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Abstract 

The sensor network localization based on connectivity can be modeled as a non-convex optimization 

problem in mathematics. It can be argued that the actual problem should be represented as an 

optimization problem with both convex and non-convex constraints. A two-objective evolutionary 

algorithm is proposed which utilizes the result of all convex constraints to provide a starting point on 

the location of the unknown nodes and then searches for a solution to satisfy all the convex and non-

convex constraints of the problem. The final solution can reach the most suitable configuration of the 

unknown nodes because all the information on the constraints (convex and non-convex) related to 

connectivity have been used. Compared with current models that only consider the nodes that have 

connections, this method considers not only the connection constraints, but also the disconnection 

constraints. As a MOEA (multi-objective evolution algorithm), PAES (pareto archived evolution 

strategy) is used to solve the problem. Simulation results have shown that better solution can be 

obtained through the use of this method when compared with those produced by other methods.  

 

Keywords: wireless sensor network, localization, connectivity, evolutionary algorithm, genetic 

algorithm,  non-convex constraints 

 

1. Introduction 

Position estimation is necessary in many applications such as remote patient monitoring, 

package and personnel tracking, environment monitoring and wildlife habitat monitoring. In 

these systems, there could be hundreds or even thousands of low-cost sensor nodes, which can 

take some simple measurements. Based on either the signal strength or the connectivity among 

the nodes, we would like to estimate the location of these nodes in a wireless sensor network. It 

is necessary to accurately localize the sensors in order to measure data which is geographically 

meaningful. This localization issue has been studied by many researchers and there are many 

different methods and algorithms [1–4] dealing with this situation.   

For applications like automatic guidance, and wildlife habitat tracking, GPS-like devices are 

widely used. However, GPS devices are expensive and inefficient on power consumption [1]. 

Moreover, GPS devices are useless in indoor conditions such as patient monitoring, package 

and personnel tracking. Thus, in sensor networks with a large number of sensor nodes, 

attaching a GPS device to each node is not practical. In most cases, there are only a few nodes 

with known positions in the whole sensor network, while others are unknown. The only 

information between the known nodes and the unknown nodes is the communication among 

them, which can also include information on connectivity.  

In a typical sensor network, a few nodes have known positions, and they are called the 

anchors. However, the positions of the majority of the nodes need to be estimated using their 
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relationships to the anchors and other unknown nodes. Based on whether the distances between 

nodes in a sensor network are known or not, the localization methods can be grouped into two 

categories: range-based and range-free. Range-based methods are for situations where 

distances between each pair of nodes are estimated or measured. The information is then 

communicated to a centralized station in the sensor network and algorithms such as MDS [3] 

compute the location of each sensor in the network. Usually, the distance between each pair of 

nodes is estimated by the signal strength received between them, and this information is very 

noisy in practice. On the other hand, range-free methods, which are also called connectivity-

based methods, assume that the distances between any two nodes are unknown. However, 

connectivity information between them is known. If the distance between any two nodes in the 

network is within a range, connectivity between the two nodes is said to be established. 

Although the actual distance is not known, this would provide many connection-imposed 

proximity constraints to the problem. These connectivity-based methods only require very 

simple and low-cost hardware. Yet, they can give adequate position estimation based on just 

connectivity information among the nodes. This paper will focus on the various connectivity-

based methods for localization and propose how improvements can be made based on the 

previous methods. 

 

2. Background and motivation 

The solutions of the connectivity-based localization problem can fall into two categories. The 

first class of methods tries to find the number of direct connections between two nodes. In 

other words, the number of hops from one node to another node needs to be calculated. Hence, 

they use the hop count to roughly represent the distance between two nodes. The centroid 

method [2], the approximate point in triangulation (APIT) [3], the multidimensional scaling–

MAP (MDS–MAP) [4], DV-Hop [5] all belong to this class. The other class of methods 

models the connectivity-based localization problem as a constrained optimization problem. The 

connectivity information becomes the constraints that the optimization result must satisfy. For 

example, convex position estimation (CPE) [6] selects the convex constraints and formulates 

the problem as a convex optimization.  

