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Abstract

Capability based planning (CBP) is a strategy focused planning framework
that facilitates organizations to systematically develop capacity to achieve their
business objectives in highly uncertain, dynamic and competitive environments.
Capability programming is an integral part of CBP which requires selecting a
portfolio of capability projects for execution, referred as a capability program,
such that the overall strategic risk facing the planning organization across a
number of projected future operating scenarios is minimized while maintain-
ing the most economical choice. It is a challenging optimization problem that
requires handling a number of dynamic constraints and objectives that vary
throughout the entire planning horizon. An optimizing simulation approach
is presented in this paper that combines an evolutionary multi-objective opti-
mization algorithm with a reinforcement learning technique to generate capa-
bility programs which optimize strategic risks and program costs across mul-
tiple planning scenarios as well as over a rolling planning horizon. The role of
the optimization algorithm in this approach is to search for the non-dominated
capability programs at each decision point by minimizing the strategic risks
associated with individual capability projects across a number of planning
scenarios as well as the total cost of the program. The reinforcement learn-
ing algorithm, on the other hand, searches horizontally within the set of non-
dominated programs to minimize capability risks and costs over the entire
planning horizon. The methodology is evaluated on a test problem generated
based on the data distributions in an Australian Defence Capability Plan and
the performance is compared with two myopic heuristic methods.
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1. Introduction

Capability-Based-Planning (CBP) is a relatively new paradigm that provides
an analytical framework for strategic or long range planning using the con-
cept of capabilities. A capability is commonly defined as the power or ability to
do something [40]. Although the concept of capability has various applications
in diverse domains including management science, social science and engi-
neering domains, the origins of CBP are often traced back to defence [16]. In
defence jargon, capability refers to the capacity or ability to achieve an operational
effect [17] and CBP process is defined as an overarching framework for planning
under uncertainty to provide capabilities suitable for a wide range of modern-day chal-
lenges and circumstances while working within an economic framework that necessi-
tates choice [16]. Currently several defence forces around the globe, including
the USA, UK, Canadian and Australian Defence Force, are using CBP with
some variations in the development of future force structures which can oper-
ate effectively in a diverse range of future scenarios [23].

Program management, and in specific project portfolio selection, is a key
process in CBP that involves selecting a portfolio of capability projects for pro-
gramming or execution over the planning horizon. Program management is
an emerging area of research in strategic management discipline that aims at
bridging the gap between strategy and its implementation in large organiza-
tions by focussing on managing a cohort of projects on top of traditional project
management. A program is referred to as “a temporary, flexible organization
created to coordinate, direct and oversee the implementation of a set of re-
lated projects and activities in order to deliver outcomes and benefits related
to the organization’s strategic objectives” [9]. Program management involves
four key processes [34] including identification of all current, proposed and
on-hold projects; prioritization or ranking of projects related to their strategic
importance; selection of optimal project mix; and progress monitoring. The
project portfolio selection, therefore, is a key function in program management
that involves selecting a subset of desired projects to be programmed or exe-
cuted that would maximize the fulfilment of the strategic objectives within the
available resources. The common considerations in meeting these objectives
in portfolio selection problem include budget constraints to account for project
costs and the available budget; dependency constraints between the projects,
positioning considerations including both the temporal and spatial constraints
and threshold constraints ensuring the minimum levels of objectives are ful-
filled [35].

Although project portfolio selection problem has seen increasing interest
over the last decade [39], the research on this problem in the CBP context is
rather scant. Some of the challenges that the CBP process in defence brings
to the standard project portfolio selection problem encountered in other in-
dustries include very high cost investment decisions (typically 100s of mil-
lions of dollars), long time frames for capability development (typically 10s
of years) and government imposed hard budget constraints. Among others
the two key factors that differentiate defence problems from standard indus-



try problems are the type of optimization objectives and the type of uncer-
tainty associated with these objectives. Business organisations are generally
concerned with maximizing profits, revenues, market shares etc. However
in defence the major concern is national security. Subsequently, minimizing
strategic risk becomes the number one priority in defence portfolio optimiza-
tion problems. However, unlike business organisations, strategic risk in de-
fence is often associated with deep uncertainty which comes through a number
of factors not relevant to general business problems such as changes in govern-
ment and political landscapes, national security policies and priorities, local
and global threat scenarios, etc. Dealing with this deep uncertainty requires
use of different methodologies than the standard probabilistic risk measuring
methods. Scenario-based approaches are usually used to plan under such cir-
cumstances [8] [47]. This in turn requires portfolios to be selected such that
multiple conflicting objectives, e.g. minimization of strategic risks and cost and
maximization of balance of investment, are traded off across a number of future
scenarios. The process is often continuous since the planning landscape char-
acterized by political, economic, social and technological dimensions change
continuously. New capability projects are added regularly to the desired list
and existing projects are removed from the plan due to emerging needs under
changing strategic environment and political guidance. This requires that the
capability program be optimized dynamically over the whole planning hori-
zon.

The work presented in this paper is specifically motivated by the project
programming problem in the defence capability planning context, in particu-
lar the program management in Australian Defence Force’s (ADF) capability
development process. The Defence Capability Plan (DCP) [1] outlines ADF’s
long-term capital program which aims at achieving the long-term strategic
goals set out in the Defence White Paper (DWP). Both these documents con-
tinuously evolve to address the dynamic nature of Australia’s strategic risk
environment. Generally, the DWP is revised every four years. The current
DWP [2] aims at making the ADF a balanced force capable of meeting every
contingency in the next two decades. Various changes can trigger the DCP
update process including changes made to Defence portfolio in the budget,
emergence of an acute capability requirement and delays in the project sched-
ules. The DCP is generally updated annually and contains major equipment
project proposals covering a range of Defence capabilities to be evaluated by
the Government over the next decade. The current DCP 2012 (public version)
contains 111 projects worth $153 billion [1].

Defence capability planning is a high-stake complex iterative process which
requires satisfying several competing objectives under the given constraints.
A DCP needs to deliver nation’s strategic goals set out in the DWP but within
strict financial constraints. Other constraints include delivery schedules, the
capacity of Defence and industry to deliver capability, interdependency be-
tween projects, and changing political landscapes. Figure 1 depicts the differ-
ent factors and drivers considered in the formation of a DCP. Defence often has
to prioritize by evaluating capabilities across several future strategic scenarios
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Figure 1: Defence Capability Planning

and weighing each capability on different measures of effectiveness, utility and
performance. These complexities make the development of DCP an interesting
optimization problem. Furthermore, the combinatorics involved in evaluating
the feasibility and relative costs and benefits of a large number of DCP options
necessitates the use of computational tools.

