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Abstract

One of the most complex physiological systems whose modeling is still an open study

is the respiratory control system where different models have been proposed based on

the criterion of minimizing the work of breathing (WOB). The aim of this study is

twofold: to compare two known models of the respiratory control system which set the

breathing pattern based on quantifying the respiratory work; and to assess the influence

of using direct-search or evolutionary optimization algorithms on adjustment of model

parameters. This study was carried out using experimental data from a group of healthy

volunteers under CO2 incremental inhalation, which were used to adjust the model pa-

rameters and to evaluate how much the equations of WOB follow a real breathing

pattern. This breathing pattern was characterized by the following variables: tidal

volume, inspiratory and expiratory time duration and total minute ventilation. Differ-

ent optimization algorithms were considered to determine the most appropriate model

from physiological viewpoint. Algorithms were used for a double optimization: firstly,

to minimize the WOB and secondly to adjust model parameters. The performance

of optimization algorithms was also evaluated in terms of convergence rate, solution

accuracy and precision. Results showed strong differences in the performance of opti-
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mization algorithms according to constraints and topological features of the function to

be optimized. In breathing pattern optimization, the sequential quadratic programming

technique (SQP) showed the best performance and convergence speed when respiratory

work was low. In addition, SQP allowed to implement multiple non-linear constraints

through mathematical expressions in the easiest way. Regarding parameter adjustment

of the model to experimental data, the evolutionary strategy with covariance matrix and

adaptation (CMA-ES) provided the best quality solutions with fast convergence and the

best accuracy and precision in both models. CMAES reached the best adjustment be-

cause of its good performance on noise and multi-peaked fitness functions. Although

one of the studied models has been much more commonly used to simulate respiratory

response to CO2 inhalation, results showed that an alternative model has a more ap-

propriate cost function to minimize WOB from a physiological viewpoint according to

experimental data.

Keywords: Respiratory control system, optimal control, optimization algorithms,

mechanical work of breathing

1. Introduction

The primary function of respiratory system is to regulate the homeostasis of ar-

terial blood gases and pH, through supplying oxygen to the blood and removing car-

bon dioxide (CO2) produced by metabolic activities. From a modeling viewpoint, the

respiratory system can be considered as a neurodynamic feedback system, nonlinear,

multivariable with delays and continuously affected by physiological and pathologi-

cal disturbances. Its behavior can be defined by a continuous interaction between the

controller and peripheral processes are being controlled (respiratory mechanics and

pulmonary gas exchange). The peripheral processes have been extensively studied in

previous research [1, 2, 3, 4, 5, 6, 7]. Nevertheless, respiratory controller behavior

and how the controller processes different afferent inputs are not completely inferred

yet [8].

One of the most interesting issues concerning respiratory system modeling is the

possibility of forecasting the respiratory system response of a critical patient connected
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to a mechanical ventilator. However, mathematical models are still far from allowing

this, mainly because of the complexity of the respiratory control system that adjusts

the breathing pattern according to mechanical and chemical components minimizing

the work of breathing (WOB) and the system response can be affected either by the

cost function or by the optimization technique.

The aim of this study is twofold: firstly, to compare two known mechanical cost

functions to quantify the WOB [9] and, secondly, to assess the influence of several

known optimization techniques, such as direct search and evolutionary algorithms [10,

11, 12, 13, 14, 15, 16, 17, 18, 19], on the adjustment of the breathing pattern (by the

controller) and the model parameters (in the identification process).

Two nested optimizations were carried out for this purpose: the first one in the con-

troller that minimizes the WOB by using both mechanical cost estimations proposed

in [9] and the second one in the search of the model parameters associated with the

response that better matched with experimental data. These data were recorded from

a group of subjects under different levels of ventilation (V̇E ) produced by hypercapnic

stimulation. Hypercapnia is characterized by changes in partial pressure of CO2 in

arterial blood (PaCO2 ) above the normal value (40mmHg), so the neural control center

respond adjusting V̇E and, therefore, breathing pattern subject, in order to keep PaCO2

near physiological values. In this study, hypercapnia was produced increasing partial

inspiratory pressure of CO2 (PICO2 ).

Known evolutionary and deterministic optimization algorithms are applied in order

to identify the best option for this kind of optimization problems and to guarantee that

the model parameter adjustment allows to reproduce real situations with physiological

meaning. The performance of these optimization algorithms are evaluated regarding

the goodness of fit to experimental data, the convergence rate and the dispersion of the

found solutions.

The paper is organized as follows. Section 2 presents previous studies about mod-

eling of respiratory control system response and concerning optimization procedures

used in biomedical applications. Section 3 presents a general description of the algo-

rithms addressed in this study and their selected parameter values. Section 4 presents

a mathematical description of the analyzed model and its variables of interest. After-
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wards, Section 5 shows the optimization problem to be solved: experimental data for

the model adjustment, the two nested optimizations solved in this approach (the breath-

ing pattern fitting and the model fitting to experimental data), and finally, statistical

tests and validation procedure to select the best algorithms and to compare the found

solutions. Section 6 presents the results associated to the both fittings. Finally, section

7 discusses and concludes the results found in the optimization problem and provides

their interpretation in the respiratory model from a physiological point of view. A step

by step description about how this approach was carried out is presented in the Fig. 1.
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Figure 1: Description step by step how the approach is realized

2. Related work

2.1. Respiratory control system modeling

The respiratory controller may be seen as a central pattern generator in which rhyth-

mic respiratory activity is produced in response to different afferent pathways [20]. Fol-

lowing this hypothesis, several approaches have been used to simulate this control law

in respiratory control modeling. In this sense, some authors consider respiratory control

system as a reflex-mechanism where breathing pattern is adjusted, from mathematical

relationships obtained empirically, in order to meet a ventilatory demand [1, 21, 22].

This adjustment is carried out varying either respiratory frequency or volume or both.
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The minimization of WOB has been extensively considered as a control criterion

to adjust the breathing pattern [23, 24, 25, 26, 27, 28, 29]. Using this approach, several

models have been proposed using minute ventilation as controlled variable. Early for-

mulations were based on sinusoidal airflow patterns in which respiratory frequency was

fitted in function of minimum work rate criteria [30, 23] and minimum average driving

pressure [31, 32]. Optimal criteria were also developed to predict airflow patterns. One

of these criteria used the integral of the square of volume acceleration as cost function

for both breathing phases with constant inspiration and expiration intervals [33].

Models of overall control of the breathing pattern using a two-level optimization

problem have been also presented in [34, 35, 9].Particularly, Poon et al. [9] proposed

a mathematical model of respiratory control system based on minimization of WOB

which includes mechanical and chemical costs of breathing and allows to optimize

simultaneously ventilation and breathing pattern (detailed information is presented in

Section 4). This model has been used in studies related to respiratory modeling not

only by the same author [28, 36, 37] but also by others [38, 39, 40]. Recently, sev-

eral studies have used its cost functions to determine the breathing pattern in sub-

jects under assisted mechanical ventilation [39, 41, 42, 43]. The WOB depended

on model parameters whose values were not provided in any of the previous stud-

ies [9, 28, 36, 37, 38, 39, 40, 41, 42, 43], which suggests that respiratory control mod-

eling based on optimization criteria needs additional experimental and computational

efforts. In addition, two different functions were also proposed in [9] to measure the

mechanical cost. Thus, our purpose is to analyze this model to find out the best of the

two proposed mechanical functions and to adjust the best values of the model param-

eters according to experimental data. This analysis required two coupling and nested

minimizations: WOB and differences between simulated and experimental respiratory

responses. Finally, both fittings also required optimization algorithms which can affect

parameter estimation and, with that, the WOB computation, thus, different approaches

were compared based on the found solutions.

