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maintenance interventions. 
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1 Introduction 

Processing of uncertainty is crucial in industrial applications and consequently in decision making 

processes [1]. In practice, it is often convenient to distinguish uncertainty due to the inherent variability of 

the phenomena of interest from that due to lack of precise knowledge [2]. The former type is referred to as 

aleatory, irreducible, stochastic or random uncertainty and describes the inherent variation associated with 

the physical system or the environment, the latter is referred to as epistemic, subjective or reducible 

uncertainty, and relates to the lack of precise knowledge of quantities or processes of the system or the 

environment. Although probability theory is well suited to handle stochastic uncertainty due to variability, it 

has been argued that the probabilistic approach may have some limitations in the representation and 

treatment of epistemic uncertainty in situations of poor knowledge, since it tends to force assumptions which 

may not be justified by the available information [3]. For example, ignoring whether a value of a parameter 

is more or less probable than any other value within a given range does not justify assuming a uniform 

probability distribution, which is the less informative probability distribution according to both the Laplace 

principle of insufficient reason and the maximum entropy criterion [4]. 

In this work, we consider alternative approaches to probability theory for the representation of epistemic 

uncertainty, such as Dempster-Shafer Theory of Evidence (DSTE) and Possibility Theory (PT). These 
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approaches have been considered due to their ability in handling the uncertainty associated to the imprecise 

knowledge on the values of parameters used by expert information systems and for which reliable data are 

lacking. In this respect, it is worthy noticing that some research effort has been devoted to capture the 

relationships between DSTE, PT and probability theory, and a vivid research debate is still ongoing about the 

capability of Probability Theory in representing the epistemic uncertainty  

For example, in [5], a new framework is proposed, which extends Bayesian Theory to perform 

probabilistic inference with uncertain evidence. The extension is based on an idealized view of inference in 

which observations are used to rule out possible valuations of the variables in a modeling space. On the 

contrary, in [6] probability is conceptualized at the ‘betting’ level where decisions are made, which is 

different from the ‘credal’ level, where we find the epistemic uncertainty we are dealing with in this work. A 

pignistic transformation is required to pass from the credal level to the betting level. In [6], the authors also 

provide a comparison between the Bayesian framework and the Transferable Belief Model, which highlights 

that they may lead to different results. 

The strength of DSTE and PT lies in their capability of representing the epistemic uncertainty in a way 

less committed than that offered by probability theory. PT has been embraced to tackle a number of 

interesting issues pertaining to different fields such as graph theory [7], database querying [8], diagnostics 

[9], data analysis [10] and classification [11], agricultural sciences [12], probabilistic risk assessment (e.g., 

[13], [14]), etc. to cite a few. Analogously, applications of DSTE can be found in diverse domains such as 

signal and image processing [15], business decision making [16], pattern recognition [17], clustering [18], 

etc. 

In spite of the liveliness of the research in the field, it seems fair to say that the non-probabilistic treatment 

of uncertainty within soft computing methods has not yet been exhaustively investigated. After all, given the 

relative immaturity and small size of research community working on non-probabilistic approaches, it is 

hardly fair to expect that these are elaborated from soft methods to the same extent of that of probability 

theory [19]. In this respect, two main considerations can be done on the basis of the authors’ best knowledge:  

 There is no work of the literature which performs an comprehensive comparison of the main 

techniques to represent and propagate the epistemic uncertainty together with the aleatory 

uncertainty, from a practical, engineering point of view. For example, an interesting comparison 

of PT, DSTE and probability theory is provided in [20], where a simple case study is introduced 

as a workbench to highlight the differences among those approaches. However, even in that case 

the comparison is not complete, as neither (type 1 or 2) fuzzy theory nor Bayesian probability 

theory are considered. In conclusion, the issue of comparing the different frameworks is still open 

and future research effort will be spent by the authors in this direction. On the other side, while 

doing this, it is important to bear in mind that, quoting Smets [6]: 

 

“Uncertainty is a polymorphous phenomenon. There is a different mathematical model for 

each of its varieties. No single model fits all cases. The real problems when quantifying 

uncertainty is to recognize its nature and to select the appropriate model. The Bayesian 

model is only one of them. The TBM also only one of them. Each has its own field of 

applicability. Neither is always better than the other” 

For example, in [21] a different technique has been proposed to cope with the maintenance 

assessment issue in the case in which a team of experts is available to provide the ill-defined 

parameters, whereas the method proposed in this work assumes that there is just one expert to give 

them.  



 PT has never been applied in the context of maintenance modeling, which is the core of this paper. 

 

Maintenance is a key factor for safety, production, asset management and competitiveness. Establishing an 

optimal maintenance policy requires the availability of logic, mathematical and computational models for: 

 i) the evaluation of performance indicators characterizing a generic maintenance policy. Possible 

performance indicators are the production profit, the system mean availability, the maintenance costs, etc. 

ii) the identification of the optimal maintenance intervention policy from the point of view of the 

identified performance indicators, while fulfilling constraints such as those regarding safety and regulatory 

requirements. In practice, this multi-objective optimization problem has to be faced in a situation in which 

some constraints and/or the objective functions are affected by uncertainty. To effectively tackle this 

problem, a number of approaches have been already propounded in the literature considering different 

framework for uncertainty representation: probability distributions in [22]-[24], fuzzy sets in [25] and [26], 

and plausibility and belief functions in [27], [28]. 

The present work aims at contributing to the above step i) by developing a methodology for maintenance 

performance assessment that properly processes the involved uncertainties. More specifically, we consider a 

situation in which: 

 a stochastic model of the life of the component of interest, in terms of degradation process, failure 

behavior and maintenance interventions is known without any uncertainty. This is, for example, 

the case for the degradation process ‘fatigue’ which has been successfully modeled by means of 

gamma processes [29], Weibull distributions [30], Paris-Erdogan law [31], etc.  

 The model of the component’s behavior depends on a number of ill-defined parameters. With 

reference to the example of fatigue degradation, the gamma process, Weibull distribution and 

Paris-Erdogan law depend on parameters whose values are usually not precisely known. 

Moreover, knowledge of other model parameters such as those describing the maintenance 

effectiveness (e.g., the improvement of the component degradation), duration and cost may also 

be imprecise. This framework of analysis where the aleatory and epistemic components of the 

uncertainty are separated into two hierarchical levels is often referred to as ‘level 2’ approach or 

setting [38]. 

 Information about the ill-defined parameters is available only from experts; in particular, it is 

assumed that there is a single expert, who provides for every uncertain parameter a set of 

intervals, which contain its true value with different degrees of possibility. 

Although methods for a priori evaluating the performance of a maintenance policy while taking into account 

the aleatory uncertainty on the future behavior of the component of interest have been investigated in the 

literature (see [32]-[35] for surveys), only few works (e.g., [36]) tackle the maintenance policy performance 

assessment problem considering the epistemic uncertainty on the maintenance model parameters. In this 

work, the information elicited from the expert is described by means of possibility distributions and 

propagated through the model by resorting to a method that exploits the concept of FRVs [3], [37] and 

DSTE. 

