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A B S T R A C T 

In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The 
main objective is to obtain an improved performance of highly non-linear unstable systems. The main 
contribution of this work is that, firstly, new functions for chattering reduction and error convergence 
without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC 
control. Secondly, the global stability of the controlled system is guaranteed. 

The well known weighting parameters approach, is used in this paper to optimize local and global 
approximation and modeling capability of T-S fuzzy model. 

A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness 
and remarkable performance of optimization approach and the high accuracy obtained in approximating 
nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential 
and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of 
chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness 
of the proposed controller is proven infront of disturbances and noise effects. 

1. Introduction 

VSC is naturally attractive to control engineers because its basic 
concepts are rather easy to understand and has given satisfac­
tory performance in many practical areas of industrial applications. 
It has attracted interest recently because a fast calculation and 
switching action have been realized through the progress of micro 
and power electronics. The main mode of VSC operation is sliding 
mode (SM) control. 

The basic VSC feature is to drive the state trajectory towards a 
sliding plan previously determined by computing the feedback con­
trol structure. It is desirable to simultaneously: (a) reach the sliding 
plane fastly; (b) maintain the trajectory close to it; and (c) reduce 
the number of switchings between structures (chattering). How­
ever, reaching the sliding plane fast implies also a fast departure, 
unless a frequent switching between structures is allowed. 

Motivated by observation on similarity between Fuzzy Logic 
Control (FLC) rules and VSC, the robustness of the VSC has been 
analyzed for nonlinear dynamic systems in this paper. As results, 
the asymptotic behavior of the VSC system can be clarified and 
the relationship between the design parameters and the tracking 
performances of the control system is addressed explicitly. The 
relationship is important since it gives guidance on the design 
parameters of the control system to achieve the specified control 
performances [7,9-11,37]. 

SM are used to determine best values for parameters in FLC rules. 
As robustness is inherent in VSC with SM, robustness in FLC can be 
improved. The motivation behind this scheme is to combine the 
best features of FLC and VSC to achieve rapid and accurate tracking 
control of a class of nonlinear systems [4,8,20,21,23,27,35]. 

In this paper, a design of FLC-VSC is presented based on T-S 
fuzzy model [32]. We will show how VSC can be improved for 
actual implementation by introduction of fuzzy rules. We will 
also develop a methodology for designing a fuzzy rule based 
controller to smooth the control input for a general class of 
VSC's. 

In [32], the authors develop an interesting method to iden­
tify nonlinear systems using input-output data. The main problem 
encountered is that the proposed identification method cannot be 
applied when the membership functions (MFs) are overlapped by 
pairs. 



Nonlinear control systems based on the T-S fuzzy model [32] 
have attracted quite attention during the last twenty years (e.g., 
see [2,3,5,6,16,22,38]). It provides a powerful solution for develop­
ment of function approximation, systematic techniques to stability 
analysis and controller design of FLC systems in view of fruitful 
conventional control theory. 

This fuzzy modeling method presents an alternative technique 
to represent complex nonlinear systems [42] and reduces the num­
ber of rules in modeling higher order nonlinear systems [32,6]. 

T-S fuzzy models are proved to be universal function approx­
imators as they are able to approximate any smooth nonlinear 
functions to any degree of accuracy in any convex compact region 
[15,22,33,42]. This result provides a theoretical foundation for 
applying T-S fuzzy models to represent complex nonlinear systems 
approximately. But it was clearly shown that the number of fuzzy 
rules increases as the approximation error tends to zero [19]. This 
exponential growing cannot be eliminated, so it becomes difficult 
to make use of the universal approximation property of T-S fuzzy 
modeling for practical purposes. Moreover, if the number of rules 
is bounded, the resulting set of functions is nowhere dense in the 
space of approximated functions [36]. These conflicting objectives 
have motivated researchers to find a balance between the specified 
accuracy and the computational complexity of the resulting fuzzy 
model. 

