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Abstract: This paper presents techniques for GPS based autonomous navigation of heavy

vehicles at high speed. The control system has two main functions: vehicle position

estimation and generation of the steering commands for the vehicle to follow a given path

autonomously. Position estimation is based on fusion of measurements from a carrier-phase

differential GPS system and odometric sensors using fuzzy logic. A Takagi-Sugeno fuzzy

controller is used for steering commands generation, to cope with different road geometry

and vehicle velocity. The presented system has been implemented in a 13 tons truck, and

fully tested in very demanding conditions, i.e. high velocity and large curvature variations in

paved and unpaved roads.

Keywords: autonomous vehicles; navigation; heavy vehicles; fuzzy control; Differential

GPS; sensor data fusion.

1. Introduction

Autonomous guidance of ground vehicles has been an active research and development topic

in the last 30 years. For example, several systems have been implemented in experimental

outdoor autonomous vehicles such as the Navlab family at Carnegie Mellon University [1],

the ARGO autonomous vehicle [2], the ROMEO vehicles [3]. The interest in autonomous

vehicles’ technologies has grown specially in the US, where DARPA has organized the Grand

Challenges and the Urban Challenge from 2004 to 2007 [4][5], which remarkably promoted

the technologies of intelligent vehicles around the world. Reference [6] presents the main

autonomous vehicles developed in the last years in the US. Other remarkable examples in the

last years are the VisLab autonomous vehicles [7][8]. Most of these vehicles are the result of

the adaptation of conventional cars or vans. However, the number of references presenting

experimental results with autonomous heavy vehicles, such as trucks, is lower.

Interest in heavy vehicle autonomous guidance has grown from the nineties in the framework

of the initiatives on intelligent transportation systems (ITS) and automated highway systems

(AHS). Published results on autonomous heavy vehicles come mainly from the California

PATH program [9][10][11] and University of Minnesota’s SAFETRUCK [12][13][14]. Other
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work on autonomous heavy vehicles has been done with TERRAMAX [15][16], designed for

off-road navigation, and by Isuzu Motors in Japan [17]. Recently, special attention has been

devoted to vehicle platooning or semi-autonomous “road trains” [18], composed by a leader

vehicle with a human driver with one or several autonomous vehicles following it closely, for

its potential in fuel and emissions savings and increase of road capacity. The SARTRE

European Project has made a road demonstration of a platoon with a leader truck and several

vehicles following it [19][20]. Tests with a three truck platoon have been performed within the

Energy ITS Project in Japan [21][22]. Other examples include the German KONVOI project

which analyzes the implications of truck platoons in autobahns [23] and the Swedish research

program on Intelligent Vehicles [24].

Many of these autonomous vehicle researches have been done at medium or low speeds. High

speed navigation of autonomous vehicles is still a challenging application due to the

requirements on reliability and safety.

The choice of the sensors used for position estimation in autonomous navigation may have

important practical requirements. Some sensors require auxiliary guidance mechanisms in or

around the field of interest [25], as is the case with most of PATH program work [13], which

uses magnetic markers buried in the road. The work in [17] also uses magnetic markers, but it

stores a “map” of the markers for preview control.

This paper deals with GPS based autonomous navigation by implementing a sensor data

fusion and path following techniques. 

With the advent of modern GPS receivers, kinematic centimeter-level absolute position

estimation and attitude measurements of the vehicle are available using carrier-phase

Differential Global Positioning System (DGPS) with position accuracy up to few centimeters.

Carrier-phase DGPS techniques are being used for straight line tracking and heading control

of golf carts and farm vehicles at low velocities [25], and adapted to conventional cars [26].

The TerraMax autonomous heavy vehicle [15] uses 3 different DGPS receivers for improved

reliability. However, the use of GPS receivers requires operation environments with good sky

visibility. Furthermore, in practical implementations, also arise other sources of errors like

communication loss of differential correction messages, output variable latency and receiver

errors [13]. Some of them can be detected taking into account the vehicle dynamics, using

model-based fault detection and identification techniques, as is described in [14], and in [27]

for an aerial vehicle. It has been also recognized that sensor data fusion can improve

significantly the reliability of position estimation. Sensor data fusion for vehicle position

estimation can be solved by means of statistical approaches, such as Kalman filtering (see, for

example, [28]). These techniques require a stochastic state-space representation of the vehicle

model and of the measurement process. A kinematic model of the vehicle and knowledge of

measuring equipment are typically used to derive the state-space representation, although for

nonlinear systems an Extended Kalman Filter formulation is needed. However, a main

drawback of Kalman filtering is that sensor noise is modelled as white noise. Although this

can be accurate for several sensors, it is clearly not true for DGPS. Moreover, the

implementation of Kalman Filtering requires estimations of the measurement covariance

matrix, which can be obtained from the technical characteristics of the sensor equipment, and
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the process covariance matrix, that represents the model inaccuracies, which is much more

difficult to obtain. It has been also shown that a poor estimation of input noise statistics may

seriously degrade Kalman filter performance and even cause filter divergence [29]. In this

paper fuzzy logic is applied to position estimation without the need for precise information,

which can be difficult or expensive to obtain.