Notice that other techniques have been proposed in the literature to represent the imprecision in the expert 

qualitative statements. For example, type-2 fuzzy theory allows describing the uncertainty in the model 

parameters given by the expert by means of a fuzzy set, and also the uncertainty in the shape of its 



membership function, again by a fuzzy set [39]. This latter would introduce the ‘third-level’ uncertainty in 

our framework, which requires additional computational complexity to propagate the epistemic uncertainty 

described by the type-2 fuzzy set together with the aleatory uncertainty. Furthermore, this solution leaves 

open the question: shall we consider the uncertainty in the membership defining the type-2 fuzzy set? 

A different approach to the problem of assessing the maintenance performance while properly processing 

the involved uncertainties has been proposed by the authors in [21], [40], where the uncertainty in the 

model parameters is represented by resorting to the DSTE theory. In particular, the main differences 

between this latter approach and that presented in this work are outlined in [21], with respect to the 

information elicited, the readability of the output, the computational effort required and the possibility of 

passing from the PT-FRV-based method to the DSTE-based one. 

The method proposed in this work is illustrated with reference to an exponential, non-repairable, binary 

component. A practical case study is shown with reference to the degradation model of a check valve of a 

turbo-pump lubricating system in a Nuclear Power Plant. 

The remainder of the paper is organized as follows. Section 2 describes the method to represent and 

propagate the uncertainties. Section 3 illustrates a case study, which is for reference firstly investigated 

assuming that there is no epistemic uncertainty affecting the parameters of the stochastic model. The FRV-

based method is then applied in Section 4 to this case study to treat epistemic uncertainty. Finally, a 

discussion on the pros and cons of the method, as emerged from its application to the case study, concludes 

the work. The main aspects of DSTE and PT are briefly recalled in Appendix 1 for completeness of the 

paper. 

2 Uncertainty setting 

Let us consider a model Z=g(Y), where Z=(Z1, Z2,…, ZO) is the vector containing the O output variables of 

interest, and  g   is a function that models how Z depends on the k uncertain variables , 1, ,
j

Y j k , of 

vector Y; the uncertainty on these variables is characterized by known probability distributions ( ; )
jY j j

F y θ , 

1,2, ,j k , where 
,1 ,

{ ,..., }
jj j j M

 θ , are the vectors containing the hyper-parameters of the 

corresponding probability distributions. Also these parameters are uncertain and the information to 

characterize this uncertainty is drawn from an expert. This framework of analysis where the aleatory and 

epistemic components of the uncertainty are separated into two hierarchical levels is often referred to as 

‘level 2’ approach or setting [39]. 

As mentioned, information is elicited from an expert for estimating the parameters , 1,...,
j

j kθ . The 

associated uncertainty is represented within the framework of PT, and propagated by means of the method 

based on the concept of FRVs. For the sake of clarity of the illustration, the treatment of uncertainty is 

described by ways of a simple case study concerning a non-repairable component whose state can only be 

either working or failed and whose Time To Failure (TTF) is exponentially distributed with uncertain failure 

rate  . The mission time is T (taken equal to 105h in the numerical case study). Hence, in this reference 

example there is k=1 uncertain variable, i.e., Y=(Y1)=(TTF), described by the Cumulative Distribution 

Function (CDF) ( ; ) 1 ttf

TTF
F ttf e     , with 1

1M 
 
uncertain parameter 1

{ }θ . The output vector Z 

contains only one variable: the portion D of the mission time in which the component is in a down state, i.e., 

unavailable. The function g that links TTF to D is given by: 



( )

0

T TTF
if TTF T

D g TTF T

otherwise




  



 
1. 

Then, D is also a random variable, because it is a function of the random variable TTF. The range of 

variability of D is the interval [0,1], and its distribution, for a given value of the failure rate  , is: 

        1
| | | 1 |

λT d

D

T TTF
F d P D d P d P TTF T d e

T
   

  
        

 
  2. 

where d represents the generic value taken by the variable D. 

Figure 1 shows the shape of this function for a value of the failure rate 5 110λ h  . Notice that (0)
D

F  (i.e., 

the probability that the component is always available during the mission time) is equal to λTe , i.e., the 

probability that the component fails after T. 

 

Figure 1: CDF of D, for λ=10-5h-1 

2.1 Information elicited from the expert 

Within the PT framework, for a generic uncertain parameter  , an expert is asked to provide a set of n  

nested intervals 
i

A , 1,...,i n , (
1 2 n

A A ... A   ), which are believed to contain the true value of   with a 

positive confidence level 
i

q ; this latter can be conveniently interpreted as the smallest (subjective) 

probability that the true value of the parameter   lies within 
i

A  (i.e., ( )
i i

P A q  ). Alternatively, the 

interval 
i

A  can be seen as the smallest one whose probability of including the true value of   is at least i
q  

[41], for any 1i ,...,n . From the expert’s point of view, 
i

q  is the portion of cases where 
i

A   from 

his/her experience [41]. To sum up, the expert provides a weighted family 
1 1 2 2 n

{( , ),( , ),....,( , )}
n

A q A q A q  (for 

example, see Figure 2 (a)). Notice also that the value of the largest confidence level 
n

q  may be smaller than 

1, i.e., 1
n

q ε  , 0ε  ; this is equivalent to admitting that even the widest, safest interval contains some 

residual uncertainty ( ε ), i.e., it is assumed that the expert is not absolutely sure about his judgment [41].  



Finally, the inequalities 
1 2

...
n

q q q    hold, due to the fact that 
i

q of the interval 
i

A  is necessarily 

smaller than 
1i

q


 associated to 
1i

A


, if 
1i i

A A


 , for any i=1,…, n-1. 

 

Figure 2: representation of the weighted families provided by the expert for the exponential, non-repairable, binary component 

(a) and the corresponding possibility distribution, built according to the procedure proposed in [43] (b) 

With reference to the simple case study of the exponential, non-repairable, binary component, let us suppose 

that the expert characterizes his/her knowledge about the value of the failure rate   with the information 

summarized in Table 1.  

