet transport are specified in the policies of network administrators.

Types of services offered by the network generally depend on the technology and char-

acteristics of the network elements and protocols.

Problem Context

The Problem Context defines general and specific issues that the TE deals, such as the

identification, abstraction of relevant issues, representation, formulation, specification

of requirements on the solution space and specification of the desired features of ac-

ceptable solutions.

Important questions to be taken into account are how to formulate explicitly the

problems that the TE may solve, how to identify the requirements on the solution space,

how to specify the desirable characteristics of good solutions, and how to measure and

to characterize the effectiveness of solutions. Another class of problems is how to mea-

sure and to estimate relevant network parameters and how to characterize the state of

the network in order to evaluate its performance in a variety of scenarios. There is still

another class of problems that concerns on how to effectively optimize network per-

formance. Performance optimization may entail translating solutions to specific traffic

engineering problems into network configurations. Optimization may also entail some

degree of resource management control, routing control, and capacity augmentation.

Solution Context

The Solution Context indicates how to address the issues identified by the Problem Con-

text, including analysis, evaluation of alternatives, prescriptions and resolutions. It

demands reasonable estimates of traffic load, characterization of network state, in this

way deriving solutions for the problems of TE that can be implicitly or explicitly formu-

lated.

Implementation and Operation Context

The Implementation and Operation Context indicates where the solutions are method-

ologically instantiated. It includes planning, organization and execution. This context

is characterized by constant changes that occur at multiple levels of abstraction. As-

pects of planning should involve a set of priority actions to achieve certain goals. The
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organization involves assigning responsibility to the various system components of TE

and coordinating their activities. Execution involves measuring and applying corrective

actions when they are necessary.

2.2 IP protocol

The Internet can be described as a collection of Autonomous Systems (AS) intercon-

nected by backbones. Each AS is an independent node or a sub-network that defines its

own rules such as routing policy, internal structures and access technologies. A protocol

that enables the communication between each AS is called Internet Protocol (IP). IP is

a protocol that has the task of delivering packets from the source to the destination host

based on their addresses. For this purpose, IP defines datagram structures that encap-

sulate the data to be delivered. It provides the service of best effort, i.e., it does the best

service as possible, but with no guarantee of transport or sequence, with a variable bit

rate and with delay in delivery time (Andrade, 2008; Maia, 2006).

According to Awduche et al. (2002), in a very basic abstraction level, an IP network

may by represented as a distributed dynamic system, consisting of:

1. A set of interconnected resources that provides transportation services of IP traffic

subject to certain constraints;

2. A demand system representing the offered load to be transported through the

network;

3. A response system consisting of network processes, protocols, and related mecha-

nisms that facilitate the movement of traffic through the network.

To provide a successful multimedia network, many studies have focused on the issue

of how to ensure the quality of services on IP networks. We discuss such an issue in

next section.

2.2.1 Quality of Service on IP networks

With the increment of data-intensive technologies such as multimedia applications and

of the capacity of networks, new applications have appeared requiring a better network

performance. However, the transportation of multimedia data is not trivial. Apart from

bandwidth, there are constraints related to maximum delay, maximum jitter and packet

loss. For the success of a multimedia network, major innovations in the Quality of

Service are essential.
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Many multimedia applications are known as constant rate media applications. Nev-

ertheless, there is another class of applications which deal with variable rate transmis-

sion. Several classes of multimedia applications share resources of a network among

themselves and with data applications. Some examples are applications of streaming

audio and video such as Internet radio, recorded lectures, interactive applications such

as IP telephony and video conferencing. Thus, classes of multimedia applications have

different requirements and should be treated in a particular way, according to their

needs. Each source sends a stream of packets to a given destination. The needs of each

flow can be characterized by four parameters: reliability, delay, jitter and bandwidth.

These parameters define the Quality of Service for each flow requirement (Andrade,

2008).

Reliability can be described as the acceptable percentage of lost packets for an ap-

plication. Delay is defined as the time that a packet takes to reach its destination. It

is a result of queuing in routers, propagation time and processing time along the path

from source to destination. Jitter delay or fluctuation is defined as the difference be-

tween arrival times of successive packets. The bandwidth or throughput is the amount

of information sent or received per second (Andrade, 2008).

The definition of QoS through parameters of delay, jitter, throughput and packet

loss is not the only possible one. Although this definition is well-established, there

are other approaches provided by International Telecommunications Union (ITU), Eu-

ropean Telecommunications Standards Institute (ETSI) and the Internet Engineering

Task Force (IETF). According to ITU/ETSI, there are three QoS definitions for a general

model: intrinsic, evaluated and perceived. Figure 2.2 presents the general model of

QoS.

The intrinsic QoS is determined by the network project of transmission mechanisms

and provisioning of access networks, terminals and connections. It is obtained by a

comparison of measured and expected performance characteristics. Another aspect that

should be emphasized is that the intrinsic QoS is not affected by user perception (An-

drade, 2008; Maia, 2006).

The perceived QoS reflects the user experience by using a specific service. This

measure is subjective and will reflect the relationship between user’s expectations and

experience.

The evaluated QoS begins to be analyzed when the customer decides whether to

continue to use this service. This decision is influenced by factors such as price of

service, perceived quality and how well the customer is served.

The level of overall QoS should be evaluated in all dimensions (intrinsic, evaluated

and perceived) separately. Each entity should separate responsibilities in the process of



14 2. Traffic Engineering and Quality of Service on IP Networks

Figure 2.2: The general model of QoS within the approaches provided by ETSI / ITU
and IETF. It represents three QoS definitions for a general model: intrinsic, evaluated
and perceived. The intrinsic QoS is obtained by a comparison of measured and expected
performance characteristics. The perceived QoS reflects the user experience by using a
specific service. The evaluated QoS begins to be analyzed when the customer decides
whether to continue to use this service (Andrade, 2008; Maia, 2006).

obtaining QoS.

For the purpose of this research, some techniques for obtaining intrinsic QoS will be

discussed.

2.2.2 Techniques for Obtaining Quality of Service

In order to support multimedia applications, the network can use different techniques.

Some techniques may involve some structural aspects, while others may involve traffic

shaping and differential data treatment.

A basic solution is to oversize all network elements (routers, links and network el-

ements). In this way, problems as delay, jitter and loss packet will be reduced and the

bandwidth will be increased. Although simple, and sometimes impossible, this solution

is expensive and does not provide a rational usage of the available resources.

Another simple solution is to increase the buffers in the routers. This solves the

problem of jitter, but also increases the delay. Both oversizing the network components

and increasing buffers do not solve the problem of QoS in the long term.

There are more elaborate mechanisms, such as Integrated Services and Differenti-

ated Services, which allow greater control by administrators.
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Integrated Services

The Integrated Services (Intserv) is a structure developed by the IETF Integrated Ser-

vices working group. This structure aims at providing QoS for individualized applica-

tions. It requires resources, such as bandwidth and buffers, to be reserved a priori for a

given traffic flow. It includes resources such as packet classifiers, packet schedulers, and

admission control, which are beyond those used in the best-effort model. A packet clas-

sifier identifies flows to receive a certain level of service. A packet scheduler handles

the scheduling of services to different packet flows to ensure that QoS commitments

are met. Admission control is used to determine whether a router has the necessary

resources to accept a new flow (Andrade, 2008).

The main issue with the Integrated Services model has been scalability [RFC-2998],

especially in large public IP networks which may potentially have millions of active

micro-flows in transit concurrently. A noticeable feature of the Integrated Services

model is that it requires explicit signaling of QoS requirements from end systems to

routers [RFC-2753] (Awduche et al. , 2002).

The main IETF protocol for Integrated Services is the ReSource Reservation Protocol

(RSVP) (Braden et al. , 1997). This protocol is used to reserve resources. It does a mul-

ticast routing with spanning tree, where each group receives a group address. A sender

adds the address of a group in their packets in order to transmit data to this group.

Then the algorithm builds a spanning tree that covers all members (Tanenbaum, 1989).

A drawback of this approach is the requirement of resource reservation before sending

packets. This leads to problems of scalability and excessive complexity of routing ele-

ments. To remedy this problem, another approach, called Differentiated Services, was

developed.

Di�erentiated Services

In the differentiated services architecture it is not necessary to reserve resources in

advance. It operates on the principle of traffic categorization, creating multiple classes

of services. This way, each router is configured to differentiate traffic based on its

class. The Service Level Agreements specify which class of traffic would be served, the

guarantee and the amount of data that should be granted to each class.

2.3 The MPLS Technology

The formerly discussed techniques for obtaining QoS allow a significant performance

improvement. However, as they still depend on the traditional routing algorithms from
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IP networks, and as IP routing algorithms provide no guarantees, it is not possible to

ensure the quality of multimedia applications.

In order to guarantee QoS in IP networks it is necessary to use mechanisms for a

greater control over network resources. With this goal, the Multiprotocol Label Switch-

ing (MPLS) was developed. Concerning that it is the selected scenario of this research,

the MPLS will be described in some detail.

With the purpose of locating the MPLS in the layers model, the Open Systems Inter-

connection (OSI) model is briefly introduced as follows. The OSI model standardizes

internal functions of a communications system by partitioning it into abstraction layers.

It classifies computer networks in seven layers, as shown in Figure 2.3 (Tanenbaum,

1984).

Application7

Presentation6

Session5

Transport4

Network3

Data link2

Physical1

Figure 2.3: The seven layers of OSI model.

According to Tanenbaum (1984), basically, the main rules to define those seven

layers are:

1. A layer should be created if there is the necessity of another abstraction level.

2. Each layer should perform a well-defined function.

3. The function of each layer should be chosen based on the definition of interna-

tional standardized protocols.

4. The boundaries of layers should be chosen to minimize information flow through

interfaces.

5. The number of layers should be large enough such that distinct functions do not

need to be placed at the same layer, and small enough such that the architecture

does not become hard to control.
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A brief description of each one was specified by ITU-T Rec.X.200 (1994), as follows.

Layer 1: The Physical Layer provides mechanical, electrical, functional and procedu-

ral means to activate, maintain, and de-activate physical connections for bit transmis-

sion between data-link entities. Its entities are interconnected by a physical medium.

This layer defines the relationship between a device and a transmission medium such

as a copper cable or an optical fiber cable.

Layer 2: The Data Link Layer detects and possibly corrects errors which may occur

in Physical Layer. It also enables the Network Layer to control the interconnection of

data-circuits within the Physical Layer.

Layer 3: The Network Layer controls the operation in the subnet, deciding which

physical path the data should take based on network conditions, priority of service and

other factors. This layer is also responsible for forwarding packets between networks,

to control traffic on the subnet and to maintain the quality of service requested by the

transportation layer.

Layer 4: The Transportation Layer provides transparent data transfer between end-

users, ensuring reliable services to the upper layers. It optimizes the use of available

network services in order to provide the required performance by each session entity at

minimum cost.

Layer 5: The Session Layer controls dialogues between computers, managing their

data exchange. It establishes a session connection between processes running on differ-

ent stations with the aim at supporting orderly data exchange interactions and releasing

the connection in an orderly manner.