In [26], the authors proposed to obtain the best features of 
Mamdani and T-S models by using an affine global model with 
function approximation capabilities, which combines approach 
capacity and local interpretability. Universal approximation prop­
erties of Mamdani fuzzy model are well known. On the other 
hand, Takagi-Sugeno fuzzy model with affine consequent was 
thought to be a local approximator of the dynamics. However, 
it can also be tuned to be an universal approximator, but losing 
its local interpretation. In [26], an innovative affine global model 
with universal approximation capabilities which maintains local 
interpretation is introduced. The suggested model is composed of 
variant coefficients which are independently governed by a zeroth 
order fuzzy inference system. This novel model can be considered 
a generalization of Takagi-Sugeno affine fuzzy model, and is based 
on decoupling the dynamic parameters of the system at the fuzzi-
fication step. The authors have demonstrated how this new model 
can exactly match non-linear functions expressed either as product 
form or additive form. 

In [14] new and efficient two approaches are presented to 
improve the local and global estimation of T-S fuzzy model. The 
main problem is that T-S identification method cannot be applied 
when the MFs are overlapped by pairs. The approaches developed 
can be considered as a generalized version of T-S method with 
optimized performance. 

Several methods are used to deal with the problem of optimizing 
MFs, which are either derivative-based or derivative-free meth­
ods. The derivative free approaches are desirable because they are 
more robust than derivative-based methods with respect to find­
ing global minimum and with respect to a wide range of objective 
functions and MFs types. The drawback is that they converge more 
slowly than derivative-based techniques [34]. On the other hand, 
derivative-based methods tend to converge to local minima. In 
addition, they are limited to specific objective functions and types 
of inference and MFs. The most common approaches are: gradient 
descent [28], least squares [30], back propagation [40] and Kalman 
filtering [29]. 

The estimation methods presented in this paper are character­
ized by the high accuracy obtained in approximating nonlinear 
systems locally and globally in comparison with the original T-S 
model. A fuzzy FLC-VSC is proposed in order to show the effec­
tiveness of the estimation method developed here in control 
applications. 

The rest of the paper is organized as follows. An introduction 
to FLC-VSC is presented in Section 2. A new method for chattering 
elimination is developed in Section 3 (which is considered the main 
drawback of the VSC control) by introducing a boundary layer 
around the switching surface and applying the equivalent control 
method inside this layer. Stability analysis is presented in Section 4. 
In Section 5, the design of a FLC-VSC controller is developed. Sec­
tion 6 deals with the analysis of the non zero final state. In Section 7, 
the estimation of T-S fuzzy model is presented. Section 8 introduces 
restrictions of T-S identification method. Section 9 entails an exam­
ple of a one link robot as a nonlinear unstable system to evaluate 
the robustness, effectiveness to demonstrate the validity of the pro­
posed approach. The results show that the proposed approach is 
less conservative than those based on (standard) T-S model and 
illustrate the utility of the proposed approach in comparison with 
T-S model. The conclusions of the effectiveness and validity of the 
proposed approach are explained in Section 10. 

2. Variable Structure Control 

The VSC is a combination of subsystems together with a suit­
able switching logic. In VSC, the design algorithm includes choosing 
the desired sliding functions which are formed by a choice of their 
parameters as will be explained. Then a discontinuous control is 
found which assures the existence of the SM at each point of the 
sliding plane s(x) = 0. In the final stage, the control should drive the 
system states to the sliding plane. The robustness of VSC stems 
from the property that the behavior of the controlled system in the 
SM only depends on the parameters of the SM, not on the system 
parameters or any disturbances or fluctuations. 

Supposing that the system can be modeled as follows: 

x(t) = a0(x(0) + A(x(t))x(t) + B(x(t))u(0 (l) 

where 

x : m —s- SH" 

a0:m
n—> SH" (2) 

A : m
n —s- mnxn 

B:mn^mn 

Let us suppose that the system is described in a controllable 
canonical form: 
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The structure of the VSC is determined by the sign of the vector 
valued function s(x), which is defined to be the switching linear 
function, i.e., 

s{x) = Sx, SeSH1 

where 

S = [ si s2 

(4) 

Sn-l 1 ] 



where S is an arbitrary (1 x n) matrix chosen such that s(x) = 0 
defines a stable dynamic system of reduced order. 