In addition, deep knowledge about the breathing pattern during increased ventila-

tory needs and its relationship with WOB is an interesting issue in mechanical venti-

lation and therapy of respiratory disorders [44, 45, 46]. In these situations, forecasting
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tools based on computationally-driven systems and suitable approaches to quantify

WOB could be applied in order to improve patient treatments [47, 48]

2.2. Optimization techniques in biomedical applications

Optimization procedures have attracted a great deal of attention from research com-

munity, since many problems arising from diverse fields of knowledge can be posed and

solved through mathematical programming techniques. Initially, local optimization

methods were developed based on gradient techniques under assumption of convexity

for solving nonlinear problems. Sequential Quadratic Programming (SQP) method is

the most successful local optimization method for solving nonlinearly constrained opti-

mization problems [49]. This method is frequently used in issues related to biomedical

field, however, its use is restricted to convex problems so it is less efficient in problems

that exhibit multiple local optima (most of them). For overcoming this handicap, global

optimization algorithms, using determinist and stochastic approaches, were developed

later. During the last decades, the interest in the use of such optimization techniques has

been increasing, encouraging further analysis of their performance in solving complex

problems in biomedical applications.

In the past years, the use of stochastic algorithms for global optimization such as

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution

(DE), Real-coded CHC, Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

among others have been applied in a large variety of studies concerning biomedical

field. For example:

• Lambrou et al. [50] developed a conformal prediction (CP) based on GAs and ap-

plied their method on two medical diagnosis problem. The study results showed

the efficiency of their method on both problems in term of accuracy. Ghosh et

al. [51] implemented a nonlinear autoregressive model of blood glucose metabolism

using GA to represent the dynamics of glucose utilization following an intra-

venous glucose tolerance test. In such study, the model did not need an initial

parameterization and the convergence was always guaranteed.

• Selvan et al. [52] presented a new approach based on PSO and evolutionary pro-
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gramming (EP) for accurately estimating the parameter set of a stochastic mam-

mogram model. The experimental results show important advantages regarding

to the conventional algorithm.

• Ghosh [53] using DE algorithm for the determination of insulin sensitivity form

the minimal model using clinical test data. The estimation process was formu-

lated as an optimization problem by minimizing error between experimental and

model output data.

• Cordón et al. [54] introduced the use of CHC to face the feature-based 3D im-

age registration problem and concluded that CHC solutions outperform those

obtained by the other approaches when considering both noisy and noise-free

scenarios. On other hand, Lee and Nelson [55] used the CHC algorithm to found

optimal feature weights of a pattern recognition technique for the prediction of

contrast-enhancement appearance in brain tumors from multivariate magnetic

resonance imaging and spectroscopy.

• Moscardó et al [56] used the global optimization algorithm CMA-ES for es-

timation of parameters of an adrenaline secretion model during hypoglycemia

prediction in type 1 diabetes, whereas Aler et al. [57] used the same algorithm

for preprocessing electroencephalogram (EEG) signals for brain-computer inter-

face.

Additionally, determinist methods for global optimization, like Generalized Pat-

tern Search (GPS) and Mesh Adaptive Direct Search (MADS), are generally used with

stochastic optimization algorithms. Combinations of both of them are usually imple-

mented. For instance, Das et al. [58] used MADS and a genetic algorithm (GA) to

compute optimal setting of mechanical ventilator parameters from minimizing two ob-

jective functions. On the other hand, Zhang et al. [59] implemented an hybrid opti-

mization algorithm based on GPS and GA to brain image classification. The hybrid

model improved the robustness of GPS and the convergence speed of GA. Yang et

al. [60] used the surrogate management framework (SMF, a derivate-free optimization

method) with MADS to the shape of a developed surgical design for the Fontan proce-
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dure.

Some studies where performance of several optimization techniques are evalu-

ated regarding to robustness and convergence speed have been recently presented.

Ros et al. [61] presented a comparison among stochastic optimization algorithms for

parameter estimation of biochemical kinetic models. In such study, Artificial Bee

Colony (ABC), DE, PSO and Simulated Annealing (SA) algorithms were compared.

The results indicated that DE provide better solutions than the others analyzed algo-

rithms. Ahirwal et al. [62] analyzed the effect of different optimization algorithms

in the adaptive noise cancellation (ANC) for event related potential filtering from

EEG signals: gradient methods like least mean square (LMS), normalized least mean

square (NLMS), recursive least square (RLS) and evolutionary algorithms like PSO,

GA among others. Simulation results showed the key advantageous features of the

ANC based on PSO and other evolutionary technique over others in the field of biomed-

ical signal processing. Zimmer and Sahle [63] compared generic least square (LSQ)

and specialized (MSS) approaches for parameter estimation on stochastic models. In

this study, MSS methods showed a lot better performance regarding to LSQ methods.

The former was able to capture the most important features of analyzed model.

3. Optimization algorithms

Optimization techniques involve the selection of the best element, regarding some

criteria, from a set of available alternatives. In this sense, optimization algorithms are

tools which try to minimize (sometimes maximize) a cost function or error by sys-

tematically choosing input parameters within a search space. These input parameters

involve variables which are often restricted or constrained. There is not a universal

optimization algorithm, so the choice of an appropriate algorithm for a specific real

problem is important to obtain feasible solutions [64].

Optimization algorithms can be classified according to different approaches. One

is depending on the focus or the characteristics that are trying to compare. They

can be classified as gradient-based (or derivative-based) methods and gradient-free (or

derivative-free) methods or as local and global optimization methods, where the former
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typically converge towards a local minimum, which is not necessarily the global mini-

mum, and they have no ability of escaping local optima. On the other hand, optimiza-

tion algorithms can be also classified as deterministic or stochastic. A deterministic

algorithm works with a mechanical deterministic procedure without any random na-

ture, so it reaches always the same final solution if it starts with the same initial point.

A stochastic algorithm has random behavior, so it usually reaches a different point

every time the algorithm is run and it is generally a global optimization method [64].

Direct-search algorithms are a class of gradient-free and deterministic method. Un-

like more traditional optimization methods that use information about the gradient

search for an optimal point, a direct-search algorithm searches a set of points around

the current point, looking for one point where the value of the objective function is

lower than the value at the current point.

Evolutionary algorithms (EA) are stochastic optimization algorithms which include

real-coding inspired by nature processes, such as reproduction, mutation, recombina-

tion and selection [65]. They work with a population of individuals or a set of candidate

solutions, where each individual includes a genotype represented as a vector of real-

coded inputs, and also a fitness value, which is obtained applying the cost function

(or error) to these inputs. The population is iteratively updated (by reproduction) at

each evaluation or generation by applying selection, crossover and/or mutation opera-

tors, which are controlled by algorithm parameters. Each method implements its own

strategy to optimize avoiding a premature convergence to local optimal.