The path following component of a vehicle controller has the mission of generating the

vehicle’s steering to track a previously defined path, by taking into account the vehicle’s actual

position and orientation and the constraints imposed by the vehicle and its low-level motion

controller. Path following, which is sometimes referred to as “lateral control“ or “path

tracking”, is directly related to the lateral vehicle motion and steering control. Vehicle control

also involves speed control. Both are coupled problems. However, path following has been

usually studied for constant velocity. Thus, the path following algorithm implements a

steering control law by using the error between the current estimated vehicle position/

orientation and the path to follow. The inputs of the path tracker are variables defining the

state of the vehicle with respect to the path, and the output is the steering command to be

executed by the low-level motion controller. Linear control methods have been successfully

applied for vehicle automated steering [30][31]. However, if the linearization conditions are

violated or nonlinearities in the steering mechanism or in the motion sensors exist, the tracking

deteriorates. Nonlinear path following techniques, as Takagi-Sugeno (TS) fuzzy control, have

shown good performance [26]. TS fuzzy systems are a special type of fuzzy systems in which

the consequent part of the rules is not defined by a fuzzy membership function but by affine

linear dynamic systems. A TS fuzzy model will approximate a nonlinear system by smoothly

interpolating these affine local models. Fuzzy control can also be used to integrate the driving

knowledge acquired in the form of if-then rules from an experienced driver, and TS driving

control laws directly extracted from sensor data recorded while the vehicle is operated by a

human driver [32]. Furthermore, design techniques that guarantee stability based on Lyapunov

functions and other methods can be also applied [33-37].

Most path following methods have parameters related to the selection of a goal point, or a

particular segment of the path to follow, which are required to compute the signal error in the

path following loop. This has been integrated with path tracking through the concept of

preview control. TS fuzzy logic also provides an efficient framework for integrating this

parameter adaptation in the steering controller [38] and could be also implemented to tune

automatically the parameters according to the current navigation conditions. This paper

presents a Takagi-Sugeno fuzzy path following controller for heavy vehicles at high speeds,

including fuzzy sensor data fusion for vehicle position estimation. 

The remaining of the paper is organized as follows. Section 2 introduces the main

characteristics of GPS-based path following. In section 3 the Takagi-Sugeno fuzzy path

following strategy is presented. Section 4 describes the experiments carried out with a 13 Tons

truck. Finally section 5 presents the Conclusions.
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2. GPS based path following

2.1.  Position estimation
GPS receivers provide low-frequency position information which is clearly insufficient to

control a vehicle at high velocities. It is necessary to use additional high-frequency sensors to

improve the performance and integrity of GPS navigation systems. A position estimation

algorithm should use low-frequency sensor information for correcting low-frequency drift

error in high frequency sensors and should use high frequency sensor information to

decorrelate the errors in low-frequency sensors. Kalman filtering is one of the most widely

used sensor data fusion technique in autonomous navigation.

This paper proposes the application of fuzzy sensor data fusion to consider the heuristic

knowledge involved in the estimation problem. This technique is based on the use of a fuzzy

system for the on-line fusion of the measurements from a tachometer, a gyroscope and a

carrier-phase DGPS receiver. The proposed fuzzy position estimation system initially showed

similar performance to the Extended Kalman filter in experimental tests, but the fuzzy position

estimation was much more flexible and easily tuned than the Kalman filter. This flexibility

comes from the fact that a human designer can easily understand what each rule does and it is

much easier to tune them to match experimental results. 

The fuzzy position estimation system uses the data from the available sensors to obtain an

estimation of the position and orientation of the truck in real time. The DGPS receiver

provides data on latitude and longitude of the receiver antenna, which is then converted to

UTM (Universal Transverse Mercator) coordinates. On the other hand, the gyroscope provides

an estimation of the angular velocity of the vehicle, and the tachometer sensor readings are

converted to linear velocity of the vehicle. With these measurements it is possible to obtain an

incremental estimation of the position and orientation of the vehicle using the kinematic

model.

At a first approximation and for short distances, the truck can be considered to move on a

plane, and a simplified 2D model can be used. For navigation in 2D, the position and

orientation of the vehicle is given by (x, y, ) (see Figure 1), where x and y are the vehicle’s

cartesian coordinates, is the orientation angle, and (v, ) are the linear and angular velocities

of the truck, respectively.


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Figure 1  Vehicle kinematics

Then, the kinematic model is given by the following differential equations [3]:

(1)

If the differential equations (1) are discretized using the Euler method, the following

expressions are obtained for the position and heading at instant k+1: 

(2)

where x(k) and y(k) are the absolute vehicle position in UTM coordinates, (k) is the

orientation at time k, v(k) is the vehicle velocity,  is the yaw rate, and T is the sampling

period. This method is usually known as dead reckoning (DR) or odometry. It has a high

performance for short distances and can be computed very quickly, but the growth of position

uncertainty is unbounded since it is an incremental method.