Terwilliger et. al. [7] and Zhang et. al. [8] both use evolutionary algorithm to tackle the 

localization problem in which the distances  among nodes are known. The target of the 

evolutionary algorithm is to minimize the difference between the known distances and the 

distances based on estimated nodes position. The variables of the evolutionary algorithm are 

the coordinates of all the unknown nodes. Tam et. al.[9, 10] use genetic (GA) /evolutionary 

algorithm in triangulation to estimate the position of a node based on the hop counts to its three 

nearest anchors. This may be considered as a kind of connectivity-based localization method. 

However, in their method, there is a GA for estimating the position of each unknown node. The 

computation complexity is therefore small because the scale of the GA is small 

(population<30). In each GA, only part of the population with better performance is used in 

computation, which also decreases the computation cost. Hence, the evolutionary algorithm on 

connectivity-based localization by Tam is only on the triangulation process, and not on the 

whole problem.  

Actually, the connectivity information includes whether any two nodes are connected or not. 

If we just consider the connections between nodes, the problem is just a convex optimization 

problem. Nevertheless, the non-connection situations which indicate two nodes are not within a 

certain range lead to non-convexity. Therefore, for a complete solution, the problem should be 
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modeled as a non-convex constraint satisfaction problem if all the connectivity constraints are 

considered.  

In this paper, the connectivity information includes the connection and non-connection 

constraints among the nodes. An optimization algorithm is used to decrease the number of 

violated connectivity (i.e. the connection which is mistaken as non-connection, and the non-

connection which is mistaken as connection) to be zero. Two objectives are implemented. The 

first is related to the number of violated connectivity, which is an integer. The second objective 

relates to the summation of differences of all the violated connectivities. The second objective 

aims to supply the direction when the first objective is being minimized. Without the second 

objective, the problem will become an integer optimization problem, which is difficult to 

converge without a suitable direction in searching for a minimum. On the other hand, the first 

objective helps to avoid the local minimum of the second objective. 

Multi-objective evolutionary algorithms (MOEAs) can be utilized to minimize the two 

objectives during the optimization process. MOEA is first used in sensor network localization 

by Massimo et. al. [11]. Massimo et. al. assume the distances among the nodes can be obtained 

by some measurement such as time of arrival (TOA), received signal strength (RSS), etc. An 

optimization problem is then established based on distance measurement and the anchors 

positions. It is then tackled by the Pareto Archived Evolution Strategy (PAES), which is a well-

known MOEA and often used as benchmarks of other MOEAs. In their paper, the first 

objective is the squared error between the inter-node distances corresponding to the candidate 

geometry and the measured data. The second objective counts the violated connectivity. Their 

result shows that on distance-based localization PEAS outperform SAL (simulated annealing) 

in accuracy.  

A two-objective optimization problem is also proposed in this paper, but the scenario is 

changed to connectivity-based localization. To the best of our knowledge, there has been no 

work focused on handling the convex and non-convex constraints in a connectivity-based 

localization problem. Current algorithms such as the centroid method or multidimensional 

scaling (MDS) also consider the connections among the nodes, and the semi-definite 

programming (SDP) method handles only the convex constraints of the problem.  The accuracy 

of the solutions obtained by these methods is usually low. MOEA has the potential to show its 

advantage in accuracy when compared with the current connectivity-based algorithms. This 

paper will model the complete connectivity information and demonstrate a method which 

applies MOEA for tackling this kind of problem. 

 

3. Related work 

Current connectivity-based localization algorithms on sensor networks include the centroid 

method [2], the approximate point in triangulation (APIT) [3], the multidimensional scaling–

MAP (MDS–MAP) [4], DV-Hop [5] and the convex position estimation (CPE) [6]. They all 

only consider the convex constraints but ignore the non-convex constraints. This section briefly 

describes those algorithms, which will be used to compare with the result of our evolutionary 

algorithm. 

 

3.1.  The centroid method 

Centroid localization is probably the earliest and simplest approach. A proximity-based and 

coarse approach is proposed by Bulusu and Heidemann [2]. Every unknown node receives 

several nearby anchors’ information. The location information of the anchors is used, and the 
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estimated location of the unknown node is assumed to be the average of the location of all the 

nearby anchors. The following formula is used: 

1 1... ...
( , ) ,i ik i ik

est est

X X Y Y
X Y

k k

    
  
 

 

where 1 1( , )i iX Y … ( , )ik ikX Y  is the location of the k anchors that the unknown node i can 

contact; ( , )est estX Y is the estimated location of node i. 

