
Multi-objective Evolutionary Algorithms for
Energy-aware Scheduling on Distributed

Computing Systems

Mateusz Guzeka, Johnatan E. Pecerob, Bernabé Dorronsoroc, Pascal Bouvryb

aInterdisciplinary Centre for Security Reliability and Trust, University of Luxembourg
e-mail: {firstname.lastname}@uni.lu

bFaculty of Science, Technology, and Communications, University of Luxembourg e-mail:
{firstname.lastname}@uni.lu

cLaboratoire d’Informatique Fondamentale de Lille, University of Lille 1, France e-mail:
bernabe.dorronsoro diaz@inria.fr

Abstract

The ongoing increase of energy consumption by IT infrastructures forces data
center managers to find innovative ways to improve energy efficiency. The latter
is also a focal point for different branches of computer science due to its financial,
ecological, political, and technical consequences. One of the answers is given by
scheduling combined with dynamic voltage scaling technique to optimize the
energy consumption. The way of reasoning is based on the link between current
semiconductor technologies and energy state management of processors, where
sacrificing the performance can save energy.

This paper is devoted to investigate and solve the multi-objective precedence
constrained application scheduling problem on a distributed computing system,
and it has two main aims: the creation of general algorithms to solve the problem
and the examination of the problem by means of the thorough analysis of the
results returned by the algorithms.

The first aim was achieved in two steps: adaptation of state-of-the-art multi-
objective evolutionary algorithms by designing new operators and their valida-
tion in terms of performance and energy. The second aim was accomplished by
performing an extensive number of algorithms executions on a large and diverse
benchmark and the further analysis of performance among the proposed algo-
rithms. Finally, the study proves the validity of the proposed method, points out
the best-compared multi-objective algorithm schema, and the most important
factors for the algorithms performance.

Keywords: Evolutionary Algorithms, Multi-objective Optimization,
Scheduling, Energy Efficiency, Dynamic Voltage Scaling

Preprint submitted to Applied Soft Computing September 15, 2014

1. Introduction

The energy efficiency of Information Technologies (IT) is one of the biggest
current issues in the field of computing. The global data center power is es-
timated as 38.9 GW, and increased by 19% in 2012, and consecutively by 7%
in 2013 [1]. The rapid increase of energy consumption of IT infrastructures,
caused by growing scale and power of computing systems, resulted in develop-
ment of a new discipline of IT – called commonly as GreenIT. Researchers and
engineers make advances in every aspect of the domain to ensure increasing en-
ergy efficiency, with an important distinction between two categories of energy
usage optimization, called static and dynamic power management [2]. The dif-
ference between them is that static power management takes place during the
design time of the IT element on which it is applied. Oppositely, dynamic power
management is a technique, which is executed during running of such element.
One of the main dynamic management methods to optimize performance in
computing systems is to use the best schedulers.

Classically, the optimal schedule is the one that executes the workload mini-
mizing one of the execution time functions, e.g. minimizing total execution time.
However, an energy-efficient scheduling algorithm has to minimize consumed
energy. Such algorithms exploit power management technologies available in
hardware to achieve this aim. As the biggest influence for power consumption
of a server is its processor [3], this study focuses on minimizing its energy con-
sumption. The processors manufacturers offer two main technologies: resource
hibernation and Dynamic Voltage Frequency Scaling (DVFS) [2, 4].

In this work, we focus on DVFS technology that exploits the characteris-
tics of power function of electronic circuits. The most common modern circuit
technology, Complementary Metal-Oxide-Semiconductor (CMOS), has a con-
vex power function of supplied voltage and frequency. Additionally, frequency
in such circuit is linear function of voltage. Therefore, using low voltage levels
leads to energy savings. This technique may also result in decreased Quality of
Service (hereinafter, QoS), as decreasing processing speed may increase total ex-
ecution time. However, this technique is much more adaptable to changes than
resource hibernation, as DVFS transition time (30-150µs) is much shorter than
hibernating a resource (few seconds, which decreases system responsiveness and
thus QoS) [5]. Such elasticity of DVFS enables its direct incorporation into the
scheduling process for each task. The only requirement needed to successfully
and meaningfully apply that technique is that single task execution times are
significantly bigger than DVFS transition time.

The most common state-of-the-art technique using DVFS is called slack
reclamation [6]. It is a post-processing algorithm, which takes an already con-
structed schedule and uses tasks’ slack times to reduce performance of processors
whenever it is possible without increasing total completion time. It has been
adopted in many algorithms as it is easy to apply and gives considerable energy
savings (see Section 3). The main assumption that leads to the next generation
of algorithms using DVFS is that involving it into the scheduling step itself will
lead to greater energy savings. This work follows this direction, as used methods

2

allow to apply DVFS at each step of a schedule creation.
The problem of precedence constrained task scheduling is NP-hard in the

simplified case of equal length tasks, homogeneous processors, and no com-
munication costs [7]. This work tackles a generalization of the problem, with
precedence constraints, heterogeneous processors using DVFS technology, com-
munication costs, and another objective – the energy consumption.

The contributions of this paper are threefold. (1) We propose three schedul-
ing algorithms to solve the heterogeneous multiprocessor multi-objective schedul-
ing problem. They based on state-of-the-art multi-objective (MO) algorithms
schemas, with new grouping crossover and mutation operators. (2) We do a
thorough empirical study of the problem, evaluating the performance of dif-
ferent operators in the algorithms and the influence of instance parameters on
the solutions obtained. Finally, (3) we identify the most important factors of
the problem, as well as the best performing algorithm for the problem, with
statistical confidence.

The remainder of the paper is structured as follows: in Section 2 the tackled
problem is described. The state of the art on energy-aware scheduling is pre-
sented in Section 3. Section 4 describes the proposed solution for the problem
and Section 5 analyses the results of simulations over the large set of instances.
Section 6 includes conclusion and presents future research directions.

2. Problem Description

The addressed scheduling problem deals with the optimal allocation of a set
of tasks that compose a parallel application to the set of processing elements in
a distributed system. The target is minimizing both the total execution time
and energy consumed by the execution of the application.

2.1. System

The distributed computing system consists of a set R of m heterogeneous
processors. For each processor rl, a set of DVFS pairs Dl is defined. A DVFS
pair k, denoted as dk, is a tuple (vk, sk), where vk ∈ R+ is the operational
voltage of the processor and sk ∈ R+ is the ratio of the operational speed to
the maximal processor’s speed, further called as relative speed.

We consider a parallel application represented by a Directed Acyclic Graph
(DAG) G = (T,E, pil, cij), where T denotes the set of t tasks, and the set E
of directed edges indicates the precedence relation between tasks. Each node
ni ∈ T is associated with one non-divisible task ti of the parallel application.
The processing time or weight pil ∈ R+ of task ti denotes its computation time
on processor rl ∈ R. For each edge eij ∈ E there is a cost cij ∈ R+ to communi-
cate data between tasks ti and tj . The partial order ti ≺ tj models precedence
constraints, i.e. if there is an edge eij ∈ E. In this case, ti is said to be an
immediate predecessor of tj , and Γ+(tj) denotes the set of immediate prede-
cessors of tj . Also, tj is said to be an immediate successor of ti, and Γ−(ti)

3

represents the set of immediate successors of task ti. A task ti without prede-
cessors, Γ+(ti) = ∅, is called an entry task. If it does not have any successors,
when Γ−(ti) = ∅, it is a sink task.

A scheduling is defined as a tuple of functions (σ, π, λ, γ), such that σ : T 7→
R+, π : T 7→ R, λ : T 7→ Dl, and γ : R × X 7→ D, where σ(ti) represents
the time at which task ti starts its execution, π(ti) provides the processor rl on
which ti is executed, λ(ti) supplies the relative speed sli to run ti, and γ(rl, x)
provides the DVFS pair dk used by the processor l at time x. The real execution
time of a task i scheduled on a processor l with a DVFS pair k is defined as:
pilk = pil/sk.

2.2. Constraints

A schedule is feasible if the following conditions are fulfilled for all tasks in G.

1. The Processor Constraint. For any pair of tasks ti, tj ∈ T , one processor
may not execute more than one task at a time. That is, if π(ti) = π(tj) =
rl, then σ(ti) + pilλ(i) ≤ σ(tj) or σ(tj) + pjlλ(j) ≤ σ(ti).