Layer 6: The Presentation Layer establishes context between application-layer enti-

ties. It transforms data in a form that the application accepts, formating and encrypting

data to be sent across a network.

Layer 7: The Application Layer is the closest one to the end-user. It interacts directly

with software application implementing a communicating component. In this way, the

end user may access the network services.

The MPLS technology operates at a layer that is generally considered to lie between

traditional definitions of Layer 2 (Data Link Layer) and Layer 3 (Network Layer), and

thus is often referred to as a "Layer 2.5" protocol.

MPLS (Multi Protocol Label Switching) is one of the technologies proposed by the

IETF, which enables sophisticated routing schemes based on the ability of a prior estab-

lishment of routes to be followed by packets. The explicit routing of packets is possible

due to the addition of short path labels. Thus, it avoids complex lookups in a routing

table. This is an important feature for the maintenance of the network QoS indicators.

Figure 2.4 shows the MPLS layer and its fields. The MPLS header is positioned after
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Layer 2 header and before Layer 3 header. The Label is a short identifier that is assigned

to each packet when it enters in the MPLS network. Thus routers just analyze the labels

in order to direct the packet. The TC field means Traffic Class. It defines classes of

services, in order to indicate priority levels to support DiffServ in MPLS network, among

others. The field S refers to Stack. It supports queuing labels if the package receives

more than one label. The field TTL means Time to Live. It counts the number of routers

the packet has passed by, in a total of 255. If the packet exceeds 255 routers, it is

discarded to avoid possible loops.

Figure 2.4: The MPLS layer and its fields. The MPLS header is positioned after Layer 2
header and before Layer 3 header. The label is a short identifier that is assigned to each
packet when it enters in the MPLS network. TC is the Traffic Class, that defines classes
of services. S refers to stack, that supports queuing labels if the package receives more
than one label. TTL refers to Time To Live, that counts the number of routers the packet
has passed.

The term Multi Protocol from the acronym MPLS represents the possibility of integra-

tion of this technology with different network protocols. It consists of specific software

and hardware. In software it focus on communication protocols. In hardware, it needs

routers that can handle labeled packets within this domain.

On IP network routing, for each datagram, the router searches in the routing table

the network prefix that suits the same address, in order to determine the output link.

As the network prefix has different sizes, the search time varies. The basic idea of MPLS

is to increase the speed of processing IP datagrams, forwarding packets based on labels

of short fixed size. The routing process based on label increases the processing speed,

resulting in a better performance. MPLS network can offer Quality of Service guarantees

without dedicated links. It was designed to convert IP backbones (best effort) into

business class transportation, capable of manipulating real time data (Andrade, 2008).

The packet forwarding through label is only performed within an MPLS domain.

MPLS domain can be defined as a set of routers capable of loading MPLS packets. It

consists of three basic entities. Two of them are located in the domain boundary and the
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third one is located inside the MPLS domain. The first boundary router inserts the label

on the packet. The inside router is responsible for routing in the domain. The other

boundary router removes the label packet (Andrade, 2008). When a packet enters the

MPLS domain, the edge router, called LER(Label Edge Router), inserts labels on it. Thus,

the router links the packet to a FEC (Forward Equivalence Class) class, which indicates

the LSP (Label Switched Path) path end-to-end through which the packet should follow

in the domain. FEC is defined as a class corresponding to a set of packets sent in the

same way through the network. Each FEC explicitly defines the nodes that the packets

of each class should follow. With FECs, it is possible to create a LIB (Label Information
Base), that is kept in each LSR (Label Switch Router) (Dias, 2004; Awduche et al. , 2002).

Figure 2.5 represents a model of packet forwarding in the MPLS domain. Passing

through the LER ingress, the IP packet is assigned to a FEC and it receives a label that

indicates the path to be followed. Before the packet leaves the MPLS domain, the label

that indicates the FEC is removed.

Figure 2.5: Routing packets in the MPLS domain. (Adapted from Maia (2006)). The
cloud represents the MPLS domain. The ingress LER associates the IP packet to a FEC,
explicitly stating the path to be followed - for instance, LSP1 or LSP2. Finally, the egress
LER removes the label of the IP packet and it is forwarded on its way via standard IP
routing.

MPLS is a very powerful technology for Internet Traffic Engineering because it sup-

ports explicit LSPs, i.e., dedicated paths (virtual circuits) can be created in a datagram

network. The explicit routing allows constraint-based routing to be implemented effi-

ciently in IP networks (Awduche et al. , 2002). Multiple paths can be used simultane-

ously to increase the performance of a given source to a given destination. Thus, load

balancing can be performed using many routes for traffic flow.

As the network parameters can change at any time, schemes of routing and re-
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routing should be created to keep the contract between service provider and users. The

Traffic Engineering with MPLS uses measurement systems coupled to routing algorithms

and determines LSPs. The LSP selection should avoid re-routing, because it involves

operation costs of management network. This process may be preventive, where path

allocation prevents congestion in the network, or may be reactive, operating when a

problem occurs (Andrade, 2008).

Embratel is an example of a company that provides the use of MPLS technology.

The company offers to the customers network structures with this technology, that can

ensure a suitable operation of their applications, allowing voice and video traffic over

IP, for example, with the desired QoS (Embratel, 2013).
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3
Related works

Current research indicate that many Computational Intelligence techniques are used to

solve different problems related to the optimization of Routes on IP Networks. Among

many problems, we can mention some of them that are investigated: the prediction of

delay, loss of packets, congestion, routing, rerouting, load balancing and optimization

of parameters such as available bandwidth. The literature review was based on a set of

techniques and technologies used to develop the proposed algorithm in this thesis. The

first part consists of network concepts, encompassing Traffic Engineering and MPLS.

Then, we list research related to routing applied to IP networks. Subsequently, we

list problems using techniques of multiobjective optimization of networks. Finally, we

present different routing problems that use hybrid algorithms.

3.1 Tra�c Engineering and MPLS Technology

Considering the Traffic Engineering and MPLS Technology , there is a set of research,

such as Nogueira et al. (2006) and Cortez et al. (2006) that attempts to perform the

detection of applications from the prediction of their traffic levels. The techniques used

are based on Artificial Neural Networks with Multilayer Perceptron (MLP).

Bui et al. (2007) propose a hybrid approach for predicting end-to-end delays using

Wavelet Transforms in combination with Artificial Neural Networks and Pattern Recog-

nition techniques. It is interesting to our approach once that it can be useful for the

choice of requisitions sequence.

21
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Onali & Atzori (2008) describe an algorithm for finding an optimal mapping of the

Type of Service in each type of class and an optimal allocation of bandwidth for each

one of them. The optimality is expressed in terms of the cost function in order to

obtain a level of Quality of Service and utilization of network resources. From the

improvement of techniques of Traffic Prediction, it is possible to create tools for fault

detection and efficient Traffic Engineering techniques, resulting in economic benefits

through an improvement of resource management. These studies may be useful to

supplement this study, by carrying out the routing associated with the possible traffic

or the best allocation of bandwidth with respect to the application. Other works that

deal with prediction in order to control the size of the queue buffer, such as Sousa et al.
(2006) also have significant importance to solve the delay caused by the congestion

problem.

The research developed by Maia (2006) proposes a Traffic Engineering system capa-

ble of supporting mixed traffic (data, voice and video). It attempts to keep dynamically

different levels of Quality of Service using MPLS, principles of Autonomic Computing

and techniques of Computational Intelligence. This integration is achieved by com-

bining different techniques of Computational Intelligence, such as Fuzzy Logic to im-

plement the classification of routes, Genetic Algorithms for optimization and Artificial

Neural Networks for the traffic prediction. The use of theses different techniques allows

networks to have an intelligent behavior with some features such as adaptability, fault

tolerance and robustness. Autonomic Computing, on its turn, allows the network to re-

spond automatically to changes in conditions that occur during its operation, presenting

a self-management behavior. For the implementation of traffic control and QoS, they

used the MPLS (Maia et al. , 2007). However, this work limits the construction of routes

and treats them as pre-defined, creating genetic operators that act only on the same

routes. It also considers only the shortest path as a criterion of convergence.

3.2 Routing applied to IP networks

In papers of routing applied to IP networks, Bagula (2006) attempts to maximize the

use of network bandwidth and to reduce the delay through the GEP method (Gene
Expression Programming).

Baguenine & Mellouk (2007) aim at finding a feasible path that satisfies QoS re-

quirements, from the optimization of resources, by reducing the number of hops and

delay. The metaheuristic used is the Ant Colony, which attempts to distribute the traffic

through the N-best paths according to the criterion of end-to-end delay.
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Dias (2004) proposes mono-objective strategies to solve problems of TE in IP net-

works over MPLS. The method uses Lagrangian Relaxation, with a subgradient algo-

rithm to obtain a feasible solution in polynomial time. Its objectives are intended to

maximize the overall throughput of data flows injected into the network, considering

the bandwidth of the links and the limit of end-to-end delay for each data stream. Al-

though the subgradient algorithm finds a solution, there is no guarantee on its viability

for a dynamic application.

The current study, however, involves the optimization of three parameters, which

according Wang & Crowcroft (1996) renders problem the complexity NP-complete. For

this reason, heuristic techniques become the most suitable ones.

Andrade (2008) proposes the provisioning of QoS in MPLS networks using bioin-

spired algorithms associated with local search methods such as Tabu Search and GRASP

method (Greedy Randomized Adaptive Search Procedure) in an environment of au-

tossimilar traffic. Santos (2009) proposes a dynamic evaluation of routing in an MPLS

environment using multiobjective techniques, such as the NSGA-II algorithm. That work

aims at minimizing the network cost, by responding to various user requests, ensuring

the Quality of Service and performing load balancing of flows in the network.

3.3 Multiobjective optimization of networks

In the literature review, we noticed that the use of multiobjetive methods applied to

routing problems in IP networks is scarce. Most of the papers presented assume the

existence of a single design goal. In situations in which more than one objective is con-

sidered, the mathematical formulation is developed as a weighted sum of the objectives.

This results in a biased search for one particular purpose. For this reason, multiobjective

strategies have also gained importance in the optimization of traffic flows in networks.

As one of the advantages, the multiobjective approach presents a uniform treatment of

all objectives. The decision maker is the responsible for choosing which goal will be pri-

oritized in the set of final solutions. Among some studies involving QoS analysis, some

papers describe the application of bioinspired methods, such as Ant Colony, Genetic

Algorithms, Tabu Search and Simulated Annealing.

Alvarado et al. (2005) propose the application of evolutionary algorithms such as

NSGA-II and SPEA2 for multiobjective optimization of multicast networks, aiming at

minimizing the number of hops and the delay of transmission. Drummond et al. (2008)

propose an approach based on Fuzzy Logic for dynamic allocation of bandwidth for

multimedia applications with high bandwidth requirement. The ability to dynamically

adjust the bandwidth required by these applications allows a better offer of QoS to
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customers. Erbas & Erbas (2003) present a routing study with multiobjective MPLS

networks. The conflicting objectives are the minimization of delay, load balancing and

minimization of number of LSPs. An exact implementation of a Chebyshev method with

lexographic weights is used in that research, which leads to a high computational cost.

