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Abstract

The automatic design of controllers for mobile robots usually requires two stages. In the first stage, sensorial data are preprocessed
or transformed into high level and meaningful values of variables which are usually defined from expert knowledge. In the second
stage, a machine learning technique is applied to obtain a controller that maps these high level variables to the control commands
that are actually sent to the robot. This paper describes an algorithm that is able to embed the preprocessing stage into the learning
stage in order to get controllers directly starting from sensorial raw data with no expert knowledge involved. Due to the high
dimensionality of the sensorial data, this approach uses Quantified Fuzzy Rules (QFRs), that are able to transform low-level input
variables into high-level input variables, reducing the dimensionality through summarization. The proposed learning algorithm,
called Iterative Quantified Fuzzy Rule Learning (IQFRL), is based on genetic programming. IQFRL is able to learn rules with
different structures, and can manage linguistic variables with multiple granularities. The algorithm has been tested with the
implementation of the wall-following behavior both in several realistic simulated environments with different complexity and on a
Pioneer 3-AT robot in two real environments. Results have been compared with several well-known learning algorithms combined
with different data preprocessing techniques, showing that IQFRL exhibits a better and statistically significant performance.
Moreover, three real world applications for which IQFRL plays a central role are also presented: path and object tracking with
static and moving obstacles avoidance.
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1. Introduction

The control architecture of mobile robots usually includes
a number of behaviors that are implemented as controllers,
which are able to solve specific tasks such as motion planning,
following a moving object, wall-following, avoiding collisions,
etc. in real time. These behaviors are implemented
as controllers whose outputs at each time point (control
commands) depend on both the internal state of the robot and
the environment in which it evolves. The robot sensors (e.g.
laser range finders, sonars, cameras, etc.) are used in order
to obtain the augmented state of the robot (internal state and
environment). When the robot operates in real environments,
both the data obtained by these sensors and the internal state
of the robot present uncertainty or noise. Therefore, the use of
mechanisms that manage them properly is necessary. The use
of fuzzy rules is convenient to cope with this uncertainty, since
it combines the interpretability and expressiveness of the rules
with the ability of fuzzy logic for representing uncertainty.

The first step for designing controllers for mobile robots
consists of the preprocessing of the raw sensor data:
the low-level input variables obtained by the sensors are
transformed into high-level variables that are significant for the
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behavior to be learned. Usually, expert knowledge is used for
the definition of these high-level variables and the mapping
from the sensorial data. After this preprocessing stage, machine
learning algorithms can be used to automatically obtain the
mapping from the high-level input variables to the robot control
commands. This paper describes an algorithm that is able
to perform the preprocessing stage embedded in the learning
stage, thus avoiding the use of expert knowledge. Therefore,
the mapping between low-level and high-level input variables is
done automatically during the learning phase of the controller.

The data provided by the sensors is of high dimensionality.
For example, a robot equipped with two laser range finders
can generate over 720 low-level variables. However, in mobile
robotics it is more common to work with sets or groupings
of these variables, (e.g. “frontal sector”) that are much more
significant and relevant for the behavior. As a result, it is
necessary to use a model that is capable of grouping low-level
variables, thus reducing the dimensionality of the problem
and providing meaningful descriptions. The model should
provide propositions that are able to summarize the data with
expressions like “part of the distances in the frontal sector are
high”. This kind of expressions can model the underlying
knowledge in a better way than just using average, maximum or
minimum values of sets of low level variables. Moreover, these
expressions also include the definition of the set of low-level
variables to be used. Since these propositions involve fuzzy
quantifiers (e.g. “part”), they are called Quantified Fuzzy
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Propositions (QFPs) [1]. QFP provide a formal model that is
capable of modeling the knowledge involved in this grouping
task.

Evolutionary algorithms have some characteristics that make
them suitable for learning fuzzy rules. The well-known
combination of evolutionary algorithms and fuzzy logic
(genetic fuzzy systems) is one of the approaches that aims to
manage the balance between accuracy and interpretability of
the rules [2, 3]. As it was pointed out before, fuzzy rules can
be composed of both conventional and QFPs (therefore, they
will be referred to as QFRs). Furthermore, the transformation
from low-level to high-level variables using QFPs produces
a variable number of propositions in the antecedent of the
rules. Therefore, genetic programming, where the structure of
individuals is a tree of variable size derived from a context-free
grammar, is here the most appropriate choice.

This paper describes an algorithm that is able to learn
QFRs of variable structure for the design of controllers with
embedded preprocessing in mobile robotics. This proposal,
called Iterative Quantified Fuzzy Rule Learning (IQFRL), is
based on the Iterative Rule Learning (IRL) approach and
uses linguistic labels defined with unconstrained multiple
granularity, i.e. without limiting the granularity levels. This
proposal has been designed to solve control (regression)
problems in mobile robotics having as input variables the
internal state of the robot and the sensors data. Expert
knowledge is only used to generate the training data for each
of the situations of the task to be learned and, also, to define the
context-free grammar that specifies the structure of the rules.

The main contributions of the paper are: (i) the proposed
algorithm is able to learn using the state of the robot and the
sensors data, with no preprocessing. Instead, the mapping
between low-level variables and high-level variables is done
embedded in the algorithm; (ii) the algorithm uses QFPs,
a model able to summarize the low-level input data; (iii)
moreover, IQFRL uses linguistic labels with unconstrained
multiple granularity. With this approach, the interpretability
of the membership functions used in the resulting rules is
unaffected while the flexibility of representation remains.
The proposal was validated in several simulated and real
environments with the wall-following behavior. Results show
a better and statistically significant performance of IQFRL over
several combinations of well-known learning algorithms and
preprocessing techniques. The approach was also tested in
three real world behaviors that were built as a combination
of controllers: path tracking with obstacles avoidance, object
tracking with fixed obstacles avoidance, and object tracking
with moving obstacle avoidance.

The paper is structured as follows: Section 2 summarizes
recent work related with this proposal and Section 3 presents
the QFRs model and its advantages in mobile robotics. Section
4 describes the IQFRL algorithm that has been used to learn
the QFRs. Section 5 presents the obtained results, and Section
6 shows three real world applications of IQFRL in robotics.
Finally, Section 7 points out the most relevant conclusions.

2. Related Work

The learning of controllers for autonomous robots has been
dealt with by using different machine learning techniques.
Among the most popular approaches can be found evolutionary
algorithms [4, 5], neural networks [6] and reinforcement
learning [7, 8]. Also hibridations of them, like evolutionary
neural networks [9], reinforcement learning with evolutionary
algorithms [10, 11], the widely used genetic fuzzy systems [12,
13, 14, 15, 16, 17, 18], or even more uncommon combinations
like ant colony optimization with reinforcement learning [19] or
differential evolution [20] or evolutionary group based particle
swarm optimization [21] have been successfully applied.
Furthermore, over the last few years, mobile robotic controllers
have been getting some attention as a test case for the automatic
design of type-2 fuzzy logic controllers [8, 5, 20].

An extensive use of expert knowledge is made in all of
these approaches. In [12] 360 laser sensor beams are used
as input data, and are heuristically combined into 8 sectors
as inputs to the learning algorithm. On the other hand, in
[9, 13, 14, 15, 16, 18, 19, 21] the input variables of the learning
algorithm are defined by an expert. Moreover, in [13, 14, 16,
18, 20] the evaluation function of the evolutionary algorithm
must be defined by an expert for each particular behavior. As
in the latter case, the reinforcement learning approaches need
the definition of an appropriate reward function using expert
knowledge.

The approaches based on genetic fuzzy systems use different
alternatives in the definition of the membership functions. In
[10, 12, 16] the membership functions are defined heuristically.
In [14, 15] labels have been uniformly distributed, but the
granularity of each input variable is defined using expert
knowledge. On the other hand, in [13, 17, 18, 19, 21] an
approximative approach is used, i.e., different membership
functions are learned for each rule, reducing the interpretability
of the learned controller.

The main problem of learning behaviors using raw sensor
input data is the curse of dimensionality. In [7], this issue
has been managed from the reinforcement learning perspective,
by using a probability density estimation of the joint space
of states. Among all the approaches based on evolutionary
algorithms, only in [4] no expert knowledge has been taken into
account. In this work, the number of sensors and their position
are learned from a reduced number of sensors.

In [22] a Genetic Cooperative-Competitive Learning
(GCCL) approach was presented. The proposal learns
knowledge bases without preprocessing raw data, but the rules
involved approximative labels while the IQFRL proposal uses
unconstrained multiple granularity. Moreover, in this approach
it is difficult to adjust the balance between cooperation and
competition, which is typical when learning rules in GCCL.
As a result, the obtained rules where quite specific and the
performance of the behavior was not comparable to other
proposals based on expert knowledge.
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3. Quantified Fuzzy Rules (QFRs)

3.1. QFRs for robotics
Machine learning techniques in mobile robotics are used to

obtain the mapping from inputs to outputs (control commands).
In general, two categories can be established for the input
variables:

• High-level input variables: variables that provide, by
themselves, information that is relevant and meaningful to
the expert for modeling the system (e.g. the linear velocity
of the robot, or the right-hand distance from the robot to a
wall).

• Low-level input variables: variables that do not provide
by themselves information for the expert to model the
system (e.g. a single distance measure provided by a
sensor). Relevance of these variables emerge when they
are grouped into more significant sets of variables. For
example, the control actions cannot be decided by simply
analyzing the individual distance values provided by each
beam of a laser range finder, since noisy measurements
or gaps between objects (very frequent in cluttered
environments) may occur. Instead, more significant
variables and models involving complex groupings and
structures are used.

Usually, high-level variables, or sectors, consisting of a set of
laser beam measures instead of the beam measures themselves
(e.g., right distance, frontal distance, etc.) are used in mobile
robotics. The low-level input variables are transformed into
high-level input variables in a preprocessing stage previous to
the learning of the controller. Traditionally, this transformation
and the resulting high-level input variables are defined using
expert knowledge. Doing this preprocessing automatically
during the learning phase demands a model that groups the
low-level input variables in an expressive and meaningful way.
Within this context Quantified Fuzzy Propositions (QFPs) such
as “part of the distances of the frontal sector are low” are
useful for representing relevant knowledge for the experts and
therefore for performing intelligent control. Modeling with
QFPs as in the previous example demands the definition of
several elements:

• part: how many distances of the frontal sector must be
low?

• frontal sector: which beams belong to the frontal sector?

• low: what is the actual semantics of low?

This example clearly sets out the need to use propositions
that are different from the conventional ones. The use of
QFPs in robotics eliminates the need of expert knowledge in
two ways: i) the preprocessing of the low-level variables can
be embedded in the learning stage; ii) the definition of the
high-level variables obtained from low-level variables is done
automatically, also during the learning stage. In this paper
QFPs are used for representing knowledge about high-level

IF part o f distances of FRONTAL SECTOR are LOW and
(1)

. . .

velocity is HIGH (2)
THEN vlin is VERY LOW and vang is TURN LEFT

Figure 1: An example of QFR to model the behavior of a mobile robot.

variables that are defined as the grouping of low-level variables.
Conventional fuzzy propositions are also used to represent
conventional high-level variables, i.e., high-level variables not
related to low-level ones (e.g. velocity).