At last there are two independent estimations. The GPS estimation is a very accurate, absolute

position estimation, but the sampling frequency is low, 5-10 Hz at most. Furthermore, in some

situations the estimations can be degraded due to satellite loss or other factors (i.e. in urban

canyons). Luckily most receivers provide an indicator of the accuracy of the estimation (i.e.

meter, submeter, centimeter), which can be used in the position estimation algorithms. In some

cases the GPS receiver may provide one or a group of few outlier points that are far from the

previous estimations. These outlier points are not compatible with the vehicle kinematics, and

can be detected comparing them with the DR estimations.

On the other hand, the DR estimation is relative, it is very fast (up to 200 Hz or more) and it is

very accurate for short distances. However, for larger periods the errors accumulate and grow

unboundly, and then a good indicator of its accuracy is the distance from the last absolute

correction.

The fuzzy position estimation uses the complementary characteristics of both to obtain an
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estimation. The fuzzy system can be split up into two subsystems [40], a position fuzzy system

and an orientation fuzzy system (see Figure 2). 

Figure 2  Sensor data fusion block diagram

Then, the position is computed by means of:
Position = pos_GPS_factor * GPS_position + (1 - pos_GPS_factor) * DR_position

where DR_position is the vehicle position computed using dead reckoning, and

pos_GPS_factor is the position fuzzy system output, which gives the confidence in the

sensors. This factor should be very close to 1.0 most of the time, as shown from statistics

obtained in tests (GPS receiver position error less than 2 cm with 95% probability), and it

should be close to 0.0 when the GPS measurement is too far from the DR estimation,

assuming DR estimation uncertainty is low for short intervals. Although this assumption is

true most of the time, it could fail due to loss of GPS measurements. The fuzzy sensor data

fusion method takes it into account.

The position fuzzy system inputs are the level of accuracy (meter, submeter, centimeter)

provided by the DGPS receiver, the distance travelled by the vehicle in the DR estimation

since last GPS update, and the position error between the DR estimation and the GPS position.

The rules are as:
IF accuracy IS high AND pos_error IS low THEN pos_GPS_factor IS high

where the membership functions of the inputs and the output are defined in Figure 3. A similar

scheme is used in the orientation fuzzy system. 

Figure 3  Membership functions

This fuzzy position and heading estimation system has been implemented and tested in a test

heavy vehicle (which is described in Section 4), with good performance: it is able to achieve

track lateral errors of less than 7 cm in curved paths, and less than 3 cm in straight paths. It is

able to work at high output frequencies (it has been tested at up to 200 Hz).

The position and heading fuzzy estimation system was tuned in the following way. Several

experiments were done in one of the tracks described in section 4 (track A). The “true”
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position and heading were obtained with a human driving the test truck along track A. The

vehicle position and heading were recorded by the onboard computer, and they were

postprocessed first to remove outliers. Then the path was obtained from the data using

principal curves [39], which are curves that pass through the “middle” of the data distribution,

and are self-consistent (i.e., a point on the curve is the average of all data points that project

onto it). 

Then, the output of the fuzzy position and heading estimation system was compared to the

“true” solution; the rules were tuned in the track sections with larger errors. Although there

may be a considerable number of rules, only very few of them are active at a given instant.

Therefore, the candidate rules can be easily selected and, as the rules are self-explanatory, they

can be easily modified to reduce the error. This process is repeated iteratively until the position

and heading error is reduced to a specified level.

2.2.  Path following control loops
The path following controller generates the vehicle´s steering to track a previously defined

path, based on the estimated errors between the current vehicle position and the path to follow.

As shown in Figure 4, the path following vehicle controller has two components, a motion low

level controller and a path following strategy. In this Figure RP is the reference path, e is the

error between actual vehicle position and the path to follow,  is the desired curvature and p is

the actual vehicle position. 

Figure 4  Path following controller architecture

The low level controller commands the steering wheel motor for the vehicle to get the

curvature given by the high level controller. PID motion controllers are usually applied in this

low motion control level, which requires a curvature to steering wheel angle mapping. PID

controllers provides good results in most cases if a satisfactory feedback signal is available. 

The objective of the path following high level controller (or simply path following controller,

as is usually referred to) is to generate control commands for the vehicle to follow a previously

defined path by taking into account the actual position and the constraints imposed by the

vehicle and its low level controller.

Path following is a nonlinear control problem. There are many algorithms that have been used

but there is no general solution that can guarantee robustness when the curvature of the path

varies. Fuzzy logic is a suitable technique to apply to path following strategies defined by

means of rules. The resulting controllers are known as direct fuzzy controllers. The controller

inputs are the variables defining the state of the vehicle with respect to the path. The output of
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the fuzzy controller is the steering command to be executed by the low level motion controller.

Several methods have parameters related to the selection of a goal point on the path to follow.

