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Abstract

Markerless Human Motion Capture is the problem of determining the joints’ angles of a three-dimensional articulated body model
that best matches current and past observations acquired by video cameras. The problem of Markerless Human Motion Capture is
high-dimensional and requires the use of models with a considerable number of degrees of freedom to appropriately adapt to the
human anatomy.

Particle filters have become the most popular approach for Markerless Human Motion Capture, despite their difficulty to cope
with high-dimensional problems. Although several solutions have been proposed to improve their performance, they still suffer
from the curse of dimensionality. As a consequence, it is normally required to impose mobility limitations in the body models
employed, or to exploit the hierarchical nature of the human skeleton by partitioning the problem into smaller ones.

Evolutionary algorithms, though, are powerful methods for solving continuous optimization problems, specially the high-
dimensional ones. Yet, few works have tackled Markerless Human Motion Capture using them. This paper evaluates the per-
formance of three of the most competitive algorithms in continuous optimization — Covariance Matrix Adaptation Evolutionary
Strategy, Differential Evolution and Particle Swarm Optimization — with two of the most relevant particle filters proposed in the
literature namely, the Annealed Particle Filter, and the Partitioned Sampling Annealed Particle Filter.

The algorithms have been experimentally compared in the public dataset HumanEva-I by employing two body models with
different complexities. Our work also analyzes the performance of the algorithms in hierarchical and holistic approaches, i.e., with
and without partitioning the search space. Non-parametric tests run on the results have shown that: (i) the evolutionary algorithms
employed outperform their particle filter counterparts in all the cases tested; (ii) they can deal with high-dimensional models thus
leading to better accuracy; and (iii) that the hierarchical strategy surpasses the holistic one.
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1. Introduction for the joints of the human body model given the information

available in the previous and the current images.
Markerless Motion Capture (MMOCAP) is an emerging field

with potential applications in areas like the animation indus-
try [1], medical rehabilitation [2], and video surveillance [3],
amongst others. The goal is to automatically determine the pose
of a subject from the images of a video sequence. For that pur-
pose, a human body model is rendered on the images so as to
determine the model’s configuration that best matches the input
images. The sequential nature of the problem allows us to use
the solutions obtained in one frame as the starting point for the
search in the next one. In order to cope with three-dimensional
ambiguities and occlusions, the most effective set up consists of
several cameras simultaneously observing the scene from dif-
ferent points of view. Ultimately, the problem is formulated as
a continuous optimization problem that seeks the best angles

MMOCAP is considered in the computer vision community
as a difficult problem because of the many challenges that it
presents. First, it is a high-dimensional problem. In order
to obtain accurate results, the body model employed needs to
have a suitable number of joints so as to adapt properly to all
human poses. Second, the computing power is a limiting fac-
tor. The operations needed to evaluate solutions are computa-
tionally very expensive. Therefore, it is of paramount impor-
tance to obtain good solutions in as few iterations as possible.
Finally, an appropriate balance is required between local and
global search. While in most of the cases local search achieves
good solutions, occlusion and ambiguities in the camera config-
uration might require the use of global optimization to discover
the correct solution once the conflicting situation has finished.

. Most of the solutions emerging from the computer vision
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nature of the problem, [5, 6]. Other solutions tackle the prob-
lem by dividing the search into multiple stages, [4, 7]. In spite
of the advances achieved, most of the proposed solutions suffer
from the curse of dimensionality and they need to rely on sim-
ple human models (which lead to suboptimal tracking results),
or require a high number of evaluations to achieve accurate re-
sults.

Over the past few years, the field of global optimization has
been very active, producing different kinds of deterministic and
stochastic algorithms for optimization in the continuous do-
main [8]. Among the stochastic approaches, Evolutionary Al-
gorithms [9] offer a number of exclusive advantages that make
them an attractive choice, e.g., robust and reliable performance,
global and local search capability, little or no information re-
quirement, etc. Despite of their advantages, there are few works
in the literature devoted to test the performance of evolutionary
algorithms on the MMOCAP problem, [10-12].

This work performs an experimental comparison of three
relevant evolutionary algorithms namely Covariance Matrix
Adaptation Evolutionary Strategy (CMAES) [13], Differen-
tial Evolution (DE) [14], and Particle Swarm Optimization
(PSO) [15], with two popular variants of particle filters pro-
posed for the MMOCAP problem namely Annealed Particle
Filter (APF) [4] and Partitioned Sampling Annealed Particle
Filter (PSAPF) [6]. The selection of these evolutionary algo-
rithms is based on the results reported in the IEEE International
Conferences on Evolutionary Computation (CEC) competitions
on real parameter optimization [16], for which these three algo-
rithms have continued to secure top ranking. With regards to
the particle filters selected, the first one (APF) can be consid-
ered the base line algorithm taking into account the high num-
ber of cites obtained. The PSAPF has been selected for being
considered the hierarchical version of the APF.

This work analyzes the behavior of the evolutionary algo-
rithms using both holistic and hierarchical strategies so as to
decide which strategy is preferable. Additionally, two different
articulated models have been employed. The first one, com-
prised of 28 degrees of freedom (DOF), is similar to those used
in most of the previous approaches in the literature. The second
one, comprised of 39 DOF, aims at evaluating the capability of
the tested algorithms to deal with more realistic (and thus com-
plex) body models.

The experiments have been conducted on nine sequences of
the HumanEva-I dataset [17], and analyzed by means of a non-
parametric statistical analysis [18]. The results obtained show
that:(i) the evolutionary algorithms tested provide significantly
better results than particle filters; (ii) the 39-DOF body model
employed in this work obtains better results than the other one;
and (ii1) the hierarchical strategy surpasses the holistic one in all
the evolutionary algorithms applied. Additionally, our experi-
ments determine the minimum number of evaluations required
for an optimal trade-off between precision and speed for the
different algorithms in the experiments.

The remainder of this paper is structured as follows. Sec-
tion 2 revises the related work. Section 3 formulates the prob-
lem of pose estimation, describes the body models, cost func-
tion and evaluation strategies. Section 4 introduces the ba-

sis of the particle filters and the evolutionary algorithms em-
ployed. Finally, Section 5 explains the experimentation carried
out, while Section 6 draws some conclusions.

2. Related works

Most of the solutions proposed for the MMOCAP problem
fall into two main categories: holistic and hierarchical ap-
proaches. The former employs a global optimization approach
to fit the model’s parameters. As a consequence, the computa-
tional requirements are high and the search method may suffer
from premature convergence because of the high dimensional-
ity. On the other hand, hierarchical strategies exploit the under-
lying hierarchical structure of the articulated model assuming
that body parts can be localized independently from each other.
Then, the problem is divided into smaller problems that can
be more easily solved. However, hierarchical approaches have
several drawbacks. First, the optimal partitioning may not be
obvious (e.g. arms first or legs first?) and it may change over
time (e.g. when the legs cross during walking). Second, while
partitioning might not make a difference for noise-free simu-
lation data, in practice an incorrectly estimated early partition
due to noisy data may irrevocably mislead the outcome, [6].