 

3.2. Approximate Point-In Triangulation test (APIT) 

APIT is another method first proposed by He et al. [3]. The area around an unknown node is 

split into several pieces by some triangles with their vertexes being anchors it can hear. A 

method is developed to check whether the unknown node is in a particular triangle or not. For 

each unknown node, all the triangles formed by the anchors are investigated to check whether 

the unknown node is within. The possible position of the unknown node must be in the 

common area of the triangles that contain the node, but not in the area of any triangle that does 

not contain the node. Therefore, the estimated location of the unknown node is set as the center 

of gravity (COG) of this possible area.  

In the process of checking whether a node is in a triangle, the unknown node utilizes 

information obtained by its nearby unknown nodes. The strength of the signal transmitted by 

the anchors is also used in this process. In order to improve accuracy, APIT requires the 

anchors to have a larger communication range than normal nodes. In their simulation, they 

have used anchors that have a communication range that is ten times larger.   

3.3. Multi-dimensional scaling (MDS) 

The basic MDS method [4, 12] can estimate the positions of all the unknown nodes by using 

the distance information between any two nodes. An extension of MDS [4, 13] for the 

connectivity-based localization problem has also been developed. First, a rough estimate of the 

relative node distance is obtained based on hop count information [14]. One hop is one direct 

connection between two nodes. The hop count between two nodes roughly represents the 

distance. Then, the relative positions are calculated by Singular Value Decomposition on the 

estimated distance information matrix. Finally, absolute positions of the unknown nodes are 

estimated based on the relative positions and the positions of the anchors. The computation 

complexity of this method is about O(n³) time for a sensor network of n nodes. 

 

Figure 1. Hop count is used in 

modified MDS 

 

Figure 2. A sensor network example for DV-hop 
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An example is shown in Figure 1. The connections are represented by lines between two 

nodes. The hop count between node 1 and node 5 is the number of connections between 

them, which is 3. Hence, the hop count between any two nodes can be obtained and used in 

MDS to estimate the locations of the nodes. 

 

3.4. DV–HOP 

 

Another well-known localization algorithm is DV–Hop (distance vector–hop) [5]. The idea 

of DV–Hop is to transform the distance to all anchors from hops to units of length 

measurement using the average size of a hop. DV–Hop was first proposed by Niculescu [15], 

and improved by many researchers. Anchors broadcast their location information to other 

anchors, and such information will be flooded with the hop count increment. Every anchor 

knows the hop count from any other anchor, and uses this information to estimate the average 

hop size. The distance between an anchor and an unknown node is computed by the hop size 

and the hop count between them. Finally, triangulation is used when an unknown node 

knows the distances to at least three anchors.  

In the example in Figure 2, anchors broadcast their position information to other anchors, 

and hop counting will be carried out in this process.  The minimal hop count from A3 to A1 is 

5. The minimal hop count from A3 to A2 is 6. Then the average hop distance (AHD) of 

anchor A3 is 3AHD =(15+18)/(5+6)=3.  

A3 is the anchor nearest to node 1. Hence, the AHD of A3 is used to estimate the distance 

between node 1 and all the anchors. 

1, 1 33 9Ad AHD    

1, 2 34 12Ad AHD    

1, 3 32 6Ad AHD    

Finally, triangulation will be used to locate node 1. 

 

3.5. Convex Constraints in Localization[6] 

 

The connectivity between two nodes relates to whether the distance between these two 

nodes is less than a certain communication range. The convex position estimation (CPE) uses 

this information in convex optimization and narrows the possible area by the solutions from 

optimization. 

Many researchers have formulated the connectivity-based localization problem as an 

optimization problem with some convex constraints. When two nodes are connected, the 

distance between them must be within a range distance. All the connections are then 

expressed by semi-definite inequalities. As all the constraints are convex, this method is 

called semi-definite programming or convex programming (SDP)[6].   