Parameters 

Degree of certainty 

1
q =0.1 

2
q =0.3 

3
q =0.5 

4
q =0.7 

5
q =0.95 

min max min max min  max min max min max 

  [h-1] 9.9e-6 1.01e-5 9.7e-6 1.03e-5 9.5e-6 1.05e-5 9e-6 1.1e-5 8e-6 1.2e-5 

Table 1: information supposed to be elicited from the expert for the case study concerning the exponential, non-repairable, 

binary component 

The Universe of Discourse (UoD), i.e., the interval of all the possible values of the failure rate is [0, [ , 

where the lower bound (0) corresponds to an infallible component, whereas an infinite failure rate 

corresponds to a component that fails at t=0+. From Table 1, it appears that the expert provides the interval 

1
A

 
that is believed to normally, unsurprisingly contain the true failure rate value, with confidence level 

1
0.1q  , which represents the portion of cases where 

1
λ A  from the expert’s experience point of view. The 

interval 
1

A =[9.9e-6h-1, 1.01e-5h-1] is ‘unsurprising’ in the sense that any interval 
*

1
A  of the same length of 

1
A  would have been associated to an equal or smaller frequency of occurrence of the event 

*

1
A . 

Obviously, the expert cannot be less confident that the true value of the failure rate belongs to intervals that 

include 
1

A ; thus, larger intervals are associated to larger confidence levels. In particular, 
5

A =[8e-6h-1,1.2e-

5h-1] is the interval which leaves a 0 05ε .  probability of not including the true value of  . 



Figure 2(a) reports the set of intervals provided by the expert, and corresponding confidence levels (degrees 

of certainty). For visualization, both Figure 2(a) and Figure 2(b) report only the interval [1e-6h-1,1e-4h-1], 

instead of the entire UoD, and the abscissa axes are logarithmically scaled.  

From Figure 2(b), it also emerges that the elicitation process should be checked against the overconfidence 

problem, which intervenes when judges provide intervals such that they were X% sure that the correct 

answer lay between them, but the correct answer fell inside their intervals much less than X% of the time. In 

this respect, the results of the study in [44] allow stating that the overconfidence problem is reduced or 

avoided when experts assign a reasonably accurate level of confidence to a given interval. On the contrary, 

when experts are asked to give an interval corresponding to a target assigned level of confidence the 

correctness of the judgment worsens. Thus, the findings in [44] seem to support the elicitation method 

proposed in this work. 

With respect to the elicitation exercise of failure rates, a practical difficulty is given by the typically very low 

failure rate values (even lower than 10-6  which are difficult to directly assess resorting to expert knowledge. 

Alternatively, the experts can assess the mean time between failures, which is equal to the inverse of 

the failure rate and can be obtained from the ratio between the total time of observation and the 

number of failures occurred in such time span [45]. 

 

Notice that the elicitation exercise of the failure rate is not difficult from the expert point of view. In 

fact, it can be derived as the inverse of  

More generally, in the uncertainty setting with k variables, an expert is asked to provide for every 1j ,...,k  

and 1
j

p ,...,M , a set of ,j p
n  nested intervals 

j,p

i
A , 1

j,p
i ,...,n , (

1 2 j,p

j,p j,p j,p

n
A A ... A   ), which are 

believed to contain the true value of the p–th parameter of the j-th random variable, ,j p
 , with a positive 

confidence level 
,j p

i
q . 

2.2 Uncertainty representation 

In this work, the uncertainty on the information elicited from the experts is represented by resorting to 

the possibility theory (see Appendix 1). With respect to an uncertain generic parameter  , the possibility 

theory defines, for a given set A, the possibility and necessity measures, ( )A  and ( )N A , which can be 

interpreted as the upper and lower limits of the probability that the true value of the parameter belongs to A. 

These two measures are related to the possibility distribution ( )  , which expresses the degree of 

possibility that the true value of the uncertain parameter be  , by: 

( ) sup{ ( )}
A

A 


 


             3. 

( ) 1 ( ( )) 1 sup{ ( )}
A

N A not A 


 


             4. 

In our case, a possibility distribution is directly built from the weighted families 

1 1 2 2
{( , ),( , ),....,( , )}

n n
A q A q A q  provided by the expert, according to the procedure proposed in [41] and whose 

steps are here briefly recalled, for convenience. 



 First of all, it is postulated that the necessity measure, ( )
i

N A , i.e., the lower probability that the true 

value of   is in the interval 
i

A , is equal to the confidence level 
i

q  defined by the expert. Thus, the 

inequality ( ) ( )
i i i

P A N A q    holds, for any 1,...,i n . 

 Then, since there are infinite possibility distributions ( )   that obey the constraint 
i i

q N(A ) , it 

has been decided to choose the one which maximizes the degree of possibility ( )   for all the 

values  . The solution is unique and is [4]: 

1
1

( ) min 1
i

i

i:θ A

A

( - q ) otherwise


 



 
 

  
  

        5. 

In particular, it is possible to show that this is the least specific possibility distribution with respect to the 

available data, i.e., any other possibility distribution '  obeying the constraints 
i

N(A )
i

q   is such that 

'    [4]. 

With reference to the case of the exponential, non-repairable, binary component, the possibility distribution 




 of the failure rate λ associated to the weighted family of Table 1 and built according to the procedure 

depicted above, is reported in Figure 2(b). To verify that this distribution obeys the constraints  i i
q N A  

for 1,...,5i  , let us consider, for example, the first interval 
1

A ; then, 

   
1

1 1 1
1 1 sup{ ( )} 1 0 9 0 1

A

N A - notA - . . q


 


       . Notice also the residual uncertainty 0 05ε .  

associated to the points of the UoD external to 
5

A . 

2.3 Uncertainty propagation  

The uncertainty in the parameters of the model needs to be propagated to assess the uncertainty on the 

outputs. To this aim, we exploit the concept of FRVs within the methodology proposed in [3]. FRVs can be 

intuitively conceptualized as random variables whose values are not real numbers, but fuzzy numbers, since 

there is a vague perception of their true values, which are crisp but unobservable [37]. In other words, a FRV 

is a generalization of a random variable or a fuzzy variable [42]. 

The operative steps of the uncertainty propagation procedure are reported in the following with reference to 

the case of the exponential, non-repairable, binary component. Since this case is characterized by a single 

uncertain variable (k=1), we will always omit in the notations the subscript 1 referred to the uncertain 

variable. As an example, the general procedure is given with reference to the sample vector { }
j

u , but in our 

example we indicate it by { }u
. 

1) For each uncertain variable 
j

Y , 1,2, ,j k , sample a vector { }
j

u  1,2, ,
T

N  , made of NT 

uniform random numbers in [0,1[; for example in our case, since k=1, we need a vector of random 

numbers { }u
, 1,2, ,

T
N  . In particular, let us assume that the first sampled value 

1u = 0.65. 

2) Select a value of αi on [0,1] and take as intervals of possible values the cuts

,1 ,,1 ,
[ , ] {[ , ] ,...,[ , ] }ji i j i

j j j Mj j j M
θ θ θ θ  θ θ

 
corresponding to the possibility distributions of the 



parameters 
,1 ,

{ ,..., }
jj j j M

 θ , of the variables j
Y , 1,2, ,j k ; in our case, let us start from αi=1: 

the interval of possible values for the parameter   is [9.9e-6h-1,1.01e-5h-1] (see Figure 2 (b)). 

