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Abstract

The multidimensional knapsack problem (MKP) is a well-known NP-hard optimization prob-

lem. Various meta-heuristic methods are dedicated to solve this problem in literature. Re-

cently a new meta-heuristic algorithm, called artificial algae algorithm (AAA), was presented,

which has been successfully applied to solve various continuous optimization problems. How-

ever, due to its continuous nature, AAA cannot settle the discrete problem straightforwardly

such as MKP. In view of this, this paper proposes a binary artificial algae algorithm (BAAA)

to efficiently solve MKP. This algorithm is composed of discrete process, repair operators

and elite local search. In discrete process, two logistic functions with different coefficients of

curve are studied to achieve good discrete process results. Repair operators are performed

to make the solution feasible and increase the efficiency. Finally, elite local search is intro-

duced to improve the quality of solutions. To demonstrate the efficiency of our proposed

algorithm, simulations and evaluations are carried out with total of 94 benchmark problems

and compared with other bio-inspired state-of-the-art algorithms in the recent years including

MBPSO, BPSOTVAC, CBPSOTVAC, GADS, bAFSA, and IbAFSA. The results show the

superiority of BAAA to many compared existing algorithms.

Keywords: Artificial algae algorithm; Multidimensional knapsack problem; Pseudo-utility

ratio; Elite local search
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1. Introduction1

Knapsack problems are found in many science and engineering applications such as finite2

word length filter design problems [1]. The decision vectors are discrete valued. One common3

approach to address this issue is to approximate the problems by the optimization problems4

with continuous valued decision vectors and some advanced techniques [2, 3, 4, 5] are applied5

to find the solution of these problems. To address the original optimization with the discrete6

valued decision vectors, the 0-1 multidimensional knapsack problem (MKP) is a well-known7

NP-hard optimization problem [6]. Given a set of items with non-negative weights and values8

(profits), MKP is to select some of the items to put into knapsack with specified capacity9

constraints such that the profit is maximized without violating the constraints. A standard10

MKP is given as follows [7]:11

max f(x) =
d∑
i=1

pixi, i = 1, 2..., d,

s.t.

d∑
i=1

cijxi ≤ bj , i = 1, 2...d, j = 1, 2...,m, (1)

xi ∈ {0, 1}, i = 1, 2..., d,

where d is the number of items and m is the number of knapsack constraints; pi is the profit of12

ith item if it is put into knapsack; xi is either 1 or 0, where 1 denotes the ith item being stored13

into the knapsack and 0 denotes ith item being discarded, respectively; cij is the consumption14

of jth resource while putting the ith item into knapsack and bj is the total capacity of jth15

resource. Without loss of generality, it is assumed that pi > 0, 0 ≤ cij < bj and
∑d

i=1 cij > bj .16

In nature, MKP is a typical integer programming problem with d variables and m con-17

straints. In the past decades, MKP has been investigated and applied in cutting stock, loading18

problem, project selection and resource allocation [8]. Plenty of methods were introduced to19

solve MKP in recent years including deterministic and approximate algorithms [9]. Some20

exact algorithms like dynamic programming [7, 10], branch and bound algorithm [11] and hy-21

brid algorithms [12, 13] can solve small-scaled and medium-scaled problems within endurable22

time. As the number of items and constraints increase, the performance of exact algorithm de-23

clines rapidly and becomes intolerable. With the development of intelligent computing, many24

new approximate methods emerge such as heuristic and meta-heuristic algorithms. This25

type of algorithms can find optimal, sub-optimal or at least satisfactory solutions in most26

cases, although the optimum is not guaranteed. Such algorithms include genetic algorithm27

[14, 15, 16], tabu search [17], simulated annealing [18], particle swarm optimization [19, 20],28
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firefly algorithm [21], harmony search [22, 23] and artificial fish swarm algorithm [24, 25],29

etc. Evolutionary computation and bio-inspired algorithms are the fastest developing type of30

algorithms. The basic idea of them is that from an initial population of individuals, solution31

vectors, individuals evolve by some way to produce new better individuals and keep better32

ones in the next generation(iteration), whereas the worse individuals are discarded in the next33

generation. A satisfactory solution will be obtained after updating some generations. More34

details can be found in [26, 27].35

In [14], genetic algorithm was utilized to solve MKP. This method has been further im-36

proved by Djannaty in [15] where initial population created by Dantzig algorithm and penalty37

function to increase the rate of convergence of MKP were introduced. In [28], a binary version38

of PSO is introduced by Kennedy to solve discrete optimization problems. In [20], a modified39

binary particle swarm optimization (MBPSO) algorithm is proposed for 0-1 knapsack prob-40

lem and multidimensional knapsack problem. MBPSO introduced a new probability function41

to improve the diversity and made it more effective than simple binary version of PSO. In42

[29], binary PSO with time-varying acceleration coefficients (BPSOTVAC) and chaotic binary43

PSO with time-varying acceleration coefficients (CBPSOTVAC) were proposed. Through in-44

troducing the time-varying inertia weight and time-varying learning factors, the performance45

of the solution had been improved significantly. In [30], a particle swarm optimization with46

self-adaptive check and repair operator (SACRO) was presented to improve the efficiency of47

PSO, where SACRO will change the alternative pseudo-utility ratio dynamically. In [25], a48

binary version of the artificial fish swarm algorithm was proposed where a decoding scheme49

was introduced to transform infeasible solutions to be feasible for multidimensional knap-50

sack problem. In [23], an effective hybrid algorithm based on harmony search (HHS) was51

presented to solve multidimensional knapsack problems. HHS developed a novel harmony52

improvisation mechanism with modified memory consideration rule and global-best pitch ad-53

justment scheme. In addition, the fruit fly optimization (FFO) scheme was integrated as a54

local search strategy. Compared with an improved adaptive binary harmony search algorithm55

(ABHS) [31] and a novel global harmony search algorithm (NGHS) [32], HHS demonstrated56

the effectiveness and robustness.57

In the recent years, a new meta-heuristic algorithm, artificial algae algorithm (AAA), was58

presented [33]. Similar to other bio-inspired algorithms, AAA was inspired by the lifestyles59

of algae. AAA has been successfully applied in the optimization of benchmark functions with60

various dimensions in CEC’05 [34] and implemented on the pressure vessel problem. However,61
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due to its continuous nature, AAA cannot settle the discrete problem straightforwardly such62

as MKP. In view of this problem, this paper proposes a binary artificial algae algorithm63

(BAAA) to solve MKP. Compared with many bio-inspired binary version algorithms in well-64

known benchmarks for MKP, BAAA achieves better performance in terms of robustness as65

well as the best solution obtained.66

2. Introduction to Artificial Algae Algorithm (AAA) in [33]67

In the recent years, a new artificial algorithm, named as artificial algae algorithm (AAA), is68

proposed to solve continuous optimization problems [33]. AAA simulates real algae to survive69

by finding and moving to the appropriate environment, and reproduce next generation. In70

this section, we will review AAA briefly. More details on AAA can be found in [33].71

Denote the algae population which comprises of a number of algal colonies as below:72

Population of algal colony =


x11 x12 · · · x1d

x21 x22 · · · x2d

...
... · · ·

...

xn1 xn2 · · · xnd

 (2)