Current DCP program management practice involves ranking all capability
proposals in the Defence portfolio based on a collated score assigned to each ca-
pability by Capability Managers (CM) and Subject Matter Experts (SME) across
a range of strategic scenarios and then selecting the set of capabilities from the
top of the list that could feasibly be programmed within the given budget con-
straints. Over-programming has been a common practice in previous DCPs, in
order to hedge against possible project failure risks.

One limitation of this linear approach is that the decision makers do not get
to see many program options to choose from and hence feel pressure to score
the individual capability proposals cautiously. In addition there is no transpar-
ent mechanism available to analyze multi-dimensional risks associated with
different programming options.

This paper presents a methodology for DCP program optimization under
periodically changing multiple planning scenarios. The primary aim of the
methodology is to search capability portfolios that lie on the efficient frontier,
when traded off on a number of objectives including the cost and effective-
ness scores in different planning scenarios, not only at a single time period but
over the whole planning horizon. To achieve this outcome an evolutionary
multi-objective optimization (EMO) approach is first used to model a single
period DCP programming problem. The goal of EMO is to generate sets of
non-dominated portfolios when measured against cost and effectiveness cri-
teria across multiple planning scenarios at every time period. Evolutionary
multi-objective optimization algorithms (MOEAs) are population based tech-



niques that use Darwinian evolution principles, such as natural selection and
reproduction, to search the solution space. In effect, they solve optimization
problems using multi-point parallel search of the solution space and therefore
are considered less susceptible to local optima. In addition, they evolve a set of
non-dominated solutions taking into account multiple conflicting objectives.
From the DCP programming perspective this means providing the decision
makers a set of non-dominated DCP programming options to choose from that
are evaluated on multiple risk or objective fronts across multiple strategic sce-
narios.

Further, to extend the optimization problem over the entire planning hori-
zon, we adopt an optimizing simulation approach that integrates a reinforce-
ment learning algorithm with the MOEA to choose programs that are not only
non-dominated at each time period but also perform well in the long run. This
is done by adopting Q-learning [52], a well-known reinforcement learning al-
gorithm, that works by iterating through the sets of non-dominated programs
generated by the MOEA at each time period, estimating the Q-values of these
programs with respect to their performance in the long run (i.e., over the entire
planning horizon) over a number of simulation runs and finally allows select-
ing the best combination of portfolios over the whole planning horizon based
on the highest estimated Q-values. Such an approach not only allows for ac-
counting the uncertainties associated with different problem variables but is
also more transparent, as it allows better analysis of individual solutions, in
comparison to, for example, a monolithic approach where a combined objec-
tive function is used to model all time periods simultaneously and stochastic
variables to model uncertainties.

The DCP program optimization problem discussed in this paper is closely
related to the project portfolio selection or optimization problem. Some oper-
ations research (OR) techniques to model these problems date back to as early
as 1970s [37], but a renewed interest could be seen towards the late 90s [4]. The
application of evolutionary multi-objective and many-objective optimization
algorithms to project portfolio optimization problems, however, is relatively a
recent area of research [26] [11] [54]. Many large organizations have been using
enterprise-wide portfolio optimization techniques for a long time. However,
there is limited research in the application of these techniques to the defence
portfolio optimization [28] [3] which requires dealing with specific problem
characteristics discussed above.

The rest of this paper is organized as follows: the extant literature related
to the problem addressed in this paper and the proposed methodology is dis-
cussed in Section 2; Section 3 presents a detailed and formal description of the
capability program optimization problem; the proposed solution to address
this problem is discussed in Section 4; Section 5 provides the details of our ex-
perimental setup to assess the proposed solution approach in a test DCP prob-
lem and presents and discusses the outcome of the experiments; conclusions
and future work are discussed finally in Section 6.



2. Related Work

In general, portfolio optimization is a well-studied area, especially in fi-
nance and economics fields [41]. A number of techniques, including EA based
approaches, have been applied to different variations of financial portfolio op-
timization which requires choosing a set of financial assets to maximize returns
over time. For example, in his classic work Markowitz [38] studied the port-
folio selection of investments in securities to minimize the risk of losses, in
the form of mean-variance, and maximise the profit while considering several
constraints such as cardinality and turnover constraints. Dantzig [15] solved a
multi-period asset allocation portfolio optimization problem using multi-stage
stochastic linear programs. Consigli and Dempster [14] proposed a CALM
model, which was designed to deal with uncertainty affecting both assets (be-
longing to either a securities portfolio or in a market environment) and liabil-
ities (in the form of scenario dependent payments or borrowing costs). A set
of 10-stage portfolio problems were solved and discussed using different solu-
tion methods and libraries. In [10], a dynamic portfolio management problem
is studied over a finite horizon with transaction costs and a risk objective func-
tion. The authors assumed that the uncertainty faced by the investor could be
approximated using discrete probability distributions via a scenario approach.
As a consequence, a scenario decomposition approach was used to solve the
problem. Yang [53] applied a genetic algorithm (GA) based technique to solve
the dynamic portfolio optimization problem with a variety of economic uncer-
tainties. A recent survey on the use of MOEAs for portfolio optimization in
finance and economic applications can be found in [41].

Various methodologies have been proposed to approach the project port-
folio selection or optimization problem [4] — the main concern in this paper —
especially in the area of research and development (R&D) resource allocation
problems [12]. lamratanakul et al. [29] proposed a taxonomy of project portfo-
lio selection approaches and categorized them into six classes that include ben-
efit measurement methods that use normative approaches such as analytical
hierarchy process (AHP) and scoring models to rank projects on multiple crite-
ria; mathematical programming approaches; cognitive emulation approaches
such as decision tree and regression models; and simulation and heuristics ap-
proaches such as Monte Carlo or system dynamics based simulations; real op-
tion analysis approaches and ad-hoc modeling approaches. Using this taxon-
omy our work could be categorized to fall under the simulation and heuristic
based approaches. Our work specifically deals with project portfolio selec-
tion problem in defence domain based on multiple objectives evaluated under
multiple planning scenarios that evolve over time. Below we survey some rep-
resentative examples of the work closest to our undertaken problem.

Gutjahr et al. [26] applied a bi-level modeling approach to an R&D project
selection problem that includes dealing with portfolio selection as a multi-
objective optimization task and the resource allocation (in particular, employee
assignment) to individual projects as a scheduling task. The increase in em-
ployee competence over the planning horizon is taken into consideration and



modeled in the objective functions. Two MOEAs, NSGA-II and P-ACO, are
used to solve the multi-objective portfolio selection problem. While the project
costs and employee competencies are modeled as random variables, the in-
dividual test instances are generated by sampling from these distributions.
Damghani et al. [32] proposed a framework for solving multi-period project
selection problem in capital investment domain. Their technique is based on
TOPSIS framework [13], that allows reducing a multiple objective problem to
a bi-objective problem, and an extended epsilon-constraint method, which is
used to generate solutions on a restricted Pareto front of the transformed bi-
objective space. While four objectives related to profit maximization and cost
minimization are considered in their formulation, the objective values for all
projects are assumed to be fixed and predetermined.