3.2. QFRs model

An example of a QFR is shown in Fig. 1, involving both
QFPs (1) and conventional ones (2); the outputs of the rule are
also fuzzy sets. In order to determine the degree to which the
output of the rule will be applied, it is necessary to reason about
the propositions (using, for example, the Mamdani’s reasoning
scheme).

The general expression for QFPs in this case is:

d (h) is F i
d in Qi of F i

b (3)

where, for each i=1, ..., gmax
b (gmax

b being the maximum possible
number of sectors of distances):

• d (h) is the signal. In this example, it represents the
distance measured by beam h.

• F i
d is a linguistic value for variable d (h) (e.g., “low”).

• Qi is a (spatial, defined in the laser beam domain) fuzzy
quantifier (e.g., “part”).

• F i
b is a fuzzy set in the laser beam domain (e.g., the

“frontal sector”).

Evaluation of the Degree of Fulfillment (DOF) for QFP
(Eq. 3) is carried out using Zadeh’s quantification model
for proportional quantifiers (such as “most of”, “part of”, ...)
[23]. This model allows to consider non-persistence, partial
persistence and total persistence situations for the event “d (h) is
F i

d” in the range of laser beams (spatial interval F i
b). Therefore,

for the considered example, it is possible to make a total or
partial assessment on how many distances should be low, in
order to decide the corresponding control action. This is a
relevant feature of this model, since it allows to consider partial,
single or total fulfillment of an event within the laser beams set.

The number of analyzed sectors of distances and their
definition may vary for each of the rules. There can be
very generic rules that only need to evaluate a single sector
consisting of many laser beams, while other rules may need a
finer granularity, with more specific laser sectors. Moreover,
the rules may require a mix of QFPs and standard fuzzy

3



propositions (for conventional high-level variables). Therefore,
the automatic learning of QFRs demands an algorithm with the
capability of managing rules with different structures.

4. Iterative Quantified Fuzzy Rule Learning of Controllers

4.1. Evolutionary learning of Knowledge Bases

Evolutionary learning methods follow two approaches in
order to encode rules within a population of individuals [3, 24]:

• Pittsburgh approach: each individual represents the entire
rule base.

• Michigan, IRL [25], and GCCL [26]: each individual
codifies a rule. The learned rule base is the result of
combining several individuals. The way in which the
individuals interact during the learning process defines
these three different approaches.

The discussion is focused on those approaches for which an
individual represents a rule, discarding the Michigan approach
as it is used in reinforcement learning problems in which the
reward from the environment needs to be maximized [27].
Therefore, the IRL and GCCL approaches are analyzed.

In the IRL approach, the individuals compete among them
but only a single rule is learned for each run (epoch) of the
evolutionary algorithm. After each sequence of iterations,
the best rule is selected and added to the final rule base.
The selected rule must be penalized in order to induce niche
formation in the search space. A common way to penalize the
obtained rules is to delete the training examples that have been
covered by the set of rules in the final rule base. The final step of
the IRL approach is to check whether the obtained set of rules is
a complete knowledge base. In the case it is not, the process is
repeated. A weak point of this approach is that the cooperation
among rules is not taken into account when a rule is evaluated.
For example, a new rule could be added to the final rule base,
deteriorating the behavior of the whole rule base over a set of
examples that were already covered. The cooperation among
rules can be improved with a posterior rules selection process.

In the GCCL approach the entire population codifies the
rule base. That is, rules evolve together but competing among
them to obtain the higher fitness. For this type of algorithm
it is fundamental to include a mechanism to maintain the
diversity of the population (niche induction). This mechanism
must warrant that individuals of the same niche compete
among themselves, but also has to avoid deleting those weak
individuals that occupy a niche that remains uncovered. This is
usually done using token competition [24].

Although GCCL works well for classification problems [1],
the same does not occur for regression problems [22], mostly
due to the difficulty of achieving in this realm an adequate
balance between cooperation and competition. It is frequent in
regression that an individual tries to capture examples seized
by other individual, improving the performance on many of
the examples, but decreasing the accuracy on a few ones.
In subsequent iterations, new and more specific individuals

1: KBcur := ∅
2: repeat
3: it := 0
4: equalind := 0
5: Initialization
6: Evaluation
7: repeat
8: Selection
9: Crossover and Mutation

10: Evaluation
11: Replacement
12: if bestit−1

ind = bestit
ind then

13: equalind := equalind + 1
14: else
15: equalind := 0
16: end if
17: it := it + 1
18: until (it ≥ itmin ∧ equalind ≥ itcheck) ∨ (it ≥ itmax)
19: KBcur := KBcur ∪ bestind

20: uncovex := uncovex − covex

21: until uncovex = ∅

Figure 2: IQFRL algorithm.

replace the rule that was weakened. As a result, the individuals
improve their individual fitness, but the performance of the
knowledge base does not increase. In particular, for mobile
robotics, the obtained knowledge bases over-fit the training data
due to a polarization effect of the rule base: few very general
rules and many very specific rules. Moreover, many times, the
errors of the individual rules compensate each other, generating
a good output of the rule base over the training data, but not on
test data.

This proposal, called IQFRL (Iterative Quantified Fuzzy
Rule Learning), is based on IRL. The learning process is
divided into epochs (set of iterations), and at the end of each
epoch a new QFR (Sec. 3.2) is obtained. The following sections
describe each of the stages of the algorithm (Fig. 2).

4.2. Examples and Grammar
The learning process is based on a set of training examples.

In mobile robotics, each example can be composed of several
variables that define the state of the robot (position, orientation,
linear and angular velocity, etc.), and the data measured by
the sensors. If the robot is equipped with laser range finders,
the sensors data are vectors of distances. A laser range finder
provides the distances to the closest obstacle in each direction
(Fig. 3) with a given angular resolution (number of degrees
between two consecutive beams). In this paper, each example
el is represented by a tuple:

el = (d (1) , . . . , d (Nb) , velocity, vlin, vang) (4)

where d (h) is the distance measured by beam h, Nb is the
number of beams (e.g. 722 for a robot equipped with two
Sick LMS200 laser range scanners as in Fig. 3), velocity is the
measured linear velocity of the robot, and vlin and vang are the
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d(181) d(120)d(180)d(361)

d(91)

d(1)

d(650)

d(542)

d(Nb=722)

Figure 3: Some of the distances measured by a robot equipped with two laser
range finders.

output variables (control commands for the linear and angular
velocities respectively).

The individuals in the population include both conventional
propositions and QFPs (Sec. 3.2). Also, the number of relevant
inputs can be different. Therefore, genetic programming is
the most appropriate approach, as each individual is a tree of
variable size. In order to generate valid individuals of the
population, and to produce right structures for the individuals
after crossover and mutation, some constraints have to be
added. With a context-free grammar all the valid structures of
a tree (genotype) in the population can be defined in a compact
form. A context-free grammar is a quadruple (V, Σ, P, S), where
V is a finite set of variables, Σ is a finite set of terminal symbols,
P is a finite set of rules or productions, and S the start symbol.

The basic grammar is described in Fig. 4. As usual, different
productions for the same variable are separated by symbol “|”.
Fig. 5 represents a typical chromosome generated with this
context-free grammar. Terminal symbols (leaves of the tree)
are represented by ellipses, and variables as rectangles. There
are two different types of antecedents:

• The sector antecedent. Consecutive beams are grouped
into sectors in order to generate more general (high-level)
variables (frontal distance, right distance, etc.). This type
of antecedent is defined by the terminal symbols Fd, Fb

and Q: i) the linguistic label Fd represents the measured
distances (HIGH in Fig. 1, prop. 1); ii) Fb is the linguistic
label that defines the sector, i.e., which beams belong to
the sector (FRONT AL S ECTOR in Fig. 1, prop. 1); iii)
Q is the quantifier (part in Fig. 1, prop. 1).

• The measured linear velocity of the antecedent is defined
by the Fv linguistic label.

Finally, Flv and Fav are the linguistic labels of the linear and
angular velocity control commands respectively, which are the
consequents of the rule.

The linguistic labels of the antecedent (Fv, Fd, Fb) are
defined using a multiple granularity approach. The universe
of discourse of a variable is divided into a different number
of equally spaced labels for each granularity. Specifically, a
granularity gi

var divides the variable var in i uniformly spaced

• V = { rule, antecedent, consequent, sector }

• Σ = { Flv, Fav, Fv, Fd, Fb, Q }

• S = rule

• P:

1. rule −→ antecedent consequent
2. antecedent −→ sector Fv | sector
3. consequent −→ Flv Fav

4. sector −→ Fd Q Fb sector | Fd Q Fb

Figure 4: Basic context-free grammar for controllers in robotics.

Figure 5: An individual representing a QFR that models the behavior of a robot.

x
0.0

0.5

1.0

µ
(x

)

g2

x
0.0

0.5

1.0

µ
(x

)

g3

x
0.0

0.5

1.0

µ
(x

)

g4

x
0.0

0.5

1.0

µ
(x

)

g5

Figure 6: Multiple granularity approach from g2
x to g5

x.

labels, i.e., Ai
var = {Ai, 1

var , ..., A
i, i
var}. Fig. 6 shows a partitioning of

up to granularity five. On the other hand, the linguistic labels of
the consequents (Flv, Fav) are defined using a single granularity
approach1.

1Multiple granularity makes no sense if the labels are defined as singletons,
which is the usual choice for the output variables in control applications.
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Require: maskvar

1: i := g1
var

2: result := ∅
3: loop
4: for all j ∈ [1, i] do
5: if support(maskvar) ≥ support(Ai, j

var) then
6: if similarity(maskvar, Ai, j

var) >
similarity(maskvar, result) then

7: result := Ai, j
var

8: end if
9: else

10: break loop
11: end if
12: end for
13: i := i + 1
14: end loop
15: return result

Figure 7: Function that searches for the most similar label to maskvar .

4.3. Initialization
An individual (Fig. 5) is generated for each example in the

training set. The consequent part (Flv and Fav) is initialized as
Fvar = Agvar , β

var where β = argmax j µ
gvar , j
var

(
el
)
, i.e., the label with

the largest membership value for the example.
The initialization of the antecedent part of a rule requires

obtaining the most similar linguistic label to a given fuzzy
membership function (which is called mask label). As the
maximum granularity of the linguistic labels in the antecedent
part of a rule is not limited, the function maskToLabel (Fig. 7)
is applied to obtain the most appropriate linguistic label. This
function uses a similarity measure defined as [28]:

similarity(Fφ, Fψ) = 1 −
∑

x∈X |µφ(x) − µψ(x)|
|X|

(5)

where Fφ and Fψ are the labels being compared and X is a finite
set of points x uniformly distributed on the support of φ ∪ ψ.

The maskToLabel function (Fig. 7) receives a triangular
membership function (maskvar) and searches for the label Ai, j

var
with the highest similarity (Eq. 5, line 6) with less or equal
support (line 5), starting from g1

var (line 1).
For the initialization of the quantified propositions (sectors),

the distances measured in the example are divided into groups
of consecutive laser beams whose deviation does not exceed a
certain threshold (σbd). Each group represents a sector that is
going to be included in the individual. Afterwards, for each of
the previously obtained sectors, the components (Fb, Fd and Q)
are calculated:

1. Fb = maskToLabel(maskb), with maskb =

(leftb, centerb, rightb) where leftb is the lower beam
of the group, rightb is the higher beam, centerb is the
middle beam and the following properties are satisfied:
µ(leftb) = µ(rightb) = 0.5 and µ(centerb) = 1 as shown in
Fig. 8(a).