Set xi = (xi1, xi2, · · · , xid), i = 1, 2, ..., n, where each xi represents a feasible solution in73

solution space. Each algal colony contains a group of algal cells which are regarded as the74

elements of a solution. All the algal cells in an algal colony are considered as a whole to move75

together towards a suitable place with abundant resources. As the colony reaches a ideal76

position, optimum solution is obtained.77

In the artificial algae algorithm, there are three key parts which are helical movement,78

evolutionary process and adaptation. The algal colony tries to move to a optimal position79

through moving, evolving and adapting itself. It is worth to mention that a crucial concept80

in AAA is the size of algal colony of ith algal colony denoted as Si, i = 1, 2, ..., n. Similar81

to the real algae, under perfect living condition, the algal colony will reproduce and grow to82

a bigger size. Living in a bad environment will lead to death of algal cells and shrink of algal83

colony. Si is set as 1 at the initial stage, and altered with the change of the fitness value of84

the ith algal colony, i.e. the value of objective function. The better the objective function85

f(xi) is, the bigger Si is. Si is updated according to the biological growth process given as86
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follows:87

Si = size(xi) (3)

µi =
Si + 4f(xi)

Si + 2f(xi)
(4)

St+1
i = µiS

t
i , i = 1, 2, ..., n (5)

where f(xi) is the objective function, µi is the update coefficient of Si, t represents the current88

generation.89

2.1. Helical movement90

Algae make instinctive movement to the water areas which have adequate light and other91

nutrients. In AAA, each algal colony moves towards the best algal colony which has the biggest92

size or optimal objective function value. Similar to the movement in three dimensions of the93

object in real world, algal colony moves in three dimensions as well. However, this movement94

is simulated by selecting three distinct algal cells randomly and changing their positions.95

Eq. (6) represents the movement in the first dimension and can be used for one-dimensional96

problems. Eqs. (7) and (8) indicate movement in other two dimensions.97

xt+1
im = xtim + (xtjm − xtim)(sf − ωi)p (6)

98

xt+1
ik = xtik + (xtjk − xtik)(sf − ωi) cosα (7)

99

xt+1
il = xtil + (xtjl − xtil)(sf − ωi) sinβ (8)

where m, k and l are random integers uniformly generated between 1 and d, xim, xik and xil100

simulate x, y and z coordinates of the ith algal colony, j indicates the index of a neighbor101

algal colony and is obtained by tournament selection, p is an independent random real-valued102

number between -1 and 1, α and β are random degrees of arc between 0 and 2π, sf is shear103

force which exists as viscous drag, ωi is the friction surface area of ith algal colony which is104

proportional to the size of algal colony. Due to the spherical shape of algal colony, friction105

surface is deduced as the surface area of the hemisphere which can wrap up the algal colony.106

ωi is calculated as follows:107

ωi = 2πr2
i (9)

108

ri = (
3

√
3Si
4π

) (10)

where ri represents the radius of the hemisphere of the ith algal colony, and Si is its size.109
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2.2. Evolutionary process110

In natural environment, algal colony with adequate nutrient source grows rapidly and that111

with scarce nutrient source will wither to die. Similarly, in AAA, algal colony xi becomes112

bigger if it moves to an ideal position and obtains more feasible solution. While a iteration113

terminates, the smallest algal colony withers and an algal cell of the smallest algal colony114

is substituted by an algal cell of the biggest algal colony. This process is simulated as the115

following equations:116

biggest = arg max{size(xi)}, i = 1, 2, ..., n (11)

smallest = arg min{size(xi)}, i = 1, 2, ..., n (12)

smallestj = biggestj , j = 1, 2, . . . , d. (13)

where biggest and smallest represent the biggest and smallest algal colony, respectively, j is117

the index of a randomly selected algal cell.118

2.3. Adaptation119

In the growing process, algal colony suffers from starvation under insufficient light and120

nutrient. Adaptation is the process in which starved algal colony tries to move towards the121

biggest colony and adapts itself to the environment. Starvation value is set to zero from122

beginning, and increases with the helical movement. The movement makes the fitness of algal123

colony either better or worse. Thus, the objective function value becomes superior or inferior124

to the value after movement. If the objective function gets better value, the corresponding125

algal colony remains its starvation level unchanged. Otherwise, the starvation value increases126

by one. After movement of algal colony ends in an iteration, the algal colony that has the127

highest starvation value (Eq. (14)) adapts itself to the biggest algal colony with a probability128

Ap. In the adaptation phase of original AAA [33], the adaptation of the algal colony was129

implemented by adapting every single algal cell. For the sake of clarity, we introduce Eq. (15)130

to illustrate this process:131

xs = arg max{starvation(xi)}, i = 1, 2, ..., n (14)

132

xt+1
sj =


xtsj + (biggestj − xtsj)× rand1, if rand2 < Ap;

xtsj , otherwise.

j = 1, 2, . . . , d (15)

where s is the index of algal colony which has the highest starvation value, and starvation(xi)133

measures the starvation level of algal colony xi, j is the index of algal cell, rand1 and rand2134
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xn1  xn2  xn3  xn4  …  xnd

1 0 1 0 … 1

0 1 0 1 … 0

1 0 0 1 … 1

0 1 1 1 … 0

x11  x12  x13  x14  …  x1d

0 1 0 1 … 0

1 0 0 1 … 1

1 1 1 0 … 1

1 1 0 1 … 1

0 0 1 1 … 1

…
 …
 

…
 

…
 

…
 

① 

② 

③ ④  

Figure 1: Encoding example of BAAA.

generate stochastic real-valued numbers between 0 and 1, Ap is the adaptation probability135

which decides whether adaptation occurs or not, Ap is a constant usually being set between136

0.3 and 0.7.137

3. Binary artificial algae algorithm (BAAA)138

AAA was initially proposed to solve continuous nonlinear optimization problems. There-139

fore, all computation in AAA, such as helical movement, evolutionary process and adaptation140

are continuous. However, MKP is a typical discrete optimization problem. AAA cannot be141

applied directly. Here we will introduce a binary version of AAA, namely BAAA, to solve142

MKP. At the initialization stage, algal colony xi is initialized as a binary string of length d143

with 0 or 1. Each algal cell xij is generated according to the following equation:144

xij =


0, if rand < 0.5;

1, otherwise.

(16)

Then, the population of algal colony is encoded as n binary strings and each string is a145

candidate solution for MKP. An encoding example is illustrated in Fig. 1 which demonstrates146

the changing process of population in one iteration. In Fig. 1, 1© denotes each algal colony147

is transformed into a new binary string through helical movement. 2© indicates algal colony148

moves until its energy runs out. 3© represents the evolutionary process which leads to the149

inversion of one bit in a specified binary string. 4© means each binary string adapts itself150

according to the adaptation probability.151

3.1. Discrete process152

Due to its continuous nature of AAA, the intermediate results tend to be real-valued num-153

ber and cannot be applied to MKP straightforwardly. Discrete method should be introduced154

to transfer real number into binary number 0 or 1. Sigmoid function is a type of mathematical155

function which is defined for all real input values with bound outputs ranging from 0 to 1.156
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Figure 2: Sigmoid curve of logistic function.