This goal point is required to compute the signal error in the path following loop. These

parameters are related to the gain of the closed loop system and have a significant effect on the

tracking performance. Thus, oscillations or even instability can arise for some values of the

controller parameters. These instability conditions are related to both the vehicle´s

characteristics and navigation conditions including speed, path to follow and terrain. Usually

these algorithms select a goal point P on the path at a fixed distance from the vehicle that is

called the lookahead distance L, as shown in Figure 5. Using this goal point three values can

be obtained that are the inputs to the path tracker. These inputs are the lateral position error in

vehicle coordinates , the orientation error with respect to the goal point  and the curvature

error with respect to the goal point . The expressions of  and  are:

(3)

where  and  are the orientation and curvature of the path at the goal point. 

Figure 5  Path following.

These algorithms are usually efficient, but a common problem is that the results are critically

dependent on the appropriate tuning of the lookahead distance for the current navigation

conditions. For example, at a given velocity if the lookahead is too long the vehicle may cut

corners and if too short oscillations may arise.

3. TS Fuzzy path following for high speed navigation

In this section, a Takagi-Sugeno (TS) fuzzy path following system for heavy autonomous

vehicles at high speeds is presented. TS fuzzy systems are a special type of fuzzy systems in

which the consequent part of the rules is not defined by a fuzzy membership function but by

affine linear dynamic systems [41]. A TS fuzzy model will approximate a nonlinear system by

smoothly interpolating these affine local models. Each local model contributes to the global

model in a fuzzy subset of the input space.

The TS fuzzy model has recently found wide applicability in fuzzy model based control. From

a control engineering perspective the use of local affine (or local linear) models bridges the

gap between fuzzy control and conventional control. Many existing tools and theories in linear
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systems theory can be partially applied to TS fuzzy models and controllers. Furthermore,

general TS fuzzy systems have been shown to be universal approximators, and they can be

used to effectively model a wide class of nonlinear systems. 

Stability analysis of TS systems also benefit from its internal structure. Sufficient stability

conditions for this class of systems rely on the existence of a common quadratic Lyapunov

function [33] or a piecewise-quadratic (PWQ) Lyapunov function for less conservative

stability conditions [34]. The search for the Lyapunov function can be stated as a convex

optimization problem in terms of linear matrix inequalities (LMI) for which efficient solving

methods and software exist. Stability conditions for uncertain systems have also been

developed [35]. Other approaches seek to reduce the conservativeness of the stability

conditions obtaining local domains of attraction with fuzzy Lyapunov functions [36].

Alternative stability analysis based on LaSalle theorem has also been proposed [37].

The path following controller for heavy vehicles should fulfill the conditions explained in the

previous section: (i) it should be able to drive the vehicle at a large range of velocities,

following the path without cutting corners and without oscillations; (ii) it should drive the

vehicle through path sections with different curvatures and curvature variations; (iii) the

controller should be able to manage the different dynamic regimes that appear in heavy

vehicle guidance; and (iv), in heavy vehicle autonomous guidance control signals must be

smooth, specially at high velocities; control signals with fast variations can cause oscillations.

A satisfactory path-tracking needs a fast response of the steering system when the vehicle has

to change its curvature to manage a turn. This fast response is necessary because the vehicle’s

curvature set point is continuously updated. If the steering response is slow, the cross track

error will increase in these situations, and then control signals should be strong.

The proposed TS fuzzy controller is an ideal candidate to deal with all these conditions. The

TS fuzzy controller is composed of two sets of rules. One of them make an estimation of the

lookahead distance for each driving conditions, and it is derived from heuristic knowledge

from experienced drivers and vehicle experiments. The second set provide the control input to

the low level controller, and it is derived from input/output data obtained in path following

experiments with a human driver. 

Lookahead distance selection depends on path characteristics (curvature and curvature

change), as have been derived from human driver and prior experiment heuristics. In general,

drivers reported that they used a closer reference point on the path and applied a tight control

when the curvature was changing between straight and curved path segments. Furthermore,

reference points used by drivers where closer in curves than in straight segments. From that,

the idea that has been implemented in the lookahead selector fuzzy set of rules is to increase

the controller gain (decrease lookahead distance, since gain is inversely proportional to the

lookahead distance) when the curvature of the path is changing (typically entering or leaving a

turn) and have a lower gain (higher lookahead distance) when the vehicle must follow a

constant curvature segment (straight or turn). Also, lookahead distance will be larger in

straight segments than in curved segments. A typical lookahead variation can be seen in

Figure 6, for a road composed of a straight section, a curved section and another straight

section. The vehicle moves along a straight path with a lookahead L1; when a goal point is
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detected in a transition area between straight and curved sections of the path, the lookahead is

lowered to L2. Then, the goal point moves to a non-transition curved path segment with a fixed

turning radius, and so, the lookahead is set to L3. When the vehicle reaches the transition area

to leave the turn, a similar operation is performed. 

Figure 6  Typical lookahead variation.