In order to achieve similar results with smaller computational costs, Cerav-Erbas (2004)

proposes the use of Simulated Annealing.

Banerjee & Kumar (2007) present a multiobjective approach applied to a realistic

model of a network of Autossimilar Internet Traffic. That work optimizes the delay of

packet delivery and the cost to build network topologies. The generated topologies for

an autossimilar traffic have high delays if compared to the Poisson traffic model. In

small networks, that work uses a deterministic algorithm with exhaustive search of the

Pareto front and another algorithm based on the branch of the network. Due to the

high computational cost, it can be applied only to small networks. The evolutionary

algorithm was unable to find a good solution in regions of low cost.

3.4 Hybridization of algorithms in routing problems

Some works that involve the hybridization of algorithms in routing problems could be

identified. Perboli et al. (2008) propose a hybrid method for a vehicle routing problem

using Genetic Algorithms and Tabu Search. Each solution that was optimized by the GA

is again optimized by Tabu Search, which combines two different neighborhoods in a

process that increases the size of the neighborhood without increasing its complexity.

To this end, they present a new operator for genetic mutation and a new procedure

of movement. It is important to note that this model is applied to a mono-objective

problem. de Freitas & Montané (2008) also investigate the vehicle routing with si-

multaneous pickup and delivery, by using metaheuristics that combine VND (Variable

Neighborhood Descent) and GRASP (Greedy Randomized Adaptive Search Procedure).

de Souza Filho (2007) describes a search for a pipeline distribution using the VNS. The

main objective, in this case, is to reduce the costs involved in the logistics of pipeline

transportation in the petroleum industry.

From hybrid methods, which put together Genetic Algorithms and Local Searches,

it was observed that the use of population ensures the exploration of the search space.

Beyond this, using local search techniques helps to quickly identify good areas in the

search space. The success of these methods may be due to the balance between having a

quick search and maintaining a diversity to avoid premature convergence (Perboli et al.
, 2008).



3. Related works 25

3.5 Considerations

Based on these research, we constructed the theoretical basis for our approach. We

observed that most of the cited works perform the optimization of two parameters. Be-

yond this, it was not identified any published work that uses VNS as a basis of a hybrid

algorithm for routing problems in telecommunications. Similar methods have shown

good performances in other contexts of routing problems. We noted the existence of

limitations to the problem of network design. Difficulties as the correction of infeasible

routes, generated from the operations of crossover and mutation may increase the com-

plexity and computational cost of this technique. These limitations need to be addressed

with new approaches. We chose to investigate in this thesis a scenario that combines

features of Multiobjective Genetic Algorithms and Variable Neighborhood Search in a

specific encoding for routing on IP network, considering the MPLS as technology that

may allow the QoS provisioning.
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Chapter

4
Optimization and Algorithms

Techniques of Traffic Engineering may use routing protocols in conjunction with op-

timization methods. Among different problems addressed from TE techniques, we can

mention the prediction of delay and loss of packets, congestion, routing, load balanc-

ing and optimization of parameters, such as the proper use of available bandwidth.

Although most of studies focus on optimization problems with a single goal, it was ob-

served that network problems have multiobjective features, i.e., they have more than

one objective to be minimized (e.g., reducing packet loss) or maximized (maximizing

traffic flow). For example, while customers want faster and more reliable connections,

network administrators prefer a stable and balanced network. Therefore, the objectives

desired by customers conflict with the goals related to the performance of the network

(Cerav-Erbas, 2004).

In the following sections, we will present some concepts about Multiobjective Op-

timization and Evolutionary Computation including description of Genetic Algorithms.

Some discussion about Decision Making is also presented. Next, Local Search Algo-

rithms such as Iterative Local Search and Variable Neighborhood Search are presented.

Finally, some studies presented in literature are discussed.

4.1 Optimization

Optimization refers to the choice of the best elements in a set of available alternatives.

In its simplest form, it consists of the minimization or maximization of a function within

27
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a set of possible values.

Although most of the studies in operations research focus on optimization problems

with a single objective, most real-world engineering optimization problems combine

multiple objectives (Cerav-Erbas, 2004).

Early searches for optimal solutions of problems with simultaneous objectives, for

instance products with low-cost production, low-cost materials, low energy consump-

tion and, at the same time, high quality, high durability and reliability, treat them as

single-objective problems. In such approaches, all the objective functions are aggre-

gated in a single function, or all the objectives are transformed into constraints, except

one (Parreiras, 2006). The feasible set, in this case, is totally ordered, i.e., we can rank

all feasible solutions with regard to some objective function (Cerav-Erbas, 2004).

However, real problems do not present a natural way in which the several criteria

which are involved in the design could be transformed in a single objective. Such an

observation gave rise to the definition of multiobjective problems, that analyze several

functions and lead to a set of solutions, instead of a single function with an optimal

solution. In multiobjective problems, it rarely happens that all of the objectives can be

optimized simultaneously; instead, it is generally the case that the objectives conflict

with each other. It is not possible to obtain a total ordering of the feasible solutions,

i.e., the feasible set is only partially ordered (Cerav-Erbas, 2004).

When two solutions of a multiobjective problem that belong to the Pareto front are

compared, we observe that one achieves a better performance in one objective, while

the other one is better for the other objective. A whole set of solutions can be gen-

erated in this way, describing the trade-off between objectives. Such a strategy has

great advantage over single-objective approaches, due to the flexibility that it offers to

the decision maker that can assess the relative importance of the different objectives

in the moment of choosing a solution. Besides telecommunication problems, multiob-

jective techniques can be applied to various systems, for instance the transportation of

petroleum (de Souza Filho, 2007), the design of power distribution systems (Carrano,

2007), and also epidemiological studies for finding irregularly shaped spatial clusters

(Duczmal et al. , 2008).

4.1.1 Multiobjective optimization problems

A multiobjective optimization problem is defined as:

min f(x), f(x) = (f1(x), f2(x), · · · , f`(x))

subject to: x = (x1, ..., xn) ∈ G
(4.1)
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where x ∈ X is the decision variable vector, X is the space of decision variables, G ⊂ X
is the feasible set, f ∈ F is the objective vector, and F is the objective space. Figure 4.1

illustrates an example of mapping between the space of decision variables and objective

space. The objective functions perform the mapping between each point x = (x1, ..., xn)

from the decision variable space and the respective image points F (x) = (f1, f2, ..., fm)

in the objective space.

Figure 4.1: Mapping from decision variable space to the objective space (Parreiras,
2006).

The goal of some multiobjective optimization methods is to obtain estimates of the

Pareto-optimal set (Ehrgott, 2000), which contains the set of non-dominated solutions

of the multiobjective problem. In a minimization problem, am point x′ is said to be

dominated by another point x if the following relation holds:

f(x) ≤ f(x′) and f(x) 6= f(x′)

in which the relational operators ≤ and 6= are defined as:

f(a) ≤ f(b)⇔ fi(a) ≤ fi(b), ∀i = 1, 2, · · · , l

and

f(a) 6= f(b)⇔ ∃i ∈ {1, 2, · · · , l} : fi(a) 6= fi(b)

in which a and b represent two different decision vectors.

In this way, the Pareto set P is defined as the set of non dominated solutions:

P = {x∗|@x : f(x) ≤ f(x∗) ∧ f(x) 6= f(x∗)} . (4.2)

All solutions which are not dominated by any other decision vector of a given set are

called non-dominated regarding this set. A Pareto-optimal solution is a non-dominated

vector x ∈ X . The Pareto-optimal set of the multiobjective optimization problem is the
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set of all Pareto-optimal solutions. The image of this set in the objective space is called

the Pareto front (f(P)).

Figure 4.2 represents an example of non-dominated points. The points inside the

cones represented in the figure are dominated by the point located in its vertex. It may

be observed that the objective function f1 is smaller for point A than for point B, while

the objective function f2 is smaller for point B than for point A. This means that there

is not a dominance relationship between A and B. The same is valid for E, in relation

to A and B. The points C and F are dominated by the point A. B dominates the points

C, D and F . Among C, D and E there is no dominance relationship. The points C and

D dominates F . The points E e F do not dominate any other point of the figure.

Figure 4.2: Non-dominated points. (i) There is no dominance relation between the
points A, B and E. (ii) A dominates C and F. (iii) B dominates C, D and F. (iv) Between
C, D and E there is no dominance relations. (v) C and D dominate F. (vi) E and F do
not dominate any other point shown in Figure (Adapted from Takahashi (2007)).

4.2 Scalarization Methods

In general, scalarization methods reduce multiobjective problems to parameterized

single objective problems. In those problems, the parameters can be systematically

changed such that different solutions of the original multiobjective optimization prob-

lem can be found. Multiple single objective searches are carried out in order to generate

the Pareto optimal solutions. (Cerav-Erbas, 2004; Takahashi, 2007).

The most popular methods include the weighted sum method, the ε-constraint method,

and the lexicographic weighted Chebyshev method (Cerav-Erbas, 2004). This work will
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employ the ε-constraint method in order to obtain a formulation of the problem studied

here that can be solved by exact methods, at least for small problem instances.

4.2.1 The ε-constraint method

The ε-constraint method is an approach that transforms multiple objectives into a single

objective by restating all but one objectives as constraints in the problem.

Theorem 1 If x∗ ∈ G is efficient then there is an integer i ∈ 1, 2, ..., l and real numbers
εj, j = 1, ..., l (j 6= i) such that x∗ determines:

x∗ = arg min fi(x)

s.t.


fj(x) ≤ εj ; j = 1, . . . , ` ; j 6= i

x ∈ G

(4.3)

As a practical implication of the Theorem 1, it follows that by parametrically chang-

ing εj∀i and ∀j 6= i, it is possible to completely generate the Pareto-optimal set P.

In Figure 4.3, the Pareto-optimal set P is represented by a continuous line. A and B

are points of Pareto-optimal set, obtained with ε-constraint method, respectively: with

the minimization of f1 s.t. f2 ≤ ε2 and with the minimization of f2 s.t. f1 ≤ ε1.

Figure 4.3: Representation of two points of the Pareto-optimal set P attained with ε-
constraint method. A is the minimization of f1 s.t. f2 ≤ ε2. B is the minimization of f2

s.t. f1 ≤ ε1 (Takahashi, 2007).

The ε-constraint method may fail in finding efficient points. However, it can guaran-

tee at least a weak Pareto optimality of the solutions, such as illustrated in Figure 4.4.

The optimal set of the problem includes the points lying on the line between za and zb

. On this line, zb is the only efficient solution. However, the optimizer may end up with
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za whose corresponding decision vector is weakly Pareto optimal (Cerav-Erbas, 2004).

Figure 4.4: The ε-constraint method guarantees weak Pareto optimality (Cerav-Erbas,
2004).