Logistic function is the special case of sigmoid function (see Eq. (17)) and its figure is shown157

in Fig. 2.158

g(x) =
1

e−x + 1
(17)

159

xij =


0, if g(x) < rand;

1, otherwise.

(18)

In real applications, two variants of logistic function, called Tanh(x) and Sig(x), are often160

used. Here Tanh(x) and Sig(x) are defined as:161

g(x) = Tanh(x) =
eτ |x| − 1

eτ |x| + 1
(19)

162

g(x) = Sig(x) =
1

e−τx + 1
(20)

where τ is a controlling parameter which determines the changing trend of the curve. Com-163

bined with Eq. (18), a discrete value 0 or 1 is produced through comparing g(x) with a random164

distributed value between 0 and 1. Fig. 3 illustrates the figure of Tanh(x) and Sig(x) with165

different τ . As seen in Fig. 3, the smaller τ is, the less steepness of the curves have. When166

τ is very small, the curve tends to be a horizontal line. Taking Sig(x) as an example, when167

τ = 0.1, the values of function are close to 0.5 which makes the discrete procedure like a168

random selection. As a result, the algorithm is led to poor exploitation and easy to fall into169

local optimum. On the other hand, when τ is large, the curve becomes much steep which170

leads to low diversity and poor exploration. For example, if x > 5 and τ = 3.5, then g(x)171

is very close to 1. For this case, Eq. (18) has little chance to produce 0. This clearly shows172

that proper τ is crucial for the discrete procedure. An experiment is carried out in the next173

section for the selection of τ .174
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Figure 3: Comparison of Tanh(x) and Sig(x) with different τ .

3.2. Repair operator175

In the initialization and discrete process, the solution vectors with 0 or 1 are produced176

without considering their feasibility. However, they are likely to be infeasible solutions in177

spite of their high fitness values, and they may mislead the search into hopeless situation. As178

is known to all, as the solution of MKP, the binary string should satisfy all the constraints.179

Therefore, each candidate solution must be checked and modified to meet every constraint.180

Moreover, total fitness value is to be enhanced as high as possible. This idea can be realized181

by two stages. The first stage is to adjust the infeasible solution to feasible one by discarding182

some items from the knapsack and setting the responding item value from 1 to 0. The second183

stage is to utilize the remainder space of the knapsack completely by putting some items184

into the knapsack and setting the responding item value from 0 to 1. In order to choose185

appropriate items for previous operation, a selection mechanism must be determined. Several186

techniques were proposed in the literatures. [35] first introduced the pseudo-utility in the187

surrogate duality approach. The pseudo-utility of each variable was given below:188

δi =
pi∑m

j=1wjcij
, i = 1, 2, ..., d (21)

where wj is surrogate multiplier between 0 and 1 which can be viewed as shadow prices of the189

jth constraint in the linear programming (LP) relaxation of the original MKP. Obviously, wj190

is a key value to determine the selection of items. An optimal set of surrogate multipliers can191

effectively measure the consumption level of resources for each item, and improve the final192

repair effect. However, it is hard to find the optimal set of wj , especially when m+ n is very193

large. To overcome this drawback, [36] presented a new metric called relative mean resource194

occupation defined as:195

δi =

∑m
j=1

cij
m·bj

pi
, i = 1, 2, ..., d (22)
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In addition, another two common used pseudo-utilities [30], i.e. profit/weight utility and196

relative profit density, are:197

δi = min{ pi
cij
}, i = 1, 2, ..., d, j = 1, 2, ...,m (23)

198

δ̃i = min{pi · bj
cij
}, i = 1, 2, ..., d, j = 1, 2, ...,m (24)

Eq. (23) calculates the ratio of profit and weight. The greater the ratio is, the more possible199

the item being selected into knapsack. Considering cij , j = 1, 2, ...,m have m values for item δi,200

only the smallest value of the ratios is adopted to measure the pseudo-utility. Compared with201

Eq. (23), Eq. (24) not only takes profit/weight into account but also introduces the capacities202

in each dimension, i.e. profit density. Three different measures of pseudo-utility ratios produce203

different ranking of ratios and lead to various packing sequence. An experimental comparison204

among them will be implemented in Section 4.205

After pseudo-utility ratios are calculated, the pseudo-utilities are ranked to ascending or-206

der. Then, two repair operators are performed for making the solution feasible and improving207

the quality of solution, respectively. The first is DROP operator in which some items will208

be removed from the knapsack if the solution is infeasible. The DROP operator selects the209

item from the knapsack with smallest value of pseudo-utility and changes the responding bit210

from 1 to 0 until the solution is feasible. The second is ADD operator in which some items211

will be added into the knapsack as much as possible. The ADD operator examines each item212

in the descending order of pseudo-utility, and tries to pack the item in the knapsack one by213

one without violating the constraints. This greedy-like procedure makes sure that the profit214

can be acquired as much as possible based on the pseudo-utility ratio. The DROP and ADD215

operators are implemented in Algorithm 1. The function feasible(x) judges whether solution216

vector x satisfies all the constraints. It returns true if x is feasible, otherwise, it returns false.217

This repair method not only makes the solution feasible without violating any constraints but218

also packs items into knapsack with profits as much as possible.219

3.3. Elite local Search220

In BAAA, the best algal colony is obtained in each iteration which represents current221

optimal solution xb. In order to further improve the quality of the solution xb, an greedy222

local search method is adopted to exploit the neighborhood of the current best solution223

called EliteLocalSearch. The main idea of EliteLocalSearch is to remove an item from224

the knapsack and put another outside item into the knapsack for every possible pairwise225
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items. As far as xb is concerned, each pairwise element which contains distinct value 0 or 1226

is interchanged for a higher profit. Providing that new achieved vector is a feasible solution227

and has better fitness value than the previous one through swap operation, then new vector228

will substitute for old one. This swap operation continues until all pairwise positions are229

examined. The algorithm is outlined as Algorithm 2 and an experiment is implemented to230

verify the effectiveness of this method in Section 4.231

3.4. Flowchart and pseudo code of BAAA232

The flowchart of BAAA is illustrated in Fig. 4. As can be seen in the flowchart, each algal233

colony has certain energy. How far the algal colony moves or how many times it moves in one234

generation (iteration) is determined by its energy. Along with the iteration, energy of each235

algal colony is updated in proportion to the size of algal colony Si and transformed into a value236

between 0 and 1. The purpose of transformation is to make the energy values comparable237

and easy to handle in a controlled scope. Each movement of algal colony consumes some238

energy. Under the drive of energy, algal colony moves several times to a new position and239

achieves a new size until the energy is exhausted. After all algal colonies use up their energy,240

the helical movement ends and is followed by the evolutionary process and adaptation. This241

process is described in Algorithm 3 with details. In Algorithm 3, there are three loops. The242

outer loop controls the times of iteration, while the middle loop deals with each algal colony243

of population and the inner loop is the energy loop which controls the movement of algal244

colony until its energy is used up. Each movement consumes eloss or eloss/2 energy which245

depends on whether this movement achieves better result.246

4. Experimental study247

In order to verify the effectiveness and robustness of the proposed BAAA algorithm for248

optimization problems, BAAA is evaluated on the well-known MKP benchmarks which come249

from the OR-Library1. The benchmark datasets are divided into two groups: low-dimensional250

knapsack problems and high-dimensional knapsack problems. The first group totally has 54251

instances including “Sento”, “Hp”, “Pb”, “Pet”, “Weing” and “Weish”, in which the number252

of decision variables (d) ranges from 10 to 105 and the number of constraints (m) ranges from253