3) Identify the set of random intervals [ , ]
ijj

y y


 , of the variables j
Y , 1,...,j k , corresponding to the 

random vector 
1

{ ,..., ,..., }
j k

u u u   , using the αi-cut ,1 ,,1 ,
[ , ] {[ , ] ,...,[ , ] }ji i j i

j j j Mj j j M
θ θ θ θ  θ θ , found at 

step 2). In particular, the ω-th random interval of the j-th variable, 

1 1

[ , ] [ , ]

[ , ] [ inf ( ; ), sup ( ; )]
i j j

jj ij jj ij

j Y j j Y j jj
y y F u F u

 

  



 

 


θ θ θ θ θ θ

θ θ , where 
1( ; )

jY j j
F u

θ  is the quasi-inverse 

function of the CDF ( ; )
jY j j

F y θ  of the random variable j
Y , for any value of the vector j

θ  (i.e., if U 

is a random variable uniformly distributed on [0,1[, then 
1( ; )

jY j
F U

θ  has CDF ( ; )
jY j j

F y θ ). This 

procedure can be regarded as an extension of the Monte Carlo (MC) sampling method, modified to 

take into account the fact that the parameters of the CDFs are fuzzy-uncertain in their UoDs: each 

sample from the uniform distribution is associated to an interval of values, instead of a single value 

(Figure 3), so that different CDFs are obtained from the sampling, and lower and an upper bounding 

CDFs can be identified. 

In the reference case study, the interval associated to the sample 
1 0 65u .  and αi=1 is 1

[ , ]ttf ttf

=[1.63e5h, 1.66e5h] (Figure 3(a)). This is obtained by considering the two extremes of the interval 

of the uncertain parameter λ equal to 1
[ , ]θ θ =[9.9e-6h-1,1.01e-5h-1], which define the upper and 

lower exponential distributions, 1 te   and 1 te  , respectively. Then, these functions are inverted 

to find the interval 
1

[ , ]ttf ttf , which is given by: 

1 1

1

ln(1 ) ln(1 )
[ , ] [ , ]

u u
ttf ttf



   
 .

 

Notice that in this particular case, the interval 1
[ , ]ttf ttf  is trivially obtained, since the inverse 

function of the exponential distribution is known. In general, it may be difficult to find out the 

analytical expression of the minimum and maximum values of the inverse function 
1( ; )

jY j
F U

θ , 

especially if it depends on a large number of parameters (e.g., Mj>4, 5). In these cases, one has to 

devise efficient methods for identifying the minimum and maximum values of the random variable 

corresponding to the different combinations of the uncertain parameters 

,1 ,,1 ,
[ , ] {[ , ] ,...,[ , ] }ji i j i

j j j Mj j j M
θ θ θ θ  θ θ . 

 



 

Figure 3: lower and upper CDFs corresponding to different values of αi, and the intervals associated by the quasi-

inverse functions to u1=0.65  

4) For every output variable Zo, o=1,..,O, calculate the smallest and largest values of g (denoted by 

( )o

i

Z
g

  and ( )

o

i

Z

g  , respectively), within the intervals [ , ]
ijj

y y


 , 1,2, ,j k , of the variables: 
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for o=1,...,O, and consider the interval: 
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             8. 

In the case of the exponential, non-repairable, binary component, the minimum and maximum values 

of the TTF found in the previous step (i.e., 1.63e5h and 1.66e5h, respectively) are both larger than 

the mission time T=105h, and thus the corresponding values of D are zero (Equation 1). 

5) Return to step 2) and repeat steps 3) and 4) for another α-cut. For the exponential, non-repairable, 

binary component, the intervals 
11

11
[ , ]

i
ttf ttf 

 corresponding to different values of αi are reported in 

Figure 3. For example in the case of αi = 0.5, 
11

1 0.51
[ , ]ttf ttf =[9.54 104h,1.16 105h], whereas for αi = 

0.05 the interval 
11

1 0.051
[ , ]ttf ttf  =[0,∞[. 

6) The FRV corresponding to the ω-th realization is computed as: 

( )
( ) sup[ [0,1] | ( )]o

o i

Z

Z o i o
z z              9. 



The FRV that describes the portion of the component downtime associated to the first sample is 

shown in Figure 4: since 
 1

(0) 1
D

   it is fully plausible that the component is available for the 

overall mission time, whereas, since 
 1

(1) 0.05
D

   it is not impossible that the component is 

unavailable for the entire mission time. Furthermore, according to the probabilistic interpretation of 

the possibility distribution, it is possible to observe that the probability that the component is fully 

available during its mission time is between 0.5 and 1, and the probability that the portion of 

downtimes is larger than 0.07 is between 0 and 0.2. Notice that the FRV of Figure 4 is consistent 

with the intervals represented in Figure 3. In fact, only the intervals corresponding to αi≤0.5 contain 

the value T=105h: this means that only for these values of αi the component may experience a failure 

before T, which entails its unavailability for the remaining part of the mission time. 

7) Repeat steps 1)-6) for a new realization of the random variables, until ω=NT.  

 

Figure 4: Fuzzy Random Variable corresponding to the sample u1=0.65 

 

8) Compute the Plausibility and Belief distributions for Zo, o=1,...,O by: 
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10. 

where 1/NT is the probability assigned to the ω-th FRV, for any ω. In particular, Equation 10 is 

derived from the interpretation of the FRVs under the setting of random sets [43]. 

The Plausibility and Belief distributions of D (i.e., the upper and lower bounds, respectively, of the 

probability distributions of the portion of the mission time T in which the exponential, non-repairable, binary 

component is in a fault state) are reported in Figure 5; for comparison, the CDF (see Equation. 2) is also 

provided, which lies between the Plausibility and Belief distributions. 

A comment seems in order about the requirement that the uncertainties on all the input parameters must be 

described by the same expert, which is mandatory for applying this procedure. This constraint comes from 

the application of the extension principle in Equation 9, which introduces a strong dependence between the 

information sources supplying the input possibility distributions. Indeed, the same confidence level for all 

the input variables is chosen to build the α-cuts of the output variables; this suggests that if the expert source 

informing on one parameter is rather precise or gives the same mean values to the confidence levels, then the 



one informing on another parameter must also be precise, i.e., to ensure this, it must be the same source. 

Further research effort should be spent in order to verify whether the procedure here illustrated can be 

interpreted as a conservative counterpart to the calculus of probabilistic variables under stochastic 

independence, due to the dependence between the choice of confidence levels. 

 

Figure 5: Plausibility, Belief and Cumulative distributions of the portion of mission time in which the component is in a fault state 

3 Case Study 

The present case study is taken from [46] and regards the degradation and maintenance of a check valve of a 

turbo-pump lubricating system in a Nuclear Power Plant. The degradation modelling is based on information 

collected from dependability analyses (e.g., FMECA) or directly from experts. This leads to the 

identification of one principal degradation mechanism, i.e., fatigue, and only one failure mode, i.e., rupture. 

A Condition-Based Maintenance (CBM) policy is applied to this component on a time horizon T = 104h. The 

performance of the maintenance policy is assessed in terms of cost and component unavailability. 