S(x) = Sx = SlXl + S2Xl H h Sn-iX\ . ( n - 2 ) , v ( n - l ) 
+ X' :0 (5) 

The next step in the design of the VSC includes choosing the 
structure of the control to satisfy a reaching condition. There exist 
various structures of control algorithms which guarantee the exist­
ence of SM. Sometimes, it is convenient to preassign the structure 
of the VSC and then determine the values of the controller gain. 
The design of VSC can be proceed with the structure of the control 
u(x) free or preassigned. In either case, the objective is to satisfy 
the reaching condition. In the free structure approach, the control 
structure can be solved by constraining the switching function to 
any one of various reaching conditions mentioned in [39]: 

Ifs(x) < 0 thens(x) > 0 
Ifs(x) = 0 thens(x) = 0 
Ifs(x) > 0 thens(x) < 0 

(6) 

In this work, we have proposed the following switching condi­
tion 

Ifs(x) < 0 thens(x) = K 

Ifs(x) = 0 thens(x) = 0 (7) 
Ifs(x) > 0 thens(x) = -K 

where K>0. This is equivalent to: 

s(x) = a 

where 

Ifs(x) < 0 thena = K 
lfs(x) = 0 thena = 0 (8) 
Ifs(x) > 0 thena = -K 

Differentiating (5) and substituting (1) in it, we get: 

s(x) = Sx(t) = S(a0(x(t)) + A(x(t))x(t) + B(x(t))u(t)) 

= S(a0(x(t))+A(x(t))x(t)) + SB(x(t)Mt) = a (9) 

SB(x(t))u(t) = -S(ao(x(t)) + A(x(t))x(t)) + a (10) 

Solving Eq. (10) for the control action, we get: 

u(t) = -[SB(x(t))]-1(S(a0(x(t)) + A(x(t))x(t)) - a) 

The control action becomes: 

Ifs(x) < 0 thenu(t) = -\SB(x(t))r\s(a0(x(t)) +A(x(t))x(t)) -K) 

lfs(x) = 0 thenu(t) = -[SB(x(t))l- ,(S(a0(x(t))+/l(x(t))x(t))) (11) 

Ifs(x) > 0 thenu(t) = -[SB(x(t))\-\S(a0(x(t)) +A(x(t))x(t)) + K) 

The necessary condition to apply this control action is that the 
product SB(x(r)) = bn{x) j= 0 which is a necessary condition for the 
system to be controllable. 

The feedback system becomes: 

x„(t) = ao(x(t))+A(x(t))x(t)+B(x(t))u(t) = a0(x(t))+A(x(t))x(t) 

-B(x(t))[SB(x(t))]-1(S(a0(x(t))+A(x(t))x(t))-a) (12) 

X„(t) = a0(x(t)) + A(x( t ) )x ( t ) - (SiX2 + • • • + Sn-lXn + d0(x(t)) 

+ A(x(t))x(t)) -a) = -s ix2 Sn-lXn - a (13) 

which is independent of the initial system. 
Example 

x2 

Fig. 1. Chattering effect. 

Let us analyze the following unstable linear system: 

Y(s) = , 1_ c U(s) 
s2 - 2s + 5 

" o r 
- 5 2 

. 

x(0 + 
"o" 
1 x(t)= - 5 2 x(t)+ ^ u(t) 

s(x) = [l l]x(t) 

p5(k) = k + \ 

K = 10 

The control action will be: 
- l 

[1 1] [1 1] 
0 1 

- 5 2 
x{t)-a 

= - [ - 5 3]x(t) + a = 5x1(t)-3x2(t) + a 

Thus the control action will be, 

//s(x) < 0 thenu(t) = 5xi(t) - 3x2(t) + 10 

7/s(x) = 0 thenu(t) = 5x1(t)-3x2(t) 

//s(x) > 0 thenu(t) = 5xi(t) - 3x2(t) - 10 

(14) 

(15) 

Fig. 1 shows the chattering effect assuming that the simulation 
is carried out with a sampling time of 0.02 s. 

Fig. 2 shows the temporal evolution of s(x). The mean square 
error is approximately 0.0195 when it is calculated from 0.2 s. 

3. Chattering elimination 

As mentioned before, the main drawback of SM control is the 
chattering problem resulted from the switching from one value to 
another. As it was observed in the previous example, the chattering 
problem comes from the fact that the behavior of s(x) in discrete 
implementations of the algorithm, is oscillatory from a certain time. 