2.1. Computer Vision approaches

The first solutions emerging from the computer vision com-
munity consist in the use of particle filters. In particular,
the Condensation algorithm is the most prevalent of such
algorithms and has been widely employed for the tracking
task, [19]. However, when applied to the MMOCAP prob-
lem, it has been repeatedly shown that it suffers from the curse
of dimensionality. Therefore, Deutscher and Reid proposed
the APF [4], which combines the ideas of the Condensation
and the Annealed search so as to improve the tracking results.
With the aim of reducing the complexity of the search in many
dimensions, the particles are evaluated in layers. In the first lay-
ers, the objective function are smoothed so as to allow escaping
from local minima. In the last layers, the objective function
is more peaked thus concentrating on exploiting the best solu-
tions. Corazza et al. propose also a custom version of adapted
fast simulated annealing [20] for body tracking using as input
data a visual hull reconstruction and an a priori model of the
subject.

Another popular approach for tracking articulated objects is
the use of Partitioned Sampling (PS) [5]. The technique was
initially employed for tracking several objects using particle
filters, but then successfully applied to hand tracking. Unlike
the APF, PS imposes a strong partition of the search space.
As previously indicated, the main problem consists in deter-
mining the optimal partitioning. Bandouch er al. proposed the
PSAPF [6] as an attempt to combine the strengths of PS and the
Annealed Search. To do so, they incorporate the APF within a
PS framework by applying an appropriate weighted resampling
in each sub-space. As they report, they are able to cope with
high-dimensional models, but at the cost of employing a very
high number of evaluations per frame (around 8000). Recently



Gall et al. [ 7] have proposed a multi-layer framework that com-
bines stochastic optimization, filtering, and local optimization
search. Their approach runs on several stages. First, a simu-
lated annealing is employed. And then, the solutions obtained
are refined by filtering and local optimization. Although they
report good tracking results, the main drawback of their ap-
proach is the limitation imposed to the body model tested (only
28 DOF).

Chang et al. [21] proposed a progressive particle filter. The
main idea was to combine a standard particle filter with the
mean shift strategy [22] and a hierarchical search. However,
their solution was only tested on video sequences with a single
camera in a non-public dataset. It is not clear if their approach
would work on sequences with multiple views.

In spite of the advances achieved over the last years, mobil-
ity limitations often are imposed to the body models employed
S0 as to obtain reasonable performance in manageable comput-
ing times. For instance, there are works [4, 7, 10, 21] which
employ models with no more than 32 DOF and assume no mo-
bility in dorsal spine, hands and feet. This simplification of the
human anatomy allows a tractable computation of the model
while achieving acceptable results for some applications. How-
ever, some other applications require a more precise modelling
of the human body so as to measure biomechanical parame-
ters [23-26].

2.2. Evolutionary Computation approaches

Many real-world problems, such as the MMOCAP problem,
may be formulated as optimization problems of parameters with
variables in continuous domains. Over the past few years, the
field of global optimization has been very active, producing
different kinds of evolutionary algorithms for continuous opti-
mization problems. Such algorithms have been widely applied,
showing better performance than other approaches, to diverse
scientific and engineering problems [8]. Nonetheless, few au-
thors have applied the ideas from Evolutionary Computation to
the MMOCAP problem.

John et al [10] apply PSO to the MMOCAP problem using a
31-DOF articulated model with great success. As they report,
their approach outperforms the results of APF and PSAPF. The
main advantages of the PSO algorithm become particularly ev-
ident when tracking fast movements, since it has demonstrated
a good performance without requiring any motion prior. Shen
et al. [11] propose their own evolutionary algorithm and test
it with a 33-DOF model. The experiments performed show
that their approach compares favourly to the APF algorithm.
One of the weaknesses of their work is that their method is
not evaluated in a public dataset. Zhao and Liu [12] propose
a Hierarchical Annealed Genetic Algorithm to infer the three-
dimensional pose from a single monocular camera. The main
novelty of their approach is the use of Principal Component
Analysis (PCA) to reduce the dimensionality. To that end, the
algorithm is trained to be employed in specific motions that
are learnt in advance. In this work, however, we are interested
in evolutionary algorithms that can be employed without prior
knowledge of the motions to be tracked.
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Figure 1: Body model employed: (a) Skin and Skeleton Models. The skin is
a 3D model representing the surface of the body while the skeleton represents
the internal structure of the articulations (joints and bones). (b) Hierarchical
Structure of the Skeleton Model. Each node represents a joint which is sub-
ject to rotations in the three axes. The transformation of a node affects all its
children.

The goal of this work is to perform a comparative study of
the performance of the evolutionary algorithms and particle fil-
ters paradigms when applied to the MMOCAP problem. For
that purpose, we have selected three of the most relevant evolu-
tionary approaches (PSO, CMAES and DE), and the two most
widely employed particle filters (APF and PSAPF). As we
show in the experimental section, the evolutionary approaches
tested are generic optimization algorithms that provide signifi-
cantly better results than their particle filter counterparts.

3. Problem formulation

Markerless Motion Capture (MMOCAP) consists in deter-
mining the pose of a subject from a video sequence. For
that purpose, either a specific or a generic articulated body
model of the subject is matched against the images. In par-
ticular, we are concerned with the problem of estimating the
three-dimensional pose of the subject. Therefore, the subject
is recorded using a set of synchronized video cameras whose
relative position to a common reference system is obtained by
calibration. As a consequence, it is possible to determine the
three-dimensional projection of the model in the images.

3.1. Body models

The body model employed is generally comprised of an outer
model or skin and an inner model or skeleton. In this work,
the skin consists of a set of meshes representing the surface
of the body while the skeleton represents the internal structure
of the articulations. The skeleton is modelled as a hierarchical
structure where each node represents a joint which is subject
to rotations in the three axes (R, Ry and R;). It is employed to
apply the body movements to the skin model in such a way that
the transformation of a node affects all its children.



Fig. 1(a) shows the skin and skeleton models employed in our
work, whereas Fig. 1(b) depicts its hierarchical structure. As
can be seen, the hierarchical model has a root node (root joint)
from which the rest depends. It is employed to define the global
rotations and translations of the model. In total, our model is
comprised of 16 joints, so that a complete transformation of

such model is defined by 3 translation components (7, Ty and
T.) plus 16 x 3 rotations (R}, R}, R), j = 1,...,16 , ie., a

total of 51 parameters (DOF) constituting the dimension D of
the problem.
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xs51p0F = {T, Ty, Tes R Ry, Ry .

16 D=51
o xo Rz } € R .

However, because of the biomechanical structure of the hu-
man body, not all these rotations are valid and the model can
be simplified. Inspired in the work by John et al [10], Table 1
defines the valid axes of rotation for each joint of our model.
So, the valid transformation of the model is then defined by 39
DOF which may be represented by the vector:

x30p0F = {Tx. Ty, T, R R}, R! ... RI°, R} € RP=,

The higher the number of DOF of the proposed model the
better the adaptation to the human anatomy. The 39-DOF
model employed here has higher dimensionality than those in
previously cited works. For instance, Deutscher and Reid [4]
or John et al [10] employed models, with 31 and 29 DOF re-
spectively, which impose mobility limitations in parts such as
dorsal spine, hands and feet. To assess the importance of using
body models that adapt well to the human anatomy, we com-
pare the tracking results of our 39-DOF model with a simpli-
fied version that resembles those presented in previous litera-
ture [4, 7, 10, 21]. This simplified version is created by remov-
ing the four joints of wrists and ankles, plus the one labelled
UpperSpine (see the joints marked with an asterisk in Table 1).
As a consequence, the simplified model has a total of 28 DOF.