Notice that the case study proposed in this work is derived from a real industrial issue addressed by the 

authors. However, the values of the parameters of the degradation - failure model considered in this Section 

have been arbitrarily set. In fact, the focus of the paper is on the method proposed to cope with the issue of 

assessing a maintenance policy in the presence of uncertainty in the model parameters, rather than on the 

findings of the case study. 

3.1 Degradation mechanism modeling 

The fatigue phenomenon affecting the check valve is here modeled as a discrete-state, continuous-time 

stochastic process that evolves among the following three degradation levels (Figure 6): 

1. ‘Good’: a component in this state is new or almost new (no crack is detectable by maintenance 

operators). 

2. ‘Medium’: if the component is in this degradation level, then it is convenient to replace it. 

3. ‘Bad’: a component in this degradation state is very likely to experience a failure in few working 

hours. 



The choice of describing the degradation process by means of a small number of levels, or degradation 

‘macro-states’, is driven by industrial practice: experts usually adopt a discrete and qualitative classification 

of the degradation states based on qualitative interpretations of symptoms. 

The probability density functions (pdfs) of the transition times are Weibull distributions, with scale 

parameters ηij and shape parameters βij for the transitions from state i to state j (i, j  {1, 2, 3}, and i<j). The 

Weibull distribution is commonly applied in fracture mechanics (e.g., [30]), especially under the weakest-

link assumption [47]. 

A further state, ‘Failed’, can be reached from every degradation state upon the occurrence of a shock event. 

The exponential distribution with constant failure rate λj describes the failure behaviour of the component 

while it is in state j, for every j=1, 2, 3. The choice of assigning a constant failure rate to every degradation 

state is driven by industrial practice: experts are familiar with this setting and comfortable with providing 

information about the failure rates values. 

 

 
Figure 6: degradation modeling 

3.2 Maintenance policy 

The CBM policy applied to the system is composed by the following tasks: 

 Inspections: these actions, which are the only scheduled actions, are aimed at detecting the degradation 

state of the component, and are considered to last 5h for a cost of 50€. For the sake of simplicity, the 

component is considered as new after the inspection. 

 CBM actions: Preventive Maintenance (PM) actions which are dependent on the result of an inspection 

action. More precisely, if the component is found to be in state ‘Good’, no action is performed, whereas if 

the degradation state is ‘Medium’ or ‘Bad’, then the component is replaced and, consequently, the 

degradation state is taken back to ‘Good’. Both these replacement actions are supposed to take 25h and 

cost 500€, each.  

 Corrective Maintenance (CM) actions. The corrective action, performed after a component failure, is 

assumed to be the replacement of the component. Due to the fact that this event is unscheduled, this 

action brings an additional duration of 85h and an additional cost of 3500€, with respect to the 

replacement after an inspection, leading to a total duration of 100h and to a total cost of 4000€. In 

particular, the additional time may be caused by the supplementary time needed for performing the 

procedure of replacement after failure or to the time elapsed between the occurrence of the failure and the 

start of the replacement actions. 



The Inspection Interval (II), which is the time span between two successive planned inspections, is the only 

decision variable considered in this case study; optimization is then directed to the search for the value of the 

II that minimizes the costs and maximizes the availability of the component. 

Notice that to keep the case study presented in this work consistent with the practical industrial problem 

tackled by the authors, the values of duration and cost of the different maintenance actions are given 

proportional to the actual ones. 

3.3 Analysis of the case study 

The case study is firstly investigated in the unrealistic situation in which the values of the model parameters 

,j p
 , 1j ,...,k  and 1

j
p ,...,M

 
are assumed to be exactly known (i.e., there is no epistemic uncertainty). 

Table 2 reports the values of these parameters, which have been taken from [46].  

 

Parameters Nominal Values 

1,1 12
  , 1861h 

1,2 12
   8 

2,1 23
   743h 

2,2 23
   8 

3,1 1
   10-6h-1 

4,1 2
   10-4h-1 

5,1 3
   10-2h-1 

Table 2: Parameters of the probability distributions 

Figure 7 shows the CDF of the portion of the mission time in which the component is unavailable. Two main 

steps can be observed, which can be explained by imaging to have a population of identical components. 

According to the MC simulation, almost 60% of the population experience one out of the following two 

behaviors. 

 The component never fails during the mission time, and thus is inspected 4 times (at t=2000h, 

4000h, 6000h and 8000h); in 3 out of these 4 inspections the component is found in degradation 

states Medium or Bad (75h of downtime) and in the remaining one in degradation state Good (5h of 

downtime). Thus, the total downtime is 80h, which constitutes the 0.8% of T. Components 

experiencing this life explain the CDF step in correspondence of  d=0.008. 

 The component never fails during the mission time, and when inspected is always found in 

degradation states Medium or Bad (100h of downtime). This behavior explains the CDF step in 

correspondence of d=0.01. 



 

Figure 7: CDF of the portion of the time horizon in which the component is in a down state 

Notice that it is possible to lump together the information provided by the cumulative distribution of the 

portion of downtimes into the mean value of the distribution, i.e., the average unavailability over the mission 

time, which provides an useful and easy to be interpreted indicator of the component expected state in the 

mission time. The estimated average unavailability is 0.011, and the related 68.3% confidence intervals is 

[0.011-9.8e-8, 0.011+9.8e-8].  

3.4  Maintenance optimization 

Figure 8 shows the estimated average unavailability of the component over the mission time (i.e., the 

mean value of the component downtime over the entire mission time), with the related 68.3% confidence 

interval, for different values of the II. The narrowness of the confidence intervals is due to the large number 

(5*104) of MC simulations performed in this case study; roughly speaking, the larger this number the smaller 

the (confidence) interval that with a given probability (confidence level) contains the true value of the 

estimated variable. Thus, in the present case study the actual value of the average unavailability over the 

mission time is affected by a small amount of error, which can be reduced by increasing the number of 

simulations. 



 

Figure 8: average unavailability corresponding to different Inspection Intervals 

Initially, there is a decreasing behavior that reaches a minimum in correspondence of II=1000h/1500h; 

after this point, the unavailability starts rapidly increasing. This is the result of two conflicting trends: on one 

side, the more frequent are the inspections the larger is the probability to find the component in degradation 

states Medium and Bad: this prevents the component to fail and thus saves the corresponding large time to 

repair. On the other side, frequent replacements are ineffective, since the component life is not completely 

exploited in this case. The minimum at II=1500h represents the optimal balance between these two 

tendencies. 

Figure 9 shows that the maintenance costs associated to different choices of the II have a shape similar to 

that of the mean unavailability. Thus, one may conclude that under the considered maintenance policy, the 

best II is between 1000h and 1500h with respect to both availability and cost objectives. On the other hand, 

both the mean unavailability and the maintenance cost remain small, with little variations, when the value of 

the II ranges in the interval [1000h, 2000h]. This relative flatness of both performance indicators 

(unavailability and cost) allows a certain freedom to choose the II within such range: other criteria (e.g., 

opportunistic maintenance) not included in this analysis can be taken into account if the related advantages 

recover the small losses due to the increase of unavailability and cost, that would be incurred when moving 

away from the optimal value of 1500h. 