Evolution strategies (ES) are EAs based on ideas of adaptation and evolution; they

are characterized by an elitist selection making that the fittest individuals are selected

to reproduce [65]. ES are iterative (generational) procedures, where in each genera-

tion new individuals (offspring) are created from existing individuals (parents). The

notations (µ/ρ,λ )−ES or (µ/ρ +λ )−ES are commonly used to describe some as-

pects of this interaction. In these expressions, µ , ρ and λ are positive integers that

represent the parent population, size of population used for recombination (ρ ≤ µ) and

the number of offspring generated in each iteration, respectively. Comma-selection de-

notes the parents are chosen from the multi-set of both parents and offspring (age is not

taken into account), whereas in plus-selection the parents are chosen only from sets of
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offspring.

In this study, evolutionary and direct-search algorithms which had been success-

fully used in optimization problems in the biomedical field [50, 51, 52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62, 63] were selected for their comparison. Simulations were per-

formed fixing as stopping criterion a maximum number of evaluations of the analyzed

cost functions. Particularly, the performance of the following algorithms was compared

using the settings suggested for their authors:

• Sequential Quadratic Programming (SQP) algorithm [11], a deterministic and

gradient-based algorithm. It is an interactive method for nonlinear optimization

and it is used on problems where the objective function and the constraints are

both continuously differentiable.

• Generalized Pattern Search (GPS) algorithm, which is a deterministic and global

optimization algorithm, has been defined by [12, 13] for gradient-free uncon-

strained and linearly constrained optimization on continuously differentiable func-

tions using positive spanning directions. GPS searches a set of values around of

an initial point using a finite set of fixed direction vectors, called pattern, and it

selects the point with the lowest value. Then, the seudo-optimal point is used

as the new initial point around which the new pattern will be constructed again.

This process is iteratively repeated until one of the convergence criteria is accom-

plished. Due to its behavior GPS is also known as a direct-search method [66].

• Mesh Adaptive Search (MADS) algorithm [14] extends the GPS algorithm by

allowing local exploration, called polling, in an asymptotically dense set of di-

rections in the space of optimization variables. A key advantage of MADS over

GPS, for both unconstrained and linearly constrained optimization, is that local

exploration of the space of variables is not restricted to a finite number of di-

rections. The searching process is like in GPS but using a random selections of

vectors instead fixed direction vectors.

• Real-coded CHC algorithm [15] (Cross-generational elitist selection, Heteroge-

neous recombination, and Cataclysmic mutation), which is an EA with binary
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coding tries to avoid a premature convergence through a suitable balance be-

tween the ability to explore the search space for diversity and the ability to exploit

the local properties of the search for an appropriate selection [67]. It combines a

highly disruptive recombination operator with an elitist selection operator and an

incest prevention mechanism for good converge velocity. In this study, BLX−α

was used as crossover operator.

• Macroevolutionary Algorithm (MA-ES) algorithm [16], which is a variant of

(µ/2+λ ), uses a model of a network ecosystem where the dynamics are based

only on the relationship between species. This relationship is used to determine

the new state (alive or extinct) of each species at each generation.

• Differential Evolution (DE) algorithm [17], which is an EA proposed to solve

optimization problems mainly in continuous search spaces. This performs muta-

tion based on the distribution of the solutions in the current population, searches

directions and possible step sizes depending on the location of the individu-

als selected to calculate the mutation values [68]. In this study, the variant

DE/rand/1/bin was used.

• Particle Swarm Optimization (PSO) algorithm [18] is an EA that uses a method

inspired by collective ”swarming” and ”flocking” of sociable animals. In this

algorithm, the individuals are particles moving around in the search-space ac-

cording to position and velocity. Each particle’s movement is influenced by its

local best position with respect to the pseudo-optimal and the best found po-

sition of all ”swarming” and ”flocking” particles. Some examples of practical

applications can be found in [69].

• Evolution strategy with Covariance Matrix Adaptation (CMA-ES) algorithm [19],

which is a (µ/µ,λ )-ES that employs a technique where the covariance matrix of

the distribution is updated (incrementally) such that the likelihood of previously

successful search steps is increased. In consequence, the CMA-ES conducts

an iterative principal components analysis of successful search steps instead of

successful solution points. In this work, CMA-ES is used in conjunction with
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the increasing population-size restart policy (IPOP-CMA-ES) proposed by [70],

which has shown good performance on multi-peaked functions and noisy testbed

and with µ = λ/2 where λ is the population size.

All these algorithms were run in MATLAB version 7.12. SQP, GPS and MADS

using the global optimization toolbox; DE, PSO and CMA-ES using the source codes

available at [71, 72, 73], respectively; and CHC and MA-ES using the source codes

available at [74].

These algorithms were applied using the parameter values suggested by each author

and some of them were modified in order to improve their performance. Tab. 1 shows

the values used in this study. More information of these parameters can be found

in the source code and previous references. With the aim of guarantee a reasonable

comparison, the stop criterion for all algorithms was the maximum number of functions

evaluations which was set to 400. This value permitted the convergence of the most

algorithms as it will be shown in the results to compare their performance.

Due to deterministic algorithms, such as SQP, GPS and MADS, are potentially sen-

sitive to the initial conditions to start the search, the initial solutions were randomly-

generated with uniform distributions and the seed used by a pseudo-random generator

was fixed with the same value for all algorithms to be compared with similar condi-

tions. Moreover, when a premature convergence to a minimal local was presented an

automatic random re-initialization was applied to improve the reached solution, if it

was possible. Finally, in order to guarantee the reproducibility of results, the optimiza-

tion processes exposed in this study were run 25 times for each case
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4. Respiratory control system model

4.1. Model description

The model used in this work was proposed by [9] to describe the stationary response

of respiratory system under hypercapnia and exercise stimuli. This model presents an

optimal control that adjusts V̇E and breathing pattern as a function of minimization of

WOB and includes dynamic elements that relate neural activity to ventilatory mechan-

ics [75]. The model discriminates between the mechanical work carried out during

inspiration and expiration, so that not only adjusts V̇E but also the set of variables as-

sociated with the breathing pattern in terms of the minimum WOB. It also takes into

account important variables such as respiratory frequency ( fR), tidal volume(VT ) and

inspiratory and expiratory time intervals (TI and TE respectively).

The respiratory system is modeled as a closed-loop feedback control system com-

prising five major subsystems: the controlled system (chemical plant, i.e. gas ex-

changer), the chemical feedback path (chemoreceptors), the mechanical feedback path

(work rate index), the controller (medulla oblongata) and the actuator/effector (neuro-

mechanical effector) as it is shown in Fig. 2.

Optimal 
Controller

Neuro-mechanical 
Effector

Chemoreceptors

Gas 
Exchanger

Quadratic 
Coupler

Logarithmic 
Coupler

Work Rate 
Index

Figure 2: Block diagram of the model of the respiratory control system proposed by [9].

As it can be seen in Fig. 2, the respiratory cost function (J) in this model has two

components:

J = Jc + Jm = α
2(PaCO2 −β )2 + ln(ẆI +λ2ẆE) (1)
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The first component is the chemical cost (Jc) where α is the chemoreceptor sensi-

tivity and β the chemoreceptor response threshold. From mass balance equation, which

describes the exchange of gases of CO2 and O2, PaCO2 is obtained as following:

PaCO2 = PICO2 −
863V̇CO2

V̇E(1−VD/VT )
(2)

where V̇CO2 is the metabolic rate of CO2 and VD the dead space volume. VD is

calculated from vital capacity,VC =VT +4 in liters, and VT as follows:

VD = 0.037×VC(1+VT/8) (3)

In this model, PaCO2 is assumed to be identical to mean alveolar pressure of CO2,

so Eq. 2 describes the steady state effect of ventilation on PaCO2 .