2. Fd = maskToLabel(maskd), with maskd = (d̄ −

σd, d̄, d̄ + σd) where d̄ is the mean of the distances

leftb centerb rightb
b

0.0

0.5

1.0

µ
(b
)

(a) maskb

-

d−σd +σd
d

0.0

0.5

1.0

µ
(d
)

-

d
-

d

(b) maskd

Figure 8: maskvar representations for beam (b) and distance (d) variables.

0 0.2 Q 1

x

0.00

0.25

0.50

0.75

1.00

µ
(x
)

Figure 9: Example of a definition of the quantified label Q.

measured by the beams of the group, σd is the standard
deviation of these distances and the following properties
are satisfied: µ(d̄ − σd) = µ(d̄ + σd) = 0.5 and µ(d̄) = 1
as shown in Fig. 8(b).

3. Q (Fig. 9) is calculated as the percentage of beams of the
sector (h ∈ Fb) that fulfill Fd:

Q =

∑
h∈Fb

min
(
µFd (d(h)), µFb (h)

)∑
h∈Fb

µFb (h)
(6)

Finally, the velocity antecedent Fv is initialized as Fv = Agi
v, β

v

where β = argmax j µ
gi

v, j
v (el) and gi

v is the granularity that
satisfies that two consecutive linguistic labels have a separation
of σv, where σv is a threshold of the velocity deviation.

4.4. Evaluation

The fitness of an individual of the population is calculated as
follows. Firstly, it is necessary to estimate the probability that
an example el matches the output (C j) associated to the j-th
individual rule:

P
(
C j | el

)
= exp

− errorl
j

ME

 (7)

where ME is a parameter that defines the meaningful error
and errorl

j is the difference between output C j and the output
codified in the example:

errorl
j =

∑
k

 yl
k − c j, k

maxk − mink

2

(8)

where yl
k is the value of the k-th output variable of example

el, c j, k is the output of the k-th output variable associated
to individual j, and maxk and mink are the maximum and
minimum values of output variable k. In regression problems,
there can be several consequents that are different from the one
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codified in the example, but that produce small errors, i.e., that
are very similar to the desired output. Thus, P

(
C j | el

)
can be

interpreted as a normal distribution with covariance ME, and
errorl

j is the square of the difference between the mean (output
codified in the example) and the output value proposed in the
rule codified by the individual.

In an IRL approach, C j = CR j , i.e., the output coded in
individual j is the output associated to rule j. The fitness of
an individual in the population is calculated as the combination
of two values. On one hand, the accuracy with which the
individual covers the examples, called confidence. On the other
hand, the ability of generalization of the rule, called support.
The confidence can be defined as:

confidence =
ρu∑

l DOF j(el
u)

(9)

where DOF j(el
u) is the degree of fulfillment of el

u for rule j, and
el

u ∈ uncovex, where uncovex is defined as:

uncovex = {el : DOFKBcur (e
l) < DOFmin} (10)

i.e., the set of examples that are covered with a degree of
fulfillment below DOFmin by the current final knowledge base
(KBcur) (line 19, Fig. 2), and ρu can be defined as:

ρu =
∑

l

DOF j(el
u) : P

(
C j | el

u

)
> Pmin

and DOF j(el
u) > DOFmin

(11)

where Pmin is the minimum admissible accuracy. Therefore, the
higher the accuracy over the examples covered by the rule (and
not covered yet by the current knowledge base), the higher the
confidence. Support is calculated as:

support =
ρu

#uncovex
(12)

Thus, support measures the percentage of examples that are
covered with accuracy, related to the total number of uncovered
examples. Finally, f itness is defined as a linear combination of
both values:

fitness = α f · confidence + (1 − α f ) · support (13)

which represents the strength of an individual over the set of
examples in uncovex. α f ∈ [0, 1] is a parameter that codifies
the trade-off between accuracy and generalization of the rule.

4.5. Crossover
The matching of the pairs of individuals that are going to

be crossed is implemented following a probability distribution
defined as:

Pclose (α, β) = 1 −

∑Nc
k=1( cα, k − cβ, k

maxk − mink
)2

Nc
(14)

where cα, k (cβ, k) is the value of the k-th output variable
of individual α (β), and Nc is the number of consequents.
With this probability distribution, the algorithm selects with

Require: indα, indβ
1: aα = aβ = ∅
2: Na = gmax

b + 1
3: repeat
4: m = random ∈ [1, Na]
5: if m is a sector then
6: aα = argmaxr similarity(Fb, r, A

gmax
b ,m

b ) ≥ 0 : ∀r ∈
indα

7: aβ = argmaxr similarity(Fb, r, A
gmax

b ,m
b ) ≥ 0 : ∀r ∈

indβ
8: else
9: aα = Fv ∈ indα

10: aβ = Fv ∈ indβ
11: end if
12: until (aα , ∅) ∨ (aβ , ∅)

Figure 10: Selection of antecedents for crossover.

higher probability mates that have similar consequents. The
objective is to extract information on which propositions of
the antecedent part of the rules are important, and which are
not. Crossover has been designed to generate more general
individuals, as the initialization of the population produces very
specific rules. The crossover operator generates two offsprings:

offspring1 = crossover(indi, ind j)
offspring2 = crossover(ind j, indi) (15)

This operator modifies a single proposition in antecedent
part of the rule. As individuals have a variable number of
antecedents, the total number of propositions can be different
for two individuals. Moreover, the propositions can be defined
using different granularities. Therefore, the first step is to select
the propositions (one for each individual) to be crossed between
both individuals (Fig. 10) as follows:

1. Get the most specific granularity of the sectors of the
individuals to cross (gmax

b ). Then, an antecedent m ∈

[1, Na] is selected, where Na is gmax
b plus one, due to the

velocity proposition.
2. Check the existence of this antecedent in both individuals,

according to the following criteria:
(a) If the antecedent m is a sector, then calculate for each

proposition of each individual the similarity between
the definition of the sector for the proposition and the
linguistic label that defines sector m. Finally, select
for each individual the proposition with the highest
similarity.

(b) If the antecedent m is the velocity, then the
corresponding proposition is Fv (in case it exists).

Once the propositions to be crossed have been selected, an
operation must be picked depending on the existence of the
antecedent in both parents (table 1):

• If the proposition does not exist in the first individual but
exists in the second one, then the proposition of the second
individual is copied to the first one, as this proposition
could be meaningful.
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Table 1: Crossover operations
Individual 1 Individual 2 Action

no yes copy proposition from individual 2 to 1
yes no delete proposition in individual 1
yes yes combine propositions

x
0.0

0.5

1.0

μ
(x
)

Total Similarity

x
0.0

0.5

1.0

μ
(x
)

Partial Similarity

x
0.0

0.5

1.0

μ
(x
)

No Similarity

Figure 11: Different possibilities of similarity for the labels of equal
proposition of two individuals used in the crossover operator.

• If the situation is the opposite to the previous one, then the
proposition of the first individual is deleted, as it might be
not important.

• If the proposition exists in both individuals, then both
propositions are combined in order to obtain a proposition
that generalizes both antecedents.

In this last case, the combination of propositions is done by
taking into account the degree of similarity (Eq. 5) between
them (Fig. 11). If the proposition is of type sector, the similarity
takes into account both Fb and Fd labels. Only when both
similarities are partial, the propositions are merged:

• If there is no similarity, then the propositions correspond
to different situations. For example, “the distance is high
in part of the frontal sector” and “the distance is low in
part of the frontal sector”. This means that the proposition
of the first individual might not contain meaningful
information and it could be deleted to generalize the rule.
For example, both individuals have the proposition “the
distance is high in part of the frontal sector”.

• If the similarity is total, then, in order to obtain a new
individual with different antecedents, the proposition is
eliminated.

• Finally, if the similarity is partial, then the propositions
are merged in order to obtain a new one that combines
the information provided by the two original propositions.
For example, “the distance is high in part of the frontal
sector“ and “the distance is medium-high in part of the
frontal sector“. Therefore, the individual is generalized.
The merge action is defined as the process of finding the
label with the highest possible granularity that has some
similarity with the labels of both original propositions.
This is done for both Fb and Fd labels. Q is calculated
as the minimum Q of both individuals.

4.6. Mutation

If crossover is not performed, both individuals are mutated.
Mutation implements two different strategies (Fig. 12):
generalize or specialize a rule. The higher the value of
confidence (Eq. 9), the higher the probability to generalize
the rule by mutation. This occurs with rules that cover their
examples with high accuracy and that could be modified to
cover other examples. On the contrary, when the confidence
of the individual is low, this means that it is covering some of
its examples with a low performance. In order to improve the
rule some of the examples that are currently covered should be
discarded in order to get a more specific rule.

For generalization, the following steps are performed:

1. Select an example esel ∈ uncov j
ex, where uncov j

ex = {el
u :

DOF j(el
u) < DOFmin}, i.e. the set of examples that belong

to uncovex and are not covered by individual j. The
example is selected with a probability distribution given
by P

(
C j | el

u

)
(Eq. 7). The higher the similarity between

the output of the example and the consequent of rule j, the
higher the probability of being selected.

2. The individual is modified in order to cover esel.
Therefore, all the propositions that are not covering the
example (those with µprop

(
esel

)
< DOFmin) are selected

for mutation.
(a) For sector propositions (Eq. 1), there are three

different ways in which the proposition can be
modified: Fd, Fb, and Q. The modification
is selected among the three possibilities, with a
probability proportional to the µprop

(
esel

)
value after

applying each one.
i. Fd and Fb are generalized choosing the most

similar label in the adjacent partition with lower
granularity. The process is repeated until
µprop

(
esel

)
≥ DOFmin.

ii. On the other hand, Q is decreased until
µprop

(
esel

)
≥ DOFmin.

(b) For velocity propositions (Eq. 2), generalization is
done choosing the most similar label in the adjacent
partition with lower granularity until µprop

(
esel

)
>

DOFmin.

For specialization, the process is equivalent:

1. Select an example esel ∈ cov j
ex, where cov j

ex = {el
u :

DOF j(el
u) > DOFmin}, i.e. the set of examples that

belong to uncovex and are covered by individual j. The
example is selected with a probability distribution that is
inversely proportional to P

(
C j | el

u

)
(Eq. 7). The higher

the similarity between the output of the example and the
consequent of rule j, the lower the probability of being
selected.

2. Only one proposition needs to be modified to specialize
the individual. This proposition is selected randomly.

(a) For sector propositions there are, again, three
different ways in which the proposition can be
modified: Fd, Fb, and Q. The modification
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Figure 12: The strategies used for mutation for variables d, b and v.

Higher Probability Lower Probabiltiy
x

0.0

0.5
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μ
(x
)

Individual
Output

Example
Output

Probability Distribution

Figure 13: Probability distribution example for consequent mutation. Labels
closest to the individual output have higher probability to be selected.

is selected among these three possibilities, with
a probability that is inversely proportional to the
µprop

(
esel

)
value after applying each one.

i. Fd and Fb are specialized, choosing the most
similar label in the adjacent partition with higher
granularity. The process is repeated until
µprop

(
esel

)
< DOFmin.

ii. On the other hand, Q is increased until
µprop

(
esel

)
< DOFmin.