4.3 Evolutionary Computation

Optimization problems of combinatorial nature may be NP-hard, which means that ex-

act algorithms would require very long run times to obtain the optimal solution. There-

fore, in several practical situations a better alternative is to employ heuristic algorithms,

which attempt to find non-exact solutions as close as possible to the optimal one in a lim-

ited computational time budged (Cerav-Erbas, 2004). This class of algorithms include

the Evolutionary Algorithms, which are stochastic search methods, originally inpired

on the natural evolution (Parreiras, 2006). However, the term “evolutionary” has been

expanded since the proposition of the earliest evolutionary algorithms, and now it is no

longer limited to algorithms that mimic the natural evolution process described by Dar-

win. Nowadays it includes methods that, in general, produce random perturbations or

recombinations in previous solutions, which are accepted or not accepted by a selection

procedure which can have different degrees of stochasticity. Some examples of evolu-

tionary algorithms are Genetic Algorithms (GA) , Genetic Programming, Evolutionary

Strategies, Ant Colony and Artificial Immune Systems.

In this work, we focus on the description of Genetic Algorithms (GA) that are popular

and easy to use, inspired by the theory of natural evolution and genetics (Parreiras,

2006). A justification for the use of GAs in routing is that they allow the creation

of several sub-optimal solutions, which can be advantageous in relation to traditional
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algorithms which find routes by generating only one solution. In the case of the problem

under consideration in this thesis, this feature allows the use of different routes for

information delivery, keeping the lowest possible delay and performing load balancing,

for example.

4.3.1 Genetic Algorithms

The first GA was presented by Holland in 1975 (Holland, 1975), but the technique was

just popularized by Goldberg in 1989 (Goldberg, 1989). The GA is based on Darwin’s

theory of species evolution, that states that individuals less adapted tend to perish,

while the most adapted ones continue to exist and are able to reproduce. Imitating

this process, Genetic Algorithms are developed from an initial population and evolve

through genetic operators such as selection, crossover and mutation (Goldberg, 1989).

According to Osman et al. (2005), GAs are robust, do not require auxiliary informa-

tion and can offer significant advantages with respect to performance. GAs work with a

set of encoded parameters, which means that they can easily handle discrete or integer

variables. They use probabilistic transition rules instead of deterministic ones. Figure

4.5 presents a diagram for the development of this algorithm.

In first place, the individuals must be encoded for the desired application, such that

a sequence of symbols represents a candidate solution of the problem. Analogously to

the biological genetic code, the sequence of characters can be decoded into the problem

variables (phenotype), thus being analogous to a chromosome. Each character of the

chromosome corresponds to a gene. The concatenation of all chromosomes belonging to

an individual represents the genotype. The decoded genotype represents the phenotype.

Figure 4.6 illustrates these analogies.

A selection operation consists of choosing which individuals will have copies and

which of them will disappear over the generations. Thus, it defines which individuals

will participate of the next crossover and mutation operations to be performed. This

choice is performed such that the best individuals are more likely to remain in popula-

tion, and the less adapted ones are more likely to be discarded, in order to ensure the

population quality (Parreiras, 2006; Carrano, 2007). Some of selection methods are the

Roulette wheel and the Stochastic Tournament (Goldberg, 1989).

In Roulette wheel selection, the probability of each individual being selected is pro-

portional to its relative fitness function, represented by a slice of a roulette wheel. The

higher the fitness, the greater is the slice in roulette, and consequently, greater is its

selection probability (Maia, 2006). Tournament Selection, in turn, chooses the best

individual among the limited set randomly selected.

The crossover operation consists of the exchange of genetic material between indi-
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Figure 4.5: Diagram of Genetic Algorithm. It consists of an initial population that has its
symbol representation decoded into variable values. With each variable, it is possible
to assess the objective function of the problem. If it is according to a convergence
criterion, the algorithm is concluded. Otherwise, it evolves again and again through
genetic operators such as selection, crossover and mutation.

Figure 4.6: Genetic Encoding. The sequence of characters can be decoded into the
problem variables (phenotype). Each character of the chromosome corresponds to a
gene. The concatenation of all chromosomes belonging to an individual represents the
genotype. The decoded genotype represents the phenotype (Parreiras, 2006).

viduals, simulating the genetic reproduction process in nature. This genetic exchange

can be implemented in various ways, such as Crossing with Multiple Cutting Points, Uni-

form Crossover, Crossover for each Variable. Considering the Crossover with one cut-off
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point, it selects two individuals randomly, called as parents, and picks up a random

cut-off point in both of them. The chromossome parts after the selected points are ex-

changed, creating the children, as shown in Figure 4.7. Other schemes of recombination

are also employed in AGs.

Figure 4.7: Crossover with one cutoff point. A and B represent the parents individual.
A ’and B’ represent the offspring individual generated from the crossover of A and B. K
indicates the cutoff point.

The mutation operation is the responsible for inserting new genetic characteristics

in individuals of the population, in order to avoid premature convergence of the algo-

rithm to local optima (Holland, 1975). Considering the mutation of one bit in a binary

codification, a random bit is selected and its value is inverted, such as represented in

Figure 4.8.

Figure 4.8: Mutation of one bit. A represents the initial individual. K indicates the
random chosen bit. A’ represents the individual after mutation.

4.3.2 Multiobjective Genetic Algorithms

Multiobjective Genetic Algorithms use the same structure of single-objective GAs, just

differing in the operation of Selection. In single-objective selection, the individuals

order is based on the value of the function to be optimized. If it is a minimization

problem, the smaller the fitness function, the better the individual corresponding to

this fitness (Parreiras, 2006). In multiobjective selection, the search algorithm tries to
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reduce the distance between the population and the Pareto-front of the problem, on the

same time also trying to keep the maximum diversity of the samples. For this reason,

the evolved population should result in a good distribution of solutions over the Pareto-

front (Parreiras, 2006).

Several multiobjective evolutionary algorithms have been proposed, such as Non-

Dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Deb, 1994), Elitist Non-

Dominated Sorted Genetic Algorithm (NSGA-II) (Deb et al. , 2002), Strength Pareto

Evolutionary Algorithm (SPEA) (Zitzler & Thiele, 1999), Strength Pareto Evolutionary

Algorithm Improved (SPEA2) (Zitzler et al. , 2001) and Pareto Archived Evolution Strat-

egy (PAES) (Knowles & Corne, 1999). By far, the most popular one currently is NSGA-II,

which will be employed as the basis for the construction of the algorithm proposed in

this work.

Figure 4.9 represents a diagram with a description of NSGA-II. Figure 4.10 also in-

dicates de procedures of NSGA-II. We will describe the tth generation of this algorithm.

It starts with the generation of a population Pt that must be sorted by non-dominance.

This population represents the parents. On this, selection is performed with Tourna-

ment method, which uses the lowest rank and the greater crowding distance as choice

criteria. Subsequently, operations of crossover and mutation are performed to generate

the offspring population Qt.

In a next step, the Pt population is joined to Qt to generate a new group of individ-

uals: Rt = Pt ∪ Qt. The new population Rt is sorted by non-dominance to obtain the

non-dominated front.

After finding the non-dominated front, individuals are sorted again by rank value,

which is equal to their non-dominance front level. The front 1 has 1 as rank, the front

2 has 2 as rank, successively. The best individuals are those with lowest rank (Deb et al.
, 2002). Again, it obtains the crowding distances decreasingly ordered. Individuals

with greater distances are then copied to the new population. The others are discarded.

Crowding distance is an approximation of the perimeter formed by the cuboid whose

vertices are their nearest neighbors. The first and last front individual receive infinite

distance. This operation is used with the aim at maintaining the population diversity.

Finally, individuals are selected with the lowest rank and greater distance and they

replace the initial population.

4.3.3 Decision Making

Considering real applications, even if a multiobjective technique is applied, just one

optimal solution should be selected and executed. As the final result of a multiobjec-

tive problem is a set of feasible Pareto-optimal solutions, another multicriteria decision
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Figure 4.9: Diagram showing the steps of NSGA-II

problem is originated: the choice among many Pareto-optimal solutions, considering

simultaneously several criteria. This choice may consider the preferences of someone

who deeply knows the problem in question. Thus, a multicriteria decision method is

also necessary to solve the problem (Parreiras & Vasconcelos, 2007).

In order to determine a solution for multiobjective optimization problems, there are

three ways of combining decision methods with optimization algorithms: a priori, a

posteriori and progressive decision-making.

In the a priori decision-making approach, the objectives are aggregated into a single

objective function where the decision maker preferences are represented. The decision-

maker is consulted before the optimization process, and his preferences are used to
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Figure 4.10: NSGA-II procedure (Deb et al. , 2002).

guide the search toward the favorite solution from the Pareto front.

In the a posteriori decision-making approach, decision techniques are applied af-

ter the attainment of efficient solutions. The feasible set is searched with no previous

informations about preferences. A multiobjective optimization algorithm is executed,

resulting in a discrete approximation of the Pareto front. Thereafter, the decision-maker

may use a decision method to compare the available alternatives and choose a unique

final solution (Parreiras & Vasconcelos, 2007; Cerav-Erbas, 2004).

In the progressive decision-making approach, the information about decision-maker

preferences is obtained in the course of the iterative optimization process in order to

guide the search algorithm. At each iteration, the search result is evaluated by the

decision-maker in order to update the preferences. The search region is then reduced

and the search direction is restricted to some particular regions according to the prefer-

ences of the decision maker (Parreiras & Vasconcelos, 2007; Cerav-Erbas, 2004).

This study does not deal with previous or progressive preferences. The final set is an

approximation to the Pareto optimal solutions which allows a decision maker to see the

trade-offs among objectives and then, make a choice.

4.4 Local Search Algorithms

Metaheuristic methods have gained great attention in large combinatorial problems,

that emerge in industrial or academic level (Paquete, 2010). Among various exist-

ing metaheuristics, we highlight some methods that perform the neighborhood search.

Those methods start with a feasible solution and iteratively try to improve this solution.

These algorithms can also be called local search algorithms. They are important for

finding local optima, allowing the algorithm to deliver better solutions. As examples
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of those algorithms, there is Iterated Local Search (ILS) (Lourenço et al. , 2001), Tabu

Search (TS) (Glover, 1989) and Variable Neighborhood Search (VNS) (Mladenovi &

Hansen, 1997).

With these metaheuristics, it is assumed that there is a heuristic that makes local

decisions based the knowledge of the problem. Metaheuristics guide such heuristic

in the search space based on an appropriate choice of certain methods and parameters.

These approaches are conceptually simple to be parameterized and quite effective, once

a good heuristic for the problem is found (Paquete, 2010).

Both VNS and ILS are approaches conceptually simple to parameterize and they are

effective. For these reasons, these metaheuristics were chosen as a basis for the develop-

ment of this work. Their principles are presented as follows, based on the descriptions

of Paquete (2010).

4.4.1 Iterated Local Search

Several researchers have proposed ILS independently, under names such as large-step
Markov chains (Martin et al., 1991, apud Paquete, 2010, p.126) and iterated Lin-Kernighan
(Johnson and McGeoch, 1997, idem). A group of researchers have observed that these

approaches follow very similar principles. Thus, the name ILS was proposed in order to

unify the terms. This method has demonstrated high performance in classical problems

such as Traveling Salesman, Graph Coloring problem and problem escalation.