Furthermore, the lookahead distance L depends heavily on the velocity of the vehicle (V). The

analysis in [3] suggests that stability of path tracking algorithms depends on the parameter

 for a given vehicle, and then L should grow close to linearly with V to maintain the

stability conditions. Experimental results in [42] with human drivers at different velocities

report a slightly more than linear growth of the lookahead distance used by the drivers with the

velocity of the vehicle, this is, the ratio  will be larger for larger values of V.

The TS fuzzy controller proposed in this paper analyses the path to track and adjust the

lookahead with path characteristics, vehicle velocity and other driving conditions. The path is

given by a sequence of points with three values each one: an x, y absolute position (in UTM

coordinates) and the turning radius of the path at that point. A given path may be divided in

segments of constant curvature joined by short segments with changing curvature. These

segments with changing curvature will be referred as transition areas, and can be obtained

using the first derivative of the curvature (the inverse of the turning radius) in each point; a

position is marked as transition area if , the derivative of the curvature, exceeds a threshold

(Figure 7). The segments with constant curvature are also subdivided in seven classes, from

straight line to very high turn, using the absolute value of the turning radius (see Figure 7).

The TS fuzzy controller analyses the path from the vehicle’s nearest point to a given horizon;

in this way the estimator obtains the kind of segment in which the vehicle is currently placed

and the kind of segment where the vehicle is approaching; this segment will be called the goal

segment. The information given in this analysis and the velocity are used to estimate the

lookahead. The segmentation of the path, the determination of current segment and goal

segment, and the estimation of the parameter are done in real-time using fuzzy logic.

The inputs are the velocity, the turning radius of the nearest point on the path (nearest turning

radius - NTR), the turning radius of the goal point on the path (goal turning radius - GTR), the

module of the first derivative of the curvature in the nearest point on the path ( ) and the

module of the first derivative of the curvature in the goal point ( ). The NTR and 

inputs are used to determine the kind of segment in which the vehicle is currently located, and
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the GTR and  inputs give the kind of segment the vehicle is approaching. The output, as

previously discussed, is the lookahead distance (L). 

The rules are defined following the reasoning in the previous paragraphs. The dependence of L

with the velocity is expressed directly: L will be larger when V increases. The variation of L

with the type of road segment uses the NTR, , GTR and  inputs. For example, if the

truck is in a straight road segment and the path ahead is also straight the inputs will be:
- NTR IS very-very-high AND  IS low AND GTR IS very-very-high AND  IS

low

But if the truck is in a straight segment and is entering in a transition to a curved segment the

inputs would be:
- NTR IS very-very-high AND  IS high AND GTR IS medium AND  IS high

Including both the inputs related to the velocity and the type of road segment, the complete

rules are such as:

Ri: IF velocity IS high AND NTR IS very-high AND  IS low 

AND GTR IS very-high AND  IS low THEN Li = Ci

The rules have a symmetric structure, so that the same subset of rules can be repeated for

different vehicle velocity values. For example, when velocity is ‘high’, there are 16 different

significant rules, and many of them can be reused for other velocities, thus reducing

considerably the number of rules that need to be defined. The membership functions of the

inputs are defined in Figure 7. The number and values of the membership functions have been

defined from previous experiments, and considering the wide range of road curvature and

vehicle velocity conditions that have to be addressed.

Figure 7  Membership Functions.

The second set of rules are used to generate the control command to the steering system low

level controller. The control strategy depends strongly on the velocity: if the velocity is high,
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proposed Takagi-Sugeno controller are as follows:
Rj: IF  IS positive high AND velocity IS high AND NTR IS very-high 

AND  IS low AND GTR IS very-high AND  IS low 

THEN Rj = K1j  + K2j eK3j e

where K1j, K2j and K3j are constants that define the local linear submodel which is the

consequent of the j-th rule. K1j is the most relevant gain, since the lateral position error is the

more significant error. The values of these gains are obtained from experimental data.

4. Experiments

The fuzzy path following system described in the preceding sections has been implemented in

an autonomous truck. The test vehicle is a 500 CV truck modified for autonomous navigation

(see Figure 8). It weights 13000 Kg. and is 5 meters long.

Figure 8  Autonomous truck used for testing.

A double-frequency GPS antenna and a radio modem antenna have been mounted on the top

of the cab, and an equipment rack has been installed inside the cab. A Sensorex VSG2000

analog gyro has been placed onto the mass center of the truck. Automatic steering is

implemented by using a DC motor that is connected to the steering column through a

reduction gear. This motor is actuated through an Advanced Motion Controls PWM 50A8

servo-amplifier. Analog steering angle is obtained from two potentiometers, one of them

measures the angle between the plane of the left front wheel and the longitudinal axis of the

vehicle, and the other one is attached to the steering column. An Octagon 5066 CPU Card,

placed inside the cab rack performs data collection, position estimation, and control signal

N G
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computations using software written in C++. Hardware configuration can be seen in Figure 9.

Figure 9  Hardware architecture.