The second term in Eq. 1 represents the mechanical cost (Jm). This cost discrim-

inates between the work performed during inspiration (ẆI) and expiration (ẆE ) and

weights their contributions by using the parameter λ2. ẆI and ẆE are determined by

the following set of equations [9]:

ẆI =
1

TTOT

∫ TI

0

P(t)V̇ (t)
ξ n

1 ξ n
2

dt (4a)

ẆE =
1

TTOT

∫ TTOT

TI

P(t)V̇ (t)dt (4b)

ẆI =
1

TTOT

∫ TI

0

[
P(t)
ξ n

1 ξ n
2
+λ1V̈ (t)2

]
dt (5a)

ẆE =
1

TTOT

∫ TTOT

TI

V̈ (t)2dt (5b)

where P(t), V (t), V̇ (t) and V̈ (t) denote respiratory muscle pressure, volume, air-

flow and volume acceleration respectively and λ1 is a weighting factor. P(t) and V (t)
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are measured at functional residual capacity (FRC).In Eqs. 4a and 5a, n represents non-

linear variation of efficiency and ξ1 and ξ2 are mechanical efficiency factors defined as:

ξ1 = 1− P(t)
Pmax

ξ2 = 1− Ṗ(t)
Ṗmax

(6)

Eqs. 4 and 5 describe two approaches to quantify WOB. In this paper RSM1 de-

notes the respiratory system model comprising by Eqs. 4a and 4b for inspiratory and

expiratory work, respectively; and RSM2 is analogously defined by Eqs. 5a and 5b.

Although Eqs. 5a and 5b do not measure exactly WOB, their minimization implies de-

creasing P(t) and V̈ (t) associated with a minimum respiratory effort according to [24,

9].

In [9], P(t) is defined as a piecewise function: a quadratic function during inspira-

tion and exponential function during expiration. Formally,

P(t) = a0 +a1t +a2t2 f or 0≤ t ≤ t1 (7a)

P(t) = P(t1)e−(t−t1)/τ f or t1 < t ≤ t1 + t2 (7b)

where t1 and t2 are neural inspiratory and expiratory duration; a0, a1 and a2 repre-

sent, respectively, the net drive pressure, its rate at the onset of neural inspiratory phase

and the shape of the pressure wave (concave when a2 < 0 and convex upward when

a2 > 0).

P(t), V (t) and V̇ (t) are related by the air movement equation, as follows:

P(t) = RrsV̇ (t)+ErsV (t) (8)

where Rrs and Ers correspond to the total flow-resistance and elastance components

of the respiratory system respectively. From Eq. 8 volume can be obtained substitut-

ing P(t) and solving for V (t), following equations show resulting for inspiration and

expiration phases:

V (t) =
[
A1t +A2t2 +A3

(
1− e

−t
τrs

)]
τrs

Rrs
(9a)

+ V0 e
−t
τrs f or 0≤ t ≤ t1
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V (t) =
P(t1)

Rrs
(

1
τrs
− 1

τ

) [e t1−t
τ − e

t1−t
τrs

]
(9b)

+ V (t1) e
t1−t
τrs f or t1 < t ≤ t1 + t2

where V0 is the volume at the beginning of inspiration and τrs is the time constant

of respiratory mechanical system given by Rrs/Ers. The simplified terms of these ex-

pressions, considering the a0 term in Eq. 7a equals zero, are:

A1 = a1−2a2τrs A2 = a2 A3 = a1τrs−2a2τ
2
rs (10)

Fig. 3 shows pressure, volume and airflow waveforms for three levels of PICO2 . It

can be seen that P(t), V (t), V̇ (t) and fR increase with level of stimulus, whereas TI

decreases.
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Figure 3: Pressure P(t) (a), volume V (t) (b) and airflow V̇ (t) (c) waveforms during a ventilatory cycle for

different levels of stimuli according to [9]. Black traces correspond to inspiratory phase and gray traces to

expiratory phase

In order to simulate the model, the values of α , β , Rrs, Ers and Ṗmax were taken

from [9] for healthy subjects. Pmax was set to 50 cmH2O because higher pressures can

increase barotrauma risk both in healthy and pathological subjects [76, 77]. Tab. 2

shows the value considered for each parameter.
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Table 2: Parameter values for equations 1, 6, 8, 9 and 10

Parameter Value Units

α 0.0934 -

β 37.78 mmHg

Rrs 3.02 cmH2O · l−1s

Ers 21.9 cmH2O · l−1

Ṗmax 1000 cmH2O/s

Pmax 50 cmH2O

4.2. Variables of interest

The main function of respiratory system is to adjust V̇E to keep PaCO2 and PaO2

levels within physiological values [78, 26, 27], so V̇E was selected as independent vari-

able. This variable, expressed in L/min, was used to analyze the stationary responses

of model under study and it was calculated from product of fR in breath/min and VT in

L, as follows:

V̇E =VT × fR =
VT

TTOT
×60 =

VT

TI +TE
×60 (11)

Where TTOT , which is the inverse of fR, is the respiratory cycle duration in seconds

(s) and can also be obtained from the sum of TI and TE . Relationship among V̇E , VT ,

fR, TTOT , TI and TE means that only three of them are enough to represent the temporal

characteristics of the airflow, so that VT and TI were chosen as dependent variables.

Using TI and VT as dependent variables and V̇E as independent variable allows

quantifying the ventilatory strategy used by the respiratory control system to adjust the

breathing pattern and to regulate the blood gases. This strategy could be carried out

increasing fR (which is related to TI) or VT or both.

5. Optimization problem

The model response to ventilatory stimuli has to guarantee both the minimum respi-

ratory cost (J) (Eq. 1) and a good fit to the study population. Therefore, two nested opti-
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mization processes were involved in the analyzed model: the optimization of breathing

pattern by minimizing J in function of [t1, t2,a1,a2,τ] and the fitting model response

to experimental data by minimizing differences between experimental and simulated

variables by fitting the parameters [λ1,λ2,n]. A description of experimental data and

protocol as well as an explanation about how the two nested optimization processes

were addressed in this study are given in the following subsections.

5.1. Experimental data and protocol

A database of eight male healthy volunteers [age (yr.): 31,9±7,7; height (cm):

175,7±4,3; weight (kg): 74,4±7,2] under hypercapnic stimuli was used in this study.

A Mann-Whitney test with significance level set to 5%, performed for all anthropo-

metric variables, did not show any statistically significant differences between the sub-

jects. No subject had known disease of the cardiovascular or respiratory system or any

impairment of muscular or skeletal mobility. None was taking medication regularly.

Flow signal was recorded with a pneumotacograph (Validyne-CD257) and low-pass

filter with a cutoff frequency of 10 Hz. Exhaled CO2 pressure was monitored by means

of a capnometer (Hewlett Packard-47210A) and airflow, expired fraction of O2 (PETO2 )

and CO2 (PETCO2 ) signals were recorded with a sampling frequency of 100 Hz.