Liesio and Salo [36] used a scenario-based approach to model uncertainty
involved in the selection of a portfolio of investment projects. The two key
features of their approach include the use of a set inclusion technique to model
incomplete information associated with planning scenarios and an integer pro-
gramming technique to determine non-dominance relation between portfolios.
Although this approach consider choosing project portfolios under multiple
scenarios, the scenarios are considered as single shot pictures of distant future.
Rafiee and Kianfar [43] used a multi-stage stochastic programming approach
to model a multi-period project selection problem in pharmaceutical industry
under multiple scenarios. However, the scenarios in their model correspond
to random samples of exogenous conditions as well as probabilities associated
with project success outcomes. A real-option valuation method is then used to
reduce the scenario space. Moreover, their optimization model does not con-
sider multiple objectives.

Kangaspunta et al. [31] proposed a portfolio approach to analyze the cost
and efficiency of weapon systems. Their approach uses combat simulations
to assess the performance of a set of military capabilities in a range of combat
scenarios. Finally, an algorithmic heuristic is used to choose the systems lying
on the efficient frontier which relies on enumeration of all portfolios, sorting
individual systems based on a given cost criteria and then making pair-wise
comparisons between feasible and potentially cost-efficient portfolios.

A review of these and other approaches suggest that there is an increasing
interest in the use of multi-objective optimization algorithms for the portfolio
selection problem for long range planning. The work presented in this pa-
per complements these approaches and contributes both from an application
as well as methodology perspective. From an application perspective, we have
investigated a defence capability portfolio optimization problem which has not
received much attention despite its importance. One reason for this scarcity is
that the complexity of the real problem makes it hard to comprehend and scope
it as an optimization problem to which popular methods, including evolution-
ary optimization methods, can be applied. We have, therefore, contributed to
the field by providing one possible clear definition of this optimization prob-
lem, in addition to proposing a methodology to solve it. Our solution method-
ology combines MOEAs and reinforcement learning in an optimizing simula-



tion framework to provide an evolutionary multi-objective, multi-period and
multi-scenario optimization approach. The existing MOEA based approaches
for dynamic, multi-period, multi-objective problems generally rely on model-
ing through monolithic objective functions with stochastic variables. By in-
tegrating reinforcement learning with MOEAs our approach allows a much
simpler and elegant formulation that in turns allow better management of
problem complexity as well as a more transparent problem-solution analysis
mechanism. Our approach allows for scaling to any number of scenarios by
considering program risks in these scenarios as independent objectives. Such
a problem is another good practical example for many-objective optimization
research which is often criticized for lack of relevant real world problems [45].
It is anticipated that the presented work will further foster the research in long
range portfolio optimization.

3. Capability Program Optimization Problem

The optimization problem considered in this paper is primarily motivated
by capability planning in the defence sector, in particular the ADE. However,
the characteristics of the problem are common across a number of industries,
such as pharmaceutical [24] and oil and gas production sectors [48], and hence
the formulation can easily be extended to cater for the specific planning re-
quirements.

Capability planning in Defence follows a rigorous development life cycle
process that starts with the identification of future needs leading to a list of ca-
pabilities (e.g. Ground Based Air and Missile Defence, Maritime Patrol and
Response Aircraft, Underwater Tracking Range, etc.), belonging to a num-
ber of categories (e.g. Land, Maritime, Air, Cyber, etc.)., that would enable
ADF to achieve its strategic objectives including national security, defending
Australia’s interest in the region and international engagement requirements.
While it is desirable to acquire all the capabilities in this wish list, the resources
needed to acquire these capabilities always exceed the available resources. De-
spite their importance therefore, a limited number of capability projects can be
scheduled to be programmed at any given point in time. A second challenge
in selecting amongst the desired capabilities is the deep uncertainty associated
with their future use. Most capabilities usually have long lead times with typ-
ical development life cycles of 20 to 30 years. Given the pace of current tech-
nological developments predicting future requirements is a next to impossible
task. On the other hand, any decision made about acquiring a capability is
almost irreversible and carries a risk of huge opportunity loss due to the high
cost involved in the capability development. A number of representative fu-
ture scenarios are therefore used to carefully evaluate the potential use of these
capabilities. In fact, it is safe to assume that the exhaustive wish list is generated
by trying to cover potential risk in all of the representative scenarios.

Hence, the key objective of capability program optimization is to select a
set of capability projects to acquire or program such that the effectiveness of
these projects is maximized across a number of potential future scenarios and



the cost to program these projects is minimized. In addition the problem is
continuous; i.e., the scenarios used for evaluating capability needs evolve with
time, new capability needs emerge and irrelevance of existing capabilities is ex-
posed. Since decisions about acquiring capabilities are made at present, these
future changes are needed to be taken into account when programming capa-
bility projects.

Given this context, we break down this problem into two sub tasks that
simplifies the analysis as well as support developing the solution methodology.

3.1. Single-period Formulation

The first sub task is to model the single period optimization problem. This
is done by ignoring the temporal dimension and focusing only on the opti-
mization of multiple objectives at a single time step in the planning horizon.
Let z;; € X be the i, capability project belonging to the j;j, category in the cur-
rent wish list of the desired capabilities X with a given development cost ¢;;.
Further assume a number of planning scenarios under which the effectiveness
of each of the capabilities in X is evaluated. Notice that the definition of sce-
narios in our formulation is notional. A typical scenario in defence may refer
to a targeted operation in a specific physical terrain, threat environment and
a predicted enemy strength. In such a scenario specific capabilities, e.g. un-
manned ground or air vehicles, would vary in their effectiveness from another
scenario which differs from the first in the above three features. Hence, we
assume that a capability in every scenario performs differently on risk or effec-
tiveness scores. In other words, each capability has a set of effectiveness scores
corresponding to the number of scenarios. Conversely, a scenario is defined
by the set of effectiveness scores for all capabilities in the wish list. However,
this assumption is not restrictive and does not prevent our methodology being
used with the real planning scenarios, so long as a mechanism of allocating
risk or effectiveness scores to capability projects in these scenarios could be de-
fined. Let rf; be a value by which capability z;; reduces the amount of risk!
in scenario k. Also notice that while we assume risk or effectiveness scores for
capability projects to vary across planning scenarios, project costs remain con-
stant and independent of scenarios. This assumption is not too unreasonable
given that capability projects do not vary with scenarios.