2. The Precedence Constraint. ∀ (eij ∈ E), the task tj cannot be executed
before task ti has finished its execution: σ(tj) ≥ σ(ti) + pilλ(i) if π(ti) =
π(tj). Otherwise, if π(ti) = rk and π(tj) = rl and rk 6= rl, σ(tj) =
maxti∈Γ+(tj)σ(ti) + pikλ(i) + cij , the time when all communications from
tj ’s predecessors have arrived at rl.

3. The DVFS Constraint. For any time, a processor rl has allocated exactly
one DVFS pair, i.e. ∀ (x ∈ X) ∀ (rl ∈ R) ∃! (dk ∈ Dl) such that
γ(rl, x) = dk, where X represents the time when the system is used.

2.3. Objectives

The completion time of each task ti ∈ T is defined by Ctj ≡ σ(tj) + pjlλ(tj).
The makespan of the schedule is defined as: Cmax ≡ maxtj∈T Ctj and is the
maximum completion time of a task of G. The first objective of the optimization
is to find a schedule for G on the processors R with the minimum makespan:
minCmax.

The second objective is related to the energy consumed by the system. It is
based on the equation of dynamic power consumed by the CMOS circuit (the
prevalent technology used in modern integrated circuits) [6]:

P = ACefV
2f = αV 2f, (1)

where A is the number of switches per clock cycle, Cef is the total capacitance
load, V is the supplied voltage, and f is the corresponding frequency. Relative
speed rsj is proportional to frequency f , so we use directly rsj as reported by
processor manufacturers instead of f . As A and Cef are constant for a machine,
we simplify them to single coefficient α. The value of α is always set to 1 to
normalize the voltage-frequency tables. Finally the consumed energy is defined
as:

4

Et =

m∑
j=0

∫ Cmax

0

Pl(x)dx =

m∑
l=0

∫ Cmax

0

vl(x)sl(x)2dx, (2)

where x is time, Pl(x) is the power of machine rl over time, vl(x) is the voltage
of machine rl over time, and sl(x) is the relative speed of the machine rl over
time. The second objective is to minimize the consumed energy: minEt.

The problem of scheduling DAGs with minimum makespan and energy is a
trade-off between schedule length and energy consumption. The reduction in
energy consumption in DVFS-enabled processors is made by decreasing supply
voltage and frequency, resulting in a slower tasks execution and an increase in
the schedule length. As energy is a convex function of relative speed, running a
task using lower frequency results in lower total energy consumption.

3. Energy-aware Scheduling: Related Work

An important number of scheduling algorithms have been proposed for en-
ergy consciousness. These algorithms differ on the assumptions they consider [4].
However, the most common technique to save energy they exploit is DVFS with
slack sharing or slack reclamation.

Zhu et al. present in [8] slack reclamation-based scheduling algorithms. The
algorithms adopt a global scheduling in which all tasks wait in a global queue
and are dispatched based on their priorities. Zhang et al. [9] report a scheduling
algorithm based on a two-phases process. The first phase aims to optimize the
possibilities for selecting different voltages based on the priority of tasks. Then,
the voltage scaling problem is modeled as an integer programming problem in
the second phase. The authors considered continuous supply voltage selection
and showed that the integer programming problem is solvable in polynomial
time. To solve the discrete version of the problem, the authors proposed an
approximation algorithm.

Aupy et al. [10] study the problem of scheduling precedence-constrained
applications aiming to minimize energy consumption while considering a given
bound on the makespan and a reliability threshold. The target architecture is
a set of homogeneous processors. The authors propose several polynomial time
scheduling algorithms under the continuos speed model.

Wang et al. exploit the idea of extending the execution time of non-critical
jobs by lowering the speed of processors without extending the makespan’s ap-
plication [11]. Two scheduling algorithms are proposed. The first algorithm
exploits the best-effort idea: it first optimizes makespan under maximum volt-
age and speed assumption using a list scheduling algorithm and then energy is
optimized in a second step with a voltage scaling algorithm, by lowering the pro-
cessor’s voltage for extending the execution time of non-critical jobs, or when it
is in idle time. The second algorithm is a clustering-based scheduling algorithm
that gather tasks into clusters according to the edge zeroing policy. It is guided
with aim of reducing power consumption.

5

Baskiyar and Palli [12] use the Heterogeneous Earliest Finish Time (HEFT)
heuristic as a best-effort scheduling algorithm, then it performs voltage scaling
without performance degradation. The authors considered continuous voltage.
In [13] the authors combined the Decisive Path Scheduling (DPS) list scheduling
algorithm and dynamic voltage scaling with dynamic power technique.

Rizvandi et al. report in [14] a heuristic called Multiple Frequency Selec-
tion DVFS. The algorithm exploits the idea of executing tasks using a linear
combination of processors’ frequencies so that the utilization of all slack times
is optimized. For each task its energy consumption is formulated as a con-
strained optimization problem. Then, the authors show that a combination of
two frequencies lead to minimum energy consumption.

Some recent approaches incorporate DVFS during the scheduling process.
Shekar and Izadi develop in [15] an algorithm that schedules tasks to proces-
sors with low-power capability. The authors proposed a weighted cost function
that considers the energy consumptions while taking scheduling decisions. Lee
and Zomaya [6] report a set of Dynamic Voltage Scaling (DVS)-based heuris-
tics to optimize a summation of two objectives: schedule length and energy
consumption. After the heuristic computes the schedule of the application the
arrangement is improved by using a local search algorithm. The local search
only applies changes if it does not increase the schedule length and energy is
minimized.

Some researchers address the energy issue in a Pareto based approach. Mez-
maz et al. proposed in [16] a parallel bi-objective hybrid genetic algorithm that
is improved with the heuristics reported in [6]. The parallelization is based on
the cooperative approach of the island and multi-start parallel models using the
farmer-worker paradigm. The goal of the multi-start parallel model is to reduce
the running time of a resolution. Pecero et al. developed in [17] a bi-objective
Greedy Randomized Adaptive Search Procedure (GRASP). The GRASP algo-
rithm starts by generating a feasible solution using a greedy evaluation function
at maximum voltage. Then, the solution is improved by a post-processing bi-
objective local search. The bi-objective local search exploits the DVS technique.

4. Algorithms Description

This section presents the algorithms used to solve the considered problem
in this study. They are three state-of-the-art algorithms with different features
that have been specialized for the problem at hands with a novel representation
and operators. The source code of the implementation is published as an open
source greenMetal project and available online1.

4.1. MOEAs schemas

The chosen three state-of-the-art techniques to find accurate solutions to
the investigated problem are: NSGA-II [18], MOCell [19], and IBEA [20].

1http://greenmetal.gforge.uni.lu/download.html

6

http://greenmetal.gforge.uni.lu/download.html

Pseudocode of MOCell

1: //Algorithm parameters in ‘mocell’
2: InitializeParetoFront(mocell.ParetoFr)
3: while ! StopCondition() do
4: for ind ← 1 to mocell.popSize do
5: n list←GetNeighb(mocell, ind);
6: parents←Selection(n list);
7: offspr←Recomb(parents);
8: offspr←Mutation(offspr);
9: Evaluation(offspr);

10: Insert(offspr,aux pop[ind]);
11: InsertParetoFront(ind);
12: end for
13: mocell.pop←aux pop;
14: mocell.pop←Feedback(mocell,ParetoFr);
15: end while

Pseudocode of NSGA-II

1: //Algorithm parameters in ‘nsga’
2: InitializePopulation(nsga.pop);
3: Evaluation(nsga.pop);
4: while ! StopCondition() do
5: for index ← 1 to nsga.popSize/2 do
6: parents←Selection(nsga.pop);
7: offspr←Crossover(parents);
8: offspr←Mutate(offspr);
9: offspringPop←Add(offspr);

10: end for
11: Evaluation(offspringPop);
12: union←Merge(nsga.pop, offspringPop);
13: fronts←SortFronts(union);
14: (Pop’, lastFront)←GetBestFronts(fronts);
15: if size(nextPop) < nsga.popsize then
16: Pop’←BestAccToCrowding(lastFront,

nsga.popsize-size(Pop’));
17: end if
18: end while

Pseudocode of IBEA (Adaptive Version)

1: //Algorithm parameters in ‘ibea’
2: InitializePopulation(ibea.pop);
3: EvaluationUsingHypervolume(ibea.pop);
4: while ! StopCondition() do
5: union←Merge(ibea.paretoFr,offsprPop);
6: EvaluationUsingHypervolume(union);
7: RemoveWorstIndivs(ibea.paretoFr);
8: while offsprPop ≤ ibea.popSize do
9: parents←Selection(ibea.paretoFr);

10: offspr←Crossover(parents);
11: offspr←Mutate(offspr);
12: EvaluationUsingHypervolume(offspr);
13: offsprPop←Add(offspr);
14: end while
15: end while

Figure 1: Pseudocode of the studied multi-objective evolutionary algorithms.