For examples, the convex constraints that represent the connectivity among nodes are  

   
2 2

for node  ( , ) in connection with node ( , ).i j i j i i j jx x y y R i x y j x y      

Here, R denotes the communication range defined for a pair of nodes.   
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4. Problem formulation 

 

A formal definition of the connectivity-based localization problem is given next. Let 

G=(V,E) be a given network, where V denotes the nodes of the network and E denotes the 

edge of the network. Let V be partitioned into two sets: 

Va={1,…,m} of anchors; 

Vb={m+1,…,m+n} of sensors (unknown nodes). 

E is also partitioned into two sets: 

  , : ,ab a bE i j E i V j V     which are the edges between a sensor and an anchor; 

  , : ,bb bE i j E i j V    which are the edges between two sensors. 

For each anchor i aV , the position 2

ia   is assumed to be known.  For each sensor 

bi V , the position 2

ib   is assumed to be unknown. 

Let   , , : , , {0,1}ab ij a b ijC i j k i V j V k     be the connectivity information between a 

sensor and an anchor. 

Also let   , , : , , {0,1}bb ij b ijC i j k i j V k    be the connectivity information between two 

sensors. 

The value ijk  in abC  or bbC  is binary (either 0 or 1): 

ijk =0 if there is no connection between node i and j. 

ijk =1 if there is connection between node i and j. 

Let a be a vector containing the positions of the anchors 

  2

a

m

i i Va a    

The goal of the network localization problem is to determine the coordinates of all the 

sensors (unknown nodes)  

  2

b

n

i i Vb b    

such that b satisfies the following constraints: 

Let R be the maximum distance (called the range) within which connectivity can be 

established. 

If ijk =1 

2
2

2

2
2

2

( , )

( , )

i j ab

i j bb

a b R for i j E

b b R for i j E

   

   


 

else ijk =0 

2
2

2

2
2

2

( , )

( , )

i j ab

i j bb

a b R for i j E

b b R for i j E

   

   


. 

From the inequalities based on whether any two sensors (including one sensor and one 

anchor) are in connection or not, the constraints behind those inequalities can be classified 

into convex constraints and non-convex constraints as shown in Figure 3 and Figure 4. 
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i j

dij

R

 

Figure 3. A convex constraint is 

established when ijk =1, ijd  is the 

distance between node i and node j 

i j

dij

R

 

Figure 4.  A non-convex constraint is 

established when ijk =0, ijd  is the 

distance between node i and node j 

 

5. The two-objective optimization 

5.1 Nature of the problem 

 

From the last section, whether the methods use hop count such as MDS and DV-hop, or the 

methods utilize neighbors’ information such as centroid and APIT, they only use the information 

when the two nodes are in connection, which is the convex constraint information. A more 

obvious example is the SDP method which only formulates the optimization problem based on 

the convex constraints. This method only considers the convex information which then leads to 

the estimated positions of the unknown nodes. The drawback of these methods is that the 

estimated nodes tend to crowd together and cannot ‘keep distance’ from each other.  

One example can be shown in Figure 5. In the upper left sub-figure, an example of a sensor 

network is given.  The anchors are node 1-4 (green squares) and the unknown nodes are node 5-7 

(small circles). Let the communication range among the nodes be 5. Note that here are 5 

connections among the seven nodes, which are displayed as green lines. Based on the 5 

connection constraints and the locations of the anchors, a solution is obtained by SDP which is 

shown by triangles 5’-7’ in the upper right sub-figure. The green lines are the expected correct 

connections between the estimated nodes. However, there are FOUR more connections among 

the nodes, which are shown by the red lines.  These connections are not supposed to exist among 

the nodes, but the solution obtained by SDP only aims to find a node configuration that satisfy 

the given five convex constraints, and pay no attention to other consequences.  
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Figure 5.  An example showing both the connection and disconnection constraints 

 

The accuracy of a solution to the above example can be improved if the ‘disconnection’ 

constraints are also taken into consideration. The original localization example is also shown in 

the lower left sub-figure of Figure 5.  In this figure, TEN disconnections among the nodes are 

shown as the blue lines.  In order words, a valid node configuration should satisfy the 5 

connections constraints as well as the 10 disconnections constraints.  Such a solution is obtained 

by our developed method and it is shown by the small triangles 5’-7’ in the lower right sub-

figure.  