The origin of these oscillations is the discrete implementation 
of the system: 

s(x) = v(t) 
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Fig. 2. Temporal evolution of s(x). 

when it is controlled by 

K ifs(t) < 0 
V ( t ) : 

-K ifs(t) > 0 
(16) 

Fig. 3 shows the phase plane of this system. 
The discrete implementation of this system with zero order 

holding device and sampling time T corresponds to the system: 

(17) 

(18) 
K ifsk > 0 

It can be shown that there is a limit cycle of amplitude Ai = 0.5KT 
and frequency a>i = TCJT, i.e. 2 samples per cycle. In order to over­
come the chattering problem, a smooth transition is introduced 
between these two control actions. The resultant controller is a 
combination of the discontinuous one used to create the SM (ana­
lyzed in the previous section) outside the layer and applying the 
equivalent control method inside this layer. Therefore, it is sug­
gested in this work to switch from the SM control explained before 
to the equivalent control according to the position of the state tra­
jectory. 

The solution proposed here for this problem is converting the 
VSC in FLC by defining two fuzzy sets for s(x) as shown in Fig. 4. 

Ifs(x)isM- thens(x) = K 

Ifs(x)isM+ thens(x) = -K 

The phase plane of the system given in (1) is shown in Fig. 5 

-phi phi s(t) 

Fig. 4. Membership functions fors(x). 

The necessary value of <P to avoid the limit cycle is 
<P >AL >4Al = 2I<T. The resultant fuzzy VSC is: 

Ifs(x)isM- then u(t) = -\SB(x(t))r\s(a0(x(t)) + A(x(t))x(t)) - K) 

Ifs(x)isM+ then u(t) = -\S B(x(t))]-\S(a0(x(t)) + A(x(t))x(t)) + K) 
(19) 

Thus, with this controller, the system is still verifying the fol­
lowing switching condition given in (6) 

Ifs(x) < 0 thens(x) > 0 
Ifs(x) = 0 thens(x) = 0 
Ifs(x) > 0 thens(x) < 0 

(20) 

so that it will still have a unique equilibrium point in x=0. 
Example: 
In the previous example, it can be clearly seen that s(x) oscillates 

with an amplitude of Ai = 0A, so it may be reasonable to choose 
0 = 0.5. Now, the proposed FLC is applied for the same system in 
the previous example with the same sampling time and the fuzzy 
sets shown in Fig. 4 with <P = 0.5. 

It can be clearly shown in Figs. 6 and 7 the effectiveness of the 
proposed controller in eliminating the chattering effect. The mean 
square error is 4.0650e-005 from 0.2 to 1 s. 

Fig. 7 shows the smoothness obtained by applying the proposed 
controller. 

In this paper, fuzzy inference is applied to switch from the 
discontinuous controller to the equivalent one by regarding the dis­
tance from the switching hyperplane as a variable of the premise 
of the control laws. 

4. Stability analysis 

Firstly, consider the feedback system in (12) with a singular 
point in x = 0. It is fair enough for example that ao(0) = 0 to satisfy 
the following condition. 

-K 

ds(t)/dt 

S(t) 

Fig. 3. The phase plane of this system. Fig. 5. Phase plane of the controlled system. 
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Fig. 6. Chattering elimination applying the proposed fuzzy algorithm. 

xn(r)x=0 = 0[ao(x(t)) +A(x(t))x(t) - bn(x)[SB(x(t))]-* 

x(S(a0(x(r))-M(x(r))x(r))-a)]x=0 

= a0(0) - BiOHSBiOM^SaoCO) = 0 (21) 

Since s(x)=Sx = 0 is a stable linear dynamic system of reduced 
order, there should exist a Lyapunov function for this system 
[17,31]: 

[xi x2 X n - l 

Vr(x) = xJPrxr = xT 
Pr 0 

0 0 

which should fulfill that Vr(x) is a positive definite function in xr 

and [dVr(x(r))]/dr is a negative definite one inxr. 
Let us define the following Lyapunov function for the controlled 

system: 

V(x) = Vr(x) + S(x)z 

The two terms in Eq. (22) should verify: 

Vr(x) > 0 Vx s mn 

s(x)2 > 0 Vx s mn 

(22) 

(23) 

J0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time (s) 

Fig. 7. Temporal evolution of s(x). 