Using a binary notation, our decision variable z;; can be defined as:

2y € X = 1 if capal:?lhty x;5 is selected to be programmed. (1)
0 otherwise

A single period multi-objective program optimization problem is then to
select a set of capability projects (or a portfolio P) to be programmed in the

1For discussion in this paper, risk reduction and effectiveness are used interchangeably. The
more a capability is able to reduce a risk, the more effective it is in that scenario. The optimization
problem can be posed as either minimization of strategic risk or maximization of effectiveness.



current time period that minimizes (1) the cost and (2) the risk (or maximizes
the effectiveness) across all planning scenarios, over the space of all feasible
portfolios. Formally using the above notation, the two objectives are given in
Equations 2 and 3:

minZZcijxij (2)
iog

and
minz Z Tf’jl‘ij, Vk (3)
i g
subject to:
Zcijl‘ij < Bj(1+5j), VJ (4)
DO e <Y [Bi(1+65)] (5)
i g J
0< 3 rhay; <1, Wk 6)
i
zij €{0,1} )

Here k € [1, K] denotes a scenario and K the total number of scenarios and
hence the second objective is a composite function of K objectives. B; in Equa-
tions 4 and 5 refers to the given budget for a category j and J; is a violation
threshold set up as a small percentage (< 0.1) of the given budget. The two
equations ( 4 and 5) simply constrain the total cost of a program to the available
budget plus a threshold in each category as well as the total budget. Note that
satisfying constraint in Equation 4 will implicitly satisfy Equation 5. However,
reverse may not be true. Hence, we needed to keep both constraints. (Same is
true for constraints listed in Equations 13 and Equations 14 discussed in next
section.) Equation 6, on the other hand, constrains the portfolio risk values to a
normalized risk (or effectiveness) score within [0,1] interval. Here a risk score
of 0 (or effectiveness score of 1) implies that the set of programmed capabilities
could potentially cover all perceived or known risks. A risk score less than 0
(or effectiveness score greater than 1) may imply over protection which in turn
implies that some of the capabilities could be removed from such a portfolio
without compromising the risk in a given scenario. Conversely, a risk score of
1 (or effectiveness score of 0) implies effectively no protection against known
risks. Practically, such a constraint would be ineffective if the sum of risk or
effectiveness scores for all capabilities in a wish list are bounded not to exceed
0% risk (or 100% effectiveness). The data generated for test problems used in
this study follow this latter approach (see Section 5 for details).
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3.2. Multi-period Formulation

Recall from our previous discussion that the capability program comprises
a set of projects or a portfolio to be programmed over the entire planning hori-
zon (10 years for the considered DCP problem). The planning problem there-
fore requires considering emerging requirements, changes in the environment
and hence their effect on planning scenarios, capturing variations in available
resources such as budget, and so on. Extending the above multi-objective for-
mulation to multiple time periods, therefore, implies selecting a capability pro-
gram that would minimize the above formulated cost and risk objectives over
the whole planning horizon. Formally, the decision variable over time z;;; is
defined in Equation 8:

o ex = 1 if capability z;; is selected to be programmed at time ¢.
gt 71 0 otherwise
®)

and the above objective functions over time become:

mlnz Zcijtxijta Vit (9)
g

and
minZerjtxijt, Yk, Vit (10)
i g

subject to:
Z CijtTijt < Bjt(l + 5j)7 Vj, Vit (11)
DD cigmige < Y [Bi(1+65)], vt (12)

i g J
0<3 N ki <1, VEVE (13)
(2

Tijt € {0ﬂ 1} (14)

In simple words the above formulation assumes that we are solving a dif-
ferent problem (or more correctly different instances of the same problem in-
troduced by changes in scenarios) at each time period. That is, we assume
that we do not have any information about the future, neither can we estimate
expectations due to deep uncertainty, which would require using random vari-
ables in the formulation as is done in stochastic programming [? ] based mod-
els where the coefficients and right-hand sides are random variables. In our
case, the formulated deterministic models can deal with uncertainty in scenar-
ios through the use of RL and multiobjectivity through MOEAs. This allows
us to deal with uncertainty associated with future decisions while dynamically

11



optimizing over a constraint search space defined by the set of Pareto or non-
dominated portfolios available at each time step in the planning horizon. The
complete solution approach is detailed in Section 4.2.

3.3. Model Assumptions

A number of simplifying assumptions are made in the above formulation.
Specifically, it is assumed that:

e The wishlist of all projects to be programmed over the entire planning
horizon is assumed to be known at present. However, our model allows
addition of a small proportion of new projects (emerging requirements)
at every future time period. Furthermore, the available budget and the
effectiveness scores for each project in different scenarios are considered
unknown and changing over time.

e Each project has a fixed completion period.
o All projects have equal priority.

e There are no interdependence between projects, i.e. all projects can run
in parallel.

e Cost of each project is known and is equally distributed over the entire
planning periods. The cost is also considered fixed across the planning
scenarios.

e Once a project is programmed it cannot be removed from the project list
until completion.

Although some of the assumptions are not representative of the actual ca-
pability programming problem, specifically project priorities and their inter-
dependence, the problem is already quite complicated without the addition of
such constraints. We hypothesize that most of these assumptions can be re-
laxed through additional feasibility constraints to the formulation without the
loss of generality. However, exploration of this hypothesis is left for future
work.

4. Solution Approach

The program optimization problem formulated in Section 3 presents two
key optimization challenges related to two sub tasks mentioned above. The so-
lution approach presented in this section is developed to address the two tasks
using an integrated framework which combines evolutionary multi-objective
optimization and an RL method in a simulation setting.

12



4.1. Single-period Multi-Objective Optimization

The first optimization challenge relates to finding a set of non-dominated
portfolios, consisting of capability projects, that minimize the risk (or maximize
effectiveness) across a number of planning scenarios as well as the cost to fund
them, which is constant across all different scenarios. This could potentially
be formulated as a bi-objective optimization task where cost is treated as one
objective and an aggregated risk score over all scenarios as the other. The risk
score aggregation could, for instance, follow a weighted approach. However,
one problem with such an approach is that it does not allow a transparent com-
parison between different risk dimensions and depends on weight allocations
by experts. An alternative approach could be to formulate it as K bi-objective
optimization problems®. Here K corresponds to the number of planning sce-
narios used for evaluating the effectiveness of each capability and the two ob-
jectives correspond to the total cost and the total effectiveness of capabilities
in a given portfolio under a given scenario. However, the problem with this
approach is that it does not provide a seamless way to reconcile between the
set of Pareto optimal solutions obtained through solving the K bi-objective op-
timization problems and compare them on a common axes. To overcome this
challenge, we instead model this problem, in this paper, as a multi-objective
optimization problem with K + 1 objectives, where K objectives correspond
to the total effectiveness scores of a given portfolio in each of the K planning
scenarios and the additional objective corresponds to the cost of the portfolio,
which we assume fixed across all scenarios.