Our solution is obtained based on a multi-objective evolution algorithm described in the next 

section.  The result obtained is close to the original node locations for setting up the problem (in 

the upper left sub-figure). In the search for a solution, the addition of the disconnection 

information will mean that the connectivity-based localization problem is harder to solve. Once 

adding these non-convex constraints, the localization problem will become a non-convex 

optimization problem. Sometimes, non-convex optimization can be reduced into a number of 

convex minimization sub-problems. However, classical algorithms for this reduction only work 

in some special cases. In this paper, we have developed an evolutionary algorithm which has the 

potential to deal with general non-convex problems and to avoid local minima in a stochastic, 

noncontrollable search [16, 17]. Furthermore, evolutionary algorithms are easy to use in 

distributed or parallel computing environment, which is appropriate for distributed sensor 

network. The rest of this section will introduce an evolutionary algorithm for tackling the 

connectivity-based localization problem. 
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5.2 Variables 

The decision vector (or the chromosome) encodes the locations of all unknown nodes. For 2-

Dimension sensor network situation with n unknown nodes and m anchors, the decision vector 

(named as T) is a 2n dimensional row vector, e.g. the first two elements in each decision vector 

are the coordinates of the 1st unknown sensor (node: m+1); the ith pair of elements represent the 

coordinates of the ith unknown sensor (node m+i) as shown in Figure 6. The area boundary of 

the sensor network bounds the positions of the sensors. It is assumed that each sensor’s position 

has the same upper and lower limit which is the boundary of the sensor network area.  

1
ˆ

mx  1
ˆ

my  2
ˆ

mx  2
ˆ

my  3
ˆ

mx  3
ˆ

my 
ˆ

m nx 
ˆ

m ny 

 
Figure 6. The decision vector T 

 

5.3 Objectives 

In this optimization, the solution should satisfy both the convex and non-convex constraints.  

The situation is formulated as an optimization problem as follows: 

 If the connectivity information between a pair of node is known ( ijk =1), which means the 

two nodes are in connection, then there is a convex constraint required in the solution to 

the problem.  That is, 

   
2 2

for node  in connection with node .i j i jx x y y R i j     

 If a pair of nodes is disconnected ( ijk =0), then there is a non-convex constraint required in 

the solution to the problem. 

   
2 2

for node  not in connection with node .i j i jx x y y R i j     

The feasible solution should satisfy all the above constraints. Therefore, the first objective is 

for all the estimated node positions to satisfy all the convex and non-convex constraints. The first 

objective function is called Count_wrong_connection with a target value of 0. If a set of 

variables with the estimated node positions has the function value equals 0, the set of variables is 

our answer. Pseudocode of the first objective function Count_wrong_connection is shown in 

Figure 7. 

 
Count_wrong_connection=0; 

for all pair of (i,j) in Eab and Ebb 

 if ( ijk =1 and (R-    
2 2

i j i jx x y y   )<0 ) or  ( ijk =0 and (R-    
2 2

i j i jx x y y   )>=0 ) 

  Count_wrong_connection++; 

 end if  

end for 

return Count_wrong_connection; 

Figure.7 Pseudocode for the first objective function Count_wrong_connection(T) 

 

The second objective is a summation of all the differences in distances for the node pairs that 

have violated the connectivity constraints. It is used to help with the convergence of the first 

objective. Obviously, if a variable vector has function value of the first objective to be zero, the 

second objective of this variable must also be zero. Figure 8 gives the pseudocode to compute 

the second objective: Error. 
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Error=0; 

for all pair of (i,j) in Eab and Ebb 

 if ( ijk =1 and (R-    
2 2

i j i jx x y y   )<0 ) or  ( ijk =0 and (R-    
2 2

i j i jx x y y   )>=0 ) 

  Error= Error +abs(R-    
2 2

i j i jx x y y   ); 

 end if  

end for 

return Error; 

Figure 8.  Pseudocode for the second objective function Error(T) 

 

5.4 PAES 

The problem has been formulated as a two-objective optimization problem, which belongs to 

Multi-objective optimization. The two objectives are consistent in most cases. But sometimes 

they are conflicted and it is not easy to identify a single solution that simultaneously optimizes 

each objective. An example is shown in Figure 9. For node i and node j, a node with connection 

of node i, and non-connection of node j need to be estimated. The solution region is the 

shadowed area. If point p is the estimation, the first objective Count_wrong_connection(p) is 2, 

and the second objective Error(p) is (a-R)+(R-b). If point p’ is a new estimation, the first 

objective Count_wrong_connection(p’) is 1, and the second objective Error(p’) is c. Obviously, 

p’ has smaller Count_wrong_connection , but Error(p’) is larger than Error(p). In that case, local 

minima will appear and the algorithm will spend more time to jump out of it. 