3.2. Model evaluation

The goal of MMOCAP is to estimate the most likely model
configuration x’ at each time step f, given the set of images
captured. For that purpose, it is assumed that there has been
defined a fitness function f(x) which indicates the likelihood
of a model configuration to be correct. For each new frame,
the minimization procedure relies on the results obtained in the
previous one so as to improve the results. For the first frame, an
initial body configuration x° is provided.

Many fitness functions have been proposed in the literature,
but the ones based on silhouettes have shown to provide an ap-
propriate trade-off between robustness and speed. The main
idea is to match the projection of a model configuration x
(silhouettes) to the foreground information obtained by back-
ground subtraction.

Next, we will define the silhouettes-based fitness function
used in our research. For that purpose, let us denote by

I'={I'|v=1,..,V} (1

Joint DOF

Root T, T,,T.;,R,R,,R, 6
BottomSpine R, Ry, R, 3
UpperSpine * R, R, R; 3
LShoulder R, R,,R; 3
LEIbow R, 1
LWrist * Ry, R, 2
RShoulder R, R, R, 3
REIbow R, 1
RWrist * Ry, R; 2
Neck R, R,,R; 3
LHip R, Ry, R, 3
LKnee R, 1
LAnkle * R, R, 2
RHip R, Ry, R, 3
RKnee R, 1
RAnkle * R, R, 2

Total 39

Table 1: Biomechanically valid DOF (rotation axes) for the human model’s
joints. The reduced model is created removing rotation axes in the joints
marked with an asterisk.

bib:hansen06 the set of images captured at time instant ¢ with
the V cameras available.

In an initial phase, a background model which captures the
color statistics of each pixel is created. Then, using background
subtraction techniques, the foreground images are obtained in-
dicating which pixels belong to the moving objects in the scene.
Let us denote by

Fr={Flv=1,....,V}, 2)

to the set of foreground images, so that a pixel F!(p) is 1 if it
belongs to the foreground and 0 otherwise.
Finally, we shall denote by

M) =M, (x)lv=1,...,V}, 3)

to the projections of the body model configuration x in the cam-
era images. Likewise, a pixel M, (x, p) is 1 if it belongs to the
model’s silhouette and 0 otherwise.

Fig. 2 helps to clarify the above explanation. While Fig. 2(a)
shows an image captured by a camera (7)), Fig 2(b) shows its
corresponding foreground image (7). Finally, Fig. 2(c) rep-
resents the projection of a model configuration in the image
M, (x).

Using the above defined concepts, a model can be evaluated
by matching the degree of overlap of its projected silhouette
and the foreground image. Thus, let us define the evaluation
function as:

1
fild) = s M,(x, p) — Fi(p)+
ADM, () peﬂ%&x»
1 t
ADTD Z Fo(p) — M, (x, p) )

PED(FY)
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Figure 2: Images taking part in the model evaluation: (a) Camera image 7/,
captured at time instant 7 with camera v. (b) Foreground image ¥, obtained
from I, by background subtraction techniques and showing in white pixels
belonging to the moving objects in the scene. (c) Model silhouette M, (x),
resulting of the projection of the body model (skin in Fig. 1(a)) in Z%,. White
pixels belong to the model’s silhouette.

where the function D(-) indicates only these pixels with value
1. Thus, the first term of Eq. 4 accounts for these model points
that project on foreground points, i.e., it decreases as the de-
gree of overlap between the model and the mask increases. On
the other hand, the second term of the equation accounts for
the pixels of the foreground image that are not covered by the
model’s projection. Consequently, the function f(x) = 0 when
the model projection fits exactly the foreground mask. On the
contrary, f!(x) tends to 1 as the degree of overlap decreases.

Due to illumination changes and color similarities between
the subject and the background, it is unlikely to achieve a per-
fect match between the model and the foreground images (see
Fig 2(b)). The use of multiple cameras helps not only to al-
leviate these problems but also to infer the three-dimensional
configuration of the subject. The evaluations of the model in all
the cameras are fused as:

flo) = %Z (). ©)

Therefore, values of Eq. 5 near to 0 indicate that x is a good
solution and values near 1 indicate that x is a poor solution.

3.3. Evaluation strategies

As previously indicated, the representation of the problem
has a hierarchical nature (see Fig. 1(b)). It means that the mod-
ification of a node affects its children but not its parents. As
a consequence, there are two strategies that can be applied to
solve the problem: holistic and hierarchical.

In the holistic approach, all variables are optimized jointly.
This approach is, in theory, the most appropriated one since it
makes no assumptions about the independence of the body parts

and it is more robust to errors. In practice, however, the high di-
mensionality of the problem makes the holistic approach inap-
propriate in situations having real-time requirements. It must be
considered that the elevated computing time required for eval-
uating a solution imposes strong restrictions on the maximum
number of evaluations for some applications. The main draw-
back of the holistic approach, then, is the exponential growth
of the search space with the number of variables. In addition,
since changes in the upper nodes of the structure affects to their
children, good solutions obtained for the lower nodes in early
stages of the search might be discarded later by changes in one
of their parents.

On the other hand, the hierarchical search takes advantage
of that situation by considering the existence of independent
branches in the human body, namely the limbs and head. There-
fore, it is possible to apply a hierarchical search in which there
are independent search processes working on smaller spaces.
However, hierarchical approaches have several drawbacks too.
First, the optimal partitioning may not be obvious and it may
change over time. Second, incorrect estimations in a node (due
to noise or occlusion) affect to all its children, i.e. an error in the
estimation of the first node compromises the rest of the nodes
irrevocably.

This paper aims at evaluating the performance of the algo-
rithms proposed using the two strategies. In particular, we will
test the hierarchical strategy using a six-step approach which we
consider that provides an appropriate balance between global
and local search. The six steps are: the Root (translation and
rotation) first, then torso and head, and finally, the branches cor-
responding to the limbs, which are optimized independently.

4. Algorithms Evaluated

This section provides an overview of the algorithms em-
ployed: particle filters and evolutionary algorithms.

4.1. PFarticle filters

Particle filtering techniques are widely employed for estimat-
ing the state of a dynamic system x’ from sequential observa-
tions of it [19, 27-29]. For that purpose, they use a weighted set
of particles {(x!,7})}, where x! represents a possible state of the
system, and 7} is a non negative numerical factor called impor-
tance weight which represents an estimation of the observation
density, i.e., i oc 1 — f(x}). Particle filters are especially in-
teresting because they can deal naturally with systems where
both the posterior density and the observation density are non-
Gaussian.

Particle filters have been proposed for articulated body track-
ing, including the APF which is a holistic approach, [4],
and PSAPF constituting a hierarchical approach, [6]. A brief
introduction to these two techniques, is given below.

4.1.1. Annealed Particle Filter

The most prevalent algorithm in the Computer Vision field
is the Condensation algorithm [19]. However, the algorithm is
known to have difficulty with high-dimensional state spaces and



unknown motion models. For that reason, Deutscher and Reid
proposed the APF [4], as an extension to the original algorithm
aimed to deal with problems of high dimensionality and specif-
ically with the MMOCAP problem. Since then, it has become
one of the most relevant algorithms in its field [3].