The DGPS system used for vehicle position and heading estimation is a double-frequency,

nine-channel Trimble 7400 MSi, with a 5 Hz rate output. The ground reference station consists

of a single-L1/L2 antenna nine channel Trimble 7400 MSi receiver generating RTCM

differential corrections. These data are transmitted at 9600 bits/sec through a Satel radio

modem from the ground reference station. Extensive testing have been done with the test truck

in four tracks of different characteristics, i.e. paved and unpaved roads and different curvature

profiles. The companion VIDEO shows some views of the experimental tests that have been

done with the test truck and the proposed controller (the video views are from tests in tracks A

and B). It is important to mention that most of these experiments have been done in conditions

that are close or exceed legal limits in traffic roads.

Figure 10  Track A. Numbers close to curves indicate turning radius (m)

The tests on the first track (track A) show the performance of the proposed control system at

different velocities and in roads of combined straight sections and curved sections of different

curvature. Track A, which is 2.8 km long asphalt road, can be seen in Figure 10. This track is
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composed of straight segments and segments of low or moderate curvature in its first part

(turning radius of between 115 and 240 m), segments of higher curvature in the second part

(turning radius of between 60 and 80 m) and a final curve with a turning radius of 30 m. Track

A was selected for the experiments because it has segments with very different curvatures and

the velocity of the truck has to change significantly in the different road sections, and thus, it

allows to test the behavior of the controller with curvature and velocity variations.

The velocity of the truck was controlled by a human supervisor for safety reasons. In track A

the goal was to drive the vehicle at 50-60 km/h in the straight and lower curvature sections.

However, in the sections of high curvature (marked ‘A’ and ‘B’ in Figure 10) in the velocity

was reduced to between 25 and 35 km/h for safety. It is important to mention that in the

experiments the human supervisor did not act at all on the driving wheel, since the lateral

control of the vehicle was fully automatic with the proposed fuzzy controller..

Maximum cross track error (distance from the vehicle to the nearest point in the path) for the

test vehicle driving autonomously track A is near 50 cm, which is always in the 30 m turning

radius curve. If this curve is not considered, maximum cross track error in each round is

around 35-40 cm. Standard deviation is 16 cm consistently in all rounds. Table 1 shows the

results of a 5 laps test, in which the vehicle is moving along track A anti clock-wise for 17

minutes with an average speed of 50 km/h. Figure 11 shows the velocity of the test vehicle in

Track A Max. error (cm) Std. dev. (cm)

Full test 49.1 16.08

Lap 1 44.8 16.53

Lap 2 44.5 16.26

Lap 3 46.6 16.54

Lap 4 49.1 15.62

Lap 5 45.4 16.50

Table 1: Results of a 5 laps test run on track A
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these experiments.

Figure 11  Test truck velocity profile of a whole lap in track A. Points marked ‘A’, ‘B’ 

and ‘C’ correspond to the speed at the same points marked in Figure 9.

The lookahead supervisor rules of the controller change the lookahead parameter depending

on the curvature of the path and velocity of the vehicle as explained in Section 3. The real-time

adjustment of the parameter during the test described above may be seen in Figure 12, where

the ripple observed is due to path “discretization”.

Figure 12  Lookahead tuning by the supervisor in a segment of track A. Points marked 

‘A’, ‘B’ and ‘C’ correspond to the speed at the same points marked in Figure 9.

Table 2 shows the inputs of the fuzzy path tracking controller as well as the outputs for three

selected points in track A. The outputs are lookahead distance (L) and the curvature command

(R) sent to the driving wheel actuator of the truck. The inputs of the L fuzzy controller are the

velocity (V), the turning radius of the nearest point on the path (NTR), the turning radius of the

goal point on the path (GTR), the module of the first derivative of the curvature in the nearest

point on the path ( ) and the module of the first derivative of the curvature in the goal point
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( ). The R controller has as additional input the lateral deviation from the path ( ). .

In Point 1 the truck is approaching the 30 m turning radius curve in track A (see Figure 10).

The vehicle is moving at 35.8 km/h speed, it is in a straight segment (NTR=1000, =0.0)

and the goal point is inside a transition area (GTR=142, =0.8). In this case, the output of

the lookahead controller L is decreased to 15.8 m, and the lateral error is low (-0.12 m). In this

situation the control output generated by the curvature fuzzy controller is -0.0112 m-1,

corresponding to approximately 3 degrees in the steering wheels.

In Point 2 the test truck is already inside the turn (NTR = 30,  = 0.0, GTR = 30 and  =

0.0). This case corresponds to a point inside the turn and it will continue in the same turn in the

near future, as GTR and  are the same than NTR and  respectively. The output of the

lookahead controller L is increased to 18.2 m and the curvature control command is increased

to 0.0504 (corresponding to 14 degrees in the steering column), due to the lower velocity (26.2

km/h) and larger lateral error ( = 0.41 m).