2 to 30. The second group covers 10 medium-scaled problems and 30 large-scaled problems254

with 500 items and 5 constraints. Among the latter 30 instances, three tightness ratios exist255

1OR-Library (Download on 2015-7-6):http://www.brunel.ac.uk/∼mastjjb/jeb/orlib/mknapinfo.html
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which are 0.25, 0.50 and 0.75, respectively. For the sake of clarity, the instances are named as256

cb.m.d-s n, where m is the number of constraints, d is the number of items, s is the tightness257

ratio and n is the index of instances. The control parameters in BAAA are predefined for all258

runs. The shear force sf is set as 2, energy loss eloss is 0.3, and the adaptation probability Ap259

is 0.5. The size of population is experience-based which is set as 100. In fact, too small size260

decreases the diversity of population, while too big size increases the computation complexity261

and leads to memory overflow. As can been seen in Algorithm 3, the parameter Tmax controls262

the maximum number of iterations. Based on our extensive numerical experience, Tmax is263

set to be 35000. However, it does not mean that the algorithm iterates so many times. The264

algorithm terminates in many other situations. Firstly, in the inner loop t increases itself as265

algal colony moves until its energy is used up or iteration variable t reaches Tmax. Secondly,266

since the optimal solutions Opt are available, the algorithm terminates once the Opt has been267

obtained.268

The proposed algorithm is implemented in C++ within Microsoft Visual Studio 2010 using269

a PC with Intel Core (TM) 2 Duad CPU Q9300 @2.5 GHz, 4 GB RAM and 64-bit Windows270

7 operating system. The point-estimator of digits is studied in [37]. Here we will use standard271

truncation method to report numerical results. If the error between the true optimal and that272

of obtained by our algorithm is less than 10−8, we say that our algorithm has successfully273

found the solution.274

As mentioned above, the selection of τ is a key step for the balance of search ability between275

exploitation and exploration. To clarify the influence of τ on BAAA, a comparison test is276

implemented using different τ on the instance Sento1 which has 60 items and 30 constraints.277

The comparison results are depicted in Figs. 5-7. In the experiment, ten different τ between278

0.1 and 3.5 are used in the algorithm for 30 independent runs. BAAA with Tanh(x) and279

Sig(x) are named as BAAA-Tanh and BAAA-Sig, respectively. The comparison is performed280

based on three performance measures: average iteration number (AIT), average fitness value281

(AVG), and success rate (SR). AIT reflects the speed of finding optimal solution. It is worth282

to mention that AIT only indicates the number of running the outer loop in BAAA. SR283

indicates the ratio of the number of finding the optimal solution and the total running times284

(30). From Figs. 5-7, we can observe that based on the function Tanh(x), BAAA obtains best285

result when τ is 1.5 in terms of AIT, AVG and SR. As far as function Sig(x) is concerned, best286

results are obtained when τ is 2. The comparison results confirm that too small or too large287

values of τ can downgrade the performance of algorithm. Fig. 5, Fig. 6 and Fig. 7 depict the288
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Figure 5: Comparison of AIT of Tanh(x) and Sig(x) on Sento1.
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Figure 6: Comparison of AVG of Tanh(x) and Sig(x) on Sento1.

variations of AIT, AVG and SR in terms of τ , respectively. Based on these observations, we289

set τ as 1.5 and 2 for BAAA-Tanh and BAAA-Sig, respectively, in the following experiments.290

Moreover, it is clear that BAAA-Tanh performs much better than BAAA-Sig in all re-291

spects. The success rate of BAAA-Tanh almost reaches 100%, except for the two smallest292

values of τ , whereas BAAA-Sig cannot achieve 100% success rate no matter what τ is. For293

further analysis, more comprehensive and complex comparisons between BAAA-Tanh and294

BAAA-Sig are implemented on more datasets which include 24 instances. The results are295

illustrated in Table 1. Through running 30 times of two algorithms on each instance, and296

we can observe that BAAA-Tanh outperforms BAAA-Sig. BAAA-Tanh obtains optimal so-297

lutions in 18 instances out of 24 instances with 100% success rate, whereas BAAA-Sig fails298

to achieve 100% success rate in 9 instances. In addition, SR of BAAA-Tanh is much higher299

than that of BAAA-Sig even if it can not reach 100%, and BAAA-Sig can not succeed in300

finding optimal solution at all in “Pet6” instance. The responding AVG prefers BAAA-Tanh301
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Figure 7: Comparison of SR of Tanh(x) and Sig(x) on Sento1.

in the same way, since BAAA-Tanh obtains higher average fitness values than BAAA-Sig.302

According to the comparison results, Tanh(x) is applied in BAAA for further tests.303

In BAAA, repair operators play a significant role in improving the maximal profit of304

the knapsack. The DROP and ADD operators utilize the ranked pseudo-utility ratios to305

discard and receive items. Eqs. (22-24) present three pseudo-utility ratios: δi, δ̃i and δi,306

i.e. profit/weight utility, relative profit density and relative mean resource occupation. In307

order to verify the effects of the three pseudo-utility ratios on the algorithm, an experiment308

is conducted and the results are depicted in Figs. 8-11. Standard deviation (SD) and SR are309

considered to measure the performance of algorithm with different pseudo-utility ratios. The310

tests are based on 54 instances and each instance is solved by 30 times. The instances from311

weish1 to weish17 are left out in Fig. (11) where all runs are able to find optimal solutions at312

100% success rate. From these figures, it is difficult to confirm which one is more appropriate313

than others. In terms of SR, δi fails to find optimal solutions at 100% success rate for 11314

instances, while δ̃i and δi are 8 and 6, respectively. It seems that δi performs better, but its315

success rates are 0 for “Pet6” and “Pet7” and the success rates are very low only about 0.1316

for “Hp2”, “Pb2” and “Weing7”. As far as SD is concerned, δ̃i obtains less SD than δi and317

δi for “Hp1”, ”Pet6”and “Pet7”. However, in other cases it is not true. In general, δ̃i and δi318

outperform δi, and each has its own strong point. We adopt relative profit density in BAAA319

to compare with other swarm-based algorithms.320

Elite local search is a greedy local search method which can improve the solution quality321

significantly. However, it may take more computational cost for its greedy character to search322

better neighbors. In order to gain insight into its effect on the algorithm, a comparison323

experiment is implemented on 10 hard problems which have 100 items and 10 constraints.324
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Table 1: Comparative results of Tanh(x) and Sig(x)