where V(x) should be at least a positive semidefinite function. More­
over, 

Vr(x0) = 0 ^ x o = [0---Oxn0r 

n0 _ 0 -o- xn0 = 0 s (x 0 ) 2 =x 2 
V(x) = 0 # x = 0 (24) 

Therefore, it is clear that V(x) is a positive definite function. The 
derivative of Lyapunov function becomes: 

dV(x(t)) dVr(x(t)) 
+ 2s(x)s(x) 

dt dt 

The two terms in Eq. (25) should verify: 

dVr{x{t)) 
dt 

< 0 Vx s SH" 

(25) 

(26) 

2s(x)s(x) < 0 Vx s SH" 

where (dV(x))jdt should be at least a negative semidefinite function. 
Moreover, 

^ ° l = 0 ^ x 0 = [0...0 x n 0 f 

2s(x0)s(x0) = 2xn0a = 0 # x „ 0 = 0 

dV{x) 
~dT : 0 # X = 0 

(27) 

where it is evident that dV{x)jdt is a negative definite function. Thus, 
the feedback system is an asymptotically stable one. Moreover, 

V{x) is a positive definite Vx s SH" 

dV(x) 
dt 

and 

is a negative definite Vx s SHn 
(28) 

V(x) -* ooas ||x|| -* oo 

Therefore the system is a globally and asymptotically stable one. 

5. Proposed controller (FLC-VSC) 

There exist various techniques to design the FLC-VSC. In most 
of the works carried out in this field [12,24,41], the fuzzy system is 
described as follows: 

x =A{x)x + B{x)u (29) 

This means that the non linear fuzzy system is linearized with 
respect to the origin in each IF-THEN rule, which means that the 
consequent part of each rule is a linear function with zero affine 
term. This will in turn reduce the accuracy of approximating non 
linear systems. In this study, a design of FLC-VSC is presented based 
on T-S fuzzy model [32] taking into account the effect of the inde­
pendent term in both the fuzzy system and controller. 

The fuzzy system in this work is represented by the affine T-S 
fuzzy model. 

x = a0(x) + A{x)x + B{x)u (30) 

5.1. Fuzzy logic controller based variable structure controller 
(FLC-VSC) 

Let us consider the problem of designing a fuzzy controller based 
on variable structure with VSC theory. Firstly, it should be men­
tioned that the principal problem is the necessity to know the 
nonlinear model of the system explicitly. This in general is impos­
sible because it is so difficult to identify its parameters. A possible 
solution is by using the T-S fuzzy model for estimating nonlinear 
systems. 



Let the (ij . . . i„ )th rule of the T-S model be represented as: If this steady state value exists, the control action becomes, 

S(J'i ~U) : ifXl isMj1 andx2 isM^... andxn isM^ thenx •. 
+y4(i'i-in)x + B(I'i-I'n)u 

Jl ' l-l 'n) 

where M*i (i'i = 1, 2 T\) are fuzzy sets for X\, M^ (i2 = 1, 2 
r2) are fuzzy sets for x2, MJp (in = 1,2 r„) are fuzzy sets for x„. 
Therefore the complete fuzzy system has T\ X r2 x . . . r„ rules. The 
membership functions of the fuzzy system are overlapped by pairs. 
With this model, the model parameters can be identified using the 
algorithms developed by authors in [13,14]. 

The state vector is: 

XT = [ Xi X2 . . . Xn] 

of n dimension, and u is a scalar input. The vectors and matrices in 
these rules are described in a canonical controllable form: 

nV-i-in) . 

0 
„(l ' l - l 'n) 
J 0 

(32) 

^ ( 1 ' l - i n ) . 

0 

0 

0 
a(U-..in) 4 

1 

0 

0 
1-in) 

0 

1 

0 

<fefa) a[ 

0 

0 
1 

1-in) 

(33) 

!( l ' l - in) : 

0 
h(i l - in) 

which is equivalent to be rewritten as: 

x = a0(x)+A(x)x(t) + B(x)u 

(34) 

(35) 

where ao(x),A(x) and B(x) matrices are determined by the following 
fuzzy system: 

(36) 
S(h ..^n) : ifxiisM^ andx2 isM%.. .andxnisM1^ then a0 

= aiiJ
['in)andA=A^- J") and B = B '̂i • • -1'") 