Their pseudocodes are shown in Figure 1. The selection was guided to include
algorithms with diversified features, like solutions ranking, feedback of non-
dominated solutions from the archive into the population, or indicator based
search, in which the quality indicator is a function which maps a Pareto set
approximation into a real number [20]. Therefore, the search process is guided
by a metric representing quality of a solution instead of its value.

NSGA-II [18] is, probably, the most referenced algorithm in MO optimiza-
tion. It uses a dominance depth ranking, which means that solutions are ranked
according to the order of Pareto front to which they belong. The whole set of
solutions is divided into Pareto fronts in recursive manner: first, the best Pareto
front is created. After that, this front is removed from the population and the
next Pareto front is created from the remaining solutions. Each consecutive
front is one order higher than the previous one. The whole population is classi-
fied in this way and then fitness is distributed according to the order of solutions
–the lower the order, the higher the fitness. Those solutions with higher fitness
are preserved for the next generation. If there are additional solutions with the
same fitness, crowding distance is used to preserve diversity.

MOCell [19] uses external archive and spatial division of solutions. The
archive is used to store the best found solutions as well as to provide feedback,

7

i.e., to randomly replace solutions from the main population with solutions from
the archive. The spatial division is done as in the canonical cellular GA [21]:
each individual has its own place in a toroidal mesh and only the solutions
from the certain neighborhood have chance to compete during the selection
procedure. MOCell uses typical C9 neighborhood (including solution and its
8 closest neighbors). The spatial distribution of population provides more ex-
ploration possibilities by creating distinct areas, where different good solutions
may emerge and by slowing down the convergence. When the archive is full,
the crowding distance is used to remove the solutions from the most crowded
regions.

IBEA [20] implements hypervolume, a quality indicator, to assign fitness
to solutions. Each solution is compared with all others in the population by
hypervolume and its final fitness is set according to its aggregated performance
against the others. Then, during the environmental selection phase, the worst
solutions are removed until population reaches its allowed size.

Despite all mentioned differences, all three algorithms share large part of
their characteristics. They all use binary tournament selection as mating se-
lection mechanism, which creates new individuals for the population. In the
implementations in this work, they share the representation (presented in Sec-
tion 4.2), the grouping recombination operator, and the bit-flip mutation (both
described in Section 4.3). The probability for crossover and mutation has the
same influence for all of them. Finally, they use the same concepts of individual,
population, generation, and evaluation.

The selected algorithms ensure that different state-of-the-art approaches
were used to explore the problem, to avoid possible biased or unexpected be-
havior of one of the algorithms. Using the same parameters and operators of
the algorithms ensures a fair comparison and is intended to neglect the impact
of auxiliary factors. Additionally, the algorithms schemas were implemented
using the jMetal [22] framework which was extended by a new GreenMetal set
of libraries, which implements the studied MOP as well as the representation
and operators described in further sections.

4.2. Representation

There exist three main groups of representing multiprocessor scheduling
problems [23]: node list, processor allocation, and direct representation. In
the first approach only the task priority is given, in the second one each task
is assigned to a machine. These two representations must be combined with
an external method that will create the final schedule. The direct representa-
tion includes both assignment and the priority, resulting in the exact mapping,
however at expense of increasing complexity, and complex genetic operators.

The representation of a solution designed for this work is based on the pro-
cessor allocation approach. A solution is composed of two vectors: the first
contains information about the processors allocation, while the second one de-
termines the DVFS pair that must be used by the allocated processor to run
the task.

8

Table 1: Sets of sample DVFS pairs of three heterogeneous processors [6].

Type 1 Type 2 Type 3
Level Vk RSs Vk RSs Vk RSs

(%) (%) (%)
0 2.20 100 1.50 100 1.75 100
1 1.90 85 1.40 90 1.40 80
2 1.60 65 1.30 80 1.20 60
3 1.30 50 1.20 70 0.90 40
4 1.00 35 1.10 60
5 1.00 50
6 0.90 40

The usage of the processor allocation model is motivated by the possibility
of the usage of the structure of the DAG during the schedule creation, which
guides the algorithm that sets the tasks priority. While restricting the set of
available solutions, this approach removes regions of search space with clearly
infeasible or low quality solutions. This restriction is additionally useful, as
the problem becomes more complex because of adding the second vector of the
decision variables to the solution representation. The vectors length is equal to
task number and a greedy heuristic is used to create final scheduling. Examples
in this section are based on the application presented in Figure 2, which is run
on processors presented in Table 1. Note that processors may have different
available DVFS pair, which may have different mapping to used voltage and
relative speed.

0

1 2 3 4

5 6

7

11 17 14 11

13 10 19 13 27

21 13

task r0 r1 r2 pi b-level
0 11 13 9 11 101.3
1 10 15 11 12 66.7
2 9 12 14 12 63.3
3 12 16 10 12 73.0
4 15 11 19 15 79.3
5 13 9 5 9 41.7
6 11 15 13 12 37.3
7 11 15 10 12 12.0

Figure 2: On the left, a sample DAG with the task indexes i inside nodes and values of ci,j
function next to the corresponding edges. On the right, computation cost (pi at level L0) and
task priorities (b-level).

A sample solution encoded in this form is presented in Figure 3. The first
row shows the position of a gene, which binds this gene to a task with a given
number. The second row represents the processor assignment, by indicating the
processor identifier to which a task is assigned. The third row determines the

9

voltage level on the indicated processor. For instance, we can see in the figure
that task 7 is assigned to processor 2 with the DVFS pair 3.

0 1

0

1

3

1 0

1

0

21

3

62

2

6

2

0

4 75

4

0

3DVFS Pair

Task Id

Processor

Figure 3: Example of utilization of the proposed processor assignment representation. Each
gene corresponds to assignment of one task.

The addition of the DVFS pair component makes the search space growing
exponentially, which in case of DVFS-disabled system is mt (for m machines
and t tasks), while in DFVS-enabled system it is (

∑m
j=0 pairs(j))

t (pairs(j)
represents the number of available DVFS pairs for machine j) [24].

4.3. Operators

There are two operators, which were implemented in problem specific form:
crossover and mutation. These operators are explained in detail in the following
sections.

4.3.1. Grouping Recombination

The crossover selected for this study is a grouping crossover [25, 26]. It does
not work on the tasks alone, but rather on groups of tasks. Such crossover is
also able to merge whole groups of tasks, working on higher level than simple
single or double point crossovers. As a result it is more likely that the whole
groups of allocated tasks will merge and be executed on a single machine, which
consequently leads to the decreased communication time and makespan mini-
mization. The selected DVFS pair is not modified by this operator.

In the first stage, the operator randomly selects a subset of all processors
used in a solution. It is done by using an auxiliary group part for each solution.
A group part is a random permutation of the list of processors used in a solution.
The pseudo code of low complexity group part generation function is presented
in Algorithm 1. The loops execution numbers are bounded by processor number
m or length of solution equal to task number t. Complexity of this algorithm is
therefore O(t+m), which can be simplified to O(t) under the assumption that
t > m.

After group part generation, a random point is selected in the group part
and processors from this point until the end of group part form the subset used
further in the crossover operation. All genes with assignments to the processors
from this subset are then copied from the second parent to the first one. The
pseudo code of this operator is presented in Algorithm 2. The length of group
part and consequently the number of repetitions of outer loop is equal to m and
inner loop always iterates t times. Complexity of this algorithm is O(tm).