Problems d×m Opt
BAAA-Tanh BAAA-Sig

SR AVG SR AVG

Sento1 60×30 7772 1 7772 0.3 7762.2

Sento2 60×30 8722 1 8722 0.7 8721.7

Hp1 28×4 3418 0.8 3415.2 0.6 3412.4

Hp2 35×4 3186 0.27 3161.1 0.13 3160.6

Pet2 10×10 87061 1 87061 1 87061

Pet3 15×10 4015 1 4015 1 4015

Pet4 20×10 6120 1 6120 1 6120

Pet5 28×10 12400 1 12400 1 12400

Pet6 39×5 10618 0.3 10598.8 0 10597

Pet7 50×5 16537 0.8 16531.9 0.1 16492.4

Pb1 27×4 3090 1 3090 1 3090

Pb2 34×4 3186 1 3186 0.3 3170.1

Pb4 29×2 95168 1 95168 1 95168

Pb5 20×10 2139 1 2139 1 2139

Pb6 40×30 776 1 776 1 776

Pb7 37×30 1035 1 1035 1 1035

Weing1 28×2 141278 1 141278 1 141278

Weing2 28×2 130883 1 130883 1 130883

Weing3 28×2 95677 1 95677 1 95677

Weing4 28×2 119337 1 119337 1 119337

Weing5 28×2 98796 1 98796 1 98796

Weing6 28×2 130623 1 130623 1 130623

Weing7 105×2 1095445 0.6 1095419.75 0.1 1095388.25

Weing8 105×2 624319 0.93 624178.7 0.2 623459
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Figure 8: Comparison of SR and SD with three pseudo-utility ratios.
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Figure 10: Comparison of SR and SD with three pseudo-utility ratios.

 

0

0.2

0.4

0.6

0.8

1

1.2

Su
cc

e
ss

 R
at

e

profit/weight utility
relative profit density
relative mean resource occupation

0

0.5

1

1.5

2

2.5

3

St
an

d
ar

d
 D

e
vi

at
io

n

profit/weight utility
relative profit density
relative mean resource occupation

Figure 11: Comparison of SR and SD with three pseudo-utility ratios.

17



Considering elite local search is a built-in feature of BAAA, BAAA without elite local search is325

named as BAAA-noelite. The Comparative results based on 100 independent runs are shown326

in Table 2. SR denotes the ratio of the running times reaching the best-known value of 100327

runs. AT is the average computational time (in seconds). It is quite clear that BAAA obtains328

better AVG and higher SR than BAAA-noelite. However, AT denotes BAAA costs more329

computational time than BAAA-noelite, because extra computation is needed to complete330

elite local search.331

Table 2: Comparative results of BAAA and BAAA-noelite

Problems Best known
BAAA BAAA-noelite

AVG SR AT AVG SR AT

10.100.00 23064 23043.28 0 17.499 22859.55 0 4.085

10.100.01 22801 22750.15 0.30 17.023 22659.25 0.25 3.471

10.100.02 22131 22091.14 0.12 13.483 21928.10 0.02 4.726

10.100.03 22772 22645.65 0.06 17.809 22433.55 0.01 4.664

10.100.04 22751 22635.30 0.03 14.178 22408.25 0 4.228

10.100.05 22777 22710.95 0 17.412 22405.90 0 4.917

10.100.06 21875 21822.20 0.25 13.073 21742.50 0.10 4.052

10.100.07 22635 22530.65 0.16 17.993 22350.30 0.01 5.368

10.100.08 22511 22412.88 0.01 19.156 22316.20 0 4.746

10.100.09 22702 22650.50 0.45 15.581 22569.05 0.35 3.823

In order to verify the superiority of the algorithm, BAAA is further compared with oth-332

er population-based algorithms, including the modified binary particle swarm optimization333

algorithnm (MBPSO [20]), particle swarm optimization with time-varying acceleration coeffi-334

cients (BPSOTVAC and CBPSOTVAC [29]), genetic algorithms with double strings (GADS335

[16]), binary artificial fish swarm algorithm (bAFSA [25]) and improved binary artificial fish336

swarm algorithm (IbAFSA [24]). Table 3 summarizes the comparison among MBPSO, BP-337

SOTVAC, CBPSOTVAC and BAAA based on four different performance criteria, namely,338

SR, average error (AE), mean absolute deviation (MAD) and SD. AE is calculated as the339

average of the difference between the values and corresponding optimum solutions. Whereas340

MAD is the average of the absolute difference between the values and their mean. The data341

of MBPSO, BPSOTVAC and CBPSOTVAC are collected from original literatures. For the342

sake of consistency, 100 independent runs of BAAA are carried out for 48 instances. The343

experimental results show that BAAA performs much better than other three algorithms in344

terms of SR except for “Hp2”, “Weish23” and “Weish24”. It is worth mentioning that BAAA345

finds optimal solutions for all the instances and succeeds at 100% success rate for 42 instances.346

AE, MAD and SD are the measures to evaluate the stability of the algorithms from different347

18



angles. Based on the observation from Table 3, most values of AE, MAD and SD obtained348

by BAAA are less than corresponding values obtained by other three algorithms. In general,349

BAAA is superior to MBPSO, BPSOTVAC and CBPSOTVAC in terms of effectiveness and350

robustness.351

Table 3: Comparative results of BAAA with MBPSO, BPSOTVAC, and CBP-

SOTVAC.

Problems
MBPSO BPSOTVAC CBPSOTVAC BAAA

SR AE SD SR MAD SD SR MAD SD SR AE MAD SD

Sento1 0.52 9.96 15.1195 0.57 8.74 11.52 0.39 136.28 357.78 1 0 0 0

Sento2 0.44 5.4 6.6333 0.27 9.42 7.04 0.2 53.53 101.03 1 0 0 0

Hp1 0.45 10.85 12.0982 0.38 11.44 10.69 0.29 14.1 13.69 0.93 0.93 1.74 3.49

Hp2 0.65 7.27 11.7217 0.67 6.51 13.95 0.59 12.39 21.35 0.27 29.88 10.39 13.2

Pb1 0.40 102.86 108.55 0.46 9 9.44 0.4 10.26 10.52 1 0 0 0

Pb2 0.36 22 22.1418 0.73 4.5 7.68 0.51 14.45 18.73 1 0 0 0

Pb4 0.59 8.95 14.0224 0.91 228.1 797.1 0.84 304.33 875.1 1 0 0 0

Pb5 0.44 5.19 5.8969 0.84 2.72 6.26 0.8 3.4 6.83 1 0 0 0

Pb6 0.48 10.96 13.5033 0.5 8.7 9.99 0.54 17.74 40.17 1 0 0 0

Pb7 0.58 10.51 16.9555 0.47 5.43 5.71 0.4 13.05 24.25 1 0 0 0

Weing1 1 0 0 1 0 0 0.92 51.25 281.98 1 0 0 0

Weing2 0.99 1.6 15.9198 1 0 0 0.88 123.19 545.5 1 0 0 0

Weing3 0.37 347.86 373.721 0.92 6.42 25.53 0.75 173.07 672.42 1 0 0 0

Weing4 0.99 27.15 270.139 1 0 0 0.97 42.83 378.58 1 0 0 0

Weing5 0.86 384.4 1131.66 1 0 0 0.94 85.62 572.82 1 0 0 0

Weing6 0.74 101.4 171.067 0.97 11.7 66.86 0.87 91.71 343.45 1 0 0 0

Weing7 0.41 38.33 33.9594 0 281.23 383.74 0 11272.9 30020 0.58 32.76 31.45 31.48

Weing8 0.89 0.11 0.3129 0.35 1872.44 2000.9 0.20 27128.4 75169 0.93 133.46 239.91 500.4