(b) For velocity propositions, specialization is done by
choosing the most similar label in the adjacent
partition with higher granularity until µprop

(
esel

)
<

DOFmin.

Finally, once the antecedent is mutated, the consequent also
mutates. Again, this mutation requires the selection of an
example. If generalization was selected for the mutation of the
antecedent, then the example will be esel. On the other hand,
for specialization an example is randomly selected from those
currently in cov j

ex. For each variable in the consequent part of
the rule, the label of the individual is modified selecting a label
following a probability distribution (Fig. 13):

P
(
Agvar , γ

var | Agvar , α
var , Agvar , β

var

)
= 1 −

|α − γ|

|α − β| + 1
(16)

where Agvar , α
var is the label of each of the consequents of the

individual, Agvar , β
var is the label with the largest membership value

for esel and Agvar , γ
var is a label between them. Thus, the labels

closer to the label of the individual have a higher probability to
be selected, while the labels closer to the example label have a
lower one.

4.7. Selection and replacement
Selection has been implemented following the binary

tournament strategy. Replacement follows an steady-state
approach. The new individuals and those of the previous
population are joined, and the best popmax individuals are
selected for the next population.

4.8. Epoch loop
An epoch is a set of iterations at the end of which a new

rule is added to KBcur. The stopping criterion of each epoch
(inner loop in Fig. 2) is the number of iterations, but this limit
varies according to the following criteria: once the number of
iterations (it) reaches itmin, the algorithm stops if there are itcheck

consecutive iterations (counted by equalind) with no change in
the best individual (bestind). If the number of iterations reaches
the maximum (itmax), then the algorithm stops regardless of the
previous condition.

When the epoch ends, the rule defined in bestind is added to
KBcur. Moreover, the examples that are covered with accuracy
(according to the criterion in Eq. 11) are marked as covered
by the algorithm (line 20, Fig. 2). Finally, the algorithm stops
when there are no uncovered examples.

4.9. Rule subset selection
After the end of the iterative part of the algorithm, the

performance of the obtained rule base can be improved
selecting a subset of rules with better cooperation among them.
The rule selection algorithm described in [1] has been used.
The rule selection process has the following steps:

1. Generate #Rgp rule bases, where #Rgp is the number of
rules of the population obtained by the IQFRL algorithm
(RBgp) Each rule base is coded as: RBi = ri

1 · · · r
i
#Rgp

, with:

ri
j =

0, i f j > i
1, i f j ≤ i

(17)

where ri
j indicates if the j-th rule of RBgp is included

(ri
j = 1) or not (ri

j = 0) in RBi. With this codification,
RBi will contain the best i rules of RBgp, as these rules
have been ranked in decreasing order of their individual
fitness. Notice that RB#Rgp is RBgp

2. Evaluate all the rule bases, and select the best one, RBsel.
3. Execute a local search on RBsel to obtain the best rule set,

RBbest.

The last step was implemented with the iterated local search
(ILS) algorithm [29].

threshold (maxRestarts).

5. Results

5.1. Experimental setup
The proposed algorithm has been validated with the

well-known in mobile robotics wall-following behavior. The
main objectives of a controller for this behavior are: to keep
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Figure 14: Pioneer 3-AT robot equipped with two laser range scanners.

Figure 15: The three different situations for the wall-following behavior.

a suitable distance between the robot and the wall, to move
at the highest possible velocity, and to implement smooth
control actions. The Player/Stage robot software [30] has been
used for the tests on the simulated environments and also for
the connection with the real robot Pioneer 3-AT (Fig. 14).
This real robot was equipped with two laser range scanners
with an amplitude of 180◦ and a precision of 0.5◦ (i.e. 361
measurements for each laser scan). Without loss of generality,
all the examples and tests here described were made with the
robot following the wall at its right.

The examples that have been used for learning were
generated for three different situations (Fig. 15) that have been
identified by an expert:

1. Convex corner: it is characterized by the existence of a gap
in the wall (like an open door) (labeled CX in Fig. 15).

2. Concave corner: it is a situation in which the robot finds a
wall in front of it (labeled CC in Fig. 15).

3. Straight wall: any other situation (labeled SW in Fig. 15).

For each of the above situations, the robot was placed in
different positions and the associated control order was the one
that minimized the error. Therefore, each example consists
of 722 distances (one for each laser beam), the current linear
velocity of the robot, and the control commands (linear and
angular velocity). The expert always tried to follow the wall at,
approximately, 50 cm and the maximum values for the linear
and angular velocities were 50 cm/s and 45os−1 respectively.
572 training examples were generated for the straight wall
situation, 540 for the convex corner and 594 for the concave
corner.

The IQFRL algorithm was used to learn a different controller
for each of the three situations. In order to decide which

Table 2: Characteristics of the test environments
Environment Dim. (m × m) Length (m) #CC #CX #doors

home 8 × 10 20 8 3 1
gfs b 14 × 10 43 10 6 0
dec 19 × 12 53 8 4 0

domus 26 × 16 60 9 6 3
citius 16 × 10 63 12 6 2
raid a 16 × 16 66 16 12 0
wsc8a 15 × 15 70 4 7 1

home b 18 × 11 76 17 6 2
raid b 20 × 10 86 12 10 2
rooms 19 × 19 86 12 6 4
flower 22 × 20 98 9 6 1
office 26 × 26 146 23 10 8

autolab 26 × 28 154 21 11 10
maze 18 × 18 205 13 9 0

hospital 74 × 45 1046 98 69 43
real env 1 9 × 8 20 7 3 0
real env 2 10 × 5 26 7 3 0

knowledge base should be used at each time instant, the
classification version of IQFRL (IQFRL-C, see Appendix A)
was used. In this way, IQFRL learning could be tested with
three completely different controllers.

In order to analyze the performance of the proposed learning
algorithm, several tests were done in 15 simulated environments
and two real ones. Table 2 shows some of the characteristics
of the environments: the dimensions of the environment, the
path length, the number of concave (#CC) and convex (#CX)
corners, and the number of times that the robot has to cross a
door (#doors). The action of crossing a door represents a high
difficulty as the robot has to negotiate a convex corner with a
very close wall in front of it.

The simulated environments are shown in Figs. 16 and 17.
The trace of the robot is represented by marks, and the higher
the concentration of marks, the lower the velocity of the robot.
Furthermore, Fig. 18 shows the real environments. Each of
them represents an occupancy grid map of the environment,
together with the trajectory of the robot.

5.2. Algorithms and parameters

The following values were used for the parameters of the
evolutionary algorithm: ME = 0.02, DOFmin = 0.001, α f =

0.99, Pcross = 0.8, popmax = 70, itmin = 50, itcheck = 10,
itmax = 100, σbd = 0.01, σv = 0.1 and Pmin = 0.17. Pmin is
a parameter that has a high influence in the performance of the
system. A single value of Pmin was used in testing, obtained
from Eqs. 7 and 8 for the case the error for each consequent
is one label (Eq. 8). The granularities and the universe of
discourse of each output of a rule are shown in table 3. For
the rule subset selection algorithm, the parameters have values
of radiusnbhood = 1 and maxRestarts = 2.

The fuzzy inference system used for the learned fuzzy rule
sets uses the minimum t-norm for both the implication and
conjunction operators, and the weighted average method as
defuzzification operator.

The IQFRL approach was compared with three different
algorithms:
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(a) home (b) gfs b
(c) dec

(d) domus

(e) citius

(f) raid a

(g) wsc8a
(h) home b

(i) raid b

Figure 16: Path of the robot along the simulated environments (I).

Table 3: Universe of discourse and granularities
Variable Min Max Granularities

Distance 0 1.5 All
Beam 0 721 All

Quantifier 10 100 −

Velocity 0 0.5 All
Lineal velocity 0 0.5 {9}

Angular velocity −π/4 π/4 {19}

• Methodology to Obtain Genetic fuzzy rule-based systems
Under the iterative Learning approach (MOGUL): a
three-stage genetic algorithm [31]:

1. An evolutionary process for learning fuzzy rules,
with two components: a fuzzy-rule generating
method based on IRL, and an iterative covering
method.

2. A genetic simplification process for selecting rules.
3. A genetic tuning process, that tunes the membership

functions for each fuzzy rule or for the complete rule

base.

The soft-constrained MOGUL was used, as it has better
performance in very hard problems [25]2.

• Multilayer Perceptron Neural Network (MPNN): a
single-hidden-layer neural network trained with the BFGS
method [33] with the following parameters: abstol = 0.01,
reltol = 0.0001 and maxit = 500. The number of neurons
in the hidden layer varies from n to 2·n, being n the number
of inputs3.

• ν-Support Vector Regression (ν-SVR)4: a ν-SVM [36]
version for regression with a Gaussian RBF kernel. The
parameter sigma is estimated based upon the 0.1 and 0.9
quantile of ||x − x′||2.

2The implementation in Keel [32], an open source (GPLv3) Java software
tool to assess evolutionary algorithms for Data Mining problems, was used.

3The package nnet [34] of the statistical software R was used.
4The package kernlab [35] of the statistical software R was used.
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(a) rooms

(b) flower

(c) office

(d) autolab (e) maze

(f) hospital

Figure 17: Path of the robot along the simulated environments (II).

(a) real
environment 1

(b) real
environment 2

Figure 18: Path of the robot along the real environments.
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Table 4: Different configurations for the preprocessing methods.
Preprocessing Configuration

Min (n) {4, 8, 16, 32, 64}
Sample (n) {4, 8, 16, 32, 64}
PCA (σPCA) {0.90, 0.95, 0.975, 0.99, 0.999}

Table 5: Number of inputs obtained with PCA.
σPCA Straight Convex Concave

0.90 35 15 27
0.95 51 24 40

0.975 66 35 53
0.99 85 57 68

0.999 127 99 109

As mentioned before, in the IQFRL proposal the
preprocessing of raw sensor data is embedded in the learning
algorithm. Since the algorithms for the comparison need to
preprocess the data before the learning phase, three different
approaches were used for the transformation of the sensor data:

• Min: the beams of the laser range finder are grouped in n
equal sized sectors. For each sector, the minimum distance
value is selected as input.

• Sample: n equidistant beams are selected as the input data.

• PCA: Principal Component Analysis computes the most
meaningful basis to re-express the data. It is a
simple, non-parametric method for extracting relevant
information. The variances associated with the principal
components can be examined in order to select only those
that cover a percentage of the total variance.

Different parameters have been used for the preprocessing
approaches. For Min and Sample methods, the number of
obtained inputs (n) was changed. For PCA, the percentage
of variance (σPCA) indicates the principal components selected
as input data. Table 4 shows the parameters used for the
preprocessing methods. Moreover, table 5 shows the number
of inputs obtained with PCA for the three datasets with each
configuration.

5.3. Comparison and statistical significance

Table 6 shows the training and test errors over a 5-fold
cross-validation. For each algorithm and dataset the mean and
standard deviation of the error (Eq. 8) were calculated.