10

Algorithm 1 Group part generation

Require: solution S, processor number proc num
1: aux array ← create array(integer,proc num);
2: for all i in 0 :get length(aux array)−1 do
3: aux array[i] ← −1;
4: end for
5: processors← 0;
6: for all i in 0 :get length(S)−1 do
7: gene← get gene(S, i);
8: pa← get processor assignment(gene);
9: if aux array[pa] == −1 then

10: aux array[pa] ← pa;
11: processors ← processors +1;
12: end if
13: end for
14: group part ← create array(integer,processors);
15: j ← 0;
16: for all i in 0 :get length(aux array)−1 do
17: if aux array[i] ! = −1 then
18: group part[j]← aux array[i]);
19: j ← j + 1;
20: end if
21: end for
22: for all i in 0 :processors−1 do
23: r ←random(i, processors);
24: swap(group part[i],group part[r]);
25: end for
26: return group part ;

A sample operation of the crossover is presented in Figure 4. Offspring is
initialized as a copy of a first parent. The group part is generated from the
second parent. A randomly chosen crossover point separates a section from the
group part, which has in this case one element: 2. Then, all occurrences of
separated elements in the group part are copied to the offspring on the same
position as they occur in second parent (1,2,4,5).

4.3.2. Mutation

The two proposed mutation operators are in general forms of bit-flip muta-
tion, adapted to the problem. As the grouping recombination work on high-level,
the selected mutation is simple and intended to introduce random behavior,
maintaining the diversity in the population. In the first type, both processor
and DVFS pair assignments are changed. As processor determines valid DVFS
pairs, it is selected randomly in the beginning. The processor may be changed to
any other processor in the system. After that, the DVFS pair is chosen among
the ones available for the processor. In the second type, only the DVFS pair
assignment is changed. The DVFS pair may be changed only to one available
for the given processor. New values are chosen randomly using a uniform dis-

11

Algorithm 2 Grouping crossover operator

Require: parent solutions: S1, S2

1: S′
1 ← S1;

2: group← generate group part(S2);
3: gl← get length(group);
4: r ←random(0, gl − 1);
5: for all i in r : gl−1 do
6: for all j in 0 :get length(S′

1)−1 do
7: tmp gene ← get gene(S2, j);
8: if get processor assignment(tmp gene) == group[i] then
9: set gene(S′

1, j,tmp gene);
10: end if
11: end for
12: end for
13: return S′

1;

0 1

0

1

3

1 0

1

0

21

3

62

2

6

2

0

4 75

4

0

3DVFS Pair

Task Id

Processor

1 0

0

1

3

2 2

1

3

01

0

62

2

0

0

1

4 75

3

2

0DVFS Pair

Task Id

Processor

1 0

0

1

3

2 2

1

3

21

3

62

2

6

2

0

4 75

3

2

3DVFS Pair

Task Id

Processor

First parent - base Second parent

Offspring - crossover result

01 2

Crossover point

Group part

Figure 4: Example of crossover application. The child on the bottom is a result of copying
subset of tasks assigned to processor number 2 (dark grey) from second parent into the base
created by copying the values of first parent (light grey).

tribution. In this work, both types of mutation are independent and occur with
the same probability.

Sample applications of mutation are presented in Figure 5. Mutation Type
1 changes the processor allocation and then selects a new DVFS pair: mutation
occurring on position 4 modifies task allocation from processor 0 to 1 and from
voltage level 0 to 6. Mutation Type 2 changes only DVFS pair selection, from

12

0 to 4. Note that the available range of DVFS pairs varies among processors.

0 1

0

1

3

1 0

1

0

21

3

62

2

6

2

0

4 75

4

0

3DVFS Pair

Task Id

Processor

0 1

0

1

3

1 0

1

0

21

3

62

2

6

2

0

4 75

4

0

3DVFS Pair

Task Id

Processor

0 1

0

1

3

1 1

1

6

21

3

62

2

6

2

0

4 75

4

0

3DVFS Pair

Task Id

Processor

0 1

0

1

3

1 0

1

4

21

3

62

2

6

2

0

4 75

4

0

3DVFS Pair

Task Id

Processor

Mutation Type 1 Mutation Type 2

Figure 5: Examples of mutations. On the left hand side, the mutation which changes both
assigned processor and DVFS pair. On the right hand side, the mutation which changes only
the DVFS pair.

4.4. Evaluation

The first objective, makespan, is determined using a heuristic that translates
a chromosome to a schedule. This heuristic is used in every generation for each
solution so its performance is critical for the efficiency of the whole algorithm.
To provide an effective answer to this problem, a greedy list heuristic, which
uses insertion technique, was chosen. Insertion technique has the potential of
compacting the length of the schedule, as nodes might be scheduled earlier if
there is an available time period between two tasks already scheduled on a
machine, where the machine runs idle. Such heuristic needs a list of tasks based
on some priority. In this study, bottom level (b-level) [27] is used to determine
tasks priorities. The b-level is defined for a task as the length of the longest
path from the beginning of the task to the bottom of the graph.

All tasks are sorted according to their b-level values in non increasing order.
The tasks with the highest value of this indicator are scheduled as the first ones.
The priority based on b-level can be then applied on each of the processors
without violating the precedence constraint [23, 26].

After the calculation of b-level and sorting the tasks, the heuristic selects a
task from the beginning of the list and checks when it is possible to schedule it
on the assigned processor without violating any of the constraints, and assigns
the task in the first available time slot.

The energy consumed by a system is defined as Et by Equation 2 and
calculated using the schedule created by a heuristic during calculation of the
makespan.

Additionally, the algorithms use also a slack reclamation technique to reduce
energy consumption without increasing the makespan [28]. The slack of a task

13

is the time slot between the task end and the following task start. In the
evaluation function, each slack is used to combine the DVFS pair selected by a
MOEA with the lowest possible DVFS pair of the assigned processor to reduce
the total consumed energy [6]. Finally, the minimum DVFS pair of the processor
is assigned to all remaining idle time slots.

5. Experimentation

This section contains the experimental study of the algorithms and the prob-
lem. Section 5.1 describes the choice of instances for the study. Section 5.2
presents the validity of the approach proven by a set of experimental tests.
Section 5.3 contains results obtained by simulations performed over the set of
instances, which are subsequently discussed in Section 5.5.

5.1. Problem Instances

The diversified benchmark used in this work includes real applications DAGs,
structured synthetic graphs, and random graphs. The total number of various
instances used throughout the study is 2100. Instances can be described by their
size: number of tasks and edges. The ratio between tasks and edges (Edge Task
Ratio or ETR) gives information on the average node degree that determines
the possibilities of parallelization and the number of required communications.
Communication to Computation Ratio (CCR) is another metric that describes
a DAG, and it is computed as the division of the average communication cost (c)
by the average computation cost (p) on a target system, as defined by Equation
3. All instances were generated with five different CCRs: 0.1, 0.5, 1, 5 and 10 to
present a wide range of possible applications, from computation-intensive (CCR
= 0.1) to the communication-intensive (CCR = 10) ones. The final parameter
of an instance is the processors heterogeneity values [29], which value β is used
to generate the computational weight of a task pil. The weight is generated
using a uniform distribution around initially homogenous value pi, defined as
U(pi× 1− β

2); pi× (1 + β
2)). For each possible configuration, all values from the

set {0.1, 0.25, 0.5, 0.75, 1.0} were used to test a range from quasi-homogenous
(heterogeneity = 0.1) to fully heterogenous (heterogeneity = 1.0) systems.

The randomization procedure used to introduce heterogeneity is composed
of the following steps: first, if the homogenous weights are not included in the
input graph, they are generated using a distribution U(0; 2× r), where r, in this
work, is a random value from the distribution U(1; 30). Then, the homogenous
weights are altered using the heterogeneity parameter. Finally, the edge weights
are generated using the distribution U(0; 2× p×CCR), which ensures that the
generated instance has required CCR.

CCR = c/p. (3)

To present a wide range of possible platforms, systems containing from 8 to
128 processors were used. The generated systems were using five distinct DVFS
settings presented in Table 2 and cyclically assigned to the processors. The

14

basic information about the size and structure of these instances is presented in
Table 3.

Table 2: Processors DVFS settings used for simulations [6].

Type 1 Type 2 Type 3 Type 4 Type 5
Level Vk Rs Vk Rs Vk Rs Vk Rs Vk Rs

(%) (%) (%) (%) (%)
0 1.75 100 1.50 100 2.20 100 1.95 100 1.60 100
1 1.40 80 1.40 90 1.90 85 1.60 90 1.30 85
2 1.20 60 1.30 80 1.60 65 1.30 60 1.20 60
3 0.90 40 1.20 70 1.30 50 0.90 40 0.70 40
4 1.10 60 0.90 35 0.60 20
5 1.00 50
6 0.90 40

The real application graphs are represented in this study by a robot control
application, a sparse matrix solver, fpppp problem from the Standard Perfor-
mance Evaluation Corporation (SPEC) benchmark and part of the workflow
used in Laser Interferometer Gravitational-Wave Observatory (LIGO). The in-
stances from these set come from the Standard Task Graph (STG) homogenous
set2. The aforementioned randomization procedure was executed on the task
execution times of these instances to make them heterogeneous.