Weish1 1 0 0 1 0 0 0.94 5.45 32.81 1 0 0 0

Weish2 0.80 1 2 0.64 1.8 2.41 0.66 4.12 23.12 1 0 0 0

Weish3 0.98 0.72 6.3231 0.99 0.63 6.3 0.95 9.21 52.69 1 0 0 0

Weish4 1 0 0 1 0 0 0.99 8.59 85.9 1 0 0 0

Weish5 1 0 0 1 0 0 0.98 8.11 74.45 1 0 0 0

Weish6 0.80 3.25 6.5869 0.59 6.68 8.19 0.53 23.21 79.28 1 0 0 0

Weish7 0.99 0.18 1.791 0.96 0.7 3.45 0.78 19.17 71.95 1 0 0 0

Weish8 0.95 0.1 0.4359 0.79 0.42 0.82 0.68 8.84 42.81 1 0 0 0

Weish9 1 0 0 1 0 0 0.85 13.01 65.7 1 0 0 0

Weish10 0.98 0.81 5.9828 0.91 1.43 9.56 0.67 57.16 188.63 1 0 0 0

Weish11 0.41 41.337 200.864 0.88 7.42 25.72 0.62 110.85 403.03 1 0 0 0

Weish12 0.99 0.01 0.0995 0.89 0.29 1.91 0.71 107.5 304.43 1 0 0 0

Weish13 0.95 0.7917 7.7162 1 0 0 0.85 38.62 180.04 1 0 0 0

Weish14 0.88 2.2842 8.0989 0.98 0.62 4.36 0.79 116.23 364.66 1 0 0 0

Weish15 0.97 1.29 7.8145 1 0 0 0.8 161.45 554.35 1 0 0 0

Weish16 0.91 0.9 7.3668 0.54 1.16 1.71 0.43 143.29 367.29 1 0 0 0

Weish17 1 0 0 1 0 0 0.72 85.29 227.16 1 0 0 0

Weish18 0.85 1.78 5.285 0.75 2.79 5.25 0.53 99.14 275.53 1 0 0 0

(Continued on next page)
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(Continued Table 3)

Problems
MBPSO BPSOTVAC CBPSOTVAC BAAA

SR AE SD SR MAD SD SR MAD SD SR AE MAD SD

Weish19 0.51 13.568 22.9474 0.65 4.9 7.13 0.62 169.45 489.37 1 0 0 0

Weish20 0.96 0.86 5.284 0.78 3.78 7.53 0.69 117.89 410.74 1 0 0 0

Weish21 0.77 8.0851 17.6838 0.74 6.06 10.41 0.67 125.78 378.38 1 0 0 0

Weish22 0.45 12.071 17.1277 0.16 15.12 6.63 0.17 172.8 486.71 1 0 0 0

Weish23 0.10 25.052 42.3526 0.85 1.11 5.11 0.58 179 437.23 0.45 1.74 1.46 1.48

Weish24 0.90 0.5 1.5 0.7 3.04 6.44 0.55 113.72 295.79 0.54 2.3 2.48 2.49

Weish25 0.52 7.84 8.2894 0.49 4.54 7.09 0.32 112.43 361.88 1 0 0 0

Weish26 0 587.49 27.567 0.36 11.44 12.81 0.28 270.13 710.77 1 0 0 0

Weish27 0.77 20.337 90.701 0.99 0.39 3.9 0.83 211.46 640.43 1 0 0 0

Weish28 0.10 149 140 0.87 2.99 7.77 0.62 368.74 887.33 1 0 0 0

Weish29 0 586 0 0.86 3.19 10.09 0.48 384.5 854.5 1 0 0 0

Weish30 0.72 1.73 4.7241 0.87 0.52 1.35 0.63 203.79 491.81 1 0 0 0

The comparison with other bio-inspired algorithms are further carried out. Table 4 indi-352

cates the experimental results of GADS, IbAFSA and BAAA in terms of AIT, AIT*, Nopt,353

AT and ASR. AIT is the average iteration number, and AIT* is the average iteration number354

only considering successful runs. Nopt is the number of instances which optimal solutions are355

found at least one time from 30 runs. AT is the average computational time (in seconds).356

ASR is the average of the success rate (in %) of all instances in one set. For a fair comparison,357

we run BAAA 30 times independently like other two algorithms. As far as AIT and AIT*358

are concerned, the iteration times of our proposed BAAA are smaller than those of GADS359

and IbAFSA. However, BAAA is not always superior to other algorithms in AT because of360

the different computational complexity of each iteration in different algorithms. Considering361

Nopt, except for GADS, they are able to solve all instances to optimality at least one time362

out of 30 runs. Meanwhile, the ASR of BAAA is greater than or equal to those of other363

algorithms in “Pb”, “Pet”, “Sento” and “Weing”.364

Table 4: Comparative results of BAAA with GADS and IbAFSA.

Problem GADS IbAFSA BAAA

sets AIT AIT*Nopt AT ASR AIT AIT*Nopt AT ASR AIT AIT* Nopt ATa ASR

Hp 399 235 2 0.22 76.67 189 176 2 0.40 98.33 107.15 70.22 2 0.57 58

Pb 352 183 6 0.25 78.33 77 77 6 0.17 100.00 22.18 22.18 6 0.21 100

Pet 335 70 5 0.24 71.43 262 123 7 0.83 76.19 49.01 36.23 7 0.53 84.6

Sento 1959 1379 1 3.03 6.67 43 43 2 0.28 100.00 5.05 5.05 2 1.03 100

Weing 665 184 6 0.76 70.33 543 266 8 3.11 78.75 24.57 18.41 8 0.15 92.13

Weish 1312 493 17 1.38 33.33 109 89 30 0.56 98.44 9.38 4.57 30 0.85 95.66

a AT is not comparable due to different CPU, operation system and programming language.
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In order to verify the stability of our algorithm, BAAA is compared with HHS [23], ABHS365

[31] and NGHS [32] in terms of AVG, Min.Dev, Ave.Dev and Var.Dev. Min.Dev is the mini-366

mum percentage deviations from best-known values. Ave.Dev denotes the average percentage367

deviations from best-known values. Var.Dev represents the variance of the deviations. The368

experiment is based on a medium-scaled instances which have 100 items and 10 constraints.369

For consistency with other algorithms, the algorithm is run 20 times independently for each in-370

stance. The comparative results are shown in Table 5. From Table 5, we can confirm BAAA371

is stable in obtaining acceptable solutions because BAAA can achieve minimal Min.Dev,372

Ave.Dev and Var.Dev, although AVG of BAAA is sometimes inferior to that of HHS.373

To further reveal the performance of BAAA, we test BAAA on large-scaled problems374

which have 500 items and 5 constraints with different tightness ratios. The simulation results375

are compared with those of state-of-the-art algorithms: SACRO-BPSO-TVAC and SACRO-376

CBPSO-TVAC [30]. This is because [30] is published in the recent and the method in [30]377

shows its superior to many existing algorithms. Table 6 summarizes the comparative re-378

sults based on 30 independent runs. We can observe from the results that BAAA performs379

better than SACRO-BPSO-TVAC and SACRO-CBPSO-TVAC in terms of best obtained val-380

ue (BEST) in 23 out of 30 instances. BAAA performs worse than SACRO-BPSO-TVAC or381

SACRO-CBPSO-TVAC in 6 instances in terms of BEST, and the results of instance ‘cb.5.500-382

0.50 5’ are not available in the reference [30] which are denoted as ‘-’. With respect to AVG383

and SD, BAAA outperforms SACRO-BPSO-TVAC and SACRO-CBPSO-TVAC clearly. In384

summary, in contrast to other algorithms, BAAA is more robust and competitive in low-385

dimensional problems as well as high-dimensional problems.386

Table 6: Comparative results of BAAA with SACRO-BPSO-TVAC and

SACRO-CBPSO-TVAC.