An MOEA, in specific MOEA/D [55], is utilized in this paper as an ap-
proach to address this multi-objective optimization problem. MOEAs are meta-
heuristic search techniques which have shown competence in finding globally
optimum solutions in large search spaces. MOEA /D is one of the recent state-
of-the-art MOEA which solves a multi-objective optimization problem by de-
composing it into multiple scalar optimization problems and then apply an
EA (here differential evolution (DE) algorithm is considered [21, 20, 5]) to
solve all single objective optimization problems simultaneously. The details
on MOEA /D algorithm are provided in Appendix 7.1. Since DE is designed to
work with real-valued vectors, and a binary formulation is used here to rep-
resent solutions (see Equation 1), a real to binary encoding is used as follows:
First a dummy array of real values within [0,1] is initialized, along with a bi-
nary array representing all projects. Then, simple DE mutation and crossover
operators are used, where for each individual (77) in the dummy array a new

child (u,) is generated as follows:

! Tay,j + F‘(xamj - xas,j) if(r(md <crorj= jrand)
Tz,j otherwise

20r K multi-objective optimization problems, if additional objectives, such as balance of force-
mix, are considered.
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where rand [0,1], a1, a2 and ag are random integer numbers € [1,P.S] and jqnd

1,2,D is a randomly selected index, which ensures U, gets at least one compo-
nent from 77 Consequently, for the main 0-1 array, the new individual is set as
follows:

L]0 if (u, ; < 0.5)
21 otherwise

if the new child is better than its parent, both () and (’LZ) are copied to the
next generation.

A new breed of evolutionary algorithms has emerged to scale MOEAs to
problems with larger number of objective functions, known as many-objective
evolutionary optimization algorithms. The leading algorithms in this area have
been shown to scale up to several tens of objectives [7] [18]. However, since in
this paper we only consider a maximum of four planning scenarios and there-
fore five objective functions to optimize, we restrict ourselves to MOEA /D,
which has shown to scale well to greater than three objectives [30] [51] in com-
parison to other famous MOEAs, including NSGA-II. Further, a modified ver-
sion of MOEA /D [6] is used that can has shown even better handling of prob-
lems with more than three objectives. Also, the original MOEA /D was pro-
posed for unconstrained optimization problems. Further, a modified version
of MOEA/D [6] is used that can has shown even better handling of problems
with more than three objectives. Also, the original MOEA /D was proposed for
unconstrained optimization problems. The modified MOEA/D used in this
paper relaxes this assumption and allows handling constraints. In particular,
the superiority of feasible solutions method is used to handle the constraints
using the following criteria: (i) a feasible solution is always preferred over an
infeasible solution; (i7) a solution with higher fitness is preferred when com-
paring between two feasible solutions; and (4i7) a solution with smaller sum of
constraint violation is preferred when comparing between two infeasible solu-
tions. The sum of constraint violation is calculated as follows:

vio(Z) = Y max(0, gi(T)) + 25 max(o, |he(Z)] - ¢) (15)

where g (') is the k' inequality constraints, h, (') the e!" equality constraint.
The equality constraints are also transformed to inequalities of the form:

—< he(7) <e (16)

4.2. Multi-Period Optimization
The second challenge relates to extending the multi-objective optimization
methodology presented above over the entire planning horizon. This is im-
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portant because the decisions made at the current time need to consider the
effect of future changes such as updates about available resources and capabil-
ity needs.

We use an optimizing simulation approach that integrates MOEA /D and
RL with a Monte Carlo simulation to address this problem. Put simply, the
simulation is used to generate different state variables (which involves up-
dating the budget, capability list and scenarios through generating effective-
ness scores from a given distribution for each of the capability projects) at each
time step of a simulation iteration, MOEA is used to choose actions (one of
the non-dominated program options from the current solution) and the RL is
used to update the Q-value for selected state-action pairs using the standard
Q-learning equation [52]. During learning the actions are selected either ran-
domly or based on the maximum Q-values to balance between explore and
exploit respectively. The detailed algorithm is provided in the next section.

The overall objective of this stage of optimization is to select a set of non-
dominated programs at each time period in the planning horizon so that the
optimization of objectives, i.e., the minimization of the cost of programs and
strategic risks across all planning scenarios, can be extended over the entire
planning horizon. In other words, a non-dominated choice of projects at a sin-
gle point in time might not be so in the long run. This is similar to playing
a game of chess, at a given move you might need to sacrifice a piece on the
board with an objective of winning at the end of the game. Or to a path plan-
ning problem where the set of non-dominated programs at each period can
be considered as nodes in the network and the goal then is to choose a path
consisting of a set of nodes that is better overall in terms of multiple-objectives.
However, unlike pre-defined nodes in a path planning problem, the nodes here
are generated based on the choice of the nodes in the previous time steps.

4.3. Putting it all together

In summary, our scenario-based multi-period multi-objective program op-
timization methodology involves the following optimizing simulation steps:

1. At each time step generating the list of desired capabilities which de-
pends on the decisions made in all previous time steps and the emerging
capability requirements, updated scenarios (defined by the risk scores of
each project in the current capability list) and the available budget;

2. Solving a K + 1 objectives optimization problem where K is the num-
ber of planning scenarios across which the strategic risk is minimized in
addition to the cost of the program;

3. Choosing a portfolio to program from the non-dominated set, obtained
through the optimization procedure in the previous step, either randomly
during exploration mode or based on the best Q-value in the exploitation
mode;

4. Iterating through these steps until the stopping criteria is reached.
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Algorithm 1 Multi-period Multi-Objective Program Optimization Algorithm

1. m<+ 0

2: Sy « initialize current state at ¢t = 0

3: Q < []; (initialized to O or infinity depending upon the direction of opti-
mization)

4: Py < GetParetoSet(Sy)

5. while m < M do

6: t+ 0

7: Sy + Sy

8: P+ P

9:  whilet < T do

10: a; < ChooseAction(P;, St)

11: St+1 — GetNe:L'tState(St, at)

12: Piy1 < GetParetoSet(Si41)

13: R; + ComputeReward(as, St, Piy1, St+1)

14: Q(St,ay) + (1 — a)Q(Sy, ar) + a[Ry + ymaxpgs Q(Si41, ar41)]
15: t—t+1

16:  end while

172 m<+—m+1

18: end while

19: return

A more detailed pseudocode listing the main functions is given in Algo-
rithm 1 where the explanation of terms used in the algorithm is given in Ta-
ble 1.