In order to produce hypercapnic stimulation, each subject breathed through a mouth-

piece a gas mixture with different CO2 concentrations. Subjects were seated in a com-

fortable position, wore a clip on the nose and were breathing through a mouthpiece

connected to a low-resistance one-way valve. The inspiratory port of the valve was

connected to an external CO2 source. The protocol began with a CO2 free mixture,

then CO2 concentration in the inhaled flow was increased four times every three min-

utes. Thus, five levels of hypercapnia stimulus (including the free of CO2 mixture)

were applied. Flow signal was processed to detect inspiration and expiration onsets

during each cycle. For each level of CO2, measurements of VT , fR, TI and TE were

obtained from the twenty most representative respiratory cycles of the flow signal af-

ter the first minute because it was considered an adaptation-interval in each level of

hypercapnia [79].

V̇ (t) and V (t) waveforms for two experimental ventilation levels, rest and moderate
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hypercapnia, are shown in Fig. 4. Experimental data of TI and VT as a function of V̇E are

shown in the Fig. 5. Both Fig. 4 and Fig. 4 show that increases in the PICO2 produced

changes in V̇E , which were adjusted by both increasing fR and VT and decreasing TI .

These observations are in agreement with other studies [80, 81, 82].
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Figure 4: Flow (V̇ (t)) and volume V (t) waveforms for basal V̇E level (left) and moderate hypercapnia (right).

Tidal volume (VT ) and respiratory frequency ( fR) increase at higher stimulus. TTOT , TI and TE are total

respiratory cycle, inspiratory and expiratory times respectively.

5.2. Breathing pattern fitting

The optimization of breathing pattern was performed by minimizing J (Eq. 1) de-

pending on five parameters included in the mathematical expressions of respiratory

variables x = [t1, t2,a1,a2,τ] (Eqs. 7 and 9). In this model, J is a nonlinear function

which is subject to nonlinear constrainers and fixed boundaries in order to search a so-

lution with physiological meaning. In this sense, the optimization problem statement

was made by the following expression:

min{J(x) : ci(x)≤ 0, i ∈ I; c j(x) = 0, j ∈ v} (12)
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Figure 5: Experimental data of inspiratory time (TI ) and tidal volume (VT ) as a function of ventilation (V̇E ).

Median values of TI and VT within 10 levels of V̇E , equidistantly distributed from 10L/min to 30L/min, are

also shown.

Each ci and c j is evaluated in the parameter space Rn defined by x (n = 5). I

and v denote constraints formed by inequalities and equalities respectively. In this

case, inequality constraints have the form c(x) ≤ 0, where c is a vector of constraints,

one component for each constraint, and were represented by the following boundary

conditions:

c1(x) =−x+ c1 (13)

c2(x) = x+ c2 (14)

c3(x) =−J(x) (15)

Where c1 = [0.5, 0.5, 3.0, − 20, 0.15] and c2 = [6, 6, 80, 0.5, 1.20] denote

lower and upper bound of x, respectively. The inequality constraints are accomplished

when each ci(x) ≤ 0. In addition, solutions found after optimization were assessed to

guarantee that they were located within the search space and not in the bounds. The

constraint c3 was formulated in order to assure that J(x) be positive according to a

physiological interpretation. In addition, equality constraints were represented by the
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following expressions:

c4(x) =V (t1 + t2)−V (0) (16)

c5(x) =V (TI) (17)

c6(x) =V (t1 + t2) (18)

where the first term of Eq. 18 establishes that inspired and expired tidal volume

must be equal whereas the other elements determine that the airflow at the end of both

inspiration and expiration must be zero respectively.

Fig. 6 describes the algorithm developed to find the optimal vector x (xopt ). In order

to be easier the assessing of optimization algorithms at this level of optimization, the

parameters λ1, λ2 and n were set to 1.
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Figure 6: Diagram of the procedure to obtain the optimal vector of parameters x that minimizes respiratory

cost (J).

Due to TI could be higher than t1 (neural inspiratory time), TI was determined at the

time when the airflow changes from positive to negative and TE was calculated from

the difference between the cycle period (TTOT = t1 + t2) and TI . Tidal volume, VT , was

determined by the value V (TI).

Finally, the solution of x was obtained minimizing the cost function J and using

the two measures to quantify mechanical WOB (Eqs. 4a or Eqs. 5a) presented in [9].

Then, their results were compared with the experimental data in order to evaluate which

measure is more appropriate to model the physiological respiratory system.
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5.3. Model fitting to experimental data

Model fitting was performed searching the parameter vector θ = [λ1,λ2,n] by ad-

justing the model response to experimental data. Parameters λ1 and λ2 are weights

of inspiratory and expiratory work, respectively, and n is the efficiency parameter of

mechanical plant displayed in Eqs. 4a and 5a. In this case, it is important to note

that optimization of θ involves a simultaneous breathing pattern optimization by the

minimization of J (Eq. 1) presented in the previous subsection.

The optimum vector θ was obtained by minimizing prediction error (PE) between

the model response and experimental data, as follows:

PE(%) =
1
2k ∑

var=TI ,VT

k

∑
i=1

∣∣∣∣varEXP(i)− varSIM(i)
varSIM(i)

∣∣∣∣×100% (19)

where varEXP and varSIM correspond to experimental and simulated variables re-

spectively, and k is the number of samples considered along V̇E . This optimization

problem was formulated by the following expression:

min{PE(θ) : peci(k)≤ 0, k ∈ I} (20)

where pec represent the prediction error constraints and each peck is evaluated

in the parameter space Rn defined by θ (n = 3). I denotes constraints formed by in-

equalities. The search space of this optimization problem was built by using the next

inequality constraints:

pec1(x) =−x+ pec1 (21)

pec2(x) = +x+ pec2 (22)

Where pec1 = [0, 0, 0] and pec2 = [5.0, 1.5, 5.0] denote lower and upper bound

of θ respectively. Like in breathing pattern optimization, the inequality constraints are

accomplished when each peck(x) ≤ 0. In addition, solutions found after optimization

were assessed to guarantee that they were located within the search space and not in the

bounds. The algorithm developed to find the optimum vector θ (θopt ) can be describe

by the following steps (see Fig. 7):
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Figure 7: Diagram of the procedure to obtain the optimal vector of parameters θopt that adjusts the breathing

pattern depending on minimizing respiratory cost (J). The procedure is composed by four steps (see text)

• Selection of an optimization algorithm to adjust the model parameters to experi-

mental data and randomly initialization of within the domain defined for λ1, λ2

and n.

• Loading experimental data. In this step, ten values of V̇E(EXP) between 10 and

30 L/min were considered. Then, in order to get uniformly distributed data in all

subjects, experimental data of TI (TI(EXP)) and VT (VT (EXP)) were interpolated in

function of V̇E(EXP).

• Optimization of breathing pattern by adjusting five model parameters (t1, t2,a1,a2,τ)

which minimize the cost function J (see Fig. 6). Levels of PICO2 associated

with the V̇E(EXP) considered in the previous step were used for this optimiza-

tion. Then, simulated values of TI and VT (TI(SIM) and TE(SIM)) were obtained.

• Optimization of the vector θ by minimizing PE (Eq. 20) which was calculated

from simulated and experimental data for TI and VT . θ was iteratively updated
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according to the searching procedure of the optimization algorithm selected in

the step 1. The iterative process ended obtaining θopt when the maximum num-

ber of function evaluations was reached.

5.4. Statistical analysis

Wilcoxon-Mann-Whitney non-parametric test (WMW) was used to identify statis-

tical differences between the found solutions with a significance level α = 0.05.

