
Memetic Algorithm with Route Decomposing for Periodic Capacitated Arc
Routing Problem

Yuzhou Zhanga, Yi Meib,∗, Ke Tangc, Keqin Jianga

aSchool of Computer and Information, Anqing Normal University, Anqing 246133, China
bSchool of Engineering and Computer Science, Victoria University of Wellington, Kelburn 6012, New Zealand

cUSTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science
and Technology, University of Science and Technology of China, Hefei 230027, China

Abstract

In this paper, the Periodic Capacitated Arc Routing Problem (PCARP) is investigated. PCARP is an extension

of the well-known CARP from a single period to a multi-period horizon. In PCARP, two objectives are to be

minimized. One is the number of required vehicles (nv), and the other is the total cost (tc). Due to the multi-period

nature, given the same graph or road network, PCARP can have a much larger solution space than the single-period

CARP counterpart. Furthermore, PCARP consists of an additional allocation sub-problem (of the days to serve the

arcs), which is interdependent with the routing sub-problem. Although some attempts have been made for solving

PCARP, more investigations are yet to be done to further improve their performance especially on large-scale problem

instances. It has been shown that optimizing nv and tc separately (hierarchically) is a good way of dealing with

the two objectives. In this paper, we further improve this strategy and propose a new Route Decomposition (RD)

operator thereby. Then, the RD operator is integrated into a Memetic Algorithm (MA) framework for PCARP,

in which novel crossover and local search operators are designed accordingly. In addition, to improve the search

efficiency, a hybridized initialization is employed to generate an initial population consisting of both heuristic and

random individuals. The MA with RD (MARD) was evaluated and compared with the state-of-the-art approaches

on two benchmark sets of PCARP instances and a large data set which is based on a real-world road network. The

experimental results suggest that MARD outperforms the compared state-of-the-art algorithms, and improves most

of the best-known solutions. The advantage of MARD becomes more obvious when the problem size increases. Thus,

MARD is particularly effective in solving large-scale PCARP instances. Moreover, the efficacy of the proposed RD

operator in MARD has been empirically verified.

Keywords: Periodic capacitated arc routing problem, combinatorial optimization, metaheuristics, memetic

algorithms

1. Introduction

The Capacitated Arc Routing Problem (CARP), presented by Golden and Wong [1], has many practical appli-

cations such as mail delivery, street sweep, waste collection, multicommodity network design and hub location [2],

[3]. It is a classic combinatorial optimization problem, which deals with a connected undirected graph G(V,E) with

non-negative costs and demands on edges. All edges with positive demand (tasks) of the graph must be served by a5

∗Corresponding author
Email address: yi.mei@ecs.vuw.ac.nz (Yi Mei)

Preprint submitted to Journal of LATEX Templates September 8, 2016

fleet of identical vehicles based at a special vertex called the depot vertex. The objective of CARP is to search for

a set of routes with minimal total cost, so that each route begins and ends at the depot vertex, each task is served

exactly once, and the total demand of the tasks served by each route must not exceed the vehicle capacity.

CARP is NP-hard [1], and exact methods for CARP such as branch-and-bound [4] can only deal with small

and medium sized instances [5]. Heuristics and meta-heuristics are promising methods for tackling the real-world10

scenarios, in which the problem size is usually large. A number of constructive heuristics have been proposed for

CARP, such as augment-merge [1], path-scanning [6], Ulusoy’s tour splitting method [7], construct-and-strike [8],

and augment-insert [9]. However, these heuristics still cannot obtain satisfying results. In contrast, by searching

in the solution space, meta-heuristics manage to obtain much better results with more computational effort. These

include tabu search [10], [11], [12], variable neighborhood search [13], [14], guided local search [15], [16], memetic15

algorithm (MA) [5], [17], [18], [19], [20], [21], bi-objective genetic algorithm [22], cooperative co-evolution [23],

simulated annealing [24], and ant colony optimization [25], to name a few. A survey on the CARP can be found in

[26].

Although numerous researches on the basic single-period CARP model have been carried out, it is not enough

for real-world applications such as waste collection. In waste collection, there are various factors contributing to20

the amount of refuse production on a street, such as the region, population density, the habit, etc. As a result, the

refuse accumulates at different rates on different streets, and the frequency of service varies from street to street.

For example, the rural areas produce refuse more slowly than the urban and residential areas. Therefore, it would

be reasonable to collect the waste for different types of areas with different frequencies, e.g. daily for the urban and

residential areas but every two days for the rural areas. This leads to the Periodic CARP (PCARP) variant, which25

makes a schedule over a multi-period horizon.

In PCARP, assuming that there are np periods in the horizon, the number of services for a task over the entire

horizon is called its service frequency. The basic CARP constraints (e.g. each route starts and ends at the depot

vertex, and the total demand of the tasks in each route cannot exceed vehicle’s capacity) must be satisfied. For each

task, the service days must belong to some predefined set of service days, and its demand accumulates from its last30

service day. PCARP is to design an optimal plan that assigns the services of each task to appropriate periods over

the horizon, and schedules a set of routes in each period.