In every simulation iteration m, a project portfolio (represented by action
a;) is selected from the non-dominated set, obtained through solving a sin-
gle period multi-objective optimization problem at ¢. Since the conditions at
t = 0 are known, the non-dominated set obtained from the master project list
at ¢t = 0 is considered fixed for all simulation runs. An action is selected (the
ChooseAction function) either randomly or based on the highest Q-value with
a given probability controlled by a parameter A, which provides balance be-
tween exploration and exploitation cycles. In the simplest strategy, A is set
to 0.5 that allows uniform random choice between explore and exploit trials.
Other strategies could be used to adapt A based on the learning outcomes.
The next state (S;1) is then generated based on the selected action. We need
to do this because the list of projects available in the next time step depends on
the portfolios selected in the previous time steps. Note that the budget and ef-
fectiveness scores (or scenarios), as explained in Section 3.3, are not considered
dependent on the selected actions in the previous time steps.

The next important step in the algorithm is the computation of reward for
the selected action. This is done by first solving the single-period optimization
problem for the next time step using S;1; and obtaining the non-dominated set
P,11. The reward R, for (S;, a;) is then computed as the weighted sum of two
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M  represents the number of simulation cyclesand m € 0,1,--- ,M — 1

N

represents the length of the planning horizon (10 years for DCP prob-
lem)andt€0,1,--- , T —1

S represents a state at time ¢ which is represented by the capability list X
at time ¢, K scenarios (marked by K different effectiveness scores for
each project in X;) and the available budget B, at time ¢

P, represents the set of non-dominated portfolios at time ¢

a; represents the portfolio selected from P, either randomly (in explo-
ration mode) or based on the best () score (in exploitation mode)

@ represents the state-action table used to store the () scores or factors

Table 1: Explanation of terms used in Algorithm 1

factors as follows:

R; = wiR¢c + waRE (17)

where R¢ refers to the reward contribution due to the cost factor and is com-
puted as (Equation 18) (i) the sum of the absolute difference between the avail-
able budget (B;) and the cost of the selected portfolio (C,); and (ii) the sum of
the absolute differences between the cost of each portfolio in P, (C;) and the
budget in the next time step B, ;. Both terms are normalized using the given
budget values and the number of portfolios in respective non-dominated sets
(Np).

_ 1 (|Ca - Bt‘) + ZPt+1(|Ci - Bt+1|)

Re = Vi€ Py 18
¢T3 B; NpBi L€ (18)

The premise of using such a formulation is to provide higher rewards to the ac-
tions (or portfolios) whose costs are as close as possible to the reference point,
i.e. the available budgets so that budget over or underspending could be mini-
mized. Moreover, the second term in the expression aims at capturing the effect
of action choice on the generation of future options (i.e., the generation of non-
dominated set in the following time step). Notice that this approach allows us
to compute portfolio values in forward direction, unlike the more complicated
classical dynamic programming approach which relies on updating the value
functions recursively.

Rpg, on the other hand, refers to the reward contribution due to the sec-
ond composite objective i.e. the portfolio effectiveness scores in multiple sce-
narios. It is computed similar to Rc (Equation 19) except that the additional
summation is applied due to multiple scenarios and the reference value of 1
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corresponds to 100% effectiveness in each scenario.

_ 1 (ZK,(l_Eak) + ZPt+1 ZKt+1(|1_E'LJ|)
2 K, NpKiiq

REg Vi € Piyi1lk € Ki|j € Kiga.

(19)

Finally, w; and w, in Equation 17 are weights that moderate decision maker
preferences on the two factors. In our formulation we used equal weights for
both factors.

Once the reward is computed for the selected portfolio (a;), Q-values are
updated using the standard Q-learning equation (line 14 in Algorithm 1). Here
Q(St, ar) corresponds to the Q-value of choosing action a, in state S; (see Ta-
ble 1), a € [0,1] is the learning rate that determines the degree to which the
effect of new information is taken into account; &« = 0 means no learning and
o = 1 means only the most recent updates are taken into account. Usually a
small « value is chosen for stochastic environments. v € [0, 1] is the discount
factor that determines the degree to which long term rewards are taken into
account. The reward R; is explained above. Simply put, this equation esti-
mates the value of taking a specific action in a specific state. Notice that the
state-action representation used in our formulation may not be scalable un-
derstandably, as the problem we are dealing with is continuous. Obviously, a
much more sophisticated approximation approach, such as those based on ar-
tificial neural networks or regression models [42], is needed to represent value
function on some aggregation level. However, since the focus of this paper
is the proof of our proposed methodology instead of its scalability, we leave
this work for future exploration and in this paper stick to a simpler look up
representation. Further, to make the problem tractable, we restrict the search
space by keeping the state-space constant across simulation runs. This is done
by allowing the capability project list, budget and effectiveness scores in sce-
narios to vary between time periods but not between multiple simulation runs.
In other words, the state-space is sampled only once in a single experimental
run. However, this limitation is somewhat compensated since the results are
averaged over multiple experimental runs (Section 5). Notice also that even a
single sample generates a significant number of state-action pairs and hence
the search space is still quite large. A hash-table representation is used for
faster storing and matching operations during this process.

The steps explained above are repeated for every update period within the
planning horizon (the inner loop in Algorithm 1) and over a specified number
of simulation runs (the outer loop in Algorithm 1).

5. Experimental Setup

5.1. Test Problem Generation

The program optimization problem undertaken in this work is motivated
primarily by the capability programming problem in the Australian Defence
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Organisation. However, the defence capability planning data is highly classi-
fied information for obvious reasons. To evaluate our methodology, in this pa-
per, we relied on the public version of the Defence Capability Plan (DCP2012)
to generate the test data. Defence releases public DCPs periodically for the
industry guidance in order to prepare them to deliver forthcoming defence’s
capability needs. DCP provides a list of proposed major capital equipment ac-
quisitions that are scheduled for the Australian government consideration in
the next ten years. The current public DCP2012 lists 111 projects which cover
a range of defence capabilities, including Maritime Forces, Land Forces, Air
Forces, Strike, and Network Centric Warfare. The test problem used in this pa-
per is generated based on the distributions built from DCP2012 data. A list of
parameters used to generate the test problems are listed below:

e Planning horizon (7'): is set to ten years based on the general DCP setting
but can be increased or decreased to suit the planning requirements.

e Planning scenarios (K): is set to four. The actual scenario generation
methodology could be quite complex and may involve input from se-
nior decision makers, domain experts and stakeholders. In this paper,
however, we use a notional scenario representation which only requires
defining capability effectiveness scores as explained below. So, although
the number of scenarios used in the test problem is arbitrary, the number
can be trivially increased or decreased.