The validation of values from vector θ was performed using the leaving-one-out

technique (LOO). In this case, the vector θ was adjusted eight times leaving one subject

of study population out for each iteration and using it, in turn, to calculate PE. As

result, eight vectors of θ and PE were obtained for each model. Differences among the

eight vectors of θ were evaluated using the Friedman test. Non-significant differences

would mean that the found vectors θ are statistically similar and there is no significant

dependence on the subject left out during optimization process.

In order to quantify differences between experimental data and results for each

WOB estimation, PE and also relative mean square error were calculated by using

Eq. 20 and the following expression:

RMSE =
1
2k ∑

var=TI ,VT

k

∑
i=1

(
varEXP(i)− varSIM(i)

varSIM(i)

)2

(23)

6. Results

6.1. Breathing pattern fitting

The values of J resulting obtained from simulations of RSM1 and RSM2 with the

eight analyzed optimization algorithms as a function of number of evaluations (N) are

shown in Fig. 8. It can be seen that the lowest J and its corresponding value N were

obtained by SQP in both models. Statistical differences were found between SQP

and the others algorithms using WMW (p− value < 0.001). Thus, this algorithm was

statically more appropriated for the optimization of breathing pattern, so it was selected

to adjust breathing pattern during model fitting to experimental data.
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Figure 8: Respiratory cost values (J) of RSM1 (left) and RMS2 (right) under hypercapnia stimuli by using

eight optimization algorithms. J is shown as a function of number of evaluations. Average values of J were

calculated from 25 runs carried out with each algorithm.

6.2. Model fitting to experimental data

Fig. 9 shows PE obtained by using the eight optimization algorithms under study

in function of number of evaluations (N). Tab. 3 presents the mean and standard devi-

ation values of PE reached at the maximum number of evaluations for both RSM1 and

RSM2.

In this case, the best performance associated with the lowest PE and standard de-

viation was obtained with the algorithm CMA-ES for both RSM1 and RSM2. Statisti-

cally significant differences were identified between CMA-ES and the other algorithms

(p−value < 0.0001). Fig. 10 shows simulated and experimental values of TI and VT as

a function of V̇E for each model using CMA-ES. It can be seen that RSM2 has a better

fit to the median values of experimental data than RSM1.

Tab. 4 shows mean and standard deviation values of λ1, λ2 and n obtained with LOO

and CMA-ES algorithm. Differences among these eight values were not statistically

significant using the Friedman test in any of the parameters and in both model (p-

value= n.s.).
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Figure 9: Prediction error values (%PE) as a function of number of evaluations for RSM1 (left) and RSM2

(right) using eight optimization algorithms. Average values of %PE were calculated from 25 runs carried

out with each algorithm.
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Figure 10: Experimental data and simulation results of RSM1 and RSM2. (a) Inspiratory time (TI ) and (b)

tidal volume (VT ) as a function of ventilation (V̇E ).

In addition, prediction and relative mean square errors (%PE and %RMSE respec-

tively) of TI and VT using CMA-ES algorithm are presented in Table 5. The lowest val-
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Table 3: Prediction error (%PE) in mean and standard deviation obtained by using eight algorithms during

optimization process. Each algorithm was run 25 times.

Model Algorithm %PE(mean±σ)

RSM1

SQP 15.589 ± 4.512

CHC 16.718 ± 4.797

MAES 16.792 ± 3.469

DE 11.998 ± 0.378

PSO 11.958 ± 0.619

CMA-ES 11.443 ± 0.239

MADS 13.730 ± 2.331

GPS 12.530 ± 1.014

RSM2

SQP 12.792 ± 3.333

CHC 9.384 ± 0.157

MAES 9.484 ± 0.365

DE 9.212 ± 0.031

PSO 9.183 ± 0.063

CMA-ES 9.121 ± 0.021

MADS 9.234 ± 0.121

GPS 9.185 ± 0.131

ues in RMS2 showed a better fit to experimental data, with an improvement of 32.4%

and 72.4% with respect to RSM1 respectively (p-value< 0.04 and p-value< 0.03).
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Table 4: Optimal model parameters found by using CMA-ES algorithm in RSM1 and RSM2 (mean and

standard deviation from the solutions obtained by Leaving-One-Out method

Model
Optimal parameters

λ1 λ2 n

RSM1 - 0.86 ± 0.02 0.00 ± 0.00

RSM2 4.90 ± 0.13 0.74 ± 0.07 1.27 ± 0.07

Table 5: Prediction error (%PE) and relative mean square error (RMSE) by using CMA-ES algorithm in

RSM1 and RSM2 (mean and standard deviation from the solutions obtained by leaving-one-out method)

Error Model TI VT Average

PE(%)
RSM1 14.36 ± 5.44 13.53 ± 4.20 13.94 ± 4.62

RSM2 9.75 ± 3.44 9.09 ± 3.59 9.42 ± 3.42

RMSE
RSM1 2.15 ± 1.30 1.91 ± 1.32 2.03 ± 1.16

RSM2 0.44 ± 0.33 0.69 ± 0.53 0.56 ± 0.36

7. Discussion and Conclusion

7.1. Optimization problem

Two approaches for the respiratory control system modeling based on simultane-

ous optimization of ventilation and breathing pattern, which were called in this study

RSM1 and RSM2, have been analyzed [9]. Such optimization was performed by min-

imizing a respiratory cost function (J) that reflects the balance of chemical (Jc) and

mechanical (Jm) costs of breathing. Differences between both approaches were de-

termined by the equations proposed to quantify Jm during inspiratory and expiratory

phases (Eqs. 4a, 5a, 4b and 5b respectively), which in turn represent estimates of the

mechanical work of breathing (WOB).

Although in this model, two equation sets were proposed to quantify the mechani-

cal cost, RSM2 was discarded in [9] because it always led to an impulsive inspiratory
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pressure profile with an extremely small inspiratory duty cycle; this behavior had been

also noted by other researchers [83, 75]. However, in this study with the used opti-

mization techniques was possible to adjust the model parameters in order to obtain a

response with a realistic behavior (see Fig. 3 and Fig. 10).

The fitting of model parameters involved two nested optimizations: the optimiza-

tion of breathing pattern by fitting x = [t1, t2,a1,a2,τ] and the adjustment of model

responses to experimental data by fitting θ = [λ1,λ2,n]. The former was performed

breath to breath by minimizing J, whereas the latter was performed by minimizing PE

in all populations.

For the first optimization, SQP showed the best performance: the lowest respiratory

cost (J) and the highest convergence speed. Additionally, SQP allowed easily imple-

menting multiple non-linear constraints through mathematical expressions, whereas

evolutionary algorithms required defining a complex search space according to model

constraints. Because this optimization is carried out each breathing cycle, using an op-

timization algorithm with a high convergence speed is decisive to improve the model

performance. For the second optimization, CMA-ES showed the best performance as-

sociated with the lowest PE(%) in both RSM1 and RSM2, whereas SQP was the worse

(see Fig. 9). Graphical representations of PE(%) vs. [λ2,n] for RSM1 (see Fig. 11)

and PE(%) vs. [λ1,λ2,n] for RSM2 (see Fig. 12) allowed to visualize the complexity of

both landscape estimates and to find the reason of different performances found among

algorithms. In both cases, the surfaces were shaped considering all data base.