The outline of the APF is presented in Fig. 3. At the begin-
ning, the algorithm is provided by an initial sample set X(0) of
N particles, where all of them are equally weighted. At each
iteration, the algorithm uses the sample set X(¢ — 1) to create a
new one X(7). For that purpose, each iteration is divided in a
total of L steps, or layers. In each layer, the algorithm selects
N particles with replacement. The idea is that good particles
are selected with a higher probability. Then, each particle is
evaluated using the fitness function modified by an exponent 3,
that increases at each layer, i.e., 81 > B> > B.. The exponent
plays the role of the annealing procedure. In the first layers, an
small exponent creates a soft search surface causing a high ex-
ploration. Then, the exponent increases so that the search space
becomes more peaked thus forcing exploitation.

Perturbation of particles is made using the noise matrix B,.
As suggested by the authors, a good choice for B, is a normal
distribution with zero mean and covariance:

1
B, o Z(x; — &) (=&, (6)

proportional to the population’s covariance. In Eq. 6, the pa-
rameter &/ represents the mean of all particles. The idea behind
the equation is as follows. If a variable exhibits a low variance
among the population, then, a good solution has already been
obtained for it. As a consequence, it is preferable not to al-
ter the good values already achieved. However, variables with
high variance correspond to parts of the space for which a good
solution is not yet obtained. Then, a higher perturbation is em-

X(0) = {0, 2% =1,...,N}|n¥ = &
Create a new sample set X(¢) from X(¢ — 1) as
for/=1to Ldo
Select N samples from the set X(z,/ — 1) with re-
placement so as to obtain X(z, /)
Propagate each selected sample:

x=xi+B
Evaluate the importance of each sample
i = (1= fDY.
Normalise so that Y)Y, ! = 1.
Recalculate g; so that § = 0.5.

end for
Estimate the mean of the state X(7) as:

N
EX()] = ) 7,
i=1

Figure 3: Annealed Particle Filter.

ployed so as to seek better solutions.

The algorithm also provides a method to automatically obtain
the values of §; from the particles evaluated. For that purpose,
it is employed the concept of particle survival rate

1

=— @)
N 2
N2
which is the proportion of particles that pass to the next layer.
For instance, ¢ = ]%, if the same particle is always chosen in the
selection process; and 6 = 0.5 if half of the particles in one layer
are selected to the next one. The idea is then to set a desired §

and choose f; for the next layer as:

arg min
Bi

1

In our experiments, it is always used 6 = 0.5 as stated in the
original paper. For further information, the interested reader is
referred to the work of Deutscher and Reid [4].

Considering the pseudocode in Fig. 3, the run-time complex-
ity for the worst-case scenario of the APF algorithm is linear
with respect to the dimensionality of the problem.

4.1.2. Partitioned Sampling Annealed Particle Filter

Partitioned Sampling (PS) is a technique proposed to
overcome the poor performance of particle filters in high-
dimensional problems [5]. Initially, it was proposed for hand
tracking, but latter applied to MMOCAP. PS is a generic term
for a strategy which consists of dividing the state space into two
or more partitions, and sequentially applying the dynamics for
each partition followed by an appropriate weighted resampling
operation. The prerequisites for using PS in a problem are: the
configuration space can be partitioned as a cartesian product,
the dynamics of one partition do not influence the dynamics of
the hierarchically preceding partition, and the weighting func-
tion can be evaluated locally for each partition. All these con-
ditions are met in the MMOCAP problem.

The work of Bandouch er al. [6] consists in combining the
APF and PS algorithms. To that end, the authors partition the
search space, and then employ an APF in each partition, instead
of using a standard particle filter. The dimensional complexity
of the algorithm is also linear. As a consequence, the PSAPF
can be seen as the hierarchical version of the APF algorithm. In
this work, we are employing the 6-steps hierarchy explained in
Section 3.3.

4.2. Evolutionary algorithms

Over the past few years, an increasing interest has arisen
in solving continuous optimization problems using evolution-
ary algorithms, [30]. This family includes real-coded genetic
algorithms, evolution strategies, evolutionary programming,
memetic algorithms, swarm intelligence, and differential evolu-
tion. These algorithms are able to adapt to the dimensionality of
the search space and have the ability of being scalable for high-
dimensional problems which are essential requirements for the
MMOCAP problem.



Some of the algorithms which have emerged as very com-
petitive forms of evolutionary computing are CMAES repre-
senting evolution strategies, [13], DE which is itself an evo-
lutionary paradigm, [14], and PSO representing swarm intelli-
gence, [15]. We can also observe that no other single search
paradigms were able to secure competitive rankings in all CEC
competitions, [16].

In this section, we give a brief description of each of these
three evolutionary algorithms considered in this work for being
applied to the MMOCAP.

4.2.1. Covariance Matrix Adaptation Evolutionary Strategy

The Covariance Matrix Adaptation Evolutionary Strategy
(CMAES) is an evolutionary algorithm (belonging to the family
of evolution strategies) for difficult non-linear non-convex op-
timization problems in continuous domains. Its main applica-
tions are oriented to unconstrained or bounded constraint opti-
mization problems, and search space dimensions between three
and a hundred. Its main objective is to adapt the full covariance
matrix of a normal search distribution. The method is feasi-
ble on non-separable and/or badly conditioned problems and on
non-smooth and even non-continuous problems, as well as on
multimodal and/or noisy problems. It has been demonstrated
to be reliable and highly competitive in local, [31], and global
optimization, [32].

Figure 4 outlines the complete algorithm whose complexity
is of the order O(D), [31, 33]. For more details, the interested
reader is referred to the work by Hansen [13]. Default strategy
parameters values are given in Table 2.

The general principle of the algorithm is to obtain, for gen-
eration g + 1, A offspring sampled independently according to a
multi-variate normal distribution

PN N(m(g), (o-@)2 c@) fork=1,..., A, )

where N'(m,C) denotes a normally distributed random vector
with mean m and covariance matrix C.

The definition of the complete iteration step supposes to cal-
culate m@*D, o&*D and C&*D for the next generation g+1. The
correspondent stages are respectively selection and recombina-
tion for the mean, step size control for the standard deviation
and adaptation for the covariance matrix. The two last stages
are also called adaptation of the mutation parameters.

In the first stage, the new mean m@*! of the search distribu-
tion is a weighted average of the u best offspring

(g+1) _ Zwl (g+1), (10)

where the positive weights w; € R sum to one. Recombination
is done by taking a weighted sum of y individuals and selection
by choosing ¢ < A and/or assigning different weights.

To control the step size, c“¢*D, an evolution path p;
whole path taken by the population over a number of genera-
tions, [31]) is utilized. In general, the expected length of that
evolution path depends of its direction and a conjugate evolu-
tion path p%*" is constructed

(g+1) (a

(g+1) — (1 (8)

Co)Po
_1 "
Cr(2 = Co ey fCO 2 M mml® )

where ¢, < 1 is the learning rate for the cuamulation (summation
of successively selected mutation steps) of the step size control
and u, s the variance effective selection mass (defined by the
weights w;).

The update rule for o® obeys to a comparison between
1p¥* V)| with its expected length E[IN(O, I)||

g+1)
o8t = ey (CU (—Ilp I 1)) 12
P\ 4, | EINO. DT (12)

where ¢, < 1 is the learning rate for the cumulation, d, = 1 is
called the damping parameter and scales the change magnitude
of 0@, and the factor ¢, /d, is based on in-depth investigations
of the algorithm, [13].