 
Figure 9. The situation when the two objectives are conflicted 

 

There are already some evolutionary algorithms developed to solve multi-objective 

optimization. They are called Multi-Objective Evolutionary Algorithms (MOEAs) which include 

the Non-dominated Sorting Genetic Algorithm (NSGA) and its evolution (NSGA-II), Strength 

Pareto Evolutionary Approach (SPEA) and its evolution (SPEAS2), and the Pareto Archived 

Evolution Strategy (PAES) [18]. Any of above algorithms can show us the how accurate and 

effective MOEAs are in the application of connectivity-based localization problem. In this paper, 

the performance of PAES on this problem is examined since PAES is simple and always set as 

benchmarks of other MOEAs, as discussed in [11]. 

The two-objective optimization evolutionary algorithm used in this framework is the Pareto 

Archived Evolution Strategy (PAES) algorithm. The implementation of PAES used in our 

optimization can be found from jMetal [19]. PAES may represent the simplest possible nontrivial 

algorithm capable of generating diverse solutions in the Pareto optimal set [20]. The simplest 

form: (1+1) evolution strategy, which is applied in this paper, employs local search but using a 

reference archive of previously found solutions in order to identify the approximate dominance 
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ranking of the current and candidate solution vectors. PAES comprises three parts: the candidate 

solution generator, the candidate solution acceptance function, and the non-dominated-solution 

(NDS) archive [20]. The candidate solution generator is similar to simple random mutation 

hillclimbing, but prefers the less crowding solutions to keep the diversity preservation; it 

maintains a single current solution and, at each iteration, produces a single new candidate via 

random mutation. The (1+1)-PAES algorithm is outlined in Figure 11. in which the the crowding 

area is judged by an algorithm called adaptive grid algorithm [20]. 

Following the well known Pareto dominance, an objective vector 

[Count_wrong_connection(T1); Error(T1)], is said to dominate another objective vector 

[Count_wrong_connection(T2); Error(T2)], if the two elements of the first objective vector is 

smaller than or equal to the corresponding elements of the second objective vector, except the 

case that the two objective vectors are identical [21].  Symbolically, T1 dominates T2 is denoted 

by ‘T1 T2’. 

Accordingly, T1 is a better solution than T2 in the above inequality. As discussed in section 

5.1, the smallest value of the objective vector is [0;0]. Therefore, if all the local minima can be 

successfully avoided, there should be only one optimal objective vector: [0;0], but there may 

exist several different solutions to reach this objective vector. To illustrate the mapping, Figure 

10 shows the mapping process in which T is assumed to have only two components: 1 2[ , ]T T T . 

Note that the difference between Figure 10 and the actual localization problem is that T has 2n 

components in the actual problem. 

 

1T

2T

Count_wrong_connection

Error

objective space

decision space

(0, 0)

solution A

solution B

solution C

solution D

 
Figure 10. Possible solutions (A, B, C, D) 

5.5 The initial decision vector (variables) 

The initial decision vector (also called initial solution) may be obtained based on the result of 

convex optimization, which aims to satisfy all the convex constraints. SDP is one method that 

can be used to obtain a convex optimization result. Actually, other methods such as DV-hop and 

MDS may also give an estimation of the initial coordinates. However, the estimation by MDS or 

DV-hop usually cannot give a solution that satisfy all the convex constraints, whereas SDP can 

provide a solution that satisfy all the convex constraints by the nature of its algorithm. Hence, the 

estimation by the SDP method is used as the initial estimates. 

The evolutionary algorithm based on PAES can be illustrated by Figure 11. 

 



 12 

Mutate c to produce
T

Initialize c as SDP
result, add it to the

archive

replace c
with T, add

T to the
archive

Are the two objectives
both zero?