PE(%) surface of RSM1 (see Fig. 11) presented roughness around the optimum

value. This favors the algorithms which are more robust to noise like evolutionary

algorithms, because their main search strategies do not make any assumption about

the underlying fitness landscape. For this reason, CMA-ES, PSO and DE showed bet-

ter performances and solution/time relationship than direct-search algorithms (see left

graphic of Fig. 9). By contrary, PE(%) surface of RSM2was smoother around the opti-

mal value (see Fig. 12), so strategies like GPS and MADS were faster to find a solution

(see right graphic of Fig. 9).

The performance found in the optimization algorithms can be explained taking into

account their main searching properties. On one hand, a characteristic of direct-search
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(or deterministic) methods is that they capture very fast the right path to the nearest

optimum, independently on being a local or global algorithm search. However, after

locating the area around this optimum it might oscillate until all constraints are satisfied

and, in this case, small constraint violation often slow down the convergence rate of the

method. On the other hand, evolutionary algorithms proceed with slower rate, due to

their random search, but the absence of strict mathematical rule, which govern the

convergence rate of the mathematical program methods, make evolutionary algorithm

less vulnerable to local optima and therefore it is likely to convergence towards the

global optimum in non-convex optimization methods [84, 16].

Finally, regarding the quality of the solution θopt , CMA-ES had the best perfor-

mance in the parameter adjustment. This algorithm permitted to find model parameters,

statistically significant, with the lowest PE and standard deviation showing the best fit-

ting of both respiratory control system models with respect to experimental data. This

performance was obtained possibly due to CMA-ES is an evolutionary algorithm that

is able to optimize functions without making strong assumptions about them. It also

has several other advantages like it does not require to perform extensive parameter

setting; its standard values have shown to work well in many different contexts [57].

7.2. Physiological meaning

Physiological meaning of model structure and its parameters have also a great rel-

evance. RSM1 and RSM2 were formulated based on the minimization WOB and the

prevention of damages in the mechanical plant in order to take advantages from those

models in devices and new therapies development. Regarding RSM1, Eqs. 4a and 4b

represent a classical measurement of the mechanical work rate for both inspiration and

expiration: an integral of product of driving pressure, P(t), and airflow, V̇ (t). It can

note that polarity of Jm during expiration is negative because V̇ (t) < 0 and P(t) > 0 .

Although there are good reasons to assume that during inspiratory phase the oxygen

consumption of muscles is roughly proportional to product of P(t) and V̇ (t) (like in

Eq. 4a), this approach can be not reasonable for the expiration because at the begin-

ning of a normal expiration the inspiratory muscles continue their action by opposing

the expiration and performing an inverse work with an oxygen consumption that, even

32



though could be smaller than inspiratory work [85], implies a waste of energy that is

not described by the Eq. 4b.

On the other hand, RSM2 establishes that Jm during inspiration is a weighting sum

by the parameter λ1 of the inspiratory pressure integral, P(t), and the average square

magnitude of volume acceleration, V̈ (see Eq. 5a). In this equation, the former repre-

sents a measure of the oxygen cost of breathing during an isometric contraction and the

latter penalizes fast changes in the airflow rate. During expiration, Jm also depends on

uniformity of expiratory flow (Eq. 5b), therefore, unlike of RSM1, Jm is always positive

and its physiological meaning would be more suitable. The term V̈ in both inspiratory

and expiratory phases avoids decreases in the efficiency of muscle contraction, due to

high acceleration and high shortening velocities, and therefore harmful effects [24].

In both models (Eqs. 4a and 5a), ξ1 and ξ2 quantify mechanical efficiency of respi-

ratory muscles and parameter n remarks nonlinear effect of those efficiencies in WOB.

Whereas in RSM1 n is equal to 0 (maximum efficiency), in RSM2 the obtained value

for n is 1.26. The null value obtained in RSM1 implies the exclusion of efficiency

factors from Eq. 4a.

Regarding the values of parameter λ2, these were quite similar and lower than unity

in both models (see Tab. 4), however the polarity of Jm in RSM2 makes sense to de-

scribe the mechanical cost during expiration [6]. In addition, the obtained value for

λ1 in RSM2 (see Eq. 5a) highlights the importance of taking into account the volume

acceleration in the inspiratory Jm when subjects with increased ventilatory demand are

simulated.

In [9], λ2 = 1 and n = 3 were used as nominal values and larger values of n were

related to inspiratory resistive loads (IRL) where the efficiency factors ξ1 and ξ2 are

significant. λ2 was conveniently chosen such that values of t2 and P(t1) were compa-

rable to experimental values normally seen in human subjects and n was adjusted to

experimental data of hypercapnic ventilatory responses of subjects under IRL. These

values were not used in this study due to nature of experimental data and the final aim

of this study: validate the model by using experimental data of health subjects under

hypercapnia. On the other hand, although several researchers [43, 38, 39, 40] have used

this model, none of them has provided information about parameter values employed
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in their simulations.

The values of PE obtained for RSM1 and RSM2 were 13.94% and 9.42%, re-

spectively. Taking into account the experimental data dispersion (8.99%), a very good

fitting of RSM2 to experimental data can be concluded. Finally, although RSM1 has

been more used in the literature than RSM2 [38, 39, 40], because of its prediction ca-

pability and also its physiological meaning, the latter has been found more suitable to

simulate the respiratory system response under ventilatory stimuli such as hypercapnia.

Thus, this is more suitable to be used in further simulations of respiratory pathologies

or assisted ventilation.

A possible limitation of the present study is related to the sample size. For this

reason, it is expected to extent the results with more subjects in future studies in order

to confirm that the analyzed group is representative enough and also to confirm the

present results and conclusions. However, differences obtained among estimates RSM1

and RSM2 by using the analyzed optimization algorithms were statistically significant,

the effect size statistics which depends on the sample size was taken into account, and

size of the population was the same as that employed in studies related to physiological

system, among them the respiratory system, [86, 87, 88]. For these reasons, we can

conclude that these results are promising to provide a realistic estimate and, therefore,

can be relevant and of interest.

Acknowledgment

This study was partially funded by the Spanish government MINECO (DPI2014-

J01682), the Technical University of Catalonia (FPU-707.707), the University of An-

tioquia - Colombia (CODI-E01539-MDC11-1-07). Authors want to thank the Unitat

de Semicrı́tics of Hospital de la Santa Creu i Sant Pau, led by Dr. Salvador Benito, for

its help in designing experimental protocol and in signal recording.

8. References

[1] L. Cheng, O. Ivanova, H.-H. Fan, M. C. K. Khoo, An integrative model of respira-

tory and cardiovascular control in sleep-disordered breathing, Central Cardiores-

34



piratory Regulation: Physiology and Pathology 174 (1-2) (2010) 4–28.

[2] S. Ganzert, J. Guttmann, D. Steinmann, S. Kramer, Equation Discovery for Model

Identification in Ventilated Human Lung, Discovery (2010) 296–310.

[3] Z. L. Topor, M. Pawlicki, J. E. Remmers, A computational model of the human

respiratory control system: responses to hypoxia and hypercapnia., Annals of

biomedical engineering 32 (11) (2004) 1530–1545.

[4] F. T. Tehrani, Mathematical analysis and computer simulation of the respiratory

system in the newborn infant, Biomedical Engineering, IEEE Transactions on

40 (5) (1993) 475–481.