Finally, in the third stage, the covariance matrix C® is
adapted by the p weighted difference vectors between the re-
cent parents and m® and by the evolution path p(g+l)

pED = (1= co)p®+
HE NETE e S (st~ ), 13

where c, is the learning rate for cumulation (in the same sense
as in the step size control stage) of the covariance matrix and
Hff”) is the Heaviside function, which stalls the update of p, if

llpoll is large.
The adaptation rule is defined as follows

1 1 INYs
CB™D = (1 = €0,)C® + cmv# pEng )(pifng )) +

cov
(Ccov - (4_0») Z”: Wio (xl(‘g:;

Heov i=1 s@?

- m(g)) (xfé’; - m(g))T (14)

where c,,, is the learning rate for the covariance matrix update
and ., is the parameter for weighting between the two last
terms in the sum (called, respectively, rank-one and rank-u up-
date).

4.2.2. Differential Evolution

Differential Evolution (DE), [14], is a powerful population-
based stochastic function optimizer. The algorithm maintains
a population of N vectors representing candidate solutions for
the problem at every generation g: {(x® - 1 ) The initial popu-
lation comprises random vectors within the search space. The
main loop of the algorithm consists of three steps: mutation,
crossover and selection.

First, the mutation operation creates the donor vector Vi(g) as
a linear combination of some members of the population,

VO = x, + F (x,, - x) (15)

where ry,rp,r3 € [1, N] are mutually different integers, not con-
sidering i, and F is a positive control parameter for scaling the
difference vector.



Set parameters A,u,w;_,,Co,de,Cestleoy AN Ceoy.
Initialization

Set evolution paths pf?) =0, pﬁ‘” =0.

Set covariance matrix C© = [.

Choose step size ¥ € R, and

distribution mean m® € R”" problem dependent.
for g = 0,1, ... until stopping criterion met do

Sample new population of search points x(lg”;

2
x;(gﬂ) ~ N(m(g), (0'(3)) C(g)) fork=1,..., A

Selection and Recombination
me+h = i_l:] Wixig;l)
Step size control

P& = (1 - copd+

- et
/60(2 _ C(T)Meffc(g) 2 %
e+ _ —(g) co [_IPEN
e =g exl’(dﬁ (EIIN(OJ)II 1)

Covariance matrix adaptation

1
PpED = (1= c)p®+

1 VHe
HSY Va2 —co) Cc)ngf (m<g+1> _ m(g))_
1 Ny
CE*D = (1 = €, )C® + cwvﬁpgﬁ )(p§g+ )) +

| f(cwv - ;:;) ?:1 % <xfg/1) _ m(g)) (xfi) _ m(g))T.
end for

Figure 4: Covariance Matrix Adaptation Evolutionary Strategy.

()

After mutation, a trial vector Ulgg) is generated from x;>’ and

Vl.(g) in the crossover, which is defined as follows

mm=$m
xi[J]

(16)
where u;[ j1,vi[j1,x;[j] are, respectively, the j-th components of
the vectors Ufg),Vl.(g) and xfg), CR € [0, 1) is the crossover rate
controlling the fraction of parameter values chosen from the
donor vector, and unif[1, D] is an uniform-randomly sampled
index of a vector component in the set {1, ..., D}.

Finally and after evaluating trial vectors, the selection opera-
tion occurs. For each member in the population, the best vector
between Ufg) and xl(.g) is chosen to become the new member of
the population.

The DE strategy applied in this work, following the work by
Garcia-Martinez et al [34], proposes two different mechanisms
to emphasize the proper selection of vectors for each role in
crossover and mutation operations: role differentiation and mal-
leable mating. Four different roles are clearly identified: plac-
ing (P), leading (L), correcting (C) and receiving (R) vectors.
A placing vector x; ) points to the search space region where
the donor vector is sampled. Leading and correcting vectors,
xl.L’(g) and xic’(g) respectively, define the search direction used to
sample the donor vector within the local neighborhood of the
placing vector. The receiving vector xf’(g) is the target vector
that is crossed over with the donor to generate a new trial solu-
tion.

if (rand[0, 1) < CR) or (j = unif[1, D]);
otherwise.

Table 2: Default parameter settings for CMAES.

Parameter Value
A |[4+3InD|
u [4/2]
1 +1)—1Ini
w; ﬂn(y )~ Ini —fori=1,...,u
S (nGu+ 1) = 1n j)
1
Heff ,;1:1ng
. Hefr +2
v D+/Jeff+3
erf— 1
d, 1+ 2max |0, /2L~ _1l4e,
D+1
4
Ce
D+4
Hcov ﬂeff
1 2
Ccov

—_—
Mcov (D + \/5)2

Qtors — 1
- o =
HMcov (D+2) + Uesy

The role differentiation mechanism defines the attributes for
which vectors are selected for each role. Malleable mating al-
lows placing vectors to adapt their mating trends to ensure some
similarity relations with the leading and correcting vectors. As-
sortative mating is the natural occurrence of mating between in-
dividuals of similar phenotype more or less often than expected
by chance. Mating between individuals with similar phenotype
more often is called positive assortative mating and less often
is called negative assortative mating, [35]. This way, each so-
lution incorporates two new parameters o and o that control
the applied mating mechanism for selecting, respectively, lead-
ing and correcting vectors. The aim is to yield better results in
high dimensionality problems.

Fig. 5 outlines the DE pseudocode incorporating role differ-
entiation and malleable mating. The complexity of the pro-
posal is linear with regards to the dimension of the problem,
i.e. O(D), due to recombination, solution copying and distance
calculations.

4.2.3. Particle Swarm Optimization

Particle Swarm Optimization (PSO), [15], is a population-
based stochastic optimization technique originally inspired in
the way crowds of individuals (bird flocking or fish schooling)
move towards predefined objectives. Individuals in the popula-
tion try to move towards the fittest position known to them and
to their informants. The objective is to maximize or minimize a
fitness function f.

In the algorithm, each potential solution to the problem is
given by a particle position and the population of N particles is
called swarm. Each particle position x; is updated each genera-
tion g by means of the equation,



Set parameters N,Np,N; ., Nc,CR,F.
Initialization
Initialize at random a population of N individuals.
for g = 1,2,... until stopping criterion met do

R = population.

P = best Np members of the population.

L = best N;, members of the population.

C = worst Nc members of the population.

for each member x; R® ¢ R do

P(g) = sample P \ { R(g)}

P,
{a , €} = retrieve parameters from x; ®

o, a®} = alter randomly {a*, a€}.
L(g) _ . :
X" = assortative mating from
L\ {x R(g) XP(g)} with ot XP(g)

xl.c (® = assortatlve mating from

C \ { R(g) P(g) )CL(g)} with a,

1' i
V(g) — mutation (xP (&) iL(g) G, (g))

(g) V(g))

e

U(g) = crossover (x;
(g) _ o
U;>" = append parameters (o, a"}.

ngH) = selection (xR (&) U(g))
end for

end for

Figure 5: Differential Evolution with role differentiation and malleable mating.

KD = 48 4o (17)

L L 1

where the factor v(g+ ) is the velocity of the particle. Velocity

constraint is one of the main mechanisms used for controlling
the movement of particles through the search space and for bal-
ancing the trade-off between exploitation and exploration in the
algorithm.