End

YES

NO

c dominates T

T dominates c

T  is dominated by any

member of archive

NO

NO

NO

discard
T

YES

YES

T  is in a less crowding
region than any member

of archive*

YES

T  is in a less crowding

region than c

NO

replace the most crowding
archive member with T

YES

replace c with T

NO

* if the archive is not full, this procedure is skipped, and add T to the archive

YES

 

Figure 11. Flowchart for the optimization based on PAES 
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6. Evolutionary algorithm for connectivity-based sensor network localization  

 

The performance of the proposed two-objective evolutionary algorithm on connectivity-based 

sensor network localization is evaluated in this section. The scenario considered in our 

simulation is described below. As shown in Table 1, there are 100 nodes randomly placed in an 

area of [0,10] by [0,10], among which, 20% are anchors, while the rest are with unknown 

positions. The range of the nodes is 1.5, which means two nodes within a distance of 1.5 can 

communicate with each other. The connectivity information between any pair of nodes is 

assumed to be known. For more convincing result, 10 different network topologies with different 

node locations are built, and each network topology is used by our algorithm for 30 trials. 

 

Table 1. Parameters of the sensor network 

Parameter     Value 

m      20 

n      80 

R      1.5 

Boundary     [0,10]*[0,10] 

Number of topology   10 

Trial number    30 

 

Among the 10 topologies, which is called No.1, No.2, …, No.10, No.1 is chosen as an 

example and it is shown in Figure 12. 100 nodes are randomly placed in a square area of 10 by 

10. The 20 anchors are marked as the small squares, while the other nodes are marked as small 

circles. The connections between any two nodes are represented by a straight line. Obviously, the 

length of any lines should be less than or equal to R, which is 1.5. Any node can communicate 

with other nodes directly or indirectly, in other words, there must be some path between any two 

nodes in the network. Otherwise, the unconnected nodes will be not recognized by the network.  

For each network topology (No.1 to No.10), the unknown nodes can be divided into two 

groups. Some unknown nodes are in direct connection with at least one anchor, and they are 

collected into the first group. The rest of the unknown nodes are grouped into the second one. 

The nodes in the first group of the No.1 network is drawn with lines connected to corresponding 

anchors as Figure 13. The percentage of the number of the nodes in the first group over the total 

number of unknown nodes is shown as Figure 14. The percentages of the 10 different topologies 

also called the density of the anchors which vary from 63% to 85%.  
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Figure 12. The topology of the No.1 network. The anchors are marked as small squares; the 

real positions of the unknown nodes are marked as small circles; and the connections between 

any two nodes are shown as the green lines. 
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Figure 13. The connections between the nodes in the first group and the anchors are represented 

by the green lines, while the anchors are marked as the small squares; the unknown nodes are 

marked as small circles. 
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Figure 14. The percentage of the 

unknown nodes in the first group over 

all unknown nodes 
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Figure 15. The average connectivity 

degree of each topology 

 

After showing the density of the anchors, the density of the nodes will be discussed 

below. Some researchers define the ‘degree’ of nodes to represent the density of the 

nodes. The degree may be understood as the average number of connections for a node in 

the network, which is defined as below. In our simulation, the degree of the 10 networks 

varies from 5.8 to 6.4 in Figure 15. 

Degree= ( 2 * number of connections ) / number of nodes. 

 

The parameters used in PAES are shown in Table 2. In this simulation, the archive size 

does not affect the result greatly. Its value can vary from 20 to 100. There are two 

independent conditions that the iteration would stop. The first is when the two targets: 

Count_wrong_connection, Error both become zero. The second is the number of iteration 

equals the maximum number of iteration defined. 

 

Table 2.  Parameters used in PAES 

Parameter     value 

Archive size     100 

Number of regions    5 

Maximum number of fitness evaluations  1,000,000 

 

It is repetitive to show the detail information of all the 10 topologies. Instead, only the 

information for No.1 is given in Figure 16 and Figure 17. Figure 16 shows the value of 

the two objectives when the iteration in No.1 network finishes. There are 30 trials of the 

simulation. Therefore, there should be 30 points in Figure 16, each point is with x-axis 

representing value of count_wrong_connection and y-axis representing value of Error. 