Problems Optimal SACRO-BPSO-TVAC SACRO-CBPSO-TVAC BAAA

cb.5.500-0.25 1 BEST 120148 119867 120009 120066

AVG 119725.8 119761.9 120013.66

SD 119.61 114.51 21.57

cb.5.500-0.25 2 BEST 117879 117681 117699 117702

AVG 117470.8 117512.1 117560.47

SD 146.32 115.72 111.4

cb.5.500-0.25 3 BEST 121131 120951 120923 120951

AVG 120759.7 120741.2 120782.87

SD 102.67 111.11 87.96

cb.5.500-0.25 4 BEST 120804 120450 120563 120572

AVG 120282.5 120284.2 120340.57

(Continued on next page)
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(Continued Table 6)

Problems Optimal SACRO-BPSO-TVAC SACRO-CBPSO-TVAC BAAA

SD 100.74 119.82 106.01

cb.5.500-0.25 5 BEST 122319 122037 122054 122231

AVG 121908.1 121922.9 122101.84

SD 82.73 67.86 56.95

cb.5.500-0.25 6 BEST 122024 121918 121901 121957

AVG 121691.5 121690 121741.84

SD 103.44 104.34 84.33

cb.5.500-0.25 7 BEST 119127 118771 118846 119070

AVG 118528.5 118530.7 118913.37

SD 130.12 109.38 63.01

cb.5.500-0.25 8 BEST 120568 120364 120376 120472

AVG 120136.6 120147.6 120331.23

SD 150.23 146.64 69.09

cb.5.500-0.25 9 BEST 121586 121201 121185 121052

AVG 120926.3 120933.6 120683.60

SD 114.39 120.72 834.88

cb.5.500-0.25 10 BEST 120717 120471 120453 120499

AVG 120285 120276.6 120296.30

SD 102.94 81.74 110.06

cb.5.500-0.50 1 BEST 218428 218291 218269 218185

AVG 218136.9 218116.6 217984.67

SD 116.41 141.28 123.94

cb.5.500-0.50 2 BEST 221202 221025 221007 220852

AVG 220795.2 220786.7 220527.53

SD 115.93 181.32 169.16

cb.5.500-0.50 3 BEST 217542 217337 217398 217258

AVG 217125.2 217172.8 217056.7

SD 151.13 166.07 104.95

cb.5.500-0.50 4 BEST 223560 223429 223450 223510

AVG 223232.4 223265.1 223450.94

SD 118.43 137.67 26.02

cb.5.500-0.50 5 BEST - - - 218811

AVG - - 218634.27

Std - - 97.52

cb.5.500-0.50 6 BEST 220530 220337 220428 220429

AVG 220045.6 220052.1 220375.86

SD 226.15 230.24 31.86

cb.5.500-0.50 7 BEST 219989 219686 219734 219785

AVG 219407.3 219524.5 219619.27

SD 204.01 192.09 93.01

cb.5.500-0.50 8 BEST 218215 218094 218096 218032

AVG 217930.6 217980.8 217813.20

SD 72.61 56.6 115.37

cb.5.500-0.50 9 BEST 216976 216785 216851 216940

(Continued on next page)
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(Continued Table 6)

Problems Optimal SACRO-BPSO-TVAC SACRO-CBPSO-TVAC BAAA

AVG 216595 216586.1 216862.03

SD 143.86 192.49 32.51

cb.5.500-0.50 10 BEST 219719 219561 219549 219602

AVG 219404.2 219438.5 219435.14

SD 77.03 55.51 54.45

cb.5.500-0.75 1 BEST 295828 295346 295309 295652

AVG 294980.4 295026.4 295505.00

Std 140.29 147.36 76.30

cb.5.500-0.75 2 BEST 308086 307666 307808 307783

AVG 307421 307461.1 307577.50

SD 145.05 120.78 135.94

cb.5.500-0.75 3 BEST 299796 299292 299393 299727

AVG 299053.2 299069 299664.09

SD 144.29 145.76 28.81

cb.5.500-0.75 4 BEST 306480 305915 305992 306469

AVG 305692.6 305680.2 306385.00

SD 147.27 145.85 31.64

cb.5.500-0.75 5 BEST 300342 299810 299947 300240

AVG 299662.7 299769.5 300136.66

SD 104.49 99.74 51.84

cb.5.500-0.75 6 BEST 302571 302132 302156 302492

AVG 301926.1 301959.6 302376

SD 105.84 115.18 53.94

cb.5.500-0.75 7 BEST 301339 300905 300854 301272

AVG 300586.3 300575.9 301158

SD 150.19 144.78 44.3

cb.5.500-0.75 8 BEST 306454 306132 306069 306290

AVG 305878.7 305922.4 306138.41

SD 164.62 97.26 84.56

cb.5.500-0.75 9 BEST 302828 302436 302447 302769

AVG 302182.8 302188.1 302690.06

SD 130.53 157.72 34.11

cb.5.500-0.75 10 BEST 299910 299456 299558 299757

AVG 299205.5 299207.5 299702.28

SD 165.58 149.91 31.66

Furthermore, a non-parametric test, Wilcoxon signed-rank test (W-test) is carried out to387

determine whether the results from BAAA and those from other algorithms have significant388

difference or not. Table 7 shows the Wilcoxon signed-rank test results on AVG of BAAA389

against other algorithms, including ABHS, NGHS, HHS, SACRO-BPSO-TVAC and SACRO-390

CBPSO-TVAC. R- or R+ is the sum of ranks based on the absolute value of the difference391

between sample data from two algorithms. R- indicates the sum of the ranks corresponding392
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Table 5: Comparative results of BAAA with ABHS, NGHS and HHS.