Tested system sizes were 8, 16, and 32 processors. For each of the applica-
tions, 75 instances were generated (3 processor number values, 5 heterogeneity
values, 5 CCR values), which sums up to 225 real instances.

Table 3: Instance types: tasks and edges numbers, and Edge Task Ratio.

Type Tasks Edges ETR
LIGO 76 132 1.73
Robot 88 131 1.48
Sparse 96 67 0.69
fpppp 334 1145 3.42

Type Tasks avg. ETR
GE 25–403 1.76

Laplace 25–625 1.83
Cholesky 25–625 2.60
Winkler 20–590 1.51

For the structured synthetic graphs, a larger set including 8, 16, 32, 64, and
128 processors in a system was used. The application structures are generated
based on dimensions of input data matrix which are incrementally increased
to produce different applications with various sizes. The sizes of instances were
possible values from 25 up to 403 (Gaussian Elimination - GE) or 625 (Cholesky
and Laplace). As a result, 21 task number values were used for Cholesky and
Laplace and 22 values for the GE. Therefore there are 525 Cholesky and Laplace
instances, and 550 GE instances.

Finally, Winkler graphs represent random graph structures of multidimen-
sional orders [30]. Systems with 16 and 128 processors are investigated. Each
graph is generated using 2-dimensional orders with. For each of n tasks a node
is randomly generated in the [0; 1]×[0; 1] square. Two points are connected by
an edge if both dimensions of the end point of the edge are greater than the

2http://www.kasahara.elec.waseda.ac.jp/schedule/

15

corresponding dimensions of the start point. Winkler graphs are therefore fully
randomized. The instance task number covers a range from 20 to 590 with an
instance every step of 30 tasks. Therefore there are 20 tasks numbers with 2
processors numbers and five CCR values which give the number of 200 instances.

5.2. Algorithms testing and configuration

This section describes how the initial experiments and algorithms configu-
ration were conducted. It includes a presentation of the performance metrics, a
convergence test and a validation of performance of the proposed recombination.

5.2.1. Performance metrics

Three independent quality indicators are selected for this study:

1. Unary Additive Epsilon (I1
ε+,Epsilon) [31] presents the degree of conver-

gence of the approximated set to the Pareto front. It returns the smallest
distance needed for every point of the approximated set to be translated
so that it dominates the Pareto front.

2. Inverted Generational Distance (IGD) [32] summarizes how close are the
points in the approximated set to the closest points of the Pareto front.
In contrary to Epsilon, it aggregates the results of all points. When IGD
is equal to 0, it means that all points from approximated set belongs to
the Pareto Front.

3. Spread [33] gives information about the distribution of the solutions along
the approximated front. When it is equal to 0, it means that solutions are
ideally distributed along the front.

The reason for this choice is to provide the metrics for convergence (Ep-
silon) as well as for distribution (Spread). The third metric (IGD) presents
the aggregated results which involve convergence as well as distribution. Usage
of these metrics allows to statistically analyze the results obtained from many
independent runs. In order to apply these indicators, the optimal Pareto front
is required. However, it is not known for the studied instances. Therefore, we
build a pseudo-optimal Pareto front by aggregating the best non-dominated so-
lutions found by all algorithms in all independent runs into one single front, for
every problem instance. This pseudo-optimal Pareto front will be used to apply
the indicators.

5.2.2. Convergence test

The first proof of concept for the proposed MOEAs is the convergence check.
It was performed on the 36 instances from the set of real applications, which are
selected to be diversified and cover different specifics of various implementations.

The convergence test was prepared in two stages. First, all the algorithms
were run for 100,000 evaluations. The initial population was initialized by ran-
dom values for processors assignment and the highest DVFS pairs (coded as
0). This choice is motivated by the need of finding a good assignment first
and by the applied runtime slack reclamation (Section 4.4), which is able to

16

exploit existing slack. The probabilities of crossover and mutation were set to
pcrossover = 0.9, pmutation = 1/t (the probability that mutation will happen
for a single position in a chromosome, equal for the two mutation operators),
where t is number of tasks. The selected value of the mutation probability was
successfully used for combinatorial optimization problems [34, 35, 36] and it
is set to apply on average a single mutation of each type in a solution, which
introduces variability but is not destructive. The population and archive size
were set to 100. Each experiment was independently executed 50 times. The
proposed grouping crossover was used for all simulations. In the second step,
the same simulations as in the previous tests were run.

Epsilon and IGD quality indicators values depend on the convergence, so
they are used in this study. After each iteration, values of quality indicators
of the current population are calculated using the previously prepared approx-
imated Pareto fronts. Then, the values of 50 independent runs are averaged
and plotted. The obtained convergence plots are the results of this process.
Representative convergence plots are presented on Figure 6. Each generation
corresponds to an evaluation of each individual in the whole population.

0 200 400 600 800 1000

0
50

0
10

00
15

00

EPSILON

Generation

In
dic

at
or

 va
lue

MOCell
NSGA-II
IBEA

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

In
dic

at
or

 va
lue

IGD

MOCell
NSGA-II
IBEA

Figure 6: Convergence tests results for the fpppp instance with m = 8, t = 334, task
heterogeneity= 1, CCR = 10.

The results of the convergence test prove that the algorithms converge in
all tested cases. Both Epsilon and IGD converges to a stable value. Moreover,
they present satisfactory convergence within 25,000 evaluations. The number
of evaluations was used together with the settings of algorithms as presented
above and implemented in jMetal. To assure strong statistical evidence, every
simulation is executed independently 50 times.

5.2.3. Performance of the Proposed Recombination

To confirm the positive impact of the grouping crossover operator on the
performance of the scheduling MOEAs, a set of test runs using the Real appli-
cations benchmark was conducted. Widely used two point crossover was chosen

17

for the comparison. As a result, each instance was run using six different config-
urations of MOEA and crossover (three MOEAs and two crossover operators).
Values of Epsilon, IGD and Spread quality indicators are the basis for the pre-
sented comparison. Finally, the scores of the configurations were given as an
input to the Friedman test.

Friedman test [37] is a non-parametric statistical procedure for multiple sam-
ples. In the studied case, there are six samples, one for each configuration. Each
sample consist of events, which are average quality indicators values. These val-
ues are collected for each instance and for each quality indicator. For each
event, the values are ranked by consecutive positive integer numbers: the one
with highest value has rank 1, the solution with second highest value has rank
2, etc. The returned values are used to compute Friedman’s statistic, which
rejected the null hypothesis that the configurations have equal median values
with p − value < 2 · 10−10. The average rank values are presented in Table 4.
The best algorithms have the highest rank, as all quality indicators should be
minimized.

The grouping recombination is ranked higher than its two-point counterpart
for each algorithm. The best investigated configuration is the combination of the
grouping operator and MOCell genetic algorithm. Such conclusion is consistent
with the results of previous studies for a single objective scheduling of related
problem [38], which underlines another feature of grouping crossover: intrinsic
communication minimization. The three grouping crossover configurations are
among the four best ones. Additionally, MOCell visibly outperforms the other
approaches: the two best configurations include MOCell. There is no clear
order among other MOEA schemes. Finally the problem is investigated using
the grouping crossover, which can result in achieving accurate results, and three
MOEA schemas, to explore the problem using various approaches.

Table 4: Recombination performance: results of Friedman test.

Algorithm Ranking

MOCell Grouping 4.48
MOCell Two-point 3.98
IBEA Grouping 3.60

NSGA-II Grouping 3.10
NSGA-II Two-point 2.93
IBEA Two-point 2.91

5.3. Results

This section presents aggregated results of performance, represented by solu-
tion number and quality indicators, for each of the algorithms on all the problem
instances considered to assess its advantages and disadvantages. All plots pre-
sented further, due to the large instance set, are chosen to represent the most
common trends and behaviors, if it is not stated otherwise in the text.