 

Figure 9: mean costs corresponding to different Inspection Intervals 

4 Representation and propagation of the uncertainties in the considered 

case study 

The aim of this Section is to apply the method illustrated in Section 2 to the case study described above, 

when the parameters of the distributions that model the transitions of the component among the four states of 

Figure 6 are ill-defined and there is only one expert who estimates their values. To sum up, the uncertainty 

situation is the following:  

 there are k=5 uncertain variables, which define the 5 transition times reported in Table 3. 

 The distributions associated to the variables are known, and depend on the set of the uncertain 

parameters θj, j=1…,5 reported in Table 3. In turn, there are Nu=7 uncertain parameters, which 

are the shape and scale parameters of the two Weibull distributions and the failure rates pertaining 

to the three degradation levels (see Table 3).  

 

Uncertain 

Variables 

Uncertain 

Parameters  
Description 

1
Y   1 1,1 1,2

, θ  Transition time from degradation level ‘Good’ to ‘Medium’  

2
Y   2 2,1 2,2

, θ  Transition time from degradation level ‘Medium’ to ‘Bad’ 

3
Y   3 3,1

θ  Transition time from degradation level ‘Good’ to ‘Failed’ 

4
Y   4 4,1

θ  Transition time from degradation level ‘Medium’ to ‘Failed’ 

5
Y   5 5,1

θ  Transition time from degradation level ‘Bad’ to ‘Failed’ 

Table 3: tailoring of the general model to the considered case study 

Notice that the simulation of a single MC history (steps 1-5 of the procedure in Section 2.3) requires that the 

model g encodes a number of random variables k>>5, since the history corresponding to a given sample of 



these 5 uncertain times in general do not cover the entire time horizon T. For example (Figure 10 (a)), if the 

first transition is from state 1 to state ‘Failed’ and occurs at t=2000h, then the interval time between 

t=2000h+100h (i.e., the time instant at the end of the repair action that starts after the failure) and T remains 

not investigated. This problem can be overcome by thinking of g as a function that depends on a number K of 

5-ple (the 5 probabilistic variables), and not just on 5 variables. Obviously, the number K that allows to cover 

the entire mission time is also a random variable, since it depends on the sampled times, which produce 

histories of different lengths. However, this is not a problem in practice: the number K can be chosen such 

that it is reasonably sure that the sampled times simulate histories of duration larger than the time horizon T. 

Then, the analysis focuses only on the interval [0, T] (Figure 10(b)). Finally, the output vector Z is made up 

of the portion of T in which the component is unavailable, and the cost associated to the maintenance policy 

to be assessed; thus O=2. 

4.1 Single expert information 

In all generality, the difficulty in estimating the uncertain parameters of the model may heavily vary from 

one case to another; the weighted families 
1 1 2 2

{ }
j,p j,p

j,p j,p j,p j,p j,p j,p

n n
(A ,q ),(A ,q ),....,(A ,q )  provided by the expert to 

represent his/her knowledge about the parameters are expected to reflect this difference.  

In regard to the considered case study, the weighted families elicited from the single expert are reported in 

Table 4. It is assumed that he/she is able to infer the information on the transition times between the different 

states, from the observations gathered during past component inspections. For example, let us suppose that a 

component is monitored every 100h, and that it was found in degradation state Medium a t=1800h; if the 

component is found in degradation state Bad upon the next observation at t=1900h, then the expert acquires 

the information that the transition from degradation state Medium to Bad occurred in the interval ]1800h, 

1900h[. This kind of information can be used to define the scale and shape parameters of the Weibull 

distributions representing these transitions. In this respect, remind that the scale factor of a Weibull 

distribution is by definition the time before which almost 65% (i.e., 63,2%) of the components of an 

homogeneous population have experienced a transition, whereas the shape factor, roughly speaking, 

determines the uncertainty around the scale value. Notice, however, that the amount of uncertainty affecting 

the estimations of the scale and shape parameters is expected to be very different: the expert has a more 

refined knowledge on the scale parameter as it can be seen as the 65th percentile, than on the shape 

parameter which is only related to the slopes of the Weibull probability plots; these are expected to be 

difficult to estimate from the observations of the components’ degradation states during the inspections. 

Anyway, it is the authors’ experience that in some cases (e.g., the degradation behaviour of some 

components of the turbines used in the Oil&Gas industry), the experts of the maintenance engineering 

department have a relatively precise knowledge about the values of the shape factors. 

Parameters Confidence levels 

a) 

b) 

T 

T 

ON 

OFF 

ON 

OFF 

Medium Bad Medium 

Maint. 

Good 

Failure Failure 

Good Medium Good 

Good 

Failure 

Figure 10:Two examples of simulated histories: the number of random variables does not suffice to cover the entire time horizon 
T (a); number K allows to simulate histories longer than T (b) 



,

1

j pq =0.1 
,

2

j pq =0.5 
,

3

j pq =0.95 UoD 

min max min max min max Min max 

1,1
  η12 1843 1880 1815 1908 1720 2001 1700 2020 

1,2
  β12     7.5 8.5 7 9 

2,1
  η23 735 750 725 762 687 800 650 850 

2,2
  β23     7.5 8.5 7 9 

3,1
  λ1     9e-7 1.1e-6 1e-7 5e-6 

4,1
  λ2     9e-5 1.1e-4 1e-5 5e-4 

5,1
  λ3     0.9e-2 1.1e-2 0.85e-2 1.15e-2 

Table 4: Confidence levels and associated intervals 

With regards to the scale parameters (rows 4 and 6 of Table 4), it has been assumed that the expert provides 

three nested intervals corresponding to the confidence levels 
1

0 1j,pq . , 
2

0 5j,pq .  and 
3

0 95j,pq . , {1,2}j   

and 1p  , and the UoDs within which these parameters range.  

With regards to the shape parameters (rows 5 and 7 of Table 4), given the difficulty in their estimation, it has 

been assumed that the expert provides just the UoDs and the intervals corresponding to the confidence level 

3
0 95j,pq . . In particular, the UoDs, which contain the true values of the parameters with probability 1, are 

very large: the expert tends to reduce the sets of values that surely do not contain the true values of the scale 

parameters.  