Obviously, PCARP reduces to CARP if there is only one period. Since CARP is NP-hard [1], PCARP is NP-hard

as well. Moreover, compared to CARP, PCARP has an additional objective besides the original objective (i.e., the

total cost tc), which is to minimize the number of required vehicles nv, since the waste management companies35

attempt to minimize the investment cost (depending on the fleet size) [27]. The additional objective nv affects both

the service day allocation (to have balanced number of routes over the horizon) and routing in each period, and

imposes extra challenges in PCARP.

As a relatively new extended version of CARP, PCARP attracted much less attention than the traditional model,

despite of the fact that it is closer to reality. To the best of our knowledge, there are only a few publications devoted to40

PCARP so far. In 2002, Lacomme et al. gave the definition of PCARP firstly [27]. Thereafter, Chu et al. presented

lower bounds in 2003 [28], a linear programming model in 2004 [29] and several constructive heuristics in 2005 [30]

for PCARP. In 2005, Lacomme et al. proposed A Memetic Algorithm (MA) (referred to as LMA hereafter), in which

a problem-specific crossover operator (i.e., the Periodic Linear Order Crossover, PLOX) was designed [31]. Three

heuristics were presented and embedded in a Scatter Search (SS) by Chu et al. in 2006, and a greedy constructive45

heuristic (i.e., the Best Insertion Heuristic, BIH) was used to improve the performance of the initial population [32].

In 2009, a new ant colony system (ACS) algorithm with a heuristic for inserting the tasks into the solutions was

2

proposed by Kansou and Yassine [33]. However, as an important objective, nv can hardly be improved by above

methods, since it is insensitive to the traditional small-step-size search operators. In 2011, Mei et al. developed a

Route-Merging (RM) operator for improving nv particularly. By including the RM operator before the local search50

process, the MA with RM (MARM) first improves a solution in nv, and in tc by the subsequent local search [34].

In 2015, Laporte et al. investigated the CARP extensions including the PCARP [35]. Other works include [36], [37]

and [38].

On the other hand, there have been a number of studies proposed on VRP (e.g. [39], [40], [41], [42], [43]) and

Periodic VRP (PVRP) (e.g. [44], [45], [46], [47]), which are the node routing counterparts of CARP and PCARP.55

However, these works are not directly applicable to PCARP due to following reasons: (a) the objective nv was

ignored in PVRP, (b) the instance size will becomes much larger, e.g. a CARP with n tasks can be converted to a

VRP with 2n + 1 vertices [48], and (c) the task demand is constant in VRP, but depends on the gap between two

successive services in PCARP.

In literature, it is usually assumed that nv is more important than tc in PCARP. In other words, in PCARP,60

nv is considered to be the primary objective, and tc is considered to be the secondary objective. Under such a

consideration, one can combine these two objectives into a single objective by the weighted sum approach and assign

a sufficiently large weight to nv to ensure its priority. A previously designed problem-specific operator called the

Route Merging (RM) operator has been demonstrated to be promising by improving nv and tc separately during

the optimization. However, the RM operator cannot handle the tradeoff between the objectives well enough. In65

this paper, to overcome this drawback, we propose a new Route Decomposition (RD) operator. The RD operator

improves the objective nv by decomposing routes and the objective tc by moving the tasks to appropriate positions

heuristically. In contrast to the RM operator, which considers only nv, the proposed RD operator takes both

nv and tc into account while still keeping the priority of nv. This way, the RD operator optimizes both tc and

nv simultaneously. More specially, to reduce nv, RD selects one route from the period with the most routes to70

decompose. Then, to reduce tc, it moves the tasks on the selected route to new positions to minimize the additional

tc value. Based on the RD operator, a novel MA with RD (MARD) is proposed. In addition, to improve search

efficiency, two constructive heuristics (i.e., BIH and path-scanning) are employed to generate the initial population.

The experimental studies demonstrate that MARD can obtain better solutions than the state-of-the-art algorithms

on the tested benchmark sets and has a significantly better performance in terms of both nv and tc on large-scale75

instances.

The remainder of this paper is organized as follows. Section 2 gives the notations and problem model. In Section

3, the relationship between the two objectives is investigated and the RD operator is proposed. Section 4 introduces

our new approach MARD in detail, followed by experimental studies in Section 5. Finally, the conclusions are

presented in Section 6.80

2. Problem Model of PCARP

In PCARP, consider an undirected connected graph G(V,E) and a horizon H of np periods, where V and E are the

vertex (e.g. crossroad) and edge (e.g. street) sets. There are m identical vehicles with limited capacity Q at the depot

vertex v0 ∈ V . Each edge e ∈ E has four non-negative attributes: the demand vector ~d(e) = (d1(e), d2(e), . . . , dnp(e)),

the service frequency η(e), the serving cost sc(e) and the deadheading cost dc(e). In ~d(e), dp(e) indicates the demand85

of e in period p. The service frequency η(e) is the number of required services during horizon. The serving cost sc(e)

means the cost induced by serving e, and the deadheading cost dc(e) is the cost for traversing e without service.