In our case, the inertia weight w has been used as velocity
constraint mechanism, [36]. This parameter controls the trade-
off between global and local search. Then, a low inertia value
provides the algorithm with exploitation capability and a high
inertia promotes the exploration. This way, at the beginning
of the search a high inertia (w = wyqy) 1s introduced which de-
creases until reaching the lowest value (w = wy;). The velocity
update rule stands as follows

I
v§g+ ) = w- Vgg) + - (p(g) l{g))

2 ra - (B - x§g>> (18)

where pfg) is the i-particle best solution found so far, bgg) is the

global best particle or leader that the entire swarm has ever gen-
erated, ¢;, ¢, are specific parameters which control the relative
effect of the individual and global best solutions for particles
and ry, r, are random values in [0,1]. The two last terms in
the sum influence, respectively, the social and cognition com-
ponents of the swarm behavior, [15].

The change over time for the inertia weight is modelled with
an exponential function which allows us to use a constant sam-

Set parameters N,¢1,02,VinaxsOmaxsOmin-
Initialization
Initialize a population of N particles with
random positions {x;} and velocities {v;}.
for each particle pfo) =x; do

Evaluate the fitness function f.
end for
Initialize the inertia weight w.
Identify the best particle in the swarm bfo).

for g =1,2,...until stopping criterion met do
Update velocity v, ©) and position x ) for the parti-
cles.

Apply the inertia weight update rule.

Evaluate particles f (xﬁg)).

Update best particles: pl(.g) and bf.g).
end for

Figure 6: Particle Swarm Optimization.

pling step while gradually guiding the swarm from a global to
a more local search, [10],

w(©) = 2% Ac = In(100p40)/ Zma (19)
eL

where ¢ € [0,In(10wWqx)] and g,y is the desired number of
inertia weight changes.

Fig. 6 presents the algorithm in pseudocode. The dimen-
sional complexity of the algorithm is linear, O(D). This is due
to the velocity and position update rules and the evaluation of
particles.

5. Experimental Results

This section explains the experiments carried out to com-
pare the algorithms selected, using both holistic and hierar-
chical strategies. As instances of particle filters, the APF and
the PSAPF have been chosen for the holistic and hierarchi-
cal approaches, respectively. With respect to the evolution-
ary algorithms, their hierarchical approaches will be denoted
as H-CMAES, H-DE and H-PSO in the remainder of the pa-
per. These hierarchical variants of the evolutionary algorithms
consist in running the corresponding algorithms sequentially in
each part of the 6-step hierarchy (see Section 3.3).

The goal of our experimentation is four-fold. First, we are
demonstrating that evolutionary algorithms achieve better re-
sults than particle filters for the MMOCAP problem. Second,
we are showing that the 39-DOF model proposed can be effec-
tively managed by the evolutionary algorithms obtaining better
accuracy than its reduced version of 28 DOF. Third, we are de-
termining the effect of each strategy, holistic and hierarchical,
having the same parameter settings for the algorithms. Finally,
we are obtaining the number of evaluations for the evolutionary
algorithms which gives a suitable trade-off between precision
and speed.

Aiming at providing a clear explanation of the experimenta-
tion carried out and the results obtained, this section is struc-
tured as follows. To begin with, Section 5.1 explains the details



of the HumanEva-I dataset employed [17]. Then, Section 5.2
provides an overview of the experimental set-up and Section 5.3
shows the quantitative and some visual results. Finally, Sec-
tion 5.4 performs a comparative study of the algorithms by em-
ploying a series of non-parametric statistical tests.

5.1. HumanEva Dataset

Our experimentation has been carried out using the
HumanEva-I dataset, [17], which has been actively used in the
community in the last years, [37-39]. It contains 7 calibrated
video streams (4 grayscale and 3 color) with 4 subjects per-
forming 6 common actions (e.g. walking, jogging, gesturing,
etc.). During the recordings, the subjects worn reflective mark-
ers that were captured by a motion capture system. The mark-
ers were placed at key positions of the anatomy (such as the
head, shoulders, knees, etc.) so as to be able to obtain the three-
dimensional pose of the subjects in each frame.

Since the database contains a large number of video se-
quences, our evaluation has been performed only in a subset
of it. In particular, the sequences walking, gesturing and box-
ing of subjects S1, S2 and S 3 have been employed as bench-
mark. In total, we have worked on more than 8300 video frames
(with 7 images each) in 9 different sequences. Since for some
of the frames no ground truth data is available, evaluation is
performed on a total of 6504 different frames.

A three-dimensional model of each person has been created
using the makehuman software [40]. For each video sequence,
the model has been manually initialized to fit the subject in the
first frame. Given the model in its initial position, we added
points to the skin model corresponding to the locations of the re-
flective markers. Therefore, the error in subsequent frames can
be obtained as the distance from these points to their ground-
truth positions. Ground truth motion of the body in HumanEva-
I dataset was captured, as commented previously, using a com-
mercial motion capture system, [17], and it is used as the op-
timum solution in each frame of the sequences tested. There-
fore, we can measure the error of the different algorithms in the
MMOCAP process over each frame of the sequence. As pro-
posed by the creators of HumanEva, the error metric employed
is the averaged absolute distance between the real positions of
the n markers being tracked, X, and their estimated positions X:

o 1Y
dX.X) =~ Il = Sil. (20)
i=1

Eq. 20 provides an error measure in a single frame of the se-
quence. It is employed to calculate the tracking error of a com-
plete sequence as the average of all its frames.

5.2. Experimental setup

In order to analyze the algorithms’ performance in relation
to the number of evaluations and dimensionality (DOF) of
the models, each pair model-algorithm has been tested using
{500, 1500, 3000} evaluations of the fitness function, presented
in Eq. 5, per frame. The dimensional complexity of the different
algorithms is linear (see Sections 4.1 and 4.2). The computing
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Table 3: Parameter settings for the algorithms tested.

Algorithm Parameters
CMAES& o 2 Wipr € i Co Hognr Conn
H-CMAES 0.5 Generated from the dimension D = DOF. See Table 2.
PSO & N @1 73 Wpax — Wiin
H-PSO 10 20 20 2.0 0.1
DE & N Np N Nc CR F
H-DE 10 5 5 5 0.9 0.5
APF L
10
PSAPF L

10

time of the algorithms employed is essentially due to the calcu-
lus of the fitness function. For instance, 500 evaluations require
1.18 secs of a single CPU. In fact, image loading, background
subtraction and fitness evaluation represents more than 95% of
the total computing time. Thus, we can consider the comput-
ing time employed by the different algorithms negligible for
this problem. It is worth noticing, though, that the computa-
tional cost of the fitness function is independent of the DOF of
the body model employed. Therefore we choose the number
of function fitness evaluations as the representative operation
count, [41].

For each test, the algorithms have been run 30 times using
different seeds for the random number generator. The search
space is delimited by the search radius of the joints, which is
set to 0.5 rad for all the algorithms.

The parameter settings for the different algorithms are pre-
sented in Table 3. The values have been chosen without previ-
ous parameter tuning and having as reference the experimenta-
tion carried out in previous works:

e For PSO and H-PSO, the parameter setting corresponds to
that established by John et al [10].

e For DE and H-DE the parameters have been selected ac-
cording to the work by Garcia-Martinez et al [34]. In order
to set the variants of DE at the same level as those of PSO,
we have chosen the same value for N (hence, the values of
the parameters Np, N, N¢ have been reduced).

e For CMAES and H-CMAES, the (external) strategy pa-
rameters values have been generated from the dimension
of the problem according to the expressions given in Ta-
ble 2. The step size or standard deviation (search radius)
has been the only parameter value provided.

o Finally, for the APF and PSAPF, a total of 10 layers were
employed as in the work by Deutscher and Reid [4].