For each preprocessing technique, a 5-fold cross-validation
was performed for each combination of the parameters of the
algorithms. For example, for the Min preprocessing with 16
equal size sectors, a 5-fold cross-validation was run for each
number of neurons between 17 and 34 for the MPNN approach.
Only the configuration of the algorithm with lowest test error
for each configuration of the preprocessing methods was used
for comparison purposes. Moreover, only those configurations
of preprocessing techniques with the best results are shown in
the tables of this section. Results for PCA preprocessing have

Table 6: Training and test errors
Alg. Preproc. Dataset Training Test

IQFRL
− Straight 0.11 ± 0.03 0.14 ± 0.03

Convex 0.10 ± 0.01 0.12 ± 0.02
Concave 0.04 ± 0.01 0.05 ± 0.01

MOGUL

min 16
other 0.01 ± 0.00 0.10 ± 0.01

convex 0.01 ± 0.00 0.05 ± 0.01
concave 0.00 ± 0.00 0.05 ± 0.01

sample 16
other 0.01 ± 0.00 0.09 ± 0.02

convex 0.02 ± 0.00 0.05 ± 0.01
concave 0.00 ± 0.00 0.04 ± 0.01

MPNN

min 8
other 0.01 ± 0.00 0.06 ± 0.10

convex 0.02 ± 0.01 0.03 ± 0.05
concave 0.00 ± 0.00 0.04 ± 0.06

sample 8
other 0.02 ± 0.00 0.18 ± 0.25

convex 0.03 ± 0.01 0.02 ± 0.02
concave 0.01 ± 0.00 0.17 ± 0.34

ν-SVR

min 16
other 0.01 ± 0.00 0.02 ± 0.02

convex 0.03 ± 0.01 0.02 ± 0.01
concave 0.01 ± 0.00 0.00 ± 0.00

sample 16
other 0.02 ± 0.01 0.02 ± 0.02

convex 0.04 ± 0.02 0.02 ± 0.01
concave 0.01 ± 0.00 0.01 ± 0.00

not been included, as the learning algorithms were not able to
obtain adequate controllers.

Although, the MSE (Mean Squared Error) is the usual
measure of the performance of the algorithms, this is not a
sufficient criterion in mobile robotics. A good controller must
be robust and able to provide a good and smooth output in any
situation. The only way to validate the controller is to test it on
environments (simulated and real) with different difficulties and
assessing on these tests a number of quality parameters such as
mean distance to the wall, mean velocity along the paths, . . .

Table 8 contains the results of the execution of each of the
algorithms for the different simulated environments (Figs. 16
and 17). Furthermore, table 9 shows the average results for the
following five different indicators: the distance to the wall at its
right (Dist.), the linear velocity (Vel.), the change in the linear
velocity between two consecutive cycles (Vel.ch.) —which
reflects the smoothness in the control—, the time per lap, and
the number of blockades of the robot along the path and cannot
recover.

The robot is blocked if it hits a wall or if it does not move
for 5 s. In this situation the robot is placed parallel to the
wall at a distance of 0.5 m. The average values of the five
indicators are calculated for each lap that the robot performs in
the environment. Results presented in the table are the average
and standard deviation values over five laps of the average
values of the indicators over one lap. The dash symbol in the
results table indicates that the controller could not complete the
path. This usually occurs when the number of blockades per
meter is high (greater than 5 blockades in a short period of time)
or when the robot completely deviates from the path.

Moreover, in order to evaluate the performance of a
controller with a numerical value a general quality measure was
defined. It is based on the error measure defined in [15], but
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including the number of blockades:

quality =
1

1 + (1 + #Blockades) · (0.9 · |Dist − dwall | + 0.1 · |Vel − vmax |)
(18)

where dwall is the reference distance to the wall (50 cm) and
vmax is the maximum value of the velocity (50 cm/s). The
higher the quality, the better the controller. This measure
takes the number of blockades into account in a linear form
for comparison purposes. However, it should be noted that
controllers with just a single blockade are not reliable and
should not be implemented on a real robot.

In general, all the algorithms except MPNN with Sample 16
preprocessing, produced a distance that is very close to the
reference (between 40 cm and 60 cm to the wall at its right).
Note that in cases where the best distance is very different
from that obtained by IQFRL, this is because several blockades
happened. Therefore, those controllers have the advantage of
being continually repositioned into the perfect situation. The
best results in speed are those obtained by ν-SVR and MOGUL
but, in general, due to a worsening in the distance to the wall
or an increase in the number of blockades. The same applies
to the speed change. In those cases where it is too low, like in
some cases for MOGUL or MPNN, the robot is not able to trace
some curves safely. IQFRL is the approach that gets the best
quality values, reflecting not only the adequate values for the
distance, velocity and smoothness in all the environments but,
also, its robustness: it is the unique approach that never blocked
or failed to complete the laps in any of the environments.

In order to compare the experimental results, non-parametric
tests of multiple comparisons have been used. Their use
is recommended in those cases in which the objective is to
compare the results of a new algorithm against various methods
simultaneously. The Friedman test with Holm post-hoc test
was selected as the method for detecting significant differences
among the results. The test is performed for the quality
indicator in table 8.

The statistical test (table 7) shows that the difference of
the quality of the IQFRL approach is statistically significant.
Only ν-SVR and MOGUL with sample 16 preprocessing are
comparable to IQFRL, as the number of blockades is very low
or null in some environments.

Additionally, table 10 shows the results obtained by IQFRL
in two real environments. As in the previous tables, the results
are the average and standard deviation over 5 laps. The distance

Table 7: Non-parametric test for quality of table 8.
Alg. Preprocessing Ranking Holm p-value

IQFRL − 1.53 −

MOGUL
min 16 4.9 0.012

sample 16 3.47 0.025

MLPNN
min 8 5.57 0.010

sample 8 6 0.008

ν-SVR
min 16 3.83 0.017

sample 16 2.7 0.05
Friedman p-value = 0.00

Holm’s rejects hypothesis with p-value <= 0.05

to the wall is lower than 60 cm, showing a good behavior,
although the velocity seems to be low, this is because corners
are very close to each other and the robot does not have time
to accelerate. Also, the velocity change reflects a very smooth
movement as changes in velocity take more time in the real
robot.

Finally, the IQFRL proposal was compared with the
proposals presented in [15] for learning rules for the
wall-following behavior. The purpose of this comparison is to
check if IQFRL is competitive against other methods which
use expert knowledge for sensor data preprocessing. Four
different approaches were used: the COR methodology, the
weighted COR methodology (WCOR), Hierarchical Systems of
Weighted Linguistic Rules (HSWLR) and a local evolutionary
learning of Takagi-Sugeno rules (TSK). For these approaches,
four input variables were defined by an expert: right distance,
left distance, velocity, and the orientation (alignment) of the
robot to the wall at its right. Moreover, the granularities of each
variable were also defined by the expert. Table 12 presents the
comparison between these approaches and the IQFRL proposal
on those environments which are common.

The IQFRL approach exhibited the highest quality in the two
most complex environments (office and hospital). Moreover,
table 11 shows the non-parametric tests performed over quality.
The Friedman p-value is higher than in table 9, due to the low
number of environments available for comparisons. As can be
seen, there is no statistically significant difference regarding
the quality. That is, the controllers learned with embedded
preprocessing has similar performance to the methods that use
expert knowledge to preprocess the data.

5.4. Complexity of the Rules

An example of a rule learned by IQFRL is presented in
Fig. 19. The antecedent part is composed of a single QFP.
The linguistic value A5, 1

d indicates a low distance, while A4, 1
b

denotes that the beams sector of the proposition is formed by
the frontal and right parts of the robot. Therefore, the rule
describes a situation where the robot is too close to the wall and,
if it continues, it will collide. Because of that, the consequent
indicates a zero linear velocity and a turn of the robot to the left,
in order to get away from the wall without getting the robot into
risk.

Table 13 shows the number of rules learned for the different
situations by each of the methods based on rules. MOGUL
is implemented as a multiple-input single-output (MISO)

Table 11: Non-parametric test for quality of table 12.
Alg. Ranking Holm p-value

IQFRL 2.9 −

COR 3.9 0.01
WCOR 3.7 0.017
HSWLR 2.8 0.05

TSK 1.7 0.006
Friedman p-value = 0.19

Holm’s rejects hypothesis with p-value <= 0.005
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Table 8: Average results (x ± σ) for each simulated environment
Alg. Prepr. Env. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) Time(s) # Blockades quality

IQFRL −

home 55.70 ± 0.25 27.00 ± 0.66 5.59 ± 0.14 164.63 ± 5.26 0.00 ± 0.00 0.12
gfs b 55.98 ± 1.70 22.37 ± 0.92 7.01 ± 0.74 163.90 ± 9.72 0.00 ± 0.00 0.11
dec 57.33 ± 1.02 32.47 ± 0.67 5.83 ± 0.18 168.63 ± 1.76 0.00 ± 0.00 0.11

domus 54.84 ± 0.53 29.97 ± 0.19 5.97 ± 0.49 198.80 ± 1.39 0.00 ± 0.00 0.14
citius 54.80 ± 0.87 26.11 ± 0.78 6.28 ± 0.64 249.50 ± 8.25 0.00 ± 0.00 0.13
raid a 59.56 ± 0.72 25.35 ± 0.14 6.87 ± 0.55 262.00 ± 6.15 0.00 ± 0.00 0.08
wsc8a 56.96 ± 1.00 27.45 ± 0.84 7.70 ± 0.33 233.10 ± 5.28 0.00 ± 0.00 0.11

home b 58.41 ± 0.72 25.53 ± 0.46 7.06 ± 0.36 300.07 ± 8.15 0.00 ± 0.00 0.09
raid b 58.22 ± 0.44 28.57 ± 0.40 6.60 ± 0.47 242.23 ± 3.82 0.00 ± 0.00 0.09
rooms 57.38 ± 0.34 30.97 ± 0.34 6.38 ± 0.43 261.93 ± 4.60 0.00 ± 0.00 0.10
flower 53.46 ± 0.25 33.85 ± 0.40 4.13 ± 0.34 290.77 ± 4.13 0.00 ± 0.00 0.17
office 51.37 ± 0.57 24.20 ± 0.18 6.65 ± 0.25 578.27 ± 2.92 0.00 ± 0.00 0.21

autolab 52.91 ± 0.20 28.75 ± 0.31 5.57 ± 0.48 499.33 ± 9.74 0.00 ± 0.00 0.17
maze 52.43 ± 0.22 35.88 ± 0.40 3.64 ± 0.28 567.73 ± 5.29 0.00 ± 0.00 0.22

hospital 51.09 ± 0.19 26.68 ± 0.10 6.18 ± 0.35 3608.07 ± 21.72 0.00 ± 0.00 0.23

MOGUL

min 16

home 55.12 ± 0.69 30.43 ± 1.30 5.40 ± 0.45 181.10 ± 12.70 7.33 ± 2.05 0.05
gfs b 54.75 ± 0.96 24.44 ± 1.02 6.81 ± 0.39 208.87 ± 12.86 14.00 ± 2.16 0.04
dec 55.46 ± 1.14 36.13 ± 0.43 5.17 ± 0.15 190.50 ± 6.29 8.67 ± 1.25 0.07