However, in the figure, there are only six points because some points are overlapped on 

same points. To show the number of overlapped trials, Figure 17 gives how many trials in 

different value of count_wrong_connection. There are 23 trials ended when 

Count_wrong_connection=0, and there is only one point in Figure 16 when 

Count_wrong_connection=0. That means 23 trials are overlapped as one point in Figure 

16 at the position [0,0].  
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The accuracy of the estimation is evaluated by the difference between the estimated 

positions of unknown nodes and the positions of the corresponding unknown nodes when 

the problem is setup. The average error per unknown node is calculated by the formula 

below. 

1

ˆ ˆ( ) ( )
m n

i i i i

i m

x x y y

error per node
n



 

  




 

where ( ˆ
ix , ˆ

iy ) is the estimated position of node i, ( ix , iy ) is the real position of the node i. 

Boxplots of the average error for unknown nodes for the 10 topologies are shown in 

Figure 18. On each box, the central mark (red) is the median of the 30 value of error per 

node for the 30 trials, the edges (both blue) of the box are the 25th and 75th percentiles, 

the whiskers extend to the most extreme data points the algorithm considers to be not 

outliers, and the outliers are plotted individually as red crosses ‘+’.   

While the evaluation stops at two independent conditions, the number of iteration 

required for each trial may be different. Boxplot in Figure 19 shows the 30 numbers of 

iteration for each topology. No.1, 3, 5, 6, 7, 8 are with most trials being stopped by 

reaching [Count_wrong_connection; Error]=[0;0]. The corresponding topologies in 

Figure 18 give more accurate estimation than others. Figure 20 and 21 show the boxplots 

of the two targets: Count_wrong_connection; Error respectively. It is shown that the two 

targets are not contrary in most cases. They have the similar trend under different 

topologies. 
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Figure 16. The values of the two 

objectives when the iteration of the 

network No.1 is finished 
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Figure 17. The number of the trials 

under different values of 

Count_wrong_connection for the 

network No.1 
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Figure 18. Boxplot of the error per node for the 10 topology networks 
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Figure 19. Boxplot of the number of iteration for the 10 topology networks 
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Figure 20. Boxplot of the first target: Count_wrong_connection for the 10 topology 

networks 
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Figure 21. Boxplot of the first target: Error for the 10 topology networks 
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Figure 22. Our result compared with other methods (MDS, DV-Hop and SDP) 

 

Simulation results of our method compared with other methods (MDS, DV-hop and 

SDP) are shown in Figure 22. It is clearly shown that all the results of PAES is better 

than convex methods for each topology. Error per node for DV-Hop and SDP are mostly 

between 0.6 and 0.8. The error for MDS is not very stable, but the minimum is above 0.7. 

PAES can give much more accurate estimation. The error per node mainly distributed 

around 0.4. If we concentrate on each single topology, the median of error in PAES is 

nearly half of error in the most accurate convex method. The whisker range is around 0.1, 

which is a relative small disturbance. Even the outliers are underneath the convex 

methods, while only one exception appears in the No.9, in which one outlier is bigger 

than error per node of DV-Hop and MDS. In the No.9 No.10, the error of PAES is a little 

bigger, but the most of the 30 trials are 0.2 less than the error of convex methods.  

 

7. Conclusion 

 

The constraints in a connectivity-based sensor network localization problem can be 

divided into two categories: convex and non-convex, which indicate that the problem is 

actually a non-convex optimization problem. However, current connectivity-based 

localization methods only utilize the convex constraints. Motivated by searching for good 

accurate solution based on the connectivity information, a two-objective evolutionary 

algorithm framework has been developed. The first objective is to count the wrong 

connectivity including the violated connections and violated disconnections between the 

node pairs. The second objective is to quantitatively evaluate the degree of seriousness in 

the violation of the connectivity. A popular MOEA method, PAES, is used to tackle this 

optimization problem. To obtain an appropriate initial decision vector for this 
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optimization, convex optimization result from SDP is used. The estimation of SDP 

satisfies all the convex constraints and makes the number of the wrong connectivity to be 

small enough to converge quickly. In a comparison of its accuracy with other methods 

such as MDS, DV-Hop, and SDP, the developed method can decrease the estimated 

position error by nearly 50%.      
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