The same parameter setting is employed for the holistic and
hierarchical approaches. Also, the parameter setting of the al-
gorithms is maintained across all the sequences tested, i.e., no
specific tuning has been made for each particular movement or
subject.

The whole experimentation was carried out using a total of
40 CPUs running Linux and it took 12 weeks of continuous
computation. In particular, we employed 10 CPUs equipped
with Core 2 Quad Q8400 running at 2.66 GHz.
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Figure 7: Boxplot showing the tracking error statistics obtained by the hierarchical and holistic algorithms on the 30 runs that each sequence has been tested. Holistic
and hierarchical algorithms are presented separatedly and grouped by sequence. The sequences are in the X axis and the tracking error is represented on the Y axis.
Each colored box, corresponding to a pair algorithm-model, represents the likely range of variation in the tracking error (interquartile range) and is divided by a line

denoting the median value.

5.3. Quantitative and visual results

The average tracking errors obtained by the different algo-
rithms and models in the experimentation for each sequence,
see Eq. 20, are shown in the boxplots in Fig. 7. Holistic and
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the X axis and the tracking error is represented on the Y axis.
Each colored box corresponds to a pair algorithm-model, where
the latter is indicated by the DOF. The thin vertical line shows
the error range for each pair algorithm-model bounded by the
minimum and the maximum values and the horizontal line in-
side the box indicates the median value. The box itself indicates
where most of the cases lie (interquartile range or likely range
of variation). The lower side is the first quartile while the upper
side is the third quartile.

Results in Fig. 7 show that the performance of the pairs
algorithm-model differs from one sequence to another. The
best performance and less spread of the error is provided in se-
quences that affect less parts of the body (gestures). The highest
fluctuations correspond to fast limb movements (e.g. fast arm
movement in box sequences, see Fig. 8). Moreover, the track-
ing error is different from one subject to another (the worst
results in average are presented by subject S3), although the
performance of the algorithms follows a similar pattern for the
same type of action. As the number of evaluations increases, the
likely range of variation in the error becomes narrower and most
of the pairs algorithm-model increase its performance. This is
consistent with the fact that the algorithms are able to diver-
sify and explore more promising regions in the solution space.
Regarding to the model, the quantitative results presented in the
boxplots show how the 39-DOF model yields better results than
the 28-DOF model for the same algorithm with the exception of
particle filters. A high dimensional model allows a better adap-
tation to the human anatomy and improves the tracking results.

Evolutionary algorithms surpass particle filters in most of the
cases. Particle filters present higher range of variation in the er-
ror and worst performance because of the absence of effective
mechanisms for intensification (as the number of evaluations in-
creases the convergence is slowly increased) and diversification
(the increase in the complexity of the search space, model with
more DOF, promotes the stagnation of particle filters). Fig. 9
shows the tracking results by superimposing the body model in
some frames of a sequence. When analyzing the particle filter,
we can observe that they are unable of successfully tracking the
limbs with a short number of evaluations. However, the evo-
lutionary algorithms reveal an important improvement of the
tracking performance. The highest fluctuations in the tracking
error of the algorithms in each frame of that sequence corre-
spond to particle filters (APF), see Fig. 10.

Evolutionary algorithms are dominated respectively by the
holistic and hierarchical version of CMAES. The invariance
properties of the algorithm allow a better and faster adaptation
of the model to the silhouettes and the prevention of the pre-
mature convergence by the step-size control guarantees the di-
versification in the search, [13]. DE and PSO require a more
tedious parameter tuning and need more evaluations to con-
verge. DE works better on large-scale optimization (holis-
tic version), [34], and PSO increases its performance in the
hierarchical version due to the effective communication be-
tween particles in the swarm search, [10]. A visual example
of the results is presented in some demo videos available at
Youtube (see http://www.youtube.com/playlist?list=
PL36A29215E7DBACA1). CMAES presents an uniform level of
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error over the entire sequences. The demo videos show more
vibrations in the adjusted model for the holistic and hierarchi-
cal versions of DE and PSO.

Due to the large amount of tests performed, it is very diffi-
cult to obtain meaningful conclusions by analyzing the plots in
Fig. 7. Therefore, we have conducted a set of non-parametric
tests that are explained in the following section.

5.4. Statistical analysis of the results

In order to obtain a formal comparison of the algorithms,
non-parametric tests [18] have been used. First, we have ap-
plied an omnibus statistical test to figure out whether the results
of the proposed algorithms are statistically different or not. In
the case of a statistical significant difference (the null hypoth-
esis of equality of means is rejected) a post-hoc test have been
used to compare the best ranked algorithm (control algorithm)
against the remaining ones in order to find the concrete pairwise
comparisons which produce differences. We have considered as
omnibus test the Friedman test, [42], and as post-hoc procedure
the Holm test, [43].

First, let us perform a comparative analysis of the algorithms
for the two different body models as a function of the num-
ber of evaluations. For that purpose, we have run six different
statistical tests. Each test compares the results of the eight al-
gorithms using the same body model and the same number of
evaluations. The summary of the statistical tests are shown in
Tables 4 and 5 for the 39-DOF and 28-DOF models respec-
tively. The labelling convention ALG(DOF, EVAL) has been
employed to identify the algorithms, where ALG stands for the
algorithm acronym, DOF refers to the dimensionality of the
model employed, and EVAL is the number of evaluations.

For the sake of clarity, let us focus on the results of the tests
for the eight algorithms using the 39-DOF model and 500 eval-
uations, which are shown in the first three columns of Table 4.
The ranking value of an algorithm indicates the averaged posi-
tion of its best solutions’ fitness when it is compared to the best
solutions’ fitness of the other algorithms. A value of 1 indicates
that the algorithm dominates in all the experiments.

As can be seen, the algorithms are presented in the Table in
ascending order of ranking. We can observe that the H-CMAES
algorithm is quantitatively better than the others. Nevertheless,
obtaining the best ranking does not imply that the algorithm’s
performance is significantly better than the performance of the
others. To assess that, we have calculated the Friedman statis-
tic, [42], that has the value 57.925 as shown in the last row of
the Table. This statistic is distributed according to a Chi-square
distribution with 7 degrees of freedom (number of algorithms
minus one) and if it is greater than the Critical Value of the dis-
tribution (for a given @ confidence value), it means that there
are at least two algorithms with significant differences in their
performance. The critical value of the Chi-square distribution
with 7 degrees of freedom for @ = 0.05 is 14.067. So, the
Friedman test indicates that there is at least one algorithm (with
a 95% of confidence) that shows significant differences in the
results with respect to the best algorithm (also referred as the
control algorithm from now on). To find out which of the algo-
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Figure 8: Tracking results obtained in the box sequence of subject S 3. Frames of a particular execution with 3000 evaluations using the 39-DOF model with DE and
PSO algorithms. The results are shown by superimposing the body model (skin and skeleton) in some frames of the sequence. Fast arm movements cause tracking
failures. Both algorithms require some additional frames to re-track the arm appropriately.

rithms present significant differences, the post-hoc test of Holm
has been employed.