18

5.3.1. Solution number analysis

The solution number analysis reflects the problem complexity. The algo-
rithms were able to fill the archive only for the simplest instances. The results
presented in Figure 7 are aggregated values of average solution number from 50
independent runs. For all instance types NSGA-II returns the biggest number
of solutions, IBEA the second biggest while MOCell the smallest one. It is dif-
ferent only for the fpppp instances for which ranks of MOCell and IBEA are
exchanged (Figure 7d). The most influential parameter for solution number is
processor number (Figure 7a), as its increase is almost inversely proportional to
solution number. Similar behavior but with lower impact has CCR (Figure 7b).
Regarding task number, the parameter with the largest range, solution num-
ber tends to converge to a constant value or slowly increases (Figure 7c) after
reaching instance size of 200 tasks. The last investigated parameter, processors
heterogeneity, has the least impact (Figure 7d) slightly decreasing the solution
number with its growth.

5.3.2. Quality indicators analysis

The following quality indicators study intends to answer the question how
each of the algorithms performs on average in a single run. Table 5 presents the
aggregated values of the quality indicators and statistical comparison between
them for the three studied MOEAs. The two symbols after the number in
each cell (each of them can be H, M, or −) indicate statistical significance of
the result regarding the results of the two other algorithms. The first symbol
represents relation between the algorithm indicated in the column and the first
of the other two algorithms stated in the table, the second symbol between
the algorithm and the second of the other two. The statistical significance is
p − value < 0.05 in paired Wilcoxon signed-rank test with confidence level
0.95. Symbol H means significantly better performance, while M stands for
significantly worse performance. The cases where no statistical difference was
found are identified with dash (−). If the result is significantly better than both
other algorithms (H H), the corresponding cell has the dark grey color. If the
result is better than one of the others and there is no statistical difference with
the other one (H − or − H), the corresponding cell has light grey color.

Table 5: The mean quality indicators values for instance type.

Instance Epsilon IGD Spread
type MOCell NSGA-II IBEA MOCell NSGA-II IBEA MOCell NSGA-II IBEA

LIGO 302 H H 362 M M 335 M H 2.56 − H 2.96 − − 3.08 M − 0.86 H H 1.03 M H 1.05 M M
Robot 549 − − 584 − M 554 − H 8.05 H H 8.38 M − 8.51 M − 0.89 H H 1.04 M H 1.05 M M
Sparse 281 H H 380 M M 322 M H 3.48 M M 3.12 H − 3.24 H − 0.81 H H 1.01 M H 1.07 M M
fpppp 909 H H 1830 M M 1426 M H 0.62 − M 0.50 − H 0.53 H M 0.84 H H 0.97 M H 1.02 M M
GE 3184 H H 3219 M M 3214 M H 70.55 M H 70.20 H − 71.78 M − 0.93 H H 1.01 M H 1.03 M M

Laplace 3522 M M 3369 H − 3455 H − 130.32 H H 130.82 M H 133.57 M M 0.93 H H 1.00 M H 1.02 M M
Cholesky 1448 H H 2069 M M 1974 M H 23.58 H H 25.24 M − 25.76 M − 0.90 H H 0.98 M H 1.01 M M
Winkler 20122 − − 16936 − − 17125 − − 94.38 M M 83.06 H H 86.66 H M 0.95 H H 1.00 M H 1.01 M M

The average behavior of each of the algorithms is presented in Table 5.
Epsilon quality indicator has the best values for MOCell, with exception for
Laplace, Robot and Winkler instance types (no statistical significance was found

19

●

●

●

●
●

20 40 60 80 100 120

0
20

40
60

Laplace Processors

Processors

S
ol

ut
io

n
nu

m
be

r

●

●

●

●

●

●

●

●

●

●

Algorithm:

MOCell
NSGAII
IBEA

(a)

●

●

●

●
●

0 2 4 6 8 10

10
20

30
40

Laplace CCR

CCR

S
ol

ut
io

n
nu

m
be

r

●

●

●

●

●

●

●

●

●

●

Algorithm:

MOCell
NSGAII
IBEA

(b)

●

●
●

●
● ● ●

● ● ●
● ●

●

●
● ●

●
●

●
●

●

100 200 300 400 500 600

20
30

40
50

60
70

Laplace Tasks

Tasks

S
ol

ut
io

n
nu

m
be

r

●

●

●

●

●

●
● ● ●

●
●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
● ● ● ●

● ● ●

Algorithm:

MOCell
NSGAII
IBEA

(c)

●

●
●

●

●

0.2 0.4 0.6 0.8 1.0

20
25

30
35

40
45

50
55

fpppp Heterogeneity

Heterogeneity

S
ol

ut
io

n
nu

m
be

r

●

● ●

●

●

●
●

●

●

●

Algorithm:

MOCell
NSGAII
IBEA

(d)

Figure 7: Aggregated solution number values.

for the two latter ones). This points out the best convergence behavior of
MOCell, with respect to the other two algorithms. For IGD, MOCell is most
often the statistically significantly best algorithm, but it happens only for three
instance types. For LIGO instances, this algorithm is significantly better than
IBEA. For the other instance types, NSGA-II is either the best algorithm for
Winkler or among the best algorithms for the others. IBEA is among the best
algorithms only for the Sparse instances. Results for Spread shows clear order
of algorithms: MOCell provided the best results, being NSGA-II and IBEA
the second and the third algorithms, respectively. This order points out the
advantage of spatial structure of MOCell which increases diversification and

20

results in more even distribution of solutions. Additionally, MOCell is the only
algorithm which achieves to be significantly better than the two others, except
the NSGA-II for IGD and Winkler instances.

Three dimensional plots that show the dependency between two variables
on horizontal axes and values of the quality indicator on vertical axis are used
to represent the trends among the results. Analysis of such plots enables to
find factors with the biggest influence on the algorithms and to formulate the
rules they follow. These observations are divided into three parts, one for each
quality indicator: Epsilon, IGD and Spread.

Epsilon. Epsilon values grow together with growth of processor number and
CCR for all instances (Figures 8a and 8b). The influence of task number is
usually not so important (Figures 8c and 8d), but for the Winkler and Cholesky
instances there is a stronger positive correlation (Figure 8e). The influence of
processors heterogeneity is negligible, only the fpppp instances present small
negative correlation (Figure 8f).

IGD. In the sets of random and real instances IGD values grow together with
growth of CCR and processor number (Figures 9a and 9b). For the synthetic
graphs, presentation of results of IGD values is often suppressed by the high
values obtained mostly for the high CCR and processor number, but the trend
is still visible (Figure 9c). Processors heterogeneity has negligible effects: it
is correlated positively with IGD for fpppp and negatively for sparse instances,
which is slightly visible regarding the impact of random fluctuations (Figure 9d).

Spread. The results of analysis of spread are unexpected in terms of the op-
posite behavior of algorithms. For MOCell, spread grows with increasing CCR
and processor number (Figures 10a and 10b); for IBEA and NSGA-II, spread
decreases in the same conditions (Figures 10c and 10d). Further studies could
answer if all values are asymptotically reaching value one (which could be the
case concerning the results) or if this trend continues and reaches a point in
which IBEA and NSGA-II are better in terms of spread than MOCell.

5.4. Comparison with other methods

To globally compare the effectiveness of the proposed optimization approach,
the approximated Pareto fronts are compared with the solution given by a de-
terministic state-of-the-art Heterogeneous Earliest Finish Time (HEFT) [29]
algorithm, which is one of the most used algorithm as a basis for comparison
to evaluate the performance of new proposed scheduling algorithms. HEFT is
a list-based scheduling algorithm that maintains a list of all tasks of a given
graph according to their priorities. In this study we use the b-level method.
The algorithm first selects a task with the highest priority for which all prede-
cessors have been assigned. Then, a suitable machine which will result in the
earliest finish time of that task is selected and the tasks is scheduled on that
machine. To ensure that HEFT has competitive results, a slack reclamation
post-processing step was added, which selects the slowest DVFS pair for each
task that does not delay execution of other tasks.