domus 55.75 ± 0.64 31.44 ± 1.80 5.47 ± 0.33 224.60 ± 10.25 8.33 ± 0.47 0.09
citius 53.47 ± 1.27 29.48 ± 0.13 5.60 ± 0.53 302.57 ± 13.58 18.33 ± 2.62 0.05
raid a 57.53 ± 0.32 26.53 ± 0.28 6.41 ± 0.09 363.87 ± 10.21 27.33 ± 3.40 0.02
wsc8a 54.80 ± 0.35 27.57 ± 0.63 6.26 ± 0.59 346.90 ± 29.40 26.67 ± 5.44 0.02

home b 56.75 ± 0.49 27.49 ± 0.62 6.58 ± 0.37 379.57 ± 2.05 22.00 ± 1.41 0.05
raid b 57.48 ± 0.70 32.38 ± 0.17 5.84 ± 0.38 280.17 ± 14.29 14.67 ± 3.40 0.03
rooms 54.79 ± 0.38 30.57 ± 1.04 5.14 ± 0.37 350.33 ± 28.04 20.00 ± 5.89 0.02
flower 53.33 ± 0.39 38.05 ± 1.00 3.70 ± 0.71 310.27 ± 13.41 11.67 ± 4.03 0.05
office 51.48 ± 0.29 25.09 ± 0.49 6.77 ± 0.20 762.20 ± 5.28 49.67 ± 1.25 0.10

autolab 51.95 ± 0.71 30.54 ± 1.24 5.23 ± 0.27 612.00 ± 23.46 31.00 ± 2.45 0.07
maze 52.25 ± 0.55 37.55 ± 1.53 2.87 ± 0.25 690.93 ± 53.92 32.00 ± 6.38 0.04

hospital 51.33 ± 0.06 26.86 ± 0.08 5.89 ± 0.29 4908.07 ± 56.12 313.33 ± 10.34 0.02

sample 16

home 56.76 ± 0.20 29.57 ± 0.35 4.73 ± 0.15 161.97 ± 0.69 1.67 ± 0.47 0.08
gfs b 56.16 ± 1.62 23.66 ± 0.88 8.16 ± 0.51 160.80 ± 9.65 1.67 ± 1.25 0.05
dec 57.69 ± 0.66 37.95 ± 0.96 6.03 ± 0.25 148.87 ± 3.94 0.67 ± 0.47 0.08

domus 56.04 ± 0.20 36.61 ± 1.14 6.35 ± 0.57 165.63 ± 8.93 1.00 ± 0.82 0.08
citius 51.38 ± 1.72 27.40 ± 0.21 6.13 ± 0.52 241.53 ± 3.38 1.00 ± 0.82 0.14
raid a 57.44 ± 0.51 26.18 ± 1.39 6.61 ± 0.44 275.63 ± 18.82 3.67 ± 2.05 0.03
wsc8a 54.67 ± 0.24 30.18 ± 0.65 9.03 ± 0.42 220.87 ± 2.26 1.67 ± 0.94 0.08

home b 57.17 ± 0.36 26.80 ± 0.91 6.73 ± 0.72 303.77 ± 9.52 3.00 ± 0.82 0.06
raid b 60.38 ± 0.38 34.73 ± 1.26 6.15 ± 0.41 206.20 ± 10.12 0.33 ± 0.47 0.06
rooms 56.05 ± 0.09 32.11 ± 1.49 6.39 ± 0.64 254.50 ± 18.03 0.67 ± 0.94 0.07
flower 55.24 ± 0.58 41.58 ± 0.32 3.92 ± 0.27 244.67 ± 6.56 2.00 ± 1.41 0.07
office 50.33 ± 0.10 22.76 ± 0.56 6.22 ± 0.46 655.40 ± 21.32 11.33 ± 2.36 0.09

autolab 50.57 ± 0.27 29.62 ± 0.69 5.29 ± 0.32 498.67 ± 8.12 2.33 ± 1.25 0.15
maze 55.05 ± 0.34 40.22 ± 0.78 3.25 ± 0.18 512.33 ± 8.86 0.67 ± 0.47 0.11

hospital 51.54 ± 0.25 25.97 ± 0.14 6.11 ± 0.34 3964.70 ± 15.81 64.67 ± 8.18 0.03

MPNN

min 8

home 58.34 ± 1.07 29.34 ± 2.66 4.12 ± 0.11 122.73 ± 6.36 6.33 ± 0.47 0.07
gfs b 58.56 ± 1.41 28.14 ± 0.71 7.66 ± 0.28 149.20 ± 11.03 4.33 ± 1.70 0.04
dec 56.10 ± 0.32 35.13 ± 0.38 4.28 ± 0.19 173.37 ± 5.58 3.33 ± 0.94 0.07

domus − − − − − 0.00
citius 55.73 ± 0.90 27.22 ± 0.68 4.97 ± 0.28 324.37 ± 31.51 15.00 ± 3.56 0.03
raid a 57.90 ± 0.61 23.05 ± 1.01 6.85 ± 0.26 403.60 ± 13.17 27.33 ± 1.70 0.04
wsc8a 56.24 ± 0.81 30.96 ± 1.03 7.97 ± 0.11 238.77 ± 5.45 7.33 ± 0.47 0.08

home b 58.02 ± 0.54 24.19 ± 1.81 7.13 ± 0.45 922.87 ± 568.90 66.33 ± 41.02 0.00
raid b 59.99 ± 1.57 27.98 ± 2.64 5.07 ± 0.63 1137.37 ± 842.79 38.33 ± 20.53 0.00
rooms − − − − − 0.00
flower − − − − − 0.00
office 55.84 ± 0.48 28.48 ± 0.19 8.18 ± 0.32 626.33 ± 5.59 32.00 ± 1.41 0.05

autolab − − − − − 0.00
maze 52.75 ± 0.32 42.53 ± 1.09 2.81 ± 0.38 621.07 ± 45.13 28.00 ± 3.56 0.06

hospital 55.94 ± 0.02 28.45 ± 0.33 7.47 ± 0.17 3730.00 ± 166.69 205.00 ± 13.93 0.01

sample 8

home − − − − − 0.00
gfs b 62.11 ± 0.47 21.96 ± 0.35 7.22 ± 0.14 172.00 ± 0.78 1.00 ± 0.00 0.07
dec 64.67 ± 2.80 30.23 ± 4.21 6.03 ± 0.49 285.70 ± 118.55 1.00 ± 0.82 0.04

domus − − − − − 0.00
citius 68.36 ± 5.48 20.98 ± 2.23 6.69 ± 0.18 603.33 ± 243.12 16.33 ± 11.81 0.00
raid a 74.58 ± 8.62 19.36 ± 3.61 6.41 ± 1.03 450.60 ± 259.59 5.00 ± 3.56 0.01
wsc8a 61.04 ± 0.62 23.70 ± 0.41 7.90 ± 0.52 279.37 ± 6.70 1.00 ± 0.82 0.04

home b 85.20 ± 8.36 16.95 ± 3.09 6.40 ± 0.62 2477.03 ± 1471.27 26.33 ± 15.15 0.00
raid b 70.10 ± 4.50 21.41 ± 1.56 7.18 ± 0.48 1780.97 ± 1445.69 49.00 ± 43.69 0.00
rooms 60.75 ± 0.47 34.39 ± 0.65 6.81 ± 0.22 237.53 ± 5.88 0.00 ± 0.00 0.08
flower 61.77 ± 2.11 28.82 ± 0.35 7.54 ± 0.21 912.67 ± 231.62 51.33 ± 13.02 0.01
office 57.22 ± 1.31 21.01 ± 0.31 5.58 ± 0.15 783.03 ± 7.34 28.33 ± 0.47 0.07

autolab − − − − − 0.00
maze − − − − − 0.00

hospital 74.51 ± 11.21 21.74 ± 3.14 5.33 ± 1.18 555.43 ± 721.71 16.33 ± 23.10 0.00

ν-SVR

min 16

home − − − − − 0.00
gfs b 57.82 ± 0.58 26.35 ± 0.81 8.67 ± 0.52 140.20 ± 3.94 0.00 ± 0.00 0.10
dec 59.14 ± 0.05 39.01 ± 0.98 6.59 ± 0.48 143.03 ± 3.39 0.00 ± 0.00 0.10

domus − − − − − 0.00
citius 55.14 ± 0.78 25.65 ± 0.29 5.90 ± 0.28 258.87 ± 2.23 0.00 ± 0.00 0.12
raid a 58.52 ± 0.29 30.31 ± 0.67 9.36 ± 0.28 208.97 ± 4.84 0.00 ± 0.00 0.09
wsc8a 58.33 ± 0.24 30.09 ± 0.27 10.70 ± 0.38 218.33 ± 1.56 0.00 ± 0.00 0.10

home b 61.26 ± 0.46 27.87 ± 0.50 8.05 ± 0.10 289.40 ± 2.94 1.00 ± 0.00 0.07
raid b − − − − − 0.00
rooms − − − − − 0.00
flower 58.66 ± 0.11 38.42 ± 0.64 4.76 ± 0.22 257.10 ± 4.64 0.00 ± 0.00 0.10
office 51.37 ± 0.47 23.92 ± 0.40 7.67 ± 0.10 582.23 ± 5.47 0.00 ± 0.00 0.21

autolab 54.18 ± 0.25 28.04 ± 0.22 6.38 ± 0.19 522.07 ± 3.83 0.67 ± 0.47 0.10
maze 61.07 ± 0.70 32.60 ± 1.02 3.06 ± 0.17 675.67 ± 63.68 1.00 ± 0.82 0.04

hospital 53.42 ± 0.36 25.42 ± 0.08 6.58 ± 0.21 3833.90 ± 13.48 6.67 ± 1.70 0.06

sample 16

home − − − − − 0.00
gfs b 57.63 ± 0.24 27.77 ± 0.64 8.21 ± 0.62 132.20 ± 3.00 0.00 ± 0.00 0.10
dec 57.31 ± 0.03 39.00 ± 0.29 5.72 ± 0.10 142.47 ± 0.66 0.00 ± 0.00 0.12

domus − − − − − 0.00
citius 55.31 ± 0.82 29.69 ± 0.58 6.28 ± 0.24 221.00 ± 3.99 0.00 ± 0.00 0.13
raid a 56.89 ± 0.09 31.38 ± 0.20 8.37 ± 0.35 201.27 ± 0.59 0.00 ± 0.00 0.11
wsc8a 56.27 ± 0.03 32.09 ± 0.21 9.37 ± 0.31 203.50 ± 1.84 0.00 ± 0.00 0.12

home b 60.62 ± 0.70 29.24 ± 0.06 8.27 ± 0.09 275.70 ± 6.91 0.33 ± 0.47 0.06
raid b 57.54 ± 1.24 36.64 ± 0.70 6.25 ± 0.44 273.67 ± 9.39 12.33 ± 1.25 0.05
rooms 57.95 ± 0.49 34.88 ± 0.26 6.37 ± 0.26 233.53 ± 0.12 0.00 ± 0.00 0.10
flower 56.64 ± 0.14 40.23 ± 0.13 5.16 ± 0.06 244.13 ± 1.13 0.00 ± 0.00 0.13
office 51.34 ± 0.13 26.54 ± 0.11 7.65 ± 0.16 522.00 ± 3.41 0.00 ± 0.00 0.22

autolab 53.26 ± 0.17 31.50 ± 0.38 6.19 ± 0.04 462.23 ± 3.94 0.00 ± 0.00 0.17
maze − − − − − 0.00

hospital 52.54 ± 0.13 28.57 ± 0.15 6.71 ± 0.19 3359.17 ± 13.58 0.00 ± 0.00 0.18

15



Table 9: Average results (x ± σ) for all simulated environments
Alg. Prepr. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) # Blockades quality