Another example is Point 3, which corresponds to the middle point of the straight segment

marked as “C” in Figure 10 (NTR = 1000,  = 0.0, GTR = 1000 and  = 0.0, the truck is

in a straight segment and it will continue in a straight segment in the near future). In this case,

for a 48.1 km/h speed an output lookahead L = 27.2 is obtained. Even though the speed is not

far from the case shown for Point 1, the lookahead value is nearly doubled. This is due to the

fact that in Point 1 the vehicle is approaching a turn, while in this case the truck is on a

completely straight segment. The curvature command output is lower (-0.0112 vs 0.0074 m-1)

due to the fact that the controller is smoother as speed increases. If this example is compared

with Point 2, the lookahead L is lower (18.2 vs. 27.2 m) for lower speed (26.1 vs. 48.1 km/h)

and lower turning radius (30 vs. 1000 m).

Straight line-tracking tests at high speed (80-100 km/h) have been made in track B, which is a

unpaved road composed of straight sections and sections of large turning radius (between 600

and 750 m), which can be considered as a long straight road. Figure 13 shows the speed record

of one of these tests in a 2 km long section of track B. The maximum cross-track error on the

straight segments was 28 cm. and the standard deviation was 10 cm (see Figure 13).

The maximum cross-track error on the straight segments was 28 cm. and the standard

deviation was 10 cm (see Figure 13). Several tests to verify the performance of the proposed

control system have been done also in tracks C and D, shown in Figure 14. Tracks C and D are

unpaved roads, and they are composed of sections of different turning radius connected with

straight sections. Minimum turning radius is 40 m. in both tracks.

V 
(km/h)

NTR
(m)

 GTR
(m) (m)

L
(m)

R
(1/m)

Point 1 35.8 1000 0.0 142 0.8 -0.12 15.8 -0.0112

Point 2 26.2 30 0.0 30 0.0 0.41 18.2 0.0504

Point 3 48.1 1000 0.0 1000 0.0 0.10 27.2 0.0074

Table 2: Numeric values of inputs and outputs of the fuzzy controllers at selected points 
in track A
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The results of a 45 minutes test run in track C are shown in Table 3. The vehicle moves clock

wise for 7 laps at a constant velocity of 45 km/h. The standard deviation obtained is similar to

the tests in track A, while the maximum cross track error has increased from 50 to 70 cm. This

is due to the greater speed in turns of severe curvature and the different road surface; track A is

made of asphalt while track C is unpaved dirt so the vehicle slips much more entering and

leaving the turns.

Figure 13  Straight line tracking speed record and cross-track error (track B).

In track D, one test was done at a constant speed of 30 km/h, with a cross-track error standard

deviation of 14 cm and a maximum value of 46 cm. Another test was done at a constant speed

of 45 km/h. In this case, the standard deviation was 16 cm, and the maximum cross-track error
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was 71 cm. The results are also shown in Table 3.

Figure 14  Tracks C (left) and D (right). Numbers close to curves indicate turning radius (m)

I

4.1.  Comparison of results
It is important to mention that the comparison with the results of other methods published in

the literature is qualitative, since there are many factors as the characteristics of the vehicles,

the conditions of the experimental tests and the implementation of the controllers that can

affect the performance of the experiments and are not reported in the papers or are not easily

comparable.

Most of the autonomous navigation experimental results that can be found in the literature

have been done with small vehicles or cars, and at low speeds. Then, it is difficult to compare

the proposed navigation system for heavy vehicles. The most relevant published experimental

results with heavy vehicles have been done in the framework of California PATH and

University of Michigan's SAFETRUCK programs.

In [10] results of the autonomous navigation of a heavy truck using a robust linear controller

are presented. The tests have been done on an asphalt road composed of straight segments and

curved segments with a radius of 800 m. The maximum velocity is between 65 and 75 km/h.

Track C
Max. error 

(cm)
Std. dev. 

(cm)
Track D

Max. error 
(cm)

Std. dev. 
(cm)

Full test 71.2 16.17 Test 1 (30 km/h) 46.4 14.10

Lap 1 63.7 15.21 Test 2 (45 km/h) 71.1 16.56

Lap 2 69.1 14.19 Test 2-Lap 1 70.6 16.68

Lap 3 70.3 14.88 Test 2-Lap 2 71.1 16.35

Lap 4 69.7 16.43

Lap 5 71.2 16.29

Lap 6 71.0 16.02

Lap 7 70.7 16.37

Table 3: Results of test runs on tracks C and D
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The lateral error is less than 0.15 m in straight segments and 0.35 m in the curved segments,

but are greater than 0.5 m in transitions between segments. These results have to be compared

to the autonomous truck tests in track B, since we have considered as roads with radius larger

than 600 m as straight roads (in fact, track B combines straight segments with curved

segments of radius between 600 and 750 m). These tests were done at speeds of between 80

and 100 km/h on an unpaved road, and the maximum error was less than 0.28 m, with std. dev.

less than 0.1 m, which gives better results than [10], especially in transition segments. Both

controllers show similar performance in straight and constant curvature segments, but the

fuzzy controller proposed in this paper performs remarkably better in transitions between

segments since it adapts smoothly to roads of changing curvature.