In conclusion, the new proposed method can be considered as a 
two level one: the first level includes the calculation of ao(x), A{x) 
and B(x) resulting matrices from the above identified fuzzy system 
and the second one is obtaining the control action mentioned above 
in (19): 

Ifs(x)isM" thenu(t) = -[SB(x)]_1(S(a0(x) +A{x)x) -K) 

Ifs(x)isM° thenu(t) = -[SB(x)]_1S(a0(x)+A(x)x) (37) 

Ifs(x)isM+ then u(t) = 

6. Non-zero final state 

-[SB(x)]-\S(a0(x)+A(x)x)+K) 

The objective now is to approach a steady state xp. The first con­
dition to impose is that there is an input signal up that allows the 
system: 

x(t) = a0(x(t)) +A(x(t))x(t)+B(x(t)Mt) (38) 

to maintain this steady state, i.e., the system should comply: 

0 = a0 (xp) + A{xp )xp +B{xp)up (39) 

u„ ^Xp){a0{xp)+A{xp)xp) (40) 

where B+(xp) is pseudoinverse. 

B + {xp) = {Bt *Bf1 *Bt 

It can be observed that in this case: 

1 
'(Xp): 0-- -0-

bn(Xp) 

If we change the variables in (38) as follows: 

x( t )=x p +Ax(t) 

u(t) = up + Au(t) 

Ax(t) = a0{x{t)) + A{x{t)){xp + Ax(t)) + B{x{t)){uv + Au(t)) 

we will obtain a new system: 

Ax(t) = a0(x(t))+A(x(t))xp 

+ B(x(t))up+A(x(t))Ax(t) + B(x(t))Au(t) 

This means that: 

Ax(t) = ap0(x(t))+A(x(t))Ax(t) + B(x(t))Au(t)) 

where 

apoMO) = ao(x(t)) +A(x{t))xp + B{x{t))up 

It will satisfy in this new system (44) that, 

Ax = 0 =>• x = Xp 

apo(xp) = a0{xp) +A{xp)xp+B{xp)uv = 0 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

This means that the required condition is satisfied so that the 
VSC control: 

Ifs(Ax) < 0 then u(t) = -\SB(x(t))r\S(apo(x(t)) + A(x)Ax(t)) - K) 

Ifs(Ax) = 0 thenu(t)=-[SB(x(t))l-1S(ap0(x(t))+/l(x)Ax(t)) (47) 

Ifs(Ax) > 0 thenu(t)=-lSB(x(t))r\S(ap0(x(t)) + A(x)Ax(t)) + K) 

results in a feedback system asymptotically and globally stable in: 

Ax = 0 =>• x = Xp 

Au(t) = -[SBMO)]-1 (S(ap0(x(t)) + A(x(t))Ax(t)) - a) 

u(t) = up- [ S B M ^ r ^ a o M O H A M t ^ X p +B(x(t))up 

+ A(x(t))Ax(t)) -a) = up- [SB(x(t))]-*SB(x(t))up 

- [SBCx(t))]-1 (S(a0(x(t))+A(x(t))xp +A(x(t))Ax(t)) - a) 

= -[SB(x(t))]-1(S(a0(x(t))+A(x(t))Xp 

+A(x(t))(x(t)-Xp))-a) = -[SB(x(t))r1(S(a0(x(t)) 

+ A(x(t))x(t))-a) (48) 

Therefore, it is not necessary to know the value of up explicitly. 
Finally, the controller becomes: 

Ifs(Ax) < 0 then u(t) = -[SB(x(t))]_1(S(a0(x(t)) + A(x(t))x(t)) - K) 

Ifs(Ax) = 0 thenu(t)=-[SB(x(t))l^S(a0(x(t)) + /l(x(t))x(t)) (49) 

Ifs(Ax) > 0 thenu(t)=-lSB(x(t))]-\S(a0(x(t)) + A(x(t))x(t)) + K) 



7. Estimation of fuzzy T-S model's parameters 

T-S model [32] is based on estimating the nonlinear sys­
tem parameters minimizing a quadratic performance index. The 
method is based on the identification of functions of the following 
form: 

/:!«" SH 

y = / ( x 1 , x 2 , . . . , x n ) 

Each IF-THEN rule for an nth order system can be written as 
follows: 
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where the fuzzy estimation of the output is: 
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where 
n 

( l^J n )(x) = J]/AK,(x,) 
1=1 

w 

being /AJ,\(XJ) the membership function that corresponds to the 
fuzzy set Mi. 