e The number of capability projects at time ¢ = 1 (P,—;): is set to 60 projects
and then increase by 10 projects at each subsequent year, i.e., P;=19 = 150.
The range is based on the number of projects generally get listed in DCPs
and can be varied.

e The number of different capability categories (J): is set to five based on
the number of categories in DCP2012.

e Annual budget (B,): is generated based on a probability distribution de-
rived from DCP spending over the forward budget estimate period of
four years in different project categories.

e Cost of capability ¢ belonging to category j (c;;): is generated based on a
probability distribution derived from the projects cost provided in DCP2012
(See Figure 2). The capability costs generally follow a power-law distri-
bution, which signifies a few projects with large budgets and majority
projects with relatively smaller budgets. This makes the optimization
problem even harder due to the limited flexibility in slipping projects.

e Effectiveness of x;; in scenario k (r;;+): is generated based on a probabil-
ity distribution derived from industry readiness scores given in DCP2012
(See Figure 3.). The distribution for generating effectiveness scores for
multiple scenarios are then derived by randomly perturbing the mean
and the variance of the probability distribution derived from the above

19



Projects

Figure 2: Cost fitting curve

method. Determining capability effectiveness is a planning scenario is a
non-trivial task and a major research challenge in defence research [50].
However, since in this paper our focus is on the optimization method-
ology, we use this crude estimation technique to generate effectiveness
scores. Note that changing the generation function for effectiveness val-
ues, or any of the above parameters for that matter, does not change the
formulation of the problem or our optimization methodology.

5.2. Baseline Heuristics

We implemented two baseline heuristics to solve the DCP optimization
problem in order to provide an objective comparison of the performance of
the proposed algorithm.

Both heuristics use a myopic policy. The first heuristic uses a random ap-
proach to form portfolios of projects within the constraint boundaries. At time
t = 0 the current list of projects is initialized randomly. Then each project in the
list is uniform randomly selected to the current portfolio as long as the updated
portfolio does not violate any feasibility constraints, including the budget con-
straints within a threshold. The list is scanned until the budget threshold is
met. In the following time step the project list is updated with new informa-
tion based on the selected portfolio in the previous time step and the portfolio
is updated using the above procedure. The process is repeated for the whole
planning horizon to get the final solution.

The second heuristic follows a similar procedure. However, instead of a
random selection at each time step, the second heuristic selects projects greed-
ily from the current list to form a portfolio. This is done by computing the
average effectiveness scores for each project in the list over all scenarios. The
project list is then sorted from highest to lowest effectiveness scores and a port-

20



Projects

Figure 3: Effectiveness fitting curve

folio is formed by selecting the projects from the top of the list within the given
budget constraints.

5.3. Results and Discussions

The experimental results are based on 20 independent runs of the pro-
posed algorithm (see Algorithm 1), where each run consisted of 500 simula-
tion cycles (M). To reiterate, each simulation run consisted of solving a multi-
objective optimization problem for each of the 10 planning years iteratively
taking into account the decisions made in the previous time steps. Each run of
the multi-objective optimization algorithm (modified MOEA /D) in turn con-
sisted of evaluating 1000 individuals or solutions (population size) for 30 gen-
erations. Hence each simulation run consisted of 30 x 1000 x 10 = 300, 000 ob-
jective function evaluations. In other important parameter settings, crossover
rate C, was set to 0.95 whereas the scaling factor F' was chosen uniform ran-
domly from the range [0.4 — 0.95]. For a fair comparison, the results of the
baseline heuristic algorithm were also averaged over 20 independent runs.

Figure 4 shows the effectiveness values for selected solutions averaged over
all four scenarios obtained by the three algorithms over ten years. The y-axis
range from 0 to 1 respectively corresponding to 0% effectiveness (or no risk
coverage) to 100% effectiveness (or complete risk coverage) averaged over all
scenarios. Two curves are presented for each of the three algorithms corre-
sponding to the best and worst effectiveness results obtained out of all simula-
tion cycles in 20 independent runs, respectively. To elucidate further, the best
here corresponds to path that achieved the highest Q-value in 500 simulation
cycles over all 10 years. On the other hand, the plots of worst scores correspond
to the poorest solution of the best 20 runs. In other words, the best and worst

21



scores correspond to the best of the best and worst of the best in 20 runs, re-
spectively. For a better resolution, Figure 5 depicts the same results as Figure 4
but only for average best scores corresponds to the average of 20 best solutions
achieved by all three algorithms.

As can be observed, these results depict that the proposed optimizing simu-
lation algorithm overall performs better than the baseline heuristics algorithm
in terms of achieving solutions which have higher effectiveness scores aver-
aged across all scenarios. Specifically, the algorithm provides much improved
performance than the baseline algorithms between years 1 and 4. Disappoint-
ingly, the improved performance does not seem to be asymptotic over the
whole planning horizon as the difference between the effectiveness scores nar-
rows in the middle years (5 to 10). Also, the performance of all the algorithms
follows a downward trend between years 5 and 7, relative to their respective
performances over other years. We presume, rather strongly, that this is more
of an artifact of the synthetic data used in these experiments. The optimization
algorithms could struggle, for instance, if the number of feasible solutions is
very limited and there is no or hardly any room for improvements. In such
cases, a random solution would be as good as the outcome of any optimization
algorithm. However, in real problems one would expect a much greater flex-
ibility over the range of solutions and hence the need for optimization. This
hypothesis is further confirmed by a regained performance by both algorithms
over the subsequent years (8 to 10), when the performance of the proposed op-
timization based algorithm starts improving over the baseline algorithm once
again. Also notice in Figure 4 that the best solution found in these experiments
provides the worst effectiveness score in year 7. This could be surprising but
recall our definition of best here corresponds to best results overall years. Fur-
thermore, error bars, which show the confidence intervals of data along the
average effectiveness curves, demonstrate that the proposed method is able to
attain better results than the baseline heuristics.

Figures 6 and 7 show the results obtained for the second objective, i.e. the
cost error relative to available budget, in a similar manner. Notice that we
constrained the cost of portfolios to a maximum threshold, i.e., —0.5, to limit
overspending. As it is better to avoid overspending, the solution which has a
cost error closer to zero is preferable. Based on this definition, the proposed
algorithm considered the best.