In [12], a modified pursuit method is used to drive a heavy vehicle on an asphalt road. In a

straight segment the maximum error is around 0.25 m at a speed of up to 65 km/h. This

controller obtains slightly better maximum lateral error than the proposed fuzzy navigation

system (0.28 m at speeds of up to 100 km/h), but at considerably lower speeds. In an S-shaped

road segment with radius 85 m, the controller in [12] gets a maximum lateral error of about

0.45 m at a speed of 35 km/h. A comparable road test for the test truck is the road segment on

track A around the "C" point (radius of 83 m), where the fuzzy navigation system achieves a

maximum lateral error of 0.32 m at around 45 km/h, which gives a better performance.

In [22] a 11 ton. autonomous truck is controlled at speeds between 60 and 80 km/h in a 3 km

test track with 700 m. straight sections and 800 m oval sections. The lateral error is within 0.35

m at 60 km/h (in oval sections) and 0.5 m at 80 km/h (in straight sections). With the fuzzy

controller proposed in this paper the maximum lateral error is smaller for speeds from 80 to 98

km/h in straight paths (0.30 m in track B) and larger in curved sections (0.50 m in track A), but

it is difficult to compare because the minimum turning radius of the oval sections are

unknown. Moreover, the controller in [22] is unable to correct the lateral error during half of

each curved section (400 m), keeping a steady lateral error within 0.20 to 0.30 m. Overall, the

fuzzy controller shows better tracking performance in straight and curved roads compared to

[12] and [22].

The controller developed in [43] for the guidance of an electric power van is tested in a 2 km

road inside the campus with a typical square shape. The vehicle is guided at an average speed

of 26 km/h and a maximum speed of 46 km/h using a partially speed-dependent lookahead

ranging between 8 to 14 m. They achieve a mean lateral error of 0.13 m, a standard deviation

of 0.15 m and a maximum lateral error about 0.90 m in a 6 laps experiment. Even though there

are no details about the turning radius of the corners and the surfaces of the tracks are different

(paved vs unpaved) this experiment could be compared to the results presented in this paper

for tracks C and D (see table 2) given the similar range of speeds and shape of the track. As

can be seen the results are similar in terms of standard deviation (0.14 m for 30 km/h and 0.17

m for 45 km/h) but the maximum lateral error is larger in [43] (0.90 m vs 0.71 m). Comparing

the results, the fuzzy controller has similar performance to [43] in straight paths, and better

performance in the curved sections. This behavior can be due to the fuzzy controller

addressing better road curvature changes, since the controller in [43], although adapting the

lookahead to the vehicle velocity seems not to address well changes in road curvature.
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In the SARTRE European project [20], experimental tests with a mixed platoon of trucks and

cars have been performed. Unfortunately, only the data for one of the cars is presented in [20].

The experiments show a sedan car traveling at 90 km/h in straight paths. The lateral error is

within 0.35 m, that is quite similar to the 0.30 m obtained with the fuzzy controller presented

in this paper, and the standard deviation is 0.10 m, better than the 0.18 m obtained in track B.

The same vehicle in a lightly curved road (470 m turning radius) keeps an average error of -

0.01 m with a standard deviation of 0.09 m and the maximum error within 0.25 m. In [20] the

vehicle tends to go slightly separated from the path in the straight sections with an average

error of 0.09 m, but the performance is better in the slightly curved sections. There are no

details about the control method to explain the difference in performance between the curved

and straight sections. Furthermore, there are main differences in the experiments, the surface

of the tracks (paved vs unpaved) and the weight of the vehicles (14 ton truck vs a sedan car),

what makes difficult the comparison. 

One common effect that can be observed in some sections of the experiments in [20] and [22]

is that the average lateral error is larger than zero what indicates a lack of integral action in the

controllers, what is properly addressed in the fuzzy controller in this paper.

As a conclusion, and keeping in mind that all the comparisons in this section have to be

considered as qualitative since there are no sufficient details in the literature on the vehicles,

the roads and the controller implementation to make a direct quantitative comparison, the

proposed fuzzy controller has similar or slightly better performance tracking straight and

constant curvature paths. The main advantage of the fuzzy controller is that it adapts much

better to road segments with changes in curvature, and thus it is more flexible and can be used

in a wider set of roads in real conditions.

5. Conclusions

This paper proposes a path following system designed and implemented for heavy unmanned

vehicles. A TS fuzzy control system can be used to control heavy vehicles at different driving

conditions. A good performance is achieved following paths with very different curvatures

and velocities with this single controller. The controller is able to drive the truck at high speed

(up to 100 km/h) on unpaved roads, and it can also control the vehicle on curved roads with a

turning radius of 30-40 m. The conditions in which the driving tests have been done are very

demanding, because in most of them legal speed limits have been exceeded. Moreover, most

of the tests have been done on unpaved gravel roads. The main advantage of the presented

controller is its capability of adaptation to road segments of different curvatures and the

transitions between them. Furthermore, its structure allows the easy addition of new rules

considering for example the slip angle or other factors to increase the envelope of working

conditions of the controller. Future improvements can be done considering slip in the motion

of the vehicle and applying on-line estimation of slip angle to correct the -  mapping in the

low-level control.
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