Let {x\k,X2k< • • ->xnk>yk} be a set of input/output system sam­
ples. The parameters of the fuzzy system can be calculated as a 
result of minimizing a quadratic performance index: 
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If X is a matrix of full rank, the solution is obtained as follows: 

J = \\Y-XP\\2 = (Y -XP)J(Y -XP) 

VJ = XT(Y - XP) = XTY - XTXP = 0 

P = (XTXTlXTY 

(55) 

Fig. 8. Membership functions of the fuzzy system. 

Fig. 9. One link robot. 

8. Restrictions of T-S identification method 

The validity of the control design depends mainly on the mod­
eling accuracy of the controlled system and the proposed method 
offers a great accuracy. On the other hand, to make the procedure 
practical, the modeling stage must be computationally efficient. 
Modeling phase is fundamental both in the analysis process of a 
dynamic system and the design of a control system. The method 
proposed in [32] arises serious problems as it can not be applied in 
the most common case where the MFs are those shown in Fig. 8. 

The MFs fin(xi) = (bi-xi)l(bi-ai) and /ia(x,) = (x,--a,)/(b,--a,) 
are defined in an interval [a,-, b{\ which should verify: 

Mn(Oi) = l Vn(bi) = 0 

fii2(Oi) = 0 jii2{bi) = \ 

Mil(Xi) + Mi2(Xi) = l 

For this case which is widely used, it can be easily demonstrated 
[13,14] that the matrixXis not of full rank and therefore XTX is not 
invertible, which makes the mentioned method of T-S invalid. 

The solution proposed in [32] avoids the occurrence of this sit­
uation. It can be clearly seen in [32] that when the matrix X is of 
full rank and the T-S method is applicable where the authors find 
the optimum MFs when they are non overlapping ones, minimiz­
ing the performance index and reducing the problem to a nonlinear 
programming one. In [14], a detailed proof shows that T-S method 
is restricted and invalid when the MFs are overlapped by pairs. 

The authors developed an approach [ 1 ] which can be considered 
as a generalized version of T-S method with optimized performance 
in approximating (locally and globally) nonlinear functions. It is a 
simple approach with few computational effort, based on the well 
known parameters weighting method for tuning T-S parameters to 
improve the choice of the performance index and minimize it. 

9. Illustrative example 

Example 9.1. One link robot 

Consider the problem of estimating a one link robot manipulator 
(see Fig. 9) using the above mentioned estimation methods. 

The one link robot manipulator can be represented with the 
dynamic equation: 
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Fig. 10. Membership functions for the angle x of the one link robot. 

where mi is the mass at the end of the link, l\ is the length 
of the link, g\ is the gravitation constant, 6\ is the angle of link 
with respect to its null position, l\ is the moment of inertia; with 
m-i = 2 kg, h = 1 m, lcl = 0.5 m, h = 0.25 kgm2, and /3i = 0.05 N/m/s. 

This system can be rewritten in state space form as follows: 

X\ = 9i 

x2 = ex 

x\ 

X2 

= 
x2 

-W\x2+g\) + 
Hi -*\ 

s{x) = [2 l ] x ( 0 

p(k) = k + 2, k = 5 

Firstly, the model of the one link robot is estimated in five 
operation points for the angle and three operation points for its 
derivative. The universe of discourse of the angle is [0, n] and the 
one of the angular velocity is [- 1,1]. Both MFs for the angle x and 
its derivative x are shown in Figs. 10 and 11 respectively. 

If we apply the T-S method directly to this example, then the 
condition number of the matrix X is 3.4148e + 015, which shows 
clearly a non reliable result. Using the parameters' weighting 
method with weighting factor )/ = 0.01, the robot fuzzy model can 
be represented as follows: 

S u : If x1 is M\ and x2 is M\ then 
x2 = 0.3445 - 9.1813XJ - 0.1974x2 + 0.9998u 
S1'2: Ifxi isMj andx2 isM2 then 
x2 = -9.3391X! - 0.2042x2 + 0.9999u 
S1 3 : Ifxi isMj andx2 isM3 then 
x2 = -0.2534 - 9.5255X! - 0.1963x2 + 0.9997u 
S2'1: If Xi is M2 and x2 is M\ then 
x2 = -0.5969 - 7.631 lX! - 0.1489x2 + 1.0002u 
S2'2: If X! is M2 and x2 is M2 then 
x2 = -0.8261 - 7.7832X! - 0.1466x2 + 0.9999u 
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Fig. 12. Transient response of the one-link robot. 
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The resultant mean square error from this approximation is 
1.5367e-004. 