IQFRL − 55.36 ± 2.57 28.34 ± 3.60 6.10 ± 1.04 0.00 ± 0.00 0.14 ± 0.05

MOGUL
min 16 54.42 ± 1.99 30.30 ± 4.13 5.54 ± 1.05 40.33 ± 73.78 0.05 ± 0.02

sample 16 55.10 ± 2.83 31.02 ± 5.76 6.07 ± 1.39 6.42 ± 15.78 0.08 ± 0.03

MPNN
min 16 56.86 ± 1.87 29.59 ± 5.09 6.05 ± 1.76 39.39 ± 55.37 0.03 ± 0.03

sample 16 67.30 ± 7.88 23.69 ± 4.99 6.64 ± 0.76 17.79 ± 18.12 0.02 ± 0.03

ν-SVR
min 16 57.17 ± 3.05 29.79 ± 4.83 7.07 ± 2.05 0.85 ± 1.88 0.07 ± 0.06

sample 16 56.11 ± 2.49 32.29 ± 4.27 7.05 ± 1.23 1.05 ± 3.40 0.10 ± 0.06

Table 10: Average results (x ± σ) of IQFRL for the real environments
Env. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) Time(s) # Blockades quality

real env 1 54.13 ± 2.59 19.86 ± 1.52 1.36 ± 0.21 100.70 0.00 ± 0.00 0.13
real env 2 59.29 ± 2.74 21.94 ± 1.43 1.72 ± 2.50 118.50 0.00 ± 0.00 0.08

Table 12: Average results (x ± σ) of IQFRL and several approaches with preprocessing based on expert knowledge [15]
Alg. Env. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) Time(s) # Blockades quality

IQFRL

wsc8a 56.96 ± 1.00 27.45 ± 0.84 7.70 ± 0.33 233.10 ± 5.28 0.00 ± 0.00 0.11
rooms 57.38 ± 0.34 30.97 ± 0.34 6.38 ± 0.43 261.93 ± 4.60 0.00 ± 0.00 0.10
autolab 52.91 ± 0.20 28.75 ± 0.31 5.57 ± 0.48 499.33 ± 9.74 0.00 ± 0.00 0.17
office 51.37 ± 0.57 24.20 ± 0.18 6.65 ± 0.25 578.27 ± 2.92 0.00 ± 0.00 0.21

hospital 51.09 ± 0.19 26.68 ± 0.10 6.18 ± 0.35 3608.07 ± 21.72 0.00 ± 0.00 0.23

COR

wsc8a 53.20 ± 1.33 39.86 ± 0.71 5.67 ± 0.83 174.98 ± 1.79 0.00 ± 0.00 0.17
rooms 46.80 ± 0.59 37.82 ± 0.41 6.76 ± 0.31 227.16 ± 1.03 0.00 ± 0.00 0.16
autolab 56.88 ± 0.91 25.69 ± 0.79 10.79 ± 0.21 587.96 ± 39.72 0.00 ± 0.00 0.09
office 55.97 ± 1.65 32.48 ± 0.90 4.06 ± 0.28 457.58 ± 15.00 0.00 ± 0.00 0.11

hospital 54.12 ± 0.92 35.63 ± 0.77 6.95 ± 0.28 2864.92 ± 45.27 0.00 ± 0.00 0.14

WCOR

wsc8a 52.79 ± 1.36 36.98 ± 1.85 7.37 ± 0.62 187.90 ± 9.78 0.00 ± 0.00 0.17
rooms 51.17 ± 0.77 37.19 ± 0.27 9.15 ± 0.24 234.04 ± 2.70 0.00 ± 0.00 0.23
autolab 52.97 ± 1.10 33.47 ± 0.89 7.12 ± 0.52 455.98 ± 41.60 0.00 ± 0.00 0.16
office 54.59 ± 1.10 33.13 ± 0.97 6.76 ± 0.53 448.16 ± 10.36 0.00 ± 0.00 0.13

hospital 55.26 ± 1.01 33.71 ± 0.14 6.52 ± 0.12 3073.98 ± 23.63 0.00 ± 0.00 0.12

HSWLR

wsc8a 51.42 ± 0.78 30.46 ± 1.01 3.36 ± 0.13 222.34 ± 6.09 0.00 ± 0.00 0.19
rooms 50.09 ± 0.88 28.71 ± 0.29 3.04 ± 0.20 290.70 ± 3.66 0.00 ± 0.00 0.24
autolab 51.50 ± 0.34 23.50 ± 0.97 3.05 ± 0.14 618.40 ± 20.98 0.00 ± 0.00 0.17
office 53.43 ± 1.22 24.69 ± 0.66 3.73 ± 0.11 594.74 ± 13.16 0.00 ± 0.00 0.13

hospital 54.60 ± 1.65 25.07 ± 0.49 3.89 ± 0.06 4209.68 ± 166.14 0.00 ± 0.00 0.12

TSK

wsc8a 51.43 ± 1.36 37.54 ± 1.53 5.20 ± 0.50 182.54 ± 8.35 0.00 ± 0.00 0.22
rooms 49.07 ± 1.08 37.05 ± 0.82 4.96 ± 0.21 227.58 ± 4.46 0.00 ± 0.00 0.24
autolab 51.87 ± 2.99 33.05 ± 1.33 4.61 ± 0.11 465.56 ± 15.33 0.00 ± 0.00 0.19
office 53.75 ± 0.97 34.26 ± 0.65 5.24 ± 0.22 432.38 ± 10.48 0.00 ± 0.00 0.14

hospital 54.50 ± 1.49 34.31 ± 0.32 5.01 ± 0.11 3053.74 ± 123.72 0.00 ± 0.00 0.13

IF
d(h) is A5, 1

d in 50 percent of A4, 1
b

THEN
vlin is A1

vlin and
vang is A19

vang

Figure 19: A typical rule learned by IQFRL. A5, 1
d indicates a low distance and

A4, 1
b indicates the frontal and right sectors.

algorithm, therefore for each output, different rule bases were
learned. Moreover, table 14 shows the complexity of the
learned rules in terms of mean and standard deviation of
the number of propositions and granularities for each input

variable.

The IQFRL approach is able to learn knowledge bases with
a much lower number of rules than MOGUL, even though it
is learning both outputs at the same time. The learning of
QFRs results in a low number of propositions per rule, thus
demonstrating its generalization ability, in spite of the huge
input space dimensionality. Moreover, the granularities of each
of the input variables are, in general, also low. Therefore, the
learned knowledge bases show a low complexity without losing
accuracy.
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Table 13: Number of rules learned
Alg. Preproc. Output #Rstraight #Rconvex #Rconcave

IQFRL − Both 108.00 ± 18.88 47.80 ± 16.09 40.40 ± 10.65

MOGUL

min 16 vlin 548.60 ± 25.60 308.20 ± 12.12 680.20 ± 24.43
vang 547.00 ± 16.37 302.80 ± 21.57 712.40 ± 23.79

sample 16 vlin 507.80 ± 29.88 268.20 ± 12.66 664.80 ± 8.52
vang 530.20 ± 26.48 252.80 ± 8.28 709.80 ± 34.19

Table 14: Complexity of the rules
Alg. Preproc. Dataset Output Propositions gd gb gv

IQFRL −

Straight
Both

2.74 ± 0.94 7.02 ± 10.52 5.98 ± 5.62 6.21 ± 1.53
Convex 2.68 ± 0.69 15.37 ± 23.59 11.22 ± 8.50 6.55 ± 1.03
Concave 2.78 ± 1.18 3.80 ± 1.79 7.07 ± 6.86 6.16 ± 1.42

MOGUL

min 16

Straight
vlin 17.00 ± 0.00 24.35 ± 109.80 16.00 ± 0.00 39.44 ± 137.45
vang 17.00 ± 0.00 24.49 ± 107.66 16.00 ± 0.00 35.19 ± 117.75

Convex
vlin 17.00 ± 0.00 32.34 ± 125.75 16.00 ± 0.00 51.68 ± 172.27
vang 17.00 ± 0.00 38.99 ± 144.86 16.00 ± 0.00 45.07 ± 146.38

Concave
vlin 17.00 ± 0.00 22.93 ± 100.76 16.00 ± 0.00 32.79 ± 106.77
vang 17.00 ± 0.00 23.35 ± 103.39 16.00 ± 0.00 37.56 ± 122.75

sample 16

Straight
vlin 17.00 ± 0.00 26.23 ± 117.41 16.00 ± 0.00 33.98 ± 108.16
vang 17.00 ± 0.00 26.25 ± 116.18 16.00 ± 0.00 37.60 ± 126.86

Convex
vlin 17.00 ± 0.00 25.68 ± 103.29 16.00 ± 0.00 49.61 ± 160.18
vang 17.00 ± 0.00 31.06 ± 119.50 16.00 ± 0.00 46.56 ± 151.27

Concave
vlin 17.00 ± 0.00 23.50 ± 105.79 16.00 ± 0.00 33.62 ± 112.09
vang 17.00 ± 0.00 23.95 ± 106.27 16.00 ± 0.00 34.63 ± 121.52

6. Real World Applications

Two of the most used behaviors in mobile robotics are path
and object tracking. In recent years several real applications
of these behaviors have been described in the literature in
different realms. For instance, in [37], a tour-guide robot that
can either follow a predefined route or a tour-guide person was
shown. With a similar goal, an intelligent hospital service robot
was presented in [38]. In this case, the robot can improve
the services provided in the hospital through autonomous
navigation based on following a path. More recently, in
[39] a team of robots that cooperate in a building developing
maintenance and surveillance tasks was presented.

More dynamic environments were described in [40, 41],
where the robot had to operate in buildings and populated urban
areas. These environments introduce numerous challenges to
autonomous mobile robots as they are highly complex. Finally,
in [42] the authors presented a motion planner that was able
to generate paths taking into account the uncertainty due to
controls and measurements.

In these and other real applications, the robot has to deal
with static and moving objects, including the presence of people
surrounding the robot, etc. All these difficulties make necessary
the combination of behaviors to perform tasks like path or
people tracking in real environments. In order to implement
these tasks in a safe way, the robot must be endowed with the
ability to avoid collisions with all the objects in the environment
while implementing the tasks. These behaviors are challenging
tasks that allow us to show the performance of the IQFRL-based
approach in realistic conditions. The following behaviors are
considered in this section, in order of increasing complexity:

1. Path tracking with obstacles avoidance. In this behavior,
the mobile robot must follow a path with obstacles in it.
A typical application of this behavior is a tour-guide robot
that has to follow a predefined tour in a museum. Although
in the initial path there were no obstacles in the trajectory,
the modification of the environment with new exhibitors
and the presence of people make it necessary that the
robot modify the predefined route, avoiding the collision
with the obstacles and returning to the predefined path as
quickly as possible.

2. Object tracking with fixed obstacles avoidance. In this
case, the robot has to follow the path of a moving object
while being at a reference distance to the object. For
instance, a tour-guide person being followed by a robot
with extended information on a screen. If the followed
object comes too close to an obstacle, the robot must avoid
the collision while maintaining the tracking behavior.