Finally, with reference to the failure rates, also the estimation of the Mean Time To Failure (MTTF, i.e., the 

inverse of the failure rate) of the components in a given degradation state may not be easy; in fact, failure 

from the first degradation state is usually a rare event, whose frequency is difficult to estimate even in a 

qualitative way, whereas the lack of precise knowledge of the time instants in which the components transit 

towards the other degradation states affects the evaluation of the mean times to failure associated to these 

states; that is, if the time instant since one has to start to count is unknown, then the resulting measure of the 

time to failure is biased, especially if the component is rarely inspected. Thus, a more vague description of 

the uncertainty is provided by the expert for these parameters of the model g. Namely, he/she gives just the 

intervals corresponding to the 0.95 confidence level and the UoD, as for the scale parameters of the Weibull 

distributions. The extreme points of these intervals are reported in rows 8 -10, columns 7-10 of Table 4. 

On the other side, the larger the number of the uncertain parameters, the larger the space in which the 

maxima and minima of the function g in Equations 6 and 7 have to be searched for, and the larger the 

required computational time. In this regard, a sensitivity analysis can be preventively performed in order to 

identify which are the input parameters whose variations lead to smaller changes in the output value; this 

allows to neglect the uncertainty affecting these parameters while losing a small amount of information and 

considerably reducing the computational times. 

In the present case study, the sensitivity analysis is performed by a local approach [51], i.e., the uncertain 

parameters of the model are varied one by one within their UoD, while the other parameters take their 

nominal values. The results of the analysis are reported in Table 5: the portion of T in which the component 

is unavailable is estimated in correspondence of the extreme values of the UoD of every uncertain parameter. 

For example, the estimation of D is 0.0142 in correspondence of the lower bound of the UoD of the scale 

parameter of the first Weibull distribution (1700h), whereas it is 0.0082 in correspondence of the upper 

bound (2020h). In particular, these values are reported with the related 68.3% confidence interval. The last 



column of the Table reports Δ, i.e., the differences between the average unavailability corresponding to the 

two limiting situations. These quantities give an estimation of the amount of output uncertainty (i.e., the 

unavailability uncertainty) due to the variation of the model parameters. In practice, high values of Δ indicate 

the importance of properly considering the uncertainty in the parameters, whereas low values correspond to 

parameters whose uncertainty has no remarkable effect on the model output uncertainty. 

In this case, the failure rate associated to the degradation state ‘Bad’ turns out to be the parameter which the 

model is less sensitive to. Then, the uncertainty affecting this parameter is not considered and the nominal 

value (Table 2) is assigned to it.  

Notice that the set of unavailability values reported in Columns 2 and 3 of Table 5 are not useful for 

representing the uncertainty on the unavailability, which must take into account not only the input parameter 

extreme values, but all the available information on the input parameter uncertainties, i.e., the possibility 

distributions. Thus, the sensitivity analysis here proposed cannot substitute the uncertainty representation and 

propagation tasks carried out in this work, but can be used to identify the input parameters whose uncertainty 

is most relevant. To further clarify this issue, we can say that the difference between the results in Table 5 

and those of the approach proposed in this work to represent and propagate the uncertainty is twofold: on one 

hand, the PT-FRV based method is a global method to propagate the uncertainty [51]; on the other hand, the 

possibility distributions used to represent the uncertainty in the model parameters allow having a smaller 

commitment of the information provided by the expert.  

Table 5: results of the local sensitivity analysis 

Parameter Minima Maxima Δ 

η12 0.0142±1.2e-7 0.0082±8.3e-8 6.0e-3 

β12 0.0116±1.1e-7 0.0108±8.8e-8 0.8e-3 

η23 0.0119±1.0e-7 0.0105±8.7e-8 1.4e-3 

β23 0.0112±9.9e-8 0.0110±1.2e-7 0.2e-3 

λ1 0.0110±9.5e-8 0.0114±9.6e-8 0.4e-3 

λ2 0.0103±8.2e-8 0.0144±1.4e-7 4.1e-3 

λ3 0.0110±9.5e-8 0.0111±8.8e-8 0.1e-4 

Finally, notice that for every uncertain parameter and for any confidence level, the value considered in [46] 

is the middle point of the corresponding intervals provided by the expert. 

4.2 Possibilistic representation of the epistemic uncertainties 

Figure 11 reports the possibility distributions of the uncertain parameters of the case study, corresponding to 

the weighted families of Table 4. These are obtained by applying the procedure showed in Section 2.2.  

4.3 Uncertainty propagation 

Figure 12 shows the results obtained by applying the FRVs-based method to the considered case study. The 

Plausibility and Belief distributions of the portion of the mission time in which the component is in a down 

state are quite distant; this shows that for some favorable combinations of the uncertain parameters the 

system results to be much more available than for other combinations of the uncertain parameters which lead 

to high portions of downtime. Notice also that the Plausibility and Belief distributions bracket the CDF found 

the case in which the uncertainty on the model parameters is not accounted for (Section 3.3). 

 



 

Figure 11: possibility distributions of the uncertain parameters of the case study 

Notice that the results provided by the method discussed in this work are difficult to be interpreted. This is 

due to the fact that, differently from the case of no uncertainty, it is not possible to lump together the 

information provided by the method, i.e., the Plausibility and Belief function, into indicators such as their 

mean values which can be easily interpreted. This impossibility is due to the fact that the DSTE does not 

allow to define the mean value of an uncertain variable. However, in order to give an interpretation to the 

obtained results, one can focus on a given percentile of the belief and plausibility distributions. For example, 

the interval bounded by the values of the 95th percentile of the Plausibility and Belief distributions is [0.015, 

0.026]; the extremes of this interval constitute the lower and upper bounds, respectively, of the 95th 

percentile of the portion of downtime in the mission time. In other words, this interval tells us that the 95% 

chance of the downtime of the component can be nor smaller than 1.5% nor larger than 2.6% of the mission 

time. Thus, if one is interested in the worst case, then he/she can assume that the 95th percentile of the 

downtime is 0.026, whereas in a more optimistic view, it can be valued at 0.015.  



 
Figure 12: Plausibility and Belief distributions of the portion of mission time in which the component is unavailable, and the CDF 

corresponding to the case with no uncertainty. 

Figure 13 and Figure 14 report the Plausibility and Belief distributions of the portion of downtime over the 

mission time and the total cost, respectively, corresponding to three different values of the II, i.e., II=1000h, 

II=1500h and II=2000h. These results do not lend themselves to an easy interpretation and do not allow to 

make a decision in a simple way. Indeed, while it is easy to state that inspecting the component every 1000h 

is better than every 2000h, since these distributions are not overlapped, answering the question ‘which value 

of the II is best?’ is not trivial, as the distributions corresponding to II=1500h and II=1000h are overlapped. 

This calls for devising a method in support of maintenance decision makers, to help them get around these 

distributions. Notice also that the small amount of uncertainty on the values of both downtime and cost, 

when the component is inspected every 1000h, derives from the fact that the ‘crowd’ of the simulated MC 

component histories (i.e., the large number of components experiencing the same behavior) remains very 

compact in this case. 

On the contrary, when the uncertainties affecting the parameters are not accounted for, the identification of 

the best value of II is more straightforward, since it is usually accepted to consider the mean value of the 

portion of mission time in which the component is faulty or the mean value of the cost as good indicators of 

the performance of the maintenance policy.  