Problems Best known Algorithms AVG Min.Dev(%) Ave.Dev(%) Var.Dev(%)

10.100.00 23064 ABHS 23023.35 0.0304 0.1762 0.1625

NGHS 22971.20 0.0607 0.4024 0.2927

HHS 23041.00 0.0304 0.0997 0.0974

BAAA 23044.25 0.0006 0.0049 0.0027

10.100.01 22801 ABHS 22725.00 0.2237 0.3333 0.1291

NGHS 22711.65 0.2105 0.3919 0.2207

HHS 22739.55 0 0.2695 0.1161

BAAA 22751.25 0 0.0054 0.0027

10.100.02 22131 ABHS 22070.41 0 0.2738 0.1624

NGHS 22011.50 0 0.5399 0.2066

HHS 22096.25 0 0.1570 0.1435

BAAA 22090.60 0.003 0.0050 0.0016

10.100.03 22772 ABHS 22719.70 0 0.2297 0.3042

NGHS 22647.15 0.0395 0.5483 0.2128

HHS 22753.85 0.0395 0.0797 0.0928

BAAA 22648.55 0.0027 0.0098 0.0033

10.100.04 22751 ABHS 22625.90 0 0.5499 0.2137

NGHS 22598.55 0.2373 0.6701 0.3116

HHS 22657.05 0.2373 0.4129 0.1941

BAAA 22634.00 0.0043 0.0095 0.0034

10.100.05 22777 ABHS 22628.30 0.2678 0.6529 0.1882

NGHS 22618.05 0.2678 0.6979 0.2342

HHS 22717.42 0 0.2616 0.1107

BAAA 22714.75 0.007 0.0115 0.0029

10.100.06 21875 ABHS 21774.25 0.2469 0.4606 0.1777

NGHS 21782.45 0.3200 0.4230 0.1577

HHS 21814.90 0.1853 0.2747 0.0941

BAAA 21823.10 0 0.0047 0.0033

10.100.07 22635 ABHS 22523.35 0.3711 0.4933 0.0745

NGHS 22469.70 0.4109 0.7303 0.2280

HHS 22518.70 0.3711 0.5138 0.0327

BAAA 22533.20 0.0037 0.0089 0.0025

10.100.08 22511 ABHS 22397.35 0.3909 0.5049 0.0764

NGHS 22369.45 0.5153 0.6288 0.1193

HHS 22416.75 0.3243 0.4187 0.0557

BAAA 22412.25 0.0052 0.0071 0.0013

10.100.09 22702 ABHS 22551.35 0 0.6636 0.2524

NGHS 22496.95 0.0176 0.9032 0.2411

HHS 22645.78 0 0.2476 0.0789

BAAA 22650.50 0 0.0045 0.0045
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to the negative difference and R+ indicates the sum of the ranks corresponding to positive393

difference, respectively. pValue is significant difference between the AVG values of two algo-394

rithms, which is calculated by the software SPSS statistics 22. A null hypothesis is assumed395

that there is no significant difference between the two samples and an alternative hypothesis396

is assumed that there is a significant difference between the two samples, at 0.05 significance397

level. According to the relationship between pValue and 0.05 significance level, we obtain398

the result which is represented by three signs: “+”, “-” or “≈”. “+” or “-” denotes the399

first algorithm is significantly better or worse than the second one, i.e. there is a significant400

difference. And “≈” denotes there is no significant difference between the two algorithms.401

It can be seen from Table 7 that BAAA is superior to ABHS, NGHS, SACRO-BPSO-TVAC402

and SACRO-CBPSO-TVACGA, and nearly equivalent to HHS.403

Table 7: Wilcoxon signed-rank test results on AVG of BAAA against other algorithms.

Algorithm Better Equal Worse R- R+ pValue Result

BAAA to ABHS 9 0 1 8 47 0.047 +

BAAA to NGHS 10 0 0 0 55 0.005 +

BAAA to HHS 5 0 5 28 27 0.959 ≈

BAAA to SACRO-BPSO-TVAC 24 0 5 23 412 0.000 +

BAAA to SACRO-CBPSO-TVAC 23 0 6 64 371 0.001 +

5. Conclusions404

In this paper, a binary artificial algae algorithm is proposed for solving MKPs. Two405

logistic functions with different coefficients of curve are studied in discrete process. Three406

types of pseudo-utility ratios are presented and compared as well for repair operation so407

as to increase the efficiency of BAAA. In addition, an elite local search is introduced into408

our algorithm to improve the quality of solutions. Comparing with the existing algorithms,409

our algorithm is more robust and achieves better numerical performance. The comparisons410

of BAAA with other bio-inspired state-of-the-art algorithms available in the literatures are411

carried out with total of 94 benchmark problems. The numerical experiments demonstrate412

that BAAA is efficient and competitive comparing with the binary versions of the HS, PSO,413

GA and AFSA. Further research will focus on improving the model structure of AAA to414

decrease the computational efforts. Moreover, to extend the proposed algorithm for general415

purposes, BAAA must be applied in other binary test problems, especially in real applications,416

such as project scheduling and resource allocation.417
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Algorithm 1 DROP and ADD procedure

Input:

a candidate solution x

Output:

a repaired solution x

1: compute δi, i=1,2,...,d

2: initialize s(i)=i, i=1,2,...,d

3: sort s(i) rendering δs(i) be in ascending order

//DROP phase

4: if(not feasible(x))

5: for i=1 to d do

6: if(xs(i)=1)

7: xs(i) = 0

8: if(feasible(x)) break

9: end if

10: end for

11: end if

//ADD phase

12: for i=d to 1 do

13: if(xs(i)=0)

14: xs(i) = 1

15: if(not feasible(x)) xs(i) = 0

16: end if

17: end for

18: return x.
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Algorithm 2 EliteLocalSearch procedure

Input:

a current best solution xb

Output:

an improved solution xb

1: for i=1 to d do

2: for j=1 to d do

3: if (i!=j and xbi ! = xbj)

4: x=swap(xb, i, j) //exchange the ith and jth elements of the solution vector

5: if (fitness(x) > fitness(xb)) xb = x

6: end if

7: end for

8: end for

9: return xb.
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Algorithm 3 Binary artificial algae algorithm
Input:

c, p, b

Output:

the maximized profit of knapsack

1: define n, sf, eloss, Ap

2: initialize population of algal colony xi and repair xi, i = 1, 2, ..., n

3: starvationi = 0, i = 1, 2, ..., n

4: while (t < Tmax)

5: calculate energy Ei and friction surface ωi according to size of xi, i = 1, 2, ..., n

6: for i=1 to n do

7: isstarve=true

8: while (Ei > 0 and t < Tmax)

9: calculate j through tournament selection method

10: choose distinct k, l, m randomly between 1 and d

11: produce α, β, p randomly where α and β are in the range [0,2π], p is between -1 and 1

12: xim = xim + (xjm − xim)(sf − ωi))p

13: xik = xik + (xjk − xik)(sf − ωi)) cosα

14: xil = xil + (xjl − xil)(sf − ωi)) sinβ

15: discretize and repair xi

16: Ei = Ei − eloss/2

17: if (new fitness value of xi is better than old one)

18: accept xi and update corresponding fitness value

19: isstarve=false

20: else

21: Ei = Ei − eloss/2

22: end if

23: t=t+1

24: end while

25: if (isstarve) starvationi = starvationi + 1

26: end for

27: the rth dimension of smallest algal colony is replaced by that of biggest one, where r is selected randomly

between 1 to d

28: if (Ap > rand)

29: select the most starving algal colony xs, and xs = xs + (biggest− xs) ∗ rand

30: discretize and repair xs

31: end if

32: best=findBest(x)

33: ebest=eliteLocalSearch(best)

34: end while

35: return ebest

32


	Introduction
	Introduction to Artificial Algae Algorithm (AAA) in uymaz2015artificial
	Helical movement
	Evolutionary process
	Adaptation

	Binary artificial algae algorithm (BAAA)
	Discrete process
	Repair operator
	Elite local Search
	Flowchart and pseudo code of BAAA

	Experimental study
	Conclusions