The post-hoc test results are presented in third column un-
der the label p-value. The analysis of the p-values proceeds
as follows: if the p-value is lower than «/(r(alg) — 1) then the
null hypothesis of equality of means for the control algorithm
and that corresponding to the row is rejected. The parameter
r(alg) represents the rank position of the algorithm, which in
this case are r(H — DE) = 2, r(H — PSO) = 3 and so on.
Therefore, using @ = 0.05, the null hypothesis is rejected in
four cases: DE, PSO, APF and PSAPF. The last column of
each Table with the label “Holm” shows the threshold values
(a/(r(alg) — 1)) of the Holm test to consider that there are sig-
nificant differences among the algorithms.

The same procedure is applied to the five other tests per-
formed shown in Tables 4 and 5. For the sake of simplicity,
we have set out in bold font the p-values for which the tests
indicate that there are significant differences compared to the
control algorithm (H-CMAES).

Based on the experimental results, a set of conclusions can
be drawn. First, although the H-CMAES algorithm provides
the best quantitative results (best ranked algorithm), we cannot
guarantee significant differences with the remaining evolution-
ary algorithms. Second, significant differences exist between
evolutionary algorithms and particle filters for all cases. Third,
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Figure 10: Tracking error of the holistic algorithms in the walking sequence
of the subject S1 shown in Fig 9. The highest fluctuations correspond to par-
ticle filters (APF). The best results are obtained by DE and CMAES. CMAES
presents an uniform level of error over the entire sequence.

hierarchical evolutionary approaches yield better quantitative
results than their corresponding holistic approaches.

The next point to clarify is whether the results obtained using
the 39-DOF model are better than these obtained with the 28-
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Differential Evolution

Particle Swarm Optimization
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Figure 9: Tracking results obtained by the holistic algorithms in the walking sequence of the subject S1. Frames of a particular execution with 1500 evaluations
using the 39-DOF model. The results are shown by superimposing the body model (skin and skeleton) in some frames of the sequence. The particle filter is unable
of successfully tracking the limbs. The evolutionary algorithms reveal an important improvement of the tracking performance and obtain better performance in most
of the frames.

14



Table 4: 39-DOF model. Ranking of the algorithms in the tests performed and results of Friedman and post-hoc Holm tests.

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Holm
H-CMAES(39,500) 1.222 - H-CMAES(39,1500) 2.000 - H-CMAES(39,3000) 1.777 -
H-PSO(39,500) 2.333 0.335 CMAES(39,1500) 2.666 0.563 CMAES(39,3000) 2.444 0.563 0.050
CMAES(39,500) 3.000 0.123 H-PS0O(39,1500) 2.771 0.500 H-PS0O(39,3000) 2.888 0.335 0.025
H-DE(39,500) 3.555 0.043 H-DE(39,1500) 3.111 0.335 H-DE(39,3000) 4.000 0.054 0.016
DE(39,500) 5.111 7.57E-4 | DE(39,1500) 4.777 0.016 DE(39,3000) 4.222 0.034 0.012
PSO(39,500) 5.888 5.31E-5 | PSO(39,1500) 6.111 3.70E-4 | PSO(39,3000) 6.222 1.18E-4 | 0.010
APF(39,500) 7.000 5.62E-7 | PSAPF(39,1500) 7.000 1.49E-5 | PSAPF(39,3000) 6.888 9.58E-6 | 0.008
PSAPF(39,500) 7.888 7.76E-9 | APF(39,1500) 7.555 1.49E-6 | APF(39,3000) 7.555 5.62E-7 | 0.007
Fried. Stat. 57.925 { Fried. Stat. 49.148 { Fried. Stat. 48.851 {
Table 5: 28-DOF model. Ranking of the algorithms in the tests performed and results of Friedman and post-hoc Holm tests.

Algorithm Rank p-value Algorithm Rank p-value Algorithm Rank p-value Holm
H-CMAES(28,500) 1.666 - H-CMAES(28,1500) 2.111 - H-CMAES(28,3000) 2.444 -
H-PSO(28,500) 1.888 0.847 CMAES(28,1500) 2.444 0.772 H-PSO(28,3000) 2.444 1.000 0.050
CMAES(28,500) 2.888 0.289 H-PSO(28,1500) 2.666 0.630 CMAES(28,3000) 3.111 0.563 0.025
H-DE(28,500) 4.444 0.016 H-DE(28,1500) 4.111 0.083 H-DE(28,3000) 4.111 0.148 0.016
DE(28,500) 4.666 0.009 DE(28,1500) 5.222 0.007 DE(28,3000) 5.444 0.009 0.012
PSO(28,500) 6.111 1.18E-4 | PSO(28,1500) 6.333 2.55E-4 | PSO(28,3000) 5.555 0.007 0.010
APF(28,500) 6.222 7.97E-5 | PSAPF(28,1500) 6.666 7.97E-5 | PSAPF(28,3000) 5.999 0.002 0.008
PSAPF(28,500) 8.000 4.13E-8 | APF(28,1500) 6.7717 5.31E-5 | APF(28,3000) 6.888 1.18E-4 | 0.007
Fried. Stat. 53.481 { Fried. Stat. 43.037 { Fried. Stat. 30.740 {

DOF model. To do so, we have evaluated the performance of
each algorithm with both models and different number of evalu-
ations. The results of the Friedman and post-hoc tests are shown
in Tables 6 and 7. We can notice that significant differences ex-
ist between the 39-DOF and 28-DOF models for all evolution-
ary algorithms (excepting CMAES). In other words, the evolu-
tionary algorithms selected provide better results with a higher
dimensionality model. The same cannot be stated for PSAPF
and APF because the statistical results show that the 28-DOF
model allows to obtain, depending on each case, significantly
or quantitatively better results than the 39-DOF model. For the
particle filtering algorithms selected, the test reveals that the in-
crement of the DOF actually has a negative impact in the results
obtained, i.e., they obtain better solutions with simpler models.

The combinations H-CMAES(39,500), H-DE(39,1500),
H-PSO(39,1500), CMAES(39,500), DE(39,1500) and
PSO(39,1500) obtain the best trade-off between performance
and speed (more DOF and less evaluations without significant
difference) for the different evolutionary algorithms.

Finally, we must recall that, as indicated by Bandouch et
al [6], the PSAPF algorithm improves the APF algorithm, but
only as the number of evaluations increases.

6. Conclusions

This paper has compared the performance of particle filters
and evolutionary algorithms for the MMOCAP problem. In
particular, we have tested the APF particle filter, against the
CMAES, DE and PSO evolutionary algorithms. In addition,
we have evaluated both the holistic and hierarchical strategies
of these algorithms with two body models of increasing com-
plexity (28 DOF and 39 DOF).

Non-parametric statistical tests have been run on the re-
sults obtaining the following conclusions. First, the evolution-
ary algorithms tested, dominated by the hierarchical version
of CMAES, perform significantly better than the particle fil-
ters employed. Second, the evolutionary algorithms are able to
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manage the 39-DOF model obtaining better results than when
the 28-DOF model is employed. In other words, they can em-
ploy a more realistic (and complex) model achieving better re-
sults. The same is not true for the particle filters. Finally, the
hierarchical strategies rank better than the holistic strategies in
all tests.
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