[5] J. J. Marini, P. S. Crooke, A general mathematical model for respiratory dynamics

relevant to the clinical setting, American Review of Respiratory Disease 147 (1)

(1993) 14–24.

[6] C. Roussos, E. J. M. Campbell, Respiratory muscle energetics, Handbook of

Physiology, Sect.3, Vol.3: Respiration 3 (PART 2) (1986) 481–509.

[7] W. Fincham, F. T. Tehrani, On the regulation of cardiac output and cerebral blood

flow, Journal of Biomedical Engineering 5 (1) (1983) 73–75.

[8] J. J. Batzel, F. Kappel, D. Schneditz, H. T. Tran, Cardiovascular and respiratory

systems : modeling, analysis, and control, Society for Industrial Mathematics,

Philadelphia, PA, 2007.

[9] C. S. Poon, S. L. Lin, O. B. Knudson, Optimization character of inspiratory neural

drive, J Appl Physiol 72 (5) (1992) 2005–2017.

[10] P. E. Gill, W. Murray, M. H. Wright, Practical optimization, Vol. 1, Academic

press, 1981.

[11] P. E. Gill, W. Murray, M. A. Saunders, M. H. Wright, Procedures for optimization

problems with a mixture of bounds and general linear constraints, ACM Transac-

tions on Mathematical Software (TOMS) 10 (3) (1984) 282–298.

35



[12] V. Torczon, Others, On the convergence of pattern search algorithms, SIAM Jour-

nal on optimization 7 (1) (1997) 1–25.

[13] R. M. Lewis, V. Torczon, Pattern search algorithms for bound constrained mini-

mization, SIAM Journal on Optimization 9 (4) (1999) 1082–1099.

[14] J. E. Dennis, C. Audet, Mesh adaptive direct search algorithms for constrained

optimization, SIAM Journal on optimization 17 (1) (2006) 188–217.

[15] L. Eshelman, The CHC adaptive search algorithm, in: G. Rawlins (Ed.), Fouda-

tions of Genetic Algorithms, Morgan Kaufmann, 1990, pp. 265–283.

[16] R. V. Sol, J. Marin, R. V. Sole, Macroevolutionary algorithms: A new optimiza-

tion method on fitness landscapes, Evolutionary Computation, IEEE Transactions

on 3 (4) (1999) 272–286.

[17] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces, J. of Global Optimization 11 (4)

(1997) 341–359.

[18] J. Kennedy, R. Eberhart, Particle swarm optimization, Neural Networks, 1995.

Proceedings. IEEE International Conference on 4 (1995) 1942–1948.

[19] N. Hansen, A. Ostermeier, Completely Derandomized Self-Adaptation in Evolu-

tion Strategies, Evol. Comput. 9 (2) (2001) 159–195.

[20] C. S. Poon, Respiratory models and control, Biomedical Engineering Handbook

3 (1995) 2404–2421.

[21] J. Duffin, R. M. Mohan, P. Vasiliou, R. Stephenson, S. Mahamed, A model of the

chemoreflex control of breathing in humans: model parameters measurement.,

Respiration physiology 120 (1) (2000) 13–26.

[22] J. Duffin, The role of the central chemoreceptors: a modeling perspective., Res-

piratory physiology & neurobiology 173 (3) (2010) 230–43.

36



[23] A. B. Otis, W. O. Fenn, H. Rahn, Mechanics of Breathing in Man, J Appl Physiol

2 (11) (1950) 592–607.

[24] R. P. Hamalainen, A. Sipila, Optimal control of inspiratory airflow in breathing,

Optimal Control Applications and Methods 5 (2) (1984) 177–191.

[25] C. S. Poon, Ventilatory control in hypercapnia and exercise: optimization hypoth-

esis, Journal of applied physiology 62 (6) (1987) 2447–2459.

[26] F. T. Tehrani, Optimal control of respiration in exercise, Engineering In Medicine

And Biology 20 (6) (1998) 6–9.

[27] F. T. Tehrani, Function of brainstem neurons in optimal control of respiratory

mechanics, Biological cybernetics 89 (3) (2003) 163–169.

[28] C.-S. S. Poon, C. Tin, Y. Yu, Homeostasis of exercise hyperpnea and optimal

sensorimotor integration: the internal model paradigm, Respiratory physiology

& neurobiology 159 (1) (2007) 1–13.

[29] H. Li, W. M. Haddad, Optimal determination of respiratory airflow patterns using

a nonlinear multi-compartment model for a lung-rib-cage system, in: American

Control Conference (ACC), 2011, 2011, pp. 3524–3529.

[30] F. Rohrer, Physiologie der atembewegung, in: Handbuch der normalen u. pathol.

Physiologie Bd. II, S, Springer, 1925, pp. 70–127.

[31] J. Mead, Control of respiratory frequency, J Appl Physiol 15 (3) (1960) 325–336.

[32] J. G. Widdicombe, J. A. Nadel, Airway volume, airway resistance, and work and

force of breathing: theory, Journal of Applied Physiology 18 (5) (1963) 863–868.

[33] S. M. Yamashiro, F. S. Grodins, Optimal regulation of respiratory airflow., Journal

of Applied Physiology 30 (5) (1971) 597–602.

[34] R. P. Hamalainen, A. A. Viljanen, A hierarchical goal seeking model of the con-

trol of breathing. Part I: Model Description, Biological cybernetics 29 (3) (1978)

151–158.

37



[35] R. P. Hamalainen, A. A. Viljanen, A hierarchical goal seeking model of the con-

trol of breathing. Part II. Model performance, Biological cybernetics 29 (3) (1978)

159–166.

[36] C.-S. S. Poon, Optimal interaction of respiratory and thermal regulation at rest

and during exercise: role of a serotonin-gated spinoparabrachial thermoafferent

pathway., Respiratory physiology & neurobiology 169 (3) (2009) 234–42.

[37] C.-S. S. Poon, Evolving paradigms in H+ control of breathing: from homeostatic

regulation to homeostatic competition., Respiratory physiology & neurobiology

179 (2-3) (2011) 122–6.

[38] T. Harada, H. Kubo, T. Mori, T. Sato, Pulmonary and cardiovascular integrated

model controlled with oxygen consumption, in: Annual International Conference

of the IEEE Engineering in Medicine and Biology - Proceedings, Vol. 7 VOLS,

2005, pp. 304–307.

[39] S.-L. Lin, N.-R. Guo, Simulation and comparative studies of dead space loading

for human respiratory control under exercise and co inhalation, in: Proceedings of

the IASTED International Conference on Modelling, Identification, and Control,

MIC, 2012, pp. 279–285.

[40] R. Kinkead, R. Gulemetova, Neonatal maternal separation and neuroendocrine

programming of the respiratory control system in rats., Biological psychology

84 (1) (2010) 26–38.

[41] B. G. Lindsey, I. A. Rybak, J. C. Smith, Computational models and emer-

gent properties of respiratory neural networks, Comprehensive Physiology 2 (3)

(2012) 1619–1670.

[42] S.-L. S.-l. Lin, H.-W. H.-w. Shia, Comparative Studies of the Optimal Airflows

and Ventilation Settings under Continuous Resistive and Elastic Loadings, Jour-

nal of Computational Information Systems 13 (7) (2011) 4594–4601.

[43] L. Y. Serna, A. M. Hernandez, M. A. Mañanas, Computational tool for model-
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