 

 

Figure 13: Plausibility and Belief distributions of the portion of time horizon in which the component is in a fault state, for 

different values of the control variable II 

 

Figure 14: Plausibility and Belief distributions of the cost associated to the maintenance policy, for different values of the control 

variable II 

5 Conclusions 

Uncertainty affects the parameters of the models of the behavior of components subject to a given 

maintenance policy. An incorrect treatment of such uncertainty may lead to a serious bias in the outcomes of 

the analysis. In particular, such outcomes (e.g., occurrence probability of a failure scenario) may be biased in 



both conservative (e.g., estimated failure probability value larger than the actual one) and non-conservative 

(e.g., estimated failure probability value smaller than the actual one) directions. Often in practice the only 

information available on these parameters comes from experts, in an ambiguous and qualitative form. Most 

commonly, all that is known is that a certain value belongs to a certain interval [36]. The representation of 

the uncertainty of this information in terms of probability distributions would force a set of assumptions, 

with introduction of biases and loss of generality. In this work, a methodology has been proposed based on 

the following steps:  

1) elicitation of the expert knowledge on the model parameters. 

2) Representation of the uncertainty associated to the expert’s judgment, avoiding introduction of 

unjustified, biasing assumptions. In this respect, notice that the choice of any probability distribution 

to represent the uncertainty in the expert’s assignments would be absolutely arbitrary, if the expert is 

not able to assign such additional piece of information. 

3) The propagation of the uncertainty on the maintenance performance indicators. 

The methodology has been applied to a case study concerning the degradation model of a check valve of a 

turbo-pump lubricating system in a Nuclear Power Plant. The study has shown that neglecting uncertainty 

may drive the maintenance decision maker towards incorrect conclusions. In this case, if the unavailability 

computation were performed without taking into account the uncertainty on the input parameters, the 

decision maker would set the inspection intervals between maintenance actions to the value of II=1000h, 

whereas a proper consideration of the uncertainties through the use of FRV suggests that, on the basis of the 

available knowledge, this choice for the maintenance inspection interval is not better than other intervals 

such as II=1500h and II=2000h. 

The main current limitations of the methodology discussed in the present paper are: 

 it is required that a single expert is knowledgeable, at least qualitatively, on all uncertain parameters 

and, what is more, is able to provide intervals of values for the uncertain parameters with associated 

confidence levels: this may be very difficult in practice. However, the FRVs-based method can be 

also applied when the expert provides just one interval of possible values per parameter, thus 

avoiding the problem of the confidence intervals. 

 The results provided are difficult to be interpreted and managed. In this respect, a novel method has 

been proposed by the authors to compare the couples of Belief and Plausibility measures 

corresponding to two different solutions [52]. On this basis, an advanced extension of the Genetic 

Algorithms technique has been concocted to optimize maintenance problems in the presence of 

imprecision [28]. 

 Very large memory demand and computational times are required. Table 6 reports the computational 

times in case of 2000 samples and 8000 combinations of values of the uncertain parameters. 

However, being Matlab an interpretative language, a tool developed in other environments may be 

more performing. This issue will be tackled in future works.  

 Further research effort needs to be spent in order to verify whether the procedure here illustrated can 

be interpreted as a conservative counterpart to the calculus of probabilistic variables under stochastic 

independence, due to the dependence between the choice of confidence levels. 

Parameters Values 

Number of FRVs  2000 

Number of combinations of uncertain parameters  8000 

CPU time (Intel Core 2 duo, 3.17 GHz, 2GB RAM) ≈30h  

Table 6: FRVs-based method parameters 
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Appendix 1: Basics of DSTE and Possibility Theory 

DSTE 

Belief functions can be used to process information which is at the same time of random and imprecise 

nature. The related formal DSTE (also called Theory of Belief Functions) involves the specification of a 

triplet (S, I, m), where S (called ‘sample space’) is the set that contains everything that could occur in the 

universe under consideration, I (referred to as ‘set of focal elements’) is a countable collection of subsets of 

S, and m (Basic Probability Assignment, BPA) is a function defined on subsets of S such that: 

0
(E)

0

if E I
m

if E I and E S

 
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         11.

 

and 

( ) 1
E I

m E

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12. 

More intuitively, the DSTE assigns weights (probability masses) to the focal sets; these weights represent the 

amount of likelihood that can be associated to the focal sets but to no proper subset of them (i.e., portions of 

these weights may move freely from one element of the focal set to another) [43]. 

The function m is not the fundamental measure of likelihood of a proposition (set) A; rather, there are two 

measures of likelihood, called Belief and Plausibility, that are obtained from m as [43]:  
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E A

Bel A m E
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More intuitively, the belief in a proposition (set) A  is quantified as the sum of the probability masses 

assigned to all sets enclosed by it; hence, it is a lower bound representing the amount of belief that directly 

supports the proposition at least in part. The plausibility of event A  is, instead, the sum of the probability 

masses assigned to all sets whose intersection with the proposition is not empty; hence, it is an upper bound 

on the possibility that the proposition could be verified, i.e., it measures the fact that the proposition could 

possibly be true “up to that value” because there is only so much evidence that contradicts it [49]. 

Possibility Theory 

In possibility theory, uncertainty is represented by means of a possibility function ( )
Y

y , which 

expresses the degree of possibility of each value y of the variable Y  in a set S . When ( ) 0
Y

y   for some y, 

it means that the outcome y is considered an impossible situation. When ( ) 1
Y

y   for some y, it means that 

the outcome y is possible, i.e., unsurprising, normal, usual [4]. These values are mutually exclusive, since the 

uncertain variable can take on only one true value. This also gives the normalization condition 

: ( ) 1
Y

y S y   , which is a claim that at least one value is viewed as totally possible, a much weaker 

statement than when probability is 1 [50]. 



A possibility distribution may also be viewed as a nested set of confidence intervals, which are the α–cuts 

[ , ] { | ( ) }
Y

y y y y     of  . The degree of certainty that [ , ]y y   contains Y  is ([ , ] )N y y   ( 1    if Y


 
is continuous) [3]. 

The possibility and necessity measures ( )A , ( )N A  for all subsets A S  are defined by the associated 

possibility distribution ( )
Y

y  through the following maximization and minimization relationships, 

respectively: 
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Let P( ) be a family of probability distributions such that for all events A ,   ( ) ( )N A P A A  . Then, 

( ) inf ( )N A P A  and ( ) sup ( )A P A           17. 

where inf and sup are taken with respect to all probability measures in P [3]. Hence, the necessity measure is 

interpreted as a lower level for the probability and the possibility measure is interpreted as an upper limit. 

Referring to subjective probabilities, the bounds reflect that the analyst is not able or willing to precisely 

assign his/her probability, and the bounds are the best he/she can do given the information available; in other 

words, he or she can only describe a subset of P which contains his/her probability. 

 