According to Paquete (2010), ILS is a metaheuristic that iteratively tries to construct

a sequence of solutions generated by a subordinate heuristic. At each iteration, it causes

a perturbation in the solution of previous iterations.

Formally, given a minimization function f , the candidate solutions are called s, be-

longing to the set S. ILS tries to do a walking between two basins of attraction in a

stochastic and heuristic way in each iteration.

A local search uses a neighborhood structure, in which a move can be performed

from one solution s to another better solution sl, through a smart way. The simplest

way of trying an enhancement in the solution is to repeat the local search starting from

another point. Thus, if the search is performed on Sl, it avoids large search spaces.

However, the biggest problem is how to define the neighborhood of Sl in order to be

numbered and accessed efficiently.

Thus, to explore Sl without the notion of neighborhood, a disturbance is applied in

the local optimal sl ∈ Sl which leads to an intermediate state s ∈ S. One applies a

local search in s, generating another local optimal sl∗ ∈ Sl. At the end, following an

acceptance criterion, one chooses which of the local optima, sl or sl∗, will be subject to

a perturbation in the next iteration. Clearly, ILS performs the search in Sl, but without
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an explicit notion of neighborhood between basins of attraction.

Algorithm 1 presents the pseudocode of ILS. In order to avoid cycles, it uses memory

as a data structure capable of returning information about visited solutions, improving

the performance of ILS.

Algorithm 1 Iterated Local Search

1: s← Generate()
2: sl ← LocalSearch(s)
3: repeat
4: s← Perturbation(sl,memory)
5: sl∗ ← LocalSearch(s)
6: sl ← Acceptance(sl, sl∗,memory)
7: until Stop condition is met

Paquete (2010) highlights the modularity as a great advantage because it allows dif-

ferent configurations by changing the ILS components Generate, Perturbation, Acceptance

and LocalSearch. For this reason, the best combination of these components should be

found. They are detailed as follows.

Generate: This component generates initial solutions, that may be based on a

greedy heuristic or randomly. The greedy heuristic is preferred by some authors be-

cause it already has some level of quality and, in general, it is efficient in terms of

computational time. However, there are situations, as described by Johnson and Mc-

Geoch (1997) (apud Paquete (2010)) in the traveling salesman problem, in which the

greedy heuristic returns solutions that are not possible to be improved through the com-

ponent LocalSearch. In this case, it is preferable that the initial solution be generated

randomly.

Perturbation: Perturbation is used to exit from local optima. This choice is related

to the choice of heuristic to LocalSearch. An essential requirement is to choose a per-

turbation that does not return a solution in a previously visited basin of attraction. The

perturbation must not be extremely strong. Otherwise, the algorithm would reduce to a

random reboot. Thus, an experimental analysis should be performed on the problem to

be solved in order to find good shaking and acceptable values for the force parameter,

which govern the intensity of the perturbation. Perturbation may vary, for example,

according to the computational time spent. Thus, the ILS approaches to other searches,

such as VNS (Mladenovi & Hansen, 1997) or Reactive Search (Battiti, 1996).

Acceptance Criteria: This criterion determines which local optimal should be cho-

sen to be shaken, either the optimal current or the optimal returned by LocalSearch

in the previous iteration. This procedure allows to obtain a balance between explo-

ration and intensification of the ILS. For example, accepting the best local optimum for
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perturbation favors intensification. However, the acceptance of the latest local optimal

favors the exploration of the search space. In any case, the procedure must save the

best solution found so far, because this is the solution that should be returned by ILS.

Local Search: In each problem, it is possible that different notions of neighborhood

exist and, in each of these neighborhoods, several ways of exploiting them. However, it

is often necessary to do experiments because we do not know which is the best choice

for the exploration of this neighborhood, that can use an exhaustive or random way.

Moreover, the computational cost available for performing an ILS must be observed,

since in many situations, it is preferable to obtain a lower quality result, but with an

acceptable computational cost instead of a better local optimization with higher com-

putational cost.

4.4.2 Variable Neighborhood Search

VNS can be described as a particular case of ILS. It consists of an implementation of

subordinate heuristics sequences, alternated with small perturbations in the returned

solutions by these heuristics, exploring systematically the idea of modifying the neigh-

borhood structure in the search.

The main difference between VNS and ILS approaches is that VNS explores the no-

tions of neighborhood in a more explicit manner. This method was proposed by Mlade-

novi & Hansen (1997) and thanks to its simplicity of implementation, it has shown

promising results in combinatorial problems, such as optimization problems in cluster-

ing, the problem of p-medians, among others.

Contrary to most local search methods, VNS does not follow a trajectory, but it

explores increasingly the distance of neighborhoods of a given current solution and

jumps from there to a new one, if and only if an improvement has been done. In

this way, the favorable characteristics of a current solution, for instance, that most of

the variables are already in their optimal values, would be used to obtain promising

neighborhood solutions (Mladenovi & Hansen, 1997). In other words, the idea of VNS

is to have two or more neighborhood functions, defined by different points of view, and

switch between them.

There are many variants of VNS in literature that consider various orders in the se-

quence of neighborhoods, either from simple or more complex changes, which generate

more distant neighborhoods and involve higher computational cost followed by higher

accuracy in the solutions. Other versions of VNS consider different acceptance criteria.

The first version of VNS performed by changing the neighborhood on each iteration

of the search method, following a previously defined sequence. The stopping condition

happened when it was not possible to find a neighbor solution with a smaller cost.
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In a version called Reduced VNS, the change of the neighborhood would be done if

there were no neighborhood solution with lower cost. In general, the neighbor solution

is randomly selected. If a solution with a lower cost were found, the local search method

would use again the neighborhood that was ranked before, which had occupied the first

position in the sequence of neighborhoods. The advantage of this approach over the

previous one is in terms of computational time, because it prevents the full exploration

of the neighborhood and it allows the first neighborhood, usually smaller, to be used

more often. The stopping criterion may be the number of iterations, the computational

time or some other criteria set by user, since it is not possible to identify a local optimum

if the neighbor solution is randomly chosen.

The basic version of VNS is currently the most known and is the closest one to ILS.

Initially, a set of neighborhoods N = Nk, k = 1, ..., kmax and an initial solution x are

defined, generated by a random procedure or by a heuristic way. This solution will be

used by the local search method, which uses the neighborhood N1 and returns a local

optimum. This procedure is repeated through several iterations.

The initial solution is randomly selected in the neighborhood of the local optimal of

the previous iteration in accordance with the neighborhood Nk previously selected. The

acceptance criteria will be used to choose the solution with smallest cost, between the

new and the previous local optima. If the new local optimum is chosen, then the selected

neighborhood for the next iteration will be the one that occupies the first position.

Otherwise, the neighborhood will be the following in the sequence. It is noteworthy

that the process of generating initial solutions in each iteration in the basic VNS is just

the process of perturbation, typical of ILS.

The basic algorithm, proposed by Hansen & Mladenovi (2001), is described in Algo-

rithm 2.

Based on Variable Neighborhood Search, the purpose of this research is to integrate

these concepts into the Genetic Algorithm metaheuristic, by developing a new algorithm

with features of both of them. During the process of evolution of the Genetic Algorithm,

crossover and mutation operators are defined under the perspectives of different neigh-

borhoods, which are called Level 1 and Level 2. The search on each level is aided by a

refinement performed by the other level through their alternate application, which ex-

plores different search spaces. In a next chapter, we describe these different operations

proposed at each level.
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Algorithm 2 Basic VNS

1: Initialization. Select the set of neighborhood structures Nk(k = 1, ..., kmax) that
will be used in the search; find an initial solution x; choose a stopping condition;

2: Repeat the following until the stopping condition is met:
3: repeat
4: Set k ← 1;
5: while k! = kmax do
6: Shaking. Generate a point x′ at random from the kth neighborhood of x (x′ ∈

Nk(x));
7: Local search. Apply some local search method with x′ as initial solution; denote

with x′′ the so obtained local optimum;
8: Move or not. If this local optimum is better than the incumbent, move there

x← x′‘, and continue the search with Nk, k ← 1 ; otherwise, set k ← k + 1.
9: end while

10: until
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Chapter

5
The Variable Neighborhood Multiobjective

Genetic Algorithm: VN-MGA

This chapter presents the optimization model for the problem of ensuring QoS on IP

networks. It also presents the genetic operators implemented and the definition of

levels, inspired by methods of VNS, used to enhance the exploration of the search space.

5.1 Problem de�nition

The domain of discussion of this study is the TE intra-domanin, directed for a problem

of choosing routes in a scenario of a corporative IP network with some specific tech-

nology that allows the explicit routing, such as choosing LSP on IP networks with the

technology MPLS (Multiprotocol Label Switching). The routing should consider some

QoS requirements according to the type of application. Each QoS metric is modeled as

one objective. The proposal is to minimize the network cost, to respond for simultane-

ous user’s requests, ensuring the Quality of Service and to provide a load balancing in

the network.

This research employs, in the formulation of the case studies, some classical network

topologies, analyzed in a similar context, but with different goals, by authors such as

Santos (2009) and Andrade (2008). These topologies are shown in Figure 5.1. Simple

topologies such as #a, #b and #c allow the validation of the results of the proposed

algorithm, comparing them with results obtained using other techniques. Topologies as

45
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#d, #e and #f are of a similar scale of the netwoks that appear in real world applica-

tions, such as metropolitan networks or Internet backbones.

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Instances of networks (Santos, 2009).

5.2 Model Formulation

The network model is represented by the graph G = (V,A), where V = {1, 2, . . . , v}
indexes the set of routers (nodes) in the MPLS domain and A = {(i, j) | i, j ∈ V, i 6= j}
is the set of links, in which the link (i, j) connects node i to node j. The bandwidth of

each link (i, j) is represented by Bij. Each user’s request is represented by the triple

(ok, dk, bk), where ok ∈ V and dk ∈ V indicate, respectively, routers of source and

destination of traffic and bk indicates the amount of bandwidth to be reserved for the
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request k. The set of requests is indexed by Θ = {1, 2, . . . ,m}.
Objective functions and constraints are described by equations from (5.1) to (5.4),

respectively, which are based on the work of Santos (2009).

min


F1 =

∑
k∈Θ

∑
(i,j)∈A

zkij

F2 =
∑
k∈Θ

(1− ak)

F3 = α

(5.1)

s.t. ∑
j∈V,j 6=i

zkij −
∑

l∈V,l 6=i

zkli = Γk
i , ∀i ∈ V, ∀k ∈ Θ (5.2)

∑
k∈Θ

bkzkij ≤ αBij, ∀(i, j) ∈ A (5.3)

∑
k∈Θ

ak ≥ C (5.4)

in which

zkij ∈ {0, 1},∀(i, j) ∈ A, ∀k ∈ Θ (5.5)

is a variable which is equal to 1 when the link (i, j) is used to attend request k, and 0

otherwise,

ak ∈ {0, 1},∀k ∈ Θ (5.6)

is a variable that becomes equal to 1 if request k is attended and 0 otherwise, Γk
i , given

by

Γk
i =


ak ; if i = ok;

−ak ; if i = dk;

0 ; otherwise

(5.7)

indicates if the node i is the source, the destination, or none of these, for the request k,

and

α ∈ [0, 1] (5.8)

is a variable which, being minimized under constraint (5.3) becomes equal to the max-

imum relative bandwidth occupation considering all links.