21

Pro
ce

ss
or

s

50

100

CCR 5

10

E
psilon

10000

20000

Laplace Epsilon MOCell

(a)

Pro
ce

ss
or

s

10

20

30

CCR 5

10

E
psilon

1000

2000

robot Epsilon IBEA

(b)
CCR

5

10

Tasks
200

400

600

E
psilon

5000

10000

Laplace Epsilon IBEA

(c)

Pro
ce

ss
or

s
50

100

Tasks 200

400

E
psilon

5000

10000

gaussEl Epsilon NSGAII

(d)

CCR

5

10

Tasks
200

400

600

E
psilon

2000

4000

Cholesky Epsilon NSGAII

(e)

CCR 5

10

Heterogeneity

0.5

1.0

E
psilon

1000

2000

fpppp Epsilon MOCell

(f)

Figure 8: Three dimensional sample plots for aggregated values of Epsilon.

22

Pro
ce

ss
or

s
10

20

30

CCR 5

10

IG
D

10

20

LIGO IGD MOCell

(a)

Pro
ce

ss
or

s

50

100

CCR 5

10

IG
D

500

1000

Winkler IGD IBEA

(b)

Pro
ce

ss
or

s

50

100

CCR 5

10

IG
D

200

400

gaussEl IGD NSGAII

(c)

Pro
ce

ss
or

s

10

20

30

Heterogeneity
0.5

1.0

IG
D

10

20

sparse IGD IBEA

(d)

Figure 9: Three dimensional sample plots for aggregated values of IGD.

The set coverage values between the solution of HEFT and the approximated
Pareto front for all considered instance types are presented in Table 6. The set
coverage was selected as a method of comparison, to deal with the specific
relation between the results of HEFT and MOEAs: in most of the cases they
are not directly comparable, i.e. HEFT returns a single solution with the best
makespan and high energy consumption, while MOEAs Pareto fronts offer a
range of energy-efficient solutions with longer makespan, a representative case is
presented on Figure 11. The set coverage is a ratio between number of solutions
dominated in a set by the cardinality of the set and has value between 0 (when
none of the point from the set is dominated) and 1 (when all points from the
set are dominated).

23

Pro
ce

ss
or

s

50

100

CCR 5

10

S
pread

0.8

0.9

1.0

Laplace Spread MOCell

(a)

Pro
ce

ss
or

s

10

20

30

CCR
5

10

S
pread

0.8

0.9

LIGO Spread MOCell

(b)

Pro
ce

ss
or

s

50

100
CCR

5

10

S
pread

1.00

1.05

1.10

gaussEl Spread IBEA

(c)

Pro
ce

ss
or

s

10

20

30CCR

5

10

S
pread

1.00

1.05

1.10

robot Spread NSGAII

(d)

Figure 10: Three dimensional sample plots for aggregated values of Spread.

For the LIGO, Robot and Sparse types of instances MOEAs set coverage
over HEFT is much bigger than the opposite. Results for fpppp instance type
are incomparable: the set coverage is close to zero in both cases. Finally, for
the set of synthetic and randomized applications, obtained Pareto fronts are
further from the real Pareto fronts, which is supported by the high values of set
coverage of HEFT over MOEAs. However, there are cases when the solutions
returned by MOEAs can dominate the solution returned by HEFT. For the
three first real applications the coverage results are similar: MOEAs slightly
increase superiority over HEFT together with growing tasks number and de-
creasing ETR. Contrary to that, for the synthetic instances increasing ETR

24

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 600 650 700 750 800 850 900 950 1000

En
er

gy

Makespan

Pareto front
Pareto optimal solutions

HEFT solution

Figure 11: Sample Pareto front.

Table 6: The mean set coverage for instance type.

Instance MOEAs/HEFT HEFT/MOEAs
LIGO 0.187 0.013
Robot 0.200 0.120
Sparse 0.267 0.003
fpppp 0.000 0.051
GE 0.080 0.611

Laplace 0.074 0.651
Cholesky 0.103 0.465
Wickler 0.040 0.385

decrease advantage of HEFT over MOEAs.
In general, the most common behavior is that the solution of MOEAs and

HEFT are incomparable. While HEFT is effective in optimizing makespan,
MOEAs return sets of more energy-efficient solutions. By using multi-objective
approach, it is possible to minimize energy and still provide competitive perfor-
mance. Additionally, further studies on the refinement of the solutions are still
possible.

5.5. Analysis of the Results

The algorithms are able to return several feasible solutions. The algorithms
validation was performed on a big set of instances with different type, sizes,
and characteristics. All algorithms have proven to converge to good solutions,
with MOCell presenting prevalently the most effective and fast convergence.
NSGA-II returns the largest number of points, while MOCell returns the small-
est number. The analysis of these basic statistics does not prove clearly the
final effectivity of any of these methods: the number of solutions found is satis-
factory for all algorithms, and it follows the same trends which is the case also

25

for convergence. The analysis of quality indicators is intended to finally review
the algorithms. The MOCell algorithm schema has the best average values for
Epsilon and Spread and it slightly outperforms the NSGA-II average values for
IGD. MOCell performed the best in the crossover comparison and quality indi-
cators analysis for Epsilon and Spread. As the analysis of IGD also favors this
algorithm and returned solution number values are similar for all algorithms,
usage of MOCell is advised for this problem. Generally, it can be observed that
quality indicator values increase (worsen) with the growth of processor number
and CRR, and to less extent with the growth of task number. This scalabil-
ity issue could be tackled by the algorithm hybridization with seeding initial
population or with usage of local search.

The main outcome is not only the presented algorithms, but also the study of
the problem performed by the unbiased stochastic search processes. The quality
indicators study shows that processor number and CCR are the most influential
characteristics of the instances regarding the quality of the obtained results. The
impact of task number is lower and the impact of processors heterogeneity seems
to be negligible. It is important to note that these specifics do not correspond
to the computational complexity of the problem, which depends on tasks and
edges number. The study shows also the fact of the importance of the instance
kind on the results: depending on the instance structure, the results are very
different. Analysis of number of tasks, edges or ratio between number of edges
and tasks does not solve this issue solely. The algorithms present similar trends
for Epsilon and IGD and two distinct behaviors for Spread.

6. Conclusions and Future Work

This study investigated the problem of scheduling precedence-constrained
applications on heterogeneous, DVFS-enabled, distributed computing systems,
considering simultaneously two independent objectives: schedule length and
minimization of the energy consumption. Three algorithms are proposed and
evaluated, based on state-of-the-art MOCell, NSGA-II and IBEA algorithms.
Results show that MOEAs are able to provide accurate solutions for the ad-
dressed problem and confirm the effectivity of the method in which processor
assignment and DVFS pair setting are done simultaneously, which is proven by
the comparison with the HEFT algorithm. The MOEAs perform especially well
in scheduling the DAGs that represents real applications. MOCell is the MOEA
schema identified as the most suitable for this problem.

The results present also an exploration of the problem by testing the al-
gorithms on the large and diversified benchmark. The difficulty of solving the
energy-efficiency scheduling problem by MOEAs is dependent mainly on proces-
sor number and CCR, with minor influence of task number. These observations
are supported by Wilcoxon and Friedman statistical tests performed on the
values of three quality indicators: Epsilon, IGD and Spread.

There are three main directions of development, which can follow up this
work. First of them is addressing the scalability issues and increasing the qual-
ity of solution for harder and bigger instances. This includes improving the

26

algorithmic part by such steps as seeding the initial population, adding lo-
cal search step, or optimizing the algorithm runtime. Advances in these fields
could facilitate addressing scheduling problems with more than two objectives:
for this problem the robustness and flexibility of a schedule could be additional
objectives. The last proposed research direction is refining the algorithm en-
ergy model, to include more factors such as memory energy consumption and
networking system components, as well as the heat dissipation issue.

Acknowledgements

The work of P. Bouvry and J. Pecero is partly funded by INTER/CNRS/11/03
Green@Cloud. B. Dorronsoro acknowledges that the present project is partially
supported by the National Research Fund, Luxembourg, and cofunded under
the Marie Curie Actions of the European Commission (FP7-COFUND), under
AFR contract no 4017742. M. Guzek acknowledges the support of the National
Research Fund of Luxembourg (FNR) and Tri-ICT, with the AFR contract no.
1315254. Experiments presented in this paper were carried out using the HPC
facility of the University of Luxembourg.

References

[1] DatacenterDynamics, Dcd industry census 2013: Data center power,
http://www.datacenterdynamics.com/focus/archive/2014/01/

dcd-industry-census-2013-data-center-power (January 2014).

[2] A. Beloglazov, R. Buyya, Y. C. Lee, A. Y. Zomaya, A taxonomy and survey
of energy-efficient data centers and cloud computing systems, Advances in
Computers 82 (2011) 47–111.