3. Object tracking with moving obstacle avoidance. This
behavior is a modification of the previous one, and
presents a more difficult problem. In addition to the
fixed obstacles avoidance, the robot has to track an object
while preventing collisions with moving obstacles that are
crossing between the robot and the tracked object. These
moving obstacles can be persons walking around or even
other mobile robots doing their own behaviors.

In order to perform these behaviors, a fusion of two different
controllers has been developed. On one hand, a tracking
controller [43] was used in order to follow the path or the
moving object. On the other hand, the wall-following controller
learned with the IQFRL algorithm was used as the collision
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avoidance behavior. Section 5.3 showed that this controller is
robust and operates safely while performing the task. There
were no blockades during the behavior in all the tests, neither
from collisions nor from other reasons. The way in which
the wall-following behavior is used in order to avoid collisions
is: given an obstacle that is too close to the robot, it can be
surrounded following the border of this obstacle in order to
avoid a collision with it. The controller described in this paper
follows the wall on its right, while for this task, the obstacle
can be on both sides. This can easily be solved by a simple
permutation of the laser beams depending on which side the
obstacle is detected.

The wall-following behavior is only executed when the robot
is too close to an object —a value of 0.4 m has been used as
threshold. The objective of the controller is to drive the robot to
a state in which there is no danger of collision —a value of 0.5
m has been established as a safe distance. As long as the robot
is in a safe state the tracking behavior is resumed. This behavior
controls the linear and angular velocities of the robot in order to
place it at an objective point in every control cycle. This point
is defined using the desired distance between the robot and the
moving object. The tracking controller uses four different input
variables:

• The distance between the robot and the objective point:

d =

√
(xr − xob j)2 + (yr − yob j)2

dre f
(19)

where (xr, yr) are the coordinates of the robot, (xob j, yob j)
are the coordinates of the objective point and dre f is the
reference distance between the robot and the objective
point.

• The deviation of the robot with respect to the objective
point:

dev = arctan
(

yob j − yr

xob j − xr

)
− θr (20)

where θr is the angle of the robot. A negative value of the
deviation indicates that the robot is moving in a direction
to the left of the objective point, while a positive value
means that it is moving to the right.

• The difference of velocity between the robot and the
objective point:

∆v =
vr − vm

vmax
(21)

where vr, vm and vmax are the linear velocities of the robot,
the moving object, and the maximum velocity attainable
by the robot.

• The difference in angle between the object and the robot:

∆θ = θm − θr (22)

where θm is the angle of the moving object.

The reference distance (dre f ) is different depending on the
type of behavior. For the path tracking behavior, there is no
moving object tracking and, therefore, the robot follows the
path with dre f = 0 in order to do a perfect path tracking. In
the other two behaviors the robot follows a moving object, so it
is necessary to keep a safe distance —a value of dre f = 0.5 m
was used in the experiments shown in this section.

The three behaviors have been validated in two different
environments (M1 and Domus) which try to reproduce the plant
of a museum (Fig. 20). Figs. 20(a) and 20(b) show the
path tracking with obstacles avoidance behavior. The orange
(medium grey) path represents the trajectory that has to be
followed by the robot. This path also includes information
of the velocity that the robot should have at each point. The
higher the concentration of marks, the lower the linear velocity
in that point of the path. Moreover, the path was generated
without obstacles and, once the obstacles were added to the
environment, the robot was placed at the beginning of the
path in order to track it. The cyan (light grey) path indicates
the trajectory implemented by the robot using the proposed
combination of controllers (wall-following and tracking). It can
be seen that the robot avoids successfully all the obstacles in its
path, i.e., the wall following behavior deviates the robot from
the predefined path when an obstacle generates a possibility of
collision. When the robot overcomes the obstacle, it returns to
the predefined path as quickly as possible.

In the case of the moving object tracking with fixed
obstacles avoidance behavior (Figs. 20(c) and 20(d)), the cyan
(light grey) line represents the path of the robot due to the
combination of the controllers. Also, the orange (medium grey)
path shows the trajectory of the moving object tracked by the
robot. In this behavior, the moving object goes too close to
some obstacles in several situations, forcing the controller to
execute the wall following behavior in order to avoid collisions.
Moreover, the wall-following controller is also executed when
the moving object turns the corners very close to the obstacles,
at a distance that is unsafe for the robot.

The last and most complex behavior is moving object
tracking with moving obstacle avoidance (Figs. 20(e) and
20(f)). The cyan (light grey) path shows, once again, the path
followed by the robot when it tracks the moving object (orange /

medium grey path) while avoiding static and moving obstacles.
Also, the path followed by the moving obstacle that should
be avoided by the robot is shown in blue (dark grey). The
arrows along the path indicate the places in which the obstacle
interferes with the robot. This behavior shows the ability of the
controller learned with the IQFRL algorithm to avoid collisions,
even when the moving obstacle tries to force the robot to fail:
the controller can detect the situation and perform the task
safely, avoiding collisions.

7. Conclusions

This paper describes a new algorithm which is able to
learn controllers with embedded preprocessing for mobile
robotics. The transformation of the low-level variables into
high-level variables is done through the use of Quantified
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(a) Path tracking with obstacles avoidance in M1.

(b) Path tracking with obstacles avoidance in Domus.

(c) Object tracking with fixed obstacles avoidance
in M1.

(d) Object tracking with fixed obstacles avoidance in Domus.

(e) Object tracking with moving obstacle
avoidance in M1.

(f) Object tracking with moving obstacle avoidance in Domus.

Figure 20: Experiments on real applications. Colors code: 1) Original path to be tracked in orange (medium grey); 2) Robot path in cyan (light grey); 3) Moving
obstacle path in blue (dark grey). The arrows along the path in Figs. 20(e) and 20(f) indicate the places in which the moving obstacle interferes with the robot.

Fuzzy Propositions and Rules. Furthermore, the algorithm
involves linguistic labels defined by multiple granularity
without limiting the granularity levels. The algorithm was
extensively tested with the wall-following behavior both in
several simulated environments and on a Pioneer 3-AT robot in
two real environments. The results were compared with some
of the most well-known algorithms for learning controllers in
mobile robotics. Non-parametric significance tests have been

performed, showing a very good and a statistically significant
performance of the IQFRL approach.
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Appendix A. IQFRL for Classification (IQFRL-C)

This section describes the modifications that are necessary to
accomplish for adapting the IQFRL algorithm for classification
problems.

Appendix A.1. Examples and Grammar

The structure of the examples used for classification is very
similar to the one described in expression 4:

el = (d (1) , . . . , d (Nb) , velocity, class) (A.1)

where class represents the class of the example.
Furthermore, the consequent production (production 3) of the

grammar (Fig. 4) must be modified to:

3. consequent −→ Fc

where Fc is the linguistic label of the class. The output variable
(class) has a granularity g#class

c .

Appendix A.2. Initialization

The consequent of the rules is initialized as Fc = Aγ
c where

γ is the class that represents the example. Only those examples
whose class is different from the default class (A f

c ) are used in
the initialization of a new individual.

Appendix A.3. Evaluation

For each individual (rule) of the population, the following
values are calculated:

• True positives (tp):

– #tp =
∣∣∣∣{el : Cl = C j ∧ DOF j

(
el
)
> 0

}∣∣∣∣, where Cl

is the class of example el, C j is the class in the
consequent of the j-th rule, and DOF j

(
el
)

is the DOF
of the j-th rule for the example el. #tp represents
the number of examples that have been correctly
classified by the rule.

– tpd =
∑

l DOF j

(
el
)

: Cl = C j, i.e., the sum of the
DOFs of the examples contributing to #tp.

– tp = #tp + tpd/#tp

• False positives (fp):

– #fp =
∣∣∣∣{el : Cl , C j ∧ DOF j

(
el
)
> 0

}∣∣∣∣: number of
patterns that have been classified by the rule but
belong to a different class.

– fpd =
∑

l DOF j

(
el
)

: Cl , C j, i.e., the sum of the
DOFs of the patterns that contribute to #fp.

– fp = #fp + fpd/#fp

• False negatives (fn):

– #fn = nC j
ex − #tp, where nC j

ex =
∣∣∣∣{el : Cl = C j

}∣∣∣∣. #fn is
the number of examples that have not been classified
by the rule but belong to the class in the consequent
of the rule.

The values of tp and fp take into account not only the number
of examples that are correctly/incorrectly classified, but also the
degree of fulfillment of the rule for each of the examples. In
case that tpd ≈ 0, then tp ≈ #tp, while if it is high (tpd ≈ #tp)
then tp ≈ #tp + 1. Taking into account these definitions, the
accuracy of an individual of the population can be described as:

confidence =
1

10fp (A.2)

while the ability of generalization of a rule is calculated as:

support =
tp

tp + #fn
(A.3)

Finally, fitness is defined as the combination of both values:

fitness = confidence · support (A.4)

which represents the strength of an individual.

Appendix A.4. Mutation

For classification, the probability that an example matches
the output associated to a rule (Eq. 7) is binary. Therefore, in
order to select the example (esel) that is going to be used for
mutation, the following criteria is used:

• For generalization, the probability for an example el to be
selected is:

P(el = esel) = 1 −

∑
j DOF j

(
el
)
· confidence j∑

j DOF j
(
el) (A.5)

where confidence j is the confidence (Eq. A.2) of the j-th
individual. This probability measures the accuracy with
which the individuals of the population cover the example
el.
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Table A.15: Number of rules learned for dataset by IQFRL-C
#Rstraight #Rconvex #Rconcave

− 21.20 ± 4.35 10.00 ± 1.41

Table A.16: Complexity of the rules learned by IQFRL-C
Propositions gd gb gv

2.67 ± 0.90 7.58 ± 12.65 8.41 ± 8.49 5.83 ± 1.65

Table A.17: Confusion matrix for the classifier
Actual/Predicted Straight Convex Concave

Straight 30.85 2.40 0.23
Convex 0.70 30.97 0.00
Concave 0.23 0.06 34.55

Accuracy = 0.96
Cohen’s κ = 0.94

• For specialization, the mutated individual uncovers the
example esel. The probability to select el for specialization
is calculated as follow:

P(el = esel) = 1 − DOF j

(
el
)

(A.6)

Finally, the consequent is mutated considering the class of
the examples covered by the individual. Thus, the probability
that the consequent of the individual j change to the class Cγ is
defined as:

P
(

j | Cγ

)
=

∑
l DOF j

(
el
)

: Cl = Cγ∑
l DOF j

(
el) (A.7)

Appendix A.5. Performance
The parameters used for IQFRL-C are the same as for

regression (Sec. 5.2). Moreover, the default class is straight
wall. Tables A.15 and A.16 show the number of rules learned
by the classification method IQFRL-C and the complexity of
the rules learned in terms of mean and standard deviation of
the number of propositions and granularities for each input
variable. The number of rules for each situation is very low,
resulting in very interpretable knowledge bases. Furthermore,
the complexity of the rules is also low, as the number of
propositions and granularities learned show that the rules are
very general.

Table A.17 shows the confusion matrix for the learned
classifier. The matrix was obtained as the average of a 5-fold
cross-validation over the sets. Moreover, the performance of
the classifier was analyzed with the accuracy and the Cohen’s
κ [44]. Both measures are very close to 1, showing the high
performance of the classifier obtained with IQFRL-C.
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