Objective function F1 represents the number of links that are used in the paths of

all the accepted requests. The fewer links are used the smaller is the delay for the data

to travel from origin to destination. F2 represents the number of rejections of requests.

The amount of rejection of requests is related to the admission control of new connec-
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tions, which determines whether a connection can be admitted or not, according to the

network load condition and the amount of requested bandwidth. The minimum number

of requests that must be responded is represented by C, shown in Equation (5.4). In F3,

α represents (in relative terms) the load of the most used link, with values varying from

0 to 1. Minimizing the amount of data traffic on the links means that the load is evenly

distributed and consequently the network is balanced. The constraint (5.2) represents

the classical flow conservation. According to constraint (5.3), the requested bandwidth

(bk) for a link (i, j) must be less than or equal to the available bandwidth.

5.3 The Implementation

The proposed multiobjective optimization approach to the problem of routing in IP net-

works, with the specific features that are necessary to deal with QoS parameters, is

depicted in this section. The proposed algorithm, the Variable Neighborhood Multiob-

jective Genetic Algorithm (VN-MGA), is endowed with a new way to perform a search,

considering different neighborhoods. It can initially be described as an implementation

of the NSGA-II. The innovation concerns on the way the genetic operators work, in a

switching mode between two different neighborhoods (levels).

Figure 5.2 presents a sketch of the main structure of VN-MGA. In this figure, it can

be seen that the idea is to perform a whole genetic search in one of the levels (which

means: a search considering the decision variables of that level) until a switch indicator

is met, and to change to the other level, and so forth, until a global stopping criterion

is reached. The switch indicator is defined here as the attainment of a fixed number of

generations, NumGen, within that level or as a number of generations with no longer

solutions enhancement.

5.3.1 Solution Encoding

The structure of an individual is described by an ordered set of m requests, along with

its corresponding routes, as shown in Figure 5.3.

The concept of level refers to the neighborhoods considering two different subsets

of decision variables, the low-level encoding, which represents explicitly the routes that

are followed by each request of service, and the high-level encoding, that represents

the permutations of several requests of service, defining the order in which they are

included into the solution. The alternate employment of those encodings in the VN-

MGA, as long as they induce different neighborhoods, becomes similar to the search

principle of VNS.
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Figure 5.2: Flowchart of VN-MGA

When the search focuses on the routes (Level 1), the request sequence becomes

fixed and the sequences of graph edges for each pair source-destination compose the

decision variable vector, in the search for the request paths. The individual, denoted

by I1, I2, . . . , IN , is represented by a sequence of requests, which is kept fixed, and by

a group of edges associated with each request, which constitute the decision variables

within this level. Each request has a specific requirement of bandwidth according to its

application (requested bandwidth). This means that the requested bandwidth must be

less than or equal to the available one, when this request is examined. If the request

cannot be met, i.e. the requested bandwidth is greater than the available one, then that

request is rejected.

When the search focuses on the request sequence (Level 2), the paths associated

with each request are kept fixed, and the sequence of requests constitutes the decision
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Level 2 Level 1

I1

I2

I3

I4
...

In

R1

R2

...

Rm

R2

Rm

...

R1

1 2 3 5

2 1 4

4 5 6

2 3 5 4

4 2 3 5 6

1 4 5

Figure 5.3: Representation of solution encoding in two operation levels. In this figure,
the individual I1 processes a sequence of requests starting with R1 followed by R2, and
individual In processes a sequence of requests that starts with R2 followed by Rm. In
individual I1 the request R1 has origin in node 1 and destination in node 5, with a path
that comprises nodes 2 and 3. In individual In the request R1 has origin in node 1 and
destination in node 5 (the origin and destination nodes are necessarily the same ones),
with a path that comprises only node 4.

variable. The decision variables in this case are represented by the ordered sets of re-

quests, indicated by R1, R2, . . . , Rm, which define a priority order for request answering.

Several former works consider the routing as the unique space of search – this is

called here the single-level approach. The proposed algorithm (the two-level approach)

implements the Level 1 and the Level 2 encodings, which allow the construction of rout-

ing solutions that are built according to different request sequences. Although, in the

case of solutions that accomodate all requests, both approaches are able to find the same

solutions, it should be noted that the two-level approach is able to deal with partial so-

lutions which may be rather useful in the construction of the final solution. This means

that the two-level approach is likely to become more efficient in the search than the

single-level approach. Of course, in the case of those problems in which some requests

are not attended, the single-level approach is not applicable.

Describing an example of instance represented by Figure 5.4 (a), a possible request

R1 of an individual I1 may be composed of nodes 1 and 5 as source and destination
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respectively (Figure 5.4 (b)). It means that a potential path, represented in Figure 5.4

(c), may be composed of nodes 2 and 3. Another potential path for the same request

R1 associated with an individual In, represented in Figure 5.4 (d), may be composed of

node 4.

1

2 3

4 5

6

(a)

1

2 3

4 5

6

(b)

1

2 3

4 5

6

(c)

1

2 3

4 5

6

(d)

Figure 5.4: Representation of candidates paths in a given instance. In (a), the repre-
sentation of the network instance. In (b), nodes 1 and 5 are source and destination
respectively. In (c), 1 - 2 - 3 - 5 is a candidate path. In (d), 1 - 4 - 5 is another candidate
path.

Considering another request, Rm for the same individual I1, for the same instance

represented by Figure 5.5 (a), nodes 4 and 6 are defined as source and destination

respectively (Figure 5.5 (b)). A potential path, represented in Figure 5.5 (c), may be

composed of node 5. Another candidate path may be composed of nodes 2, 3 and 5

(Figure 5.5 (d)).

5.3.2 Solution Decoding

The solution decoding procedure evaluates an individual according to the steps de-

scribed in Algorithm 3. The evaluation of an individual starts with the request which

is situated on the top of the request list, proceeding to the next one immediately be-

low, and so forth. It should be noted that if in any link the available bandwidth is not

enough, then a local search is performed within the decoding procedure, which may

modify the individual.

After the evaluation of an individual, the objective function values can be estimated

for such an individual. The objective function F1 accumulates the number of nodes
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Figure 5.5: Representation of candidates paths in a given instance. In (a), the repre-
sentation of the network instance. In (b), nodes 4 and 6 are source and destination
respectively. In (c), 4 - 5 - 6 is a candidate path. In (d), 4 - 2 - 3 - 5 - 6 is another
candidate path.

Algorithm 3 Solution Decoding

1: for k ← 1 to m do
2: if there is available bandwidth in all links of request k then
3: • request k is marked as “attended"
4: • the available bandwidth in each link of the path is reduced by the amount bk

5: else
6: • a maximum path search is conducted from the origin to the destination of the

request, considering the value of the available bandwidth in each link as the
corresponding edge length

7: if the request can be attended in this new path then
8: • the path sequence is updated
9: • the request is marked as “attended"

10: • the available bandwidth in each link of the new path is reduced by the
amount bk

11: else
12: • the request is marked as “rejected"
13: end if
14: end if
15: end for

between the source and the destination of all attended requests; the objective function

F2 accumulates the number of rejected requests; and the objective function F3 registers

the percentual of occupation of the most loaded link in the network.
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5.3.3 Initial population

The initial population of VN-MGA is composed of N individuals. The ordering of the

requests in each individual of this initial population is randomly chosen. The initial

paths are chosen such that: (i) 10% of the individuals are constructed with a minimum

path algorithm, considering the number of links as the path length; (ii) 10% of the

individuals are constructed with a minimum path algorithm, considering the percentual

of bandwidth occupation of each link as the edge length; (iii) 10% of the individuals

are constructed with a maximum path algorithm, considering the number of links as the

path length; (iv) 70% of the individuals are created with a minimum path algorithm,

considering random weights in the links.

It should be noted that the individuals created in steps (iii) and (iv) are relevant in

order to provide a diversity of the solutions in the genetic pool of the initial population.

5.3.4 Crossover Operators

For both Levels 1 and 2, two different crossover operators are implemented. They were

proposed under a general context. It means that they can be used in another graph

problems, considering one or both levels, depending on the adopted encoding. This

way, it may guarantee the population factibility.

Level 1 crossover consists of the exchange of genetic material between individuals

concerning the encoded routes. This crossover, which is illustrated in Figures 5.6 and

5.7, is implemented as described in Algorithm 4.

Level 2 crossover performs combinations of individuals concerning the request se-

quence. This crossover operator, which is illustrated in Figure 5.8, is presented in Algo-

rithm 5. Both crossover operators deliver only one offspring.

5.3.5 Mutation Operators

The mutation operators are responsible for the insertion of new genetic characteristics

in the population. As in the case of crossover operators, the mutation operators are

also implemented in two levels. The Level 1 Mutation is presented in Algorithm 6.

In the Level 1 Mutation, a new section of the mutated route is created. This search is

performed in forward and backward directions (from the first to the second cutoff point,

and in the opposite direction, from the second to the first cutoff point), alternately,

avoiding any bias in this search. Figure 5.9 illustrates this mutation process.

The Level 2 Mutation is presented in Algorithm 7. It just performs a swap of the

position of requests in the precedence list. This mutation operator is illustrated in Figure

5.10.
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Algorithm 4 Level 1 Crossover

1: • Two individuals Ii and Ij are randomly selected;
2: if Ii ≺ Ij then
3: O ← Ii
4: else if Ij ≺ Ii then
5: O ← Ii
6: else
7: for k ← 1 to m do
8: if the paths of request k in both individuals share some nodes then
9: • randomly choose a common node nc;

10: • the path of request k in offspring solutionO starts in node ok, using the path
of individual Ii until node nc, and then proceeds with the path of individual
Ik until node dk (see figure 5.6);

11: else if there is a node nd which is reachable, in one step, from some node of
the path of individual Ij, and which either belongs to the path of individual Ik
or reaches this path in one step then

12: • the path of request k in offspring solution O starts in node ok, using the
path of individual Ii plus one step outside this path, until node nd, and then
proceeds with the path of individual Ij until node dk, eventualy employing
one step outside this path (see figure 5.7);

13: else
14: • the offspring solution O inherits the path of request k either from Ii or from

Ij, randomly chosen.
15: end if
16: end for
17: end if
18: return offspring O

Algorithm 5 Level 2 Crossover

1: Two individuals are randomly selected;
2: A request is randomly chosen;
3: The two routes that are associated with that request in the different individuals are

swapped, generating a new individual.
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ok nc dk

(a)

ok nc dk

(b)

ok nc dk

(c)

Figure 5.6: Level 1 Crossover: a common node nc exists (Santos, 2009). (a) The route
of parent I1 for request r. (b) The route of parent I2 for request r. (c) The resulting
route in the offspring for request r.

ok dk

(a)

ok dk

(b)

ok dk

(c)

Figure 5.7: Level 1 Crossover: no common node (Santos, 2009). (a) The route of parent
I1 for request r. (b) The route of parent I2 for request r. (c) The resulting route in the
offspring for request r.
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R4 R1 R3 R2I2:

(a)

R1 R2 R3 R4I1:

R4 R1 R3 R2I2:

(b)

Figure 5.8: Level 2 Crossover. (a) Request R2 is randomly selected. (b) The routes of
request R2 in I1 and I2 are interchanged, generating the offspring.