As it can be observed, the results obtained through the param­
eters' weighting method are always better than with the original 
T-S method. The transient response is shown in Fig. 12. 

Now, the proposed FLC is applied for the same system in the 
previous example with the same sampling time and the fuzzy sets 
shown in Fig. 13 with <P = 1. 

It can be clearly shown in Fig. 14 the effectiveness of the pro­
posed controller in eliminating the chattering effect. The transient 

Fig. 11. Membership functions forthe angular velocity of the one link robot. Fig. 13. Fuzzy sets of the switching surface. 
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Fig. 17. Phase plane of the robot link from the origin to a non zero final state with 
the proposed control algorithm developed for chattering elimination. 
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Fig. 14. Chattering elimination. 
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Fig. 18. Transient response of the robot link subjected to a step input and a load of 
0.5 kg in the end effector. 
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Fig. 15. Transient response of the one-link robot. 

response is shown in Fig. 15.The temporal evolution of s(x) is shown 
in Fig. 16. 

The results obtained show that the system is stabilized by apply­
ing the proposed FLC-VSC. Fig. 17 shows the phase plane of the 
robot link from the origin to a non zero final state with the proposed 
control algorithm developed for chattering elimination. Fig. 18 
shows the transient response of the robot link controlled by the 
proposed FLC-VSC controller subjected to a step input and to a load 
in the end effector of a mass of 0.5 kg. The position steady state error 
is 0.0146° and the velocity steady state error is 0.0000e-004°/s. 
To examine the robustness of the proposed controller, the system 

Fig. 19. Transient response of the robot link subjected to disturbances. 
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Fig. 16. Temporal evolution of s(x). 
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Fig. 20. Transient response of the robot link controlled by the FLC-VSC subjected to 
measurement noise. 
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Fig. 21. Trajectories of the states of the system for several initial conditions. 

has been subjected to successive disturbance effects of 5°, -3° and 
9° with respect to its equilibrium state as shown in Fig. 19. It is 
clearly shown that the robot link returns rapidly and smoothly 
to its equilibrium condition after each disturbance. Moreover, we 
have proven that the FLC-VSC is robust and invariant against mea­
surement noise. If we suppose that the angle sensor introduces a 
noise of a= 1°, it can be observed that the output is only affected by 
a = 0.0870° as shown in Fig. 20. Fig. 21 shows several trajectories of 
the system for several initial conditions. 

10. Conclusion 

Due to the similarity between FLC and VSC, a design of a non 
linear controller based on both techniques has been presented. The 
fuzzy system and controller have been represented by Affine T-
S model. The main contribution of this work is that firstly new 
functions for chattering elimination and error convergence without 
sacrificing invariant properties are proposed which is considered 
the main drawback of the VSC control. Secondly, the global stability 
of the controlled system is guaranteed within the valid range of the 
T-S identification. The robustness of any control design depends 
mainly on the modeling accuracy of the controlled system. The 
main problem encountered in modeling T-S model is that it cannot 
be applied when the MFs are overlapped by pairs. 

An optimization estimation approach has been used to improve 
the local and global approximation and modeling capability of T-S 
identification methodology. The parameters' weighting optimiza­
tion method has been applied to reduce the error between the 
original system and the identified one. 

A one link robot is chosen as a nonlinear unstable system to eval­
uate the robustness, effectiveness and remarkable performance of 
optimization approach and the high accuracy obtained in approx­
imating nonlinear systems in comparison with the original T-S 
model. Simulation results indicate the potential and generality of 
the algorithm. In this paper, we prove that these algorithms con­
verge very fast, thereby making them very practical to use. The 
application of the proposed FLC-VSC shows that both alleviation of 
chattering and robust performance are achieved with the proposed 
FLC-VSC controller. The effectiveness of the proposed controller is 
proven infront of disturbances and noise effects. 
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