5.4. Effect of Q-learning

In this subsection, we would like to demonstrate the benefit of using Q-
learning. To do this, the algorithm was run 20 times without applying the
Q-learning part. In this case, at every time period, a solution from the non-
dominated set was randomly selected. Subsequently, the average effectiveness
scores of 20 runs averaged over all four scenarios were calculated and then
depicted in Figure 8. The results demonstrate that the algorithm with the Q-
learning mechanism was consistently able to obtain better results. For a further
illustration, the best solution based on that second objective was recorded, as
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Figure 4: Best and worst effectiveness scores obtained by the proposed optimizing simulation

method and the baseline heuristic over 20 runs, respectively

23



1
0.9
0.8
07 = = = The proposed algorithm 1
0 ** baseline-1
(4 0.6 baseline-2
c
[
=05 N
=1
o
£
© 0.4 N
03 4
! ! ! ! ! ! ! ! L
2 3 4 5 6 7 8 9 10

Years

Figure 5: Average effectiveness scores and error bars in four scenarios over the planning horizon
obtained by the proposed optimizing simulation method and the baseline heuristic. The results
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Figure 6: Average cost error and error bars over the planning horizon obtained by the proposed
optimizing simulation method and baseline heuristics. The scores are averaged over all scenarios
as well as over 20 runs.
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Figure 7: Best cost error over the planning horizon obtained by the proposed optimizing simulation
method and the baseline heuristic. The best scores are out of all 20 runs.

shown in Figure 9. Over the 10 years, the variant with the Q-learning compo-
nent was able reduce the overspending.

6. Conclusions

Capability programming under defence strategic planning is a key task that
involves selecting a set of capabilities to be acquired over a given planning
horizon while optimizing the financial and other resources as well as minimiz-
ing the envisaged strategic risks in a number of future planning scenarios. In
this paper, we first formulated this problem as a dynamic multi-objective opti-
mization task and then proposed an optimizing simulation methodology that
combines evolutionary multi-objective optimization and a RL algorithm to se-
lect Pareto optimal capability portfolios across a number of objectives as well
as over time. The methodology is evaluated on a test problem generated from
public version of the ADF’s 2012 DCP. The performance of the proposed tech-
nique is compared with a baseline heuristic developed using a myopic policy.
Although the proposed methodology is evaluated on a defence related prob-
lem, it has much wider implications as capability programming has similarities
with planning problems in various other industries including pharmaceutical,
mining, oil and gas and R&D sectors.

A number of future directions stem from this work. First, we would like
to extend the fidelity of the optimization model by removing simplifying as-
sumptions and incorporating a number of real-world complexities and con-
straints such as capability interdependencies, priorities and project schedules.
Second, the exogenous variables, such as given budget, could be modeled as
stochastic processes across simulation runs to capture uncertainty associated
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with these variables. This would require extending the Q-learning component
with advanced function approximation techniques such as neural networks.
A significant subsequent challenge is to reduce the computational complexity
of the current algorithms. Design of benchmark test problems capturing the
essence of such problems is also an important direction that we would like to
explore in future. Finally, it would be interesting to link the developed mod-
els with other related optimization problems in the organization to provide an
enterprise-wide optimization framework.
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7. Appendicies

7.1. Appendix I - Evolutionary Multi Objective Optimization

Formally, a multi-objective optimization problem is generally represented as fol-
lows:

man(:c) = (fl (-T)7 seey f7n(m))T
Subject to:
r € (20)

where z is a vector of N decision variables, f(z) the objective function of the k™" crite-
rion, and §2 the decision space.

The best trade-off among the objectives can be defined by Pareto optimality. Let u,
v € R, u is said to dominate v if and only if up = vg, where k € 1,...,m and u; < v;
for at least one index j € 1,...,m. A point z* € Q is Pareto optimal if there is no other
point z € Q such that F'(x) dominates F'(x*). F(z") is called a Pareto-objective value.

Multi-Objective Evolutionary Algorithms (MOEAs) are population based meta-heuristic
methods that mimic the evolutionary process in natural systems and evolve a set of
Pareto optimal solutions. The common steps of an Evolutionary Algorithm (EA) in-
clude initialisation of a population of solutions, evaluation of individuals, fitness based
selection of parent solutions and generation of new solutions using recombination and
mutation operators. A variety of EAs have been proposed including the infamous ge-
netic algorithms [25], differential evolution [49] and evolutionary strategy [44].

From the literature, the most well-known MOEA include vector evaluation genetic
algorithm [46], Multi-Objective Genetic Algorithm (MOGA) [22], Niched Pareto Ge-
netic Algorithm (NPGA) [27], Non-dominated Sorting Genetic Algorithm (NSGA, NS-
GAII) [19], Strength Pareto Evolutionary Algorithm (SPEA) [56], Pareto Archived Evo-
lution Strategy (PAES) [33] and Multi-Objective Evolutionary Algorithm based on De-
composition (MOEAD) [55].

The most recent of these algorithms, MOEA/D and its variants, have been suc-
cessfully applied to several real-world problems and has shown their competence in
comparison to other extant approaches.

7.1.1. MOEA/D

The main idea behind MOEA /D is to decompose the multi-objective optimization
problem into a number of single objective optimization problems. A scalarizing func-
tion, such as Tchebycheff, is used to decompose the problem into multiple scalar opti-
mization problems. Formally,

min g(z|A, %) = max \;|fi(z) — 27|

Subject to:

x € (21)
where A = (A1, - -, A\m) is a weight vector representing the weights for each of the
m objectives to be optimized, such that 2521) Ai = land z* = (21, 2,) is a vector
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representing the ideal objective values for m objectives. Given a set of weight vectors
AL - A", MOEA /D minimizes all of these objective functions in a single run.

To utilise the relations between neighbourhood among all sub problems, optimiza-
tion of a sub-problem is done by using the information from its neighbouring sub-
problems. Hence, in MOEA/D, the closest weight vectors in AL A" toa weight
vector A\’ constitute the neighbourhood of A’ . The neighbourhood of the sub-problem
consist of all the sub-problems with the weight vectors from the neighbourhood of \’.
The main steps of MOEA /D are as follows:

input:

1. A stopping criterion;
2. sub: the number of the sub problems considered;

3. a uniform spread of sub weight vectors: {\',- - - \***};
4. CN: the number of the weight vectors in the neighbourhood of each weight vec-
tor.

Step 1: Initialization

1. Compute the Euclidean distance between any two weight vectors and then work
out the C'N closest weight vectors to each weight vector. Foreachi=1,. .., sub,
set B(i) = i1, ...,icx where {\1, .. \'sut} are the sub closest weight vectors to \".
2. Generate an initial sub individuals.
3. Initialize z = (21, ..., zm) by setting z; = min{f;(z"), ..., fi(x***)} and/or min{vio;(z'),

Step 2 Select mating pool.
Step 3 for each individual, generate a new solution using any EA; Evaluate it based on
the fitness function and/or constraint violation and update z;.

Step 4 Stopping Criteria If the stopping criteria is met, then stop and output {z*, ..., 25"}
and the objective value and violation.
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