Algorithm 6 Level 1 Mutation

1: • an individual is randomly chosen;
2: for k ← 1 to m do
3: • p is chosen from a uniform distribution in the interval [0, 1];
4: if p < pmut then
5: • Two cutoff points are randomly chosen in the path of request k;
6: • The Dijkstra algorithm looks for a new path considering random costs dis-

tributed on the links, joining the first cutoff point to the second one.
7: end if
8: end for

Algorithm 7 Level 2 Mutation

1: Choose randomly an individual;
2: Select randomly two requests;
3: Swap the position of those requests in the sequence.

5.3.6 VN-MGA Structure

The basic structure of the Variable Neighborhood Multiobjective Genetic Algorithm (VN-

MGA) proposed here is similar to the classical Non-dominated Sorting GA (NSGA-II),

described in (Deb et al. , 2002). The following features of NSGA-II are used inside

VN-MGA:

1. Non-dominated sorting: consists of sorting the solutions according to the non-

dominance ranking. An individual belonging to rank 1 is not dominated by any

solution, while an individual belonging to rank q is dominated by at least one

individual that belongs to rank q − 1 and by no solution belonging to rank q or

greater. This ensures that solutions belonging to lower dominance ranks are better

than solutions situated at higher ranks.

2. Crowding-distance: The crowding distance is used as a measure of occupation in

the neighborhood of a solution in the objective space. This indicator is defined

as the sum of the edge lengths of a hypercube with vertices situated on the `
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(a) (b)

(c)

Figure 5.9: Level 1 Mutation. (a) The route for request r. (b) Random selection of
two intermediate nodes which belong to the route for a new sub-route. (c) Mutated
individual.
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R4 R2 R3 R1 R5I1:

(c)

Figure 5.10: Level 2 Mutation. (a) Sequence of requests R1...R5 from an individual I1.
(b) Selected requests for mutation: R1 and R4. (c) Mutated individual.

nearest solutions (in which ` stands for the dimension of the objective space). The

crowding distance is used as the comparison criterion between solutions situated

in the same rank, providing an advantage to the solutions which have the nearest

neighbors at larger distances. This helps to avoid situations where the obtained

solution set is too concentrated in a small (crowded) region, leading the algorithm

to produce more uniform samplings of the Pareto-optimal set.
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3. Binary tournament: consists of randomly choosing two individuals and comparing

them according to a fitness function. The one with best fitness evaluation is se-

lected. In such a comparison, the rank is used as the first criterion and, in the case

of solutions with same rank, the crowding distance is used in order to determine

the result of the tournament.

The VN-MGA procedure is presented in Algorithm 8, which describes in more detail the

flowchart of Figure 5.2.
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Algorithm 8 VN-MGA pseudocode

1: Generate an initial population Q with N individuals;
2: Evaluate the objective functions on Q;
3: Assign the non-dominated sorting ranking to the individuals of Q;
4: Assign the crowding distances to the individuals of Q;
5: while not stop condition 0 do
6: while not stop condition 1 do
7: Using a binary tournament, considering the non-dominated sorting rankings

and the crowding distances, select 0.75N individuals from Q, forming popula-
tion C, and select other 0.75N individuals from Q, forming populationM

8: Perform Level 1 crossover on the individuals of C, generating a subpopulation C̄
with a number of individuals equal to 0.75N ;

9: Perform Level 1 mutation on the individuals ofM, generating a subpopulation
M̄ with a number of individuals equal to 0.75N ;

10: Evaluate the objective functions on the individuals of C̄ and M̄;
11: Join the population Q with subpopulations C̄ and M̄, forming population Q̄ =

Q∪ C̄ ∪ M̄;
12: Assign the non-dominated sorting ranking to the individuals of Q̄;
13: Assign the crowding distances to the individuals of Q̄;
14: Select deterministically N individuals from Q̄, considering the non-dominated

sorting rankings and the crowding distances, forming population Q;
15: end while
16: while not stop condition 2 do
17: Using a binary tournament, considering the non-dominated sorting rankings

and the crowding distances, select 0.75N individuals from Q, forming popula-
tion C, and select other 0.75N individuals from Q, forming populationM

18: Perform Level 2 crossover on the individuals of C, generating a subpopulation C̄
with a number of individuals equal to 0.75N ;

19: Perform Level 2 mutation on the individuals ofM, generating a subpopulation
M̄ with a number of individuals equal to 0.75N ;

20: Evaluate the objective functions on the individuals of C̄ and M̄;
21: Join the population Q with subpopulations C̄ and M̄, forming population Q̄ =

Q∪ C̄ ∪ M̄;
22: Assign the non-dominated sorting ranking to the individuals of Q̄;
23: Assign the crowding distances to the individuals of Q̄;
24: Select deterministically N individuals from Q̄, considering the non-dominated

sorting rankings and the crowding distances, forming population Q;
25: end while
26: end while
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Chapter

6
Results

With the purpose of determining the effect produced by the two-level encoding, which

was presented in the VN-MGA, some experiments have been performed. Initially, we

validate the implementation of the proposed algorithm. Afterwards, we validate the

functionality of the proposed approach. Those tests were performed with some network

instances which are often used in the evaluation of algorithms for telecommunication

routing problems.

6.1 Validating the implementation

The algorithms presented in this work need to be validated. Generally, the validation

of algorithms is done by comparing with other similar algorithms, previously created

to solve the same problem. In this context, the term numerical validation is used to

represent observation procedures, comparison and evaluation of algorithms with their

technical specifications. Methods are considered validated if they can solve, within the

accuracy limits defined, the proposed test problems.

Aiming at validating the implementation of the proposed algorithm, initially, we use

a very simple network instance, represented in Figure 5.1(e). An implementation of the

ε-constraint method in a ILP solver looked for values of two objective functions, F1 and

F3 , equating F2 to zero. After, the proposed algorithm was tested.

The tests considered 10, 20, 30 and 40 simultaneous requests, with 150 generations

and 100 individuals, ignor results with F2 different from zero. The proposed algo-
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rithm reached the same values of the exact method, providing support to the proposed

method. Such results are represented in Figure 6.1.
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Figure 6.1: Comparison between VN-MGA (represented by asterisks) and ILP ε-
constraint (represented by circles) results for 10, 20, 30 and 40 simultaneous requests
for the network instance represented in Figure 5.1(e).

6.2 Validating the proposed algorithm

Some experiments have been performed in order to compare the proposed approach

with other alternative formulations. Three analysis were performed. The first one

consists of a comparison among the proposed algorithm, the basic VNS and an exact

solution obtained from an Integer Linear Programming solver. The second experiment

compares the performance of VN-MGA with single-level encodings of the same Genetic

Algorithm and with the basic VNS. The third one analyzes the quality of the solutions

delivered by the algorithms, after 20 executions of each algorithm, using the Hypervol-

ume Metric (Zitzler, 1999).

These tests considered an available bandwidth for each link of 1024 kbps. Each

request required a bandwidth of 200 kbps or 400 kbps (randomly chosen). Source and
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destination of each request are randomly assigned. Different scenarios, with different

numbers of requests were considered in the tests.

6.2.1 Comparison with Integer Linear Programming (ILP) results

In first place, the VN-MGA was compared with the results obtained by Integer Linear

Programming (ILP) solvers, which provide exact solutions of the problem. The ILP for-

mulation determined the solutions of the multiobjective problem by using a scalariza-

tion approach, the ε-constraint method (Ehrgott, 2000). In this approach, the multiob-

jective optimization problem is converted into several single-objective problems, each

one with only one objective function to be optimized. The other objective functions

are treated as constraints. Each solution of such a problem is at least a weakly non-

dominated solution (Ehrgott, 2000). By varying the values εi of the constraints, it is

possible to generate all the solutions belonging to the Pareto-optimal set of the prob-

lem. In this way, a multiobjective problem as defined in (4.1) can be modeled in terms

of ` problems:
x∗ = arg min fi(x)

s.t.


fj(x) ≤ εj ; j = 1, . . . , ` ; j 6= i

x ∈ X

(6.1)

In order to define an ε-constraint version of problem (5.1), only F1 and F3 objective

functions were considered, and F2 function was fixed in zero (no request rejection). In

this way, the multiobjective problem studied the trade-off between cost of time delay

in the network and the relative occupation of the most loaded link. In first place, F1

function was minimized without a constraint in F3 value. Afterwards, starting from the

optimal value of F1, the ILP solver minimized F3 objective function, with F1 employed

as a constraint which was relaxed, from that minimal value until the minimum of F3

was reached. The ILP tools FICOTMXPress Optimization and CPLEX solver were used in

this procedure, leading to identical results.

The solutions delivered by the ILP solver, using the ε-constraint scalarization ap-

proach, are used to evaluate the ability of the proposed algorithm for reaching the

Pareto-optimal set of the problems.

Another comparison which was performed at the same time was with the results

provided by the original VNS algorithm, as defined by Algorithm 2, using the same

Level 1 and Level 2 neighborhoods. This algorithm employed the same ε-constraint

scheme, generating only one estimate of a Pareto-optimal solution for each algorithm

run.
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Some fixed parameters of the VN-MGA are described in Table 6.1. The choice of

Table 6.1: Parameters for the VN-MGA algorithm

Mutation Probability (pmut) 0.4
Number of generations 150
Number of individuals (N) 100

those parameters was performed, as a preliminary step, considering a rough grid, in

which the pmut value had resolution of 0.1 and both the number of generations and the

number of individuals had a resolution of 20. Each combination was then executed. The

final values were chosen as the ones that produced accurate results within reasonable

computational time.

It can be inferred, from Table 6.1, that the number of function evaluations in each

run of VN-MGA with this configuration is 45000. In order to provide a comparison

which becomes even unfavorable for the VN-MGA algorithm, the basic VNS was also

run with 45000 function evaluations for each ε value, which means 630000 function

evaluations for the search of the whole Pareto-optimal set.

The test instance is composed of 24 vertices and 43 links. For 10 simultaneous

requests, the values obtained by VN-MGA are equal to the best values reached by the

ILP ε-constraint method. For 20 and 30 simultaneous requests, not all the values were

reached. In some cases, the results by VN-MGA presented a gap in relation to the exact

solution. The algorithm was not able to cover the whole Pareto front. Nevertheless, it

clearly outperforms the basic VNS algorithm both in terms of convergence and diversity.