[3] L. Minas, B. Ellison, Energy Efficiency for Information Technology: How
to Reduce Power Consumption in Servers and Data Centers, Intel Press,
USA, 2009.

[4] G. Valentini, W. Lassonde, S. Khan, N. Min-Allah, S. Madani, J. Li,
L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Zomaya, C.-Z.
Xu, P. Balaji, A. Vishnu, F. Pinel, J. Pecero, D. Kliazovich, P. Bouvry,
An overview of energy efficiency techniques in cluster computing systems,
Cluster Computing 16 (2013) 3–15.

[5] D. C. Snowdon, E. L. Sueur, S. M. Petters, G. Heiser, Koala: a platform
for os-level power management, in: EuroSys, 2009, pp. 289–302.

[6] Y.-C. Lee, A.-Y. Zomaya, Energy conscious scheduling for distributed com-
puting systems under different operating conditions, IEEE T Parall Distr
22 (8) (2011) 1374 –1381.

27

http://www.datacenterdynamics.com/focus/archive/2014/01/dcd-industry-census-2013-data-center-power
http://www.datacenterdynamics.com/focus/archive/2014/01/dcd-industry-census-2013-data-center-power

[7] M. R. Garey, D. S. Johnson, Computers and Intractability, A Guide to
the Theory of NP-Completeness, W.H. Freeman and Company, New York,
1979.

[8] D. Zhu, D. Moss, R. Melhem, Power-aware scheduling for and/or graphs
in real-time systems, IEEE T Parall Distr 15 (2004) 849–864.

[9] Y. Zhang, X. S. Hu, D. Z. Chen, Task scheduling and voltage selection
for energy minimization, in: Procs. of the 39th annual Design Automation
Conference, DAC ’02, ACM, New York, NY, USA, 2002, pp. 183–188.

[10] G. Aupy, A. Benoit, Y. Robert, Energy-aware scheduling under reliability
and makespan constraints, in: High Performance Computing (HiPC), 2012
19th International Conference on, Pune, India, 2012, pp. 1–10.

[11] L. Wang, S. Khan, D. Chen, J. Koodziej, R. Ranjan, C.-Z. Xu, A. Zomaya,
Energy-aware parallel task scheduling in a cluster, Future Generation Com-
puter Systems 29 (7) (2013) 1661–1670.

[12] S. Baskiyar, K. Palli, Low power scheduling of dags to minimize finish
times, in: High Performance Computing - HiPC 2006, Vol. 4297 of LNCS,
Springer Berlin / Heidelberg, 2006, pp. 353–362.

[13] S. Baskiyar, R. Abdel-Kader, Energy aware dag scheduling on heteroge-
neous systems, Cluster Comput 13 (2010) 373–383.

[14] N. B. Rizvandi, J. Taheri, A. Y. Zomaya, Y. C. Lee, Linear combinations of
dvfs-enabled processor frequencies to modify the energy-aware scheduling
algorithms, in: Procs of the 10th IEEE/ACM CCGRID ’10, IEEE Com-
puter Society, Washington, DC, USA, 2010, pp. 388–397.

[15] V. Shekar, B. Izadi, Energy aware scheduling for dag structured applica-
tions on heterogeneous and dvs enabled processors, in: GREENCOMP ’10,
IEEE Computer Society, Washington, DC, USA, 2010, pp. 495–502.

[16] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E. G. Talbi, A. Y. Zomaya,
D. Tuyttens, A parallel bi-objective hybrid metaheuristic for energy-aware
scheduling for cloud computing systems, J Parallel Distr Com 71 (2011)
1497–1508.

[17] J. E. Pecero, P. Bouvry, H. J. F. Huacuja, S. U. Khan, A multi-objective
grasp algorithm for joint optimization of energy consumption and schedule
length of precedence-constrained applications, in: DASC, IEEE, 2011, pp.
510–517.

[18] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: Nsga-ii, IEEE T Evolut Comput 6 (2) (2002)
182–197.

28

[19] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, E. Alba, Design issues
in a multiobjective cellular genetic algorithm, in: EMO, 2006, pp. 126–140.

[20] E. Zitzler, S. Künzli, Indicator-based selection in multiobjective search, in:
PPSN, 2004, pp. 832–842.

[21] E. Alba, B. Dorronsoro, Cellular Genetic Algorithms, Vol. 42 of Operations
Research/Computer Science Interfaces, Springer-Verlag Heidelberg, 2008.

[22] J. Durillo, A. Nebro, E. Alba, The jMetal framework for multi-objective
optimization: Design and architecture, in: CEC 2010, Barcelona, Spain,
2010, pp. 4138–4325.

[23] O. Sinnen, Task Scheduling for Parallel Systems, John Wiley & Sons, Hobo-
ken, NJ, USA, 2007.

[24] M. Guzek, C. O. Diaz, J. E. Pecero, P. Bouvry, A. Zomaya, Impact of volt-
age levels number for energy-aware bi-objective dag scheduling for multi-
processors systems, in: Advances in Information Technology, Vol. 344 of
CCIS, Springer, Berlin, Heidelberg, 2012, pp. 70–80.

[25] E. Falkenauer, Genetic Algorithms and Grouping Problems, John Wiley &
Sons, Inc., England, 1997.

[26] J. E. Pecero, D. Trystram, A. Y. Zomaya, A new genetic algorithm for
scheduling for large communication delays, Euro-Par ’09, Springer-Verlag,
Berlin, Heidelberg, 2009, pp. 241–252.

[27] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, Analysis, evaluation, and comparison
of algorithms for scheduling task graphs on parallel processors, in: Parallel
Architectures, Algorithms, and Networks, 1996. Proceedings., Second Int.
Symposium on, Beijing, 1996, pp. 207–213.

[28] J. E. Pecero, B. Dorronsoro, M. Guzek, P. Bouvry, Memetic algorithms for
energy-aware computation and communications optimization in computing
clusters, in: I. Ahmad, S. Ranka (Eds.), Handbook energy-aware and green
computing, Chapman and Hall/CRC Press, 2012, pp. 443–473.

[29] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE T Parall
Distr 13 (3) (2002) 260 –274.

[30] P. Winkler, Random orders, Order 1 (1985) 317–331.

[31] J. Knowles, L. Thiele, E. Zitzler, A Tutorial on the Performance Assess-
ment of Stochastic Multiobjective Optimizers, TIK Report 214, Computer
Engineering and Networks Laboratory (TIK), ETH Zurich (Feb. 2006).

[32] D. A. Van Veldhuizen, Multiobjective evolutionary algorithms: classifica-
tions, analyses, and new innovations, Ph.D. thesis, Wright Patterson AFB,
OH, USA, adviser-Lamont, Gary B. (1999).

29

[33] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, A. Beham,
Abyss: Adapting scatter search to multiobjective optimization, IEEE T
Evolut Comput 12 (4) (2008) 439–457.

[34] K. Deb, et al., Multi-objective optimization using evolutionary algorithms,
Vol. 2012, John Wiley & Sons Chichester, 2001.

[35] C. R. Reeves, J. E. Rowe, Genetic algorithms: principles and perspectives:
a guide to GA theory, Vol. 20, Springer, 2003.

[36] E. A. Torres, S. Khuri, Applying evolutionary algorithms to combinatorial
optimization problems, in: Computational Science-ICCS 2001, Springer,
2001, pp. 689–698.

[37] M. Friedman, The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance, Journal of the American Statistical
Association 32 (200) (1937) 675–701.

[38] M. Guzek, J. E. Pecero, B. Dorronsoro, P. Bouvry, S. U. Khan, A cellular
genetic algorithm for scheduling applications and energy-aware communi-
cation optimization, in: HPCS’10, Caen, France, 2010, pp. 241–248.

30

	Introduction
	Problem Description
	System
	Constraints
	Objectives

	Energy-aware Scheduling: Related Work
	Algorithms Description
	MOEAs schemas
	Representation
	Operators
	Grouping Recombination
	Mutation

	Evaluation

	Experimentation
	Problem Instances
	Algorithms testing and configuration
	Performance metrics
	Convergence test
	Performance of the Proposed Recombination

	Results
	Solution number analysis
	Quality indicators analysis

	Comparison with other methods
	Analysis of the Results

	Conclusions and Future Work