Figure 6.2 shows the results for 30 requests, with the best values reached by the VN-

MGA and the basic VNS, after 21 runs, against the values provided by the ILP approach.

Although the ILP approach has delivered the best solutions for the problem under

consideration, there are some drawbacks with this approach which may render it in-

practicable. The ILP solver has to be executed once for generating each solution of the

Pareto-optimal set. Beyond that, it requires a simplification of the problem, namely, the

use of only two objective functions. But the main inconvenience is that its computa-

tional complexity is exponential in the number of decision variables. Therefore, this

kind of approach is not suitable for even slightly larger problem instances. An example

of problem instance for which the proposed method works and the ILP formulation does

not run, in the same computer environment, is also presented in the comparison.
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Figure 6.2: Comparison among ε-constraint, VNS and VN-MGA algorithm for R=30.
Circles represent the solutions achieved by the ε-constraint ILP technique. The solutions
delivered by VNS are represented by black crosses and the solutions of the proposed
VN-MGA are represented by red asterisks. (Horizontal axis: F1. Vertical axis: F3.

6.2.2 Comparison among VN-MGA, single-level encoding GAs and the basic

VNS

This experiment compares the performance of VN-MGA with single-level encodings of

Genetic Algorithms and the basic VNS. Those single-level versions are built by simply

replacing the section in Algorithm 8 which performs search in a level by a corresponding

section which performs search in the other level. In this way, the algorithm performs

twice the search in the same level, instead of changing the level. In this case, differ-

ently from the first experiment, the whole problem is considered, with three objective

functions. The same instance represented in Figure 5.1(d) is considered, with 40 si-

multaneous requests. The same set of parameters presented in Table 6.1 is employed

again.

As can be observed in Figure 6.3, the variable encoding represented by VN-MGA de-

livers the best results among all algorithms. With few exceptions, most of the solutions

found by the other algorithms were dominated by some solution provided by VN-MGA.

Interestingly, the second best algorithm was the Level 2 MGA. It suggests that the

greedy operators, which provide the routes in the initial population plus the local search

included in the solution decoding routine, are able to reach good solutions in this prob-

lem.

Likewise, another experiment considered 40 simultaneous requests, 150 generations

and 100 individuals. The same instance represented in Figure 5.1(e) is considered. The

purpose of this experiment is the comparison between single-level encoding GAs and the
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Figure 6.3: Comparison among VN-MGA, single-level encoding GAs and the basic VNS
for the network instance of Figure 5.1(d). Circles represent solutions achieved by Level
1 GA. Triangles represent solutions obtained by Level 2 GA. Crosses indicate solutions
provided by VNS. Asterisks indicate solutions provided by VN-MGA.

proposed VN-MGA with three objective functions, as shown in Figure 6.4. The results

are represented by circles (Level 1), triangles (Level 2) and asterisks (VN-MGA). The

figure shows the domination of VN-MGA solutions, also presenting a better spread of

solutions. This indicates the better performance of the two-level encoding.
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Figure 6.4: Comparison among VN-MGA, single-level encoding GAs and the basic VNS
for the network instance of Figure 5.1(e). Circles represent solutions achieved by Level
1 GA. Triangles represent solutions obtained by Level 2 GA. Asterisks indicate solutions
provided by VN-MGA.
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6.2.3 Hypervolume metric

The hypervolume metric is addressed to measure the proximity of solution sets to the

Pareto front and to quantify the uniformity of solution distribution over the front. This

indicator is defined as follows: Each point of the solution set A defines a vertice of a

hypercube hci. The opposite vertice, considering the main diagonal, is a fixed point

whose coordinates may be defined as the worst values attained by each objective for

all solution samples in the Pareto-front. Considering a solution set A, the union of the

regions covered by all such hypercubes generates a figure whose hypervolume defines

the hypervolume metric. Equations 6.2 and 6.3 illustrate this metric.

HVA = volume(∪|A|i=1hci) (6.2)

HV RA = HVA/HVY ∗ (6.3)

Hypervolume metric (Zitzler, 1999) was employed here in order to compare the

basic VNS and the proposed VN-MGA algorithm. Also the single-level GAs involving

only Level 1 and Level 2 operations are included, with the aim of quantifying the gain

of the combination of levels. For the hypervolume computation, the package described

by Fonseca et al. (2006) was used. Table 6.2 shows the values of hypervolume metric

calculated for the Pareto fronts produced by each algorithm with the set of parameters

of Table 6.1, after 20 runs, using the instance of Figure 5.1(d) with 40 simultaneous

requests.

These results are also shown in the boxplot of Figure 6.5. Comparing them, one

observes that the VN-MGA attains significantly better hypervolume values than the other

algorithms. Even its worst value is better than the best value provided by the other ones.

Table 6.2: Hypervolume metric after 20 runs of algorithms with Level 1, Level 2, VNS
and VN-MGA, for 40 simultaneous requests.

Hypervolume Level 1 Level 2 VNS VN-MGA
Best value 27.73 26.22 19.83 44.64
Worst value 19.18 21.76 14.20 30.39
Average value 23.75 25.31 16.97 35.20
Standard Deviation 2.02 1.23 1.66 5.11

The problem instance represented in Figure 5.1(d) with 40 simultaneous requests

is, indeed, near the edge of problem sizes which are solvable by the ILP formulation

in computational environments such as the one used in the comparisons performed
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Figure 6.5: Boxplot results of the hypervolume metric after 20 runs of algorithms with
Level 1, Level 2, VNS and VN-MGA, for 40 simultaneous requests.

here1. The same network topology with 50 simultaneous requests no longer runs in that

environment. In order to illustrate the performance of the proposed methodology in

that problem instance, Table 6.3 presents the hypervolumes of the solution sets achieved

by VN-MGA, Level 1 and Level 2 algorithms. Those results were obtained with 15 runs

of each algorithm.

Table 6.3: Hypervolume metric after 15 runs of algorithms with Level 1, Level 2, and
VN-MGA, for 50 simultaneous requests.

Hypervolume Level 1 Level 2 VN-MGA
Best value 19.13 31.13 37.40
Worst value 13.67 24.35 25.86
Average value 17.53 26.76 31.91
Standard Deviation 1.66 1.94 3.16

1Hardware: Intel Quad Core 2.66 GHz 64bits with 2GB of DDR-400 RAM. Software: Windows XP SP3
and FICO XPress V. 7.01.
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7
Conclusions and Future work

7.1 Conclusion

This thesis proposed an algorithm to optimize the multiple objectives that represent

Quality of Service indices on IP networks, in the context of packet routing in MPLS-IP

networks. It aimed at finding LSPs in MPLS domain. This way, the routing process tried

to minimize the delay, keeping the load balancing of the network and minimize the

rejection of simultaneous requests.

The multiobjective techniques applied are based on genetic algorithms due to good

results observed in similar applications problems, besides the advantage of producing

a number of different solutions. The concept of walking between borderer basins of

attraction in a stochastic and iterative way acts as an effective solution that comes

from the concepts of VNS techniques. The proposed optimization model relies on the

definition of specific Genetic Algorithms operators and the study of different alternatives

for the choice of routes on IP networks.

The presented algorithm, VN-MGA, is a Genetic Algorithm based on the NSGA-II

with inspirations on VNS. Genetic operators were implemented in two levels that encode

the same individual in different ways to the same problem. In the first level, named

Level 1, each node is analyzed in order to establish the routes to be followed under a

"microscopic" point of view. The solution is encoded considering as decision variables

the edges that form the routes to be followed by each request. In the second level,

named Level 2, the operators focus on requests. The solution is encoded with the
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routes considered as fixed, and the sequence of requests considered as the decision

variable. The treatment of each request is based on the arrival order, i.e., there is no

priority ranking between simultaneous requests. This level considered routing under a

"macroscopic" scenario that uses pre-defined routes of Level 1.

The modification of search space, aided by the levels change, generates different

local optima for each neighbor. It makes possible to jump from one attraction basin to

another, avoiding premature convergence of the algorithm. The expansion of the search

space allows a greater diversity of solutions belonging to the Pareto Front. It results in

a large range of options that may be considered by the decision maker in different

situations, such as in: (i) network congestion that occur in rush moments, or (ii) using

applications that require a small delay, or (iii) responding to concurrent requests that

do not present stringent requirements of delay, but require large bandwidths, among

others.

From results presented in Chapter 6, in comparison with single levels, the combina-

tion of levels generates non-dominated solutions, which thus confirms the efficiency of

the proposed method. It can be stated that the implementation with a new kind of en-

coding combined in a Multiobjective Genetic Algorithm with features based in concepts

of VNS, the results show an increasing of the convergence and diversity of solutions. So-

lutions not envisioned by other algorithms that dealt with the same problem have been

achieved. These results are innovative facing an IP network problems with particular

features. It is important to say that the proposed algorithm gives solutions comparable

to those obtained by exact methods. Futhermore the algorithm is able to run larger

instances than those obtained by commercial solvers. It means that the method allows

indications of high quality results in feasible computational time.

7.2 Limitations

It is important to note the methodological limitations of the studies involved in this the-

sis. Although this research was conducted to indicate routes to provide QoS parameters,

it did not examine a very important QoS parameters, that is the loss of packets. How-

ever, an investigation in a dynamic environment should be carefully analyzed due to the

limitations of simulation softwares, such as the number of possible paths as described

by Andrade (2008). It can be investigated in a future work.

It should be highlighted that, if scenarios of routers or backbones are analyzed, for

example, the instances used in Chapter 6 can be classified as medium size. However,

with these medium size instances, unlike the proposed algorithm, commercial solvers

were not capable of running.
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Another limitation of this study is that there were no previous works with the same

configuration to be used as benchmarks. For this reason, this research extracted ref-

erence values until the limitation of the commercial solvers to validate the proposed

algorithm. It can be seen as a limitation but also as an advantage of an innovative

approach.

7.3 Future works

The good behavior presented by the proposed VN-MGA, outperforming some algorithm

versions that do not employ variable neighborhood algorithm, raises an interesting issue

to be studied: should the evolutionary algorithms specialized in combinatorial optimiza-

tion problems employ variable neighborhood operators as a standard methodology?

There are two principal directions for further development of the approach proposed

here. The first one considers the specific problem of routing. The second one considers

the theoretical problem of employing variable neighborhoods or different structures

encoding in generic evolutionary algorithms.

Concerning the routing problem, a challenging area of future work concerns a quan-

titative analysis, covering sensitivity and scalability. The sensitivity deals with fault

tolerance in paths or routers and the capacity of re-routing of the proposed method.

Using new scenarios, it is possible to assess the scalability in order to quantify the gain

that is expected with the application of the proposed algorithm. Within this perspective,

it is also possible to suggest new models for telecommunication networks.

Concerning the theoretical problem of studying variable neighborhoods in generic

evolutionary algorithms, there are several open issues. We intend to tackle, in the

near future, some issues related to the usage of encodings that allow metric operations

(Moraglio et al. , 2007; Carrano et al. , 2010).
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