Each task t in the task set ER ⊆ E must be served in at least one period. That is, η(t) ≥ 1, and sc(t) > 0. Each

3

task t has an allowed period combination set APC(t), which consists of a number of period combinations. A period

combination PC(t) = {p1(t), . . . , pη(t)(t)} ∈ APC(t) is a set of η(t) periods, indicating the periods that t is served.90

Each task t is assigned two positive integer IDs t1 and t2, one for each direction. For ID ti, let inv(ti) stand for its

reverse direction and they are equivalent in the service frequency, serving cost, deadheading cost and demand, but

it is important to note that only one of them can be served in a period. In addition, head(ti) and tail(ti) denote the

head and tail vertices respectively.

For PCARP, a route Rpk, which is traversed by vehicle k in period p, can be represented as a sequence of tasks.

That is,

Rpk = (0, tpk1, tpk2, . . . , tpklpk , 0) (1)

where lpk is the number of tasks in Rpk. A dummy loop (v0, v0) is created to ensure the route to start and end at

the depot and assigned an ID 0, i.e. tail(0) = head(0) = v0. The number of routes in period p is denoted as nrp. If

the task t appears in the sequence of Rpk (k = 1, . . . , nrp) , then p ∈ PC(t). Otherwise, p /∈ PC(t). Then, a solution

S to PCARP can be represented as a route set, i.e.,

S = {Rpk | p = 1, 2, . . . , np; k = 1, 2, . . . , nrp} (2)

In PCARP, we assume that the demand of each task accumulates over time in a periodic manner. That is, the95

remaining demand from the previous period (e.g. week) will be inherited to the next one. Therefore, given a period

combination PC(t) of the task t, the steady-state accumulated demand ad(t, p) of task t in period p can be computed

as follows:

Step 1. Initialize i = p, ad(t, p) = di(t);

Step 2. i← i− 1. If i = 0, set i = np;100

Step 3. If pi(t) /∈ PC(t), ad(t, p)← ad(t, p) + di(t), and go to Step 2;

Step 4. Return ad(t, p).

The total cost and load of each route Rpk can be computed as:

cost(Rpk) =

lpk∑
i=1

sc(tpki) +

lpk∑
i=0

δ(tail(tpki), head(tpk(i+1))) (3)

load(Rpk) =

lpk∑
i=1

ad(tpki, p) (4)

where tpk0 = tpk(lpk+1) = 0. The function δ(vi, vj) is the shortest distance (with minimum deadheading cost) from

the vertex vi to vj , which can be obtained by Dijkstra’s algorithm [49]. A vehicle can serve only one route. Hence,

for period p, the number of vehicles is equal to the number of routes nrp.105

Then, we can obtain two objectives tc(S) and nv(S) of given solution S to PCARP.

tc(S) =

np∑
p=1

nrp∑
k=1

cost(Rpk) (5)

nv(S) = max{nrp | p = 1, . . . , np} (6)

According to the above definitions, the PCARP model can be described as below:

min f(S) = α · nv(S) + tc(S) (7)
4

s.t. : count(ti, p) + count(inv(ti), p) ≤ 1, ti ∈ {IDs of t}, t ∈ ER, p = 1, 2, ..., np (8)

np∑
p=1

(count(ti, p) + count(inv(ti), p)) = η(t), ti ∈ {IDs of t}, t ∈ ER (9)

PC(t) ∈ APC(t), t ∈ ER (10)

load(Rpk) ≤ Q, p = 1, 2, ..., np, k = 1, 2, ..., nrp (11)

where count(ti, p) denotes the times that task t appears in the period p at the direction denoted by its ID ti. In

PCARP, nv is considered to be more important than tc. Therefore, the coefficient α in Eq. (7) is set to a sufficiently

large value to ensure the priority of nv. Constraint (8) shows that each task t is served no more than once in one

period, and its service frequency over the horizon H can be guaranteed by constraint (9). Constraint (10) indicates

that the arranged period combination of each task belongs to its allowed period combination set. Constraint (11)110

shows that the load (total demand of the served tasks) of each route cannot exceed the capacity Q.

For the sake of convenience, all the notations used in this paper are listed in Table 1 for quick reference.

Table 1: Commonly used mathematical notations in this paper

Symbol Description

G(V,E) An undirected connected graph
V Vertex set
E Edge set
H Time horizon
np Number of periods
Q Vehicle capacity
m Number of vehicles available
v0 Depot vertex
e An edge
ER Task set
t A task

~d(e) (~d(t)) Demand vector of edge e (task t)
η(e) (η(t)) Service frequency of edge e (task t)
sc(e) (sc(t)) Serving cost of edge e (task t)
dc(e) (dc(t)) Deadheading cost of edge e (task t)

n Number of required edges (tasks)
γ Total number of services over H

APC(t) Allowed period combination set of task t
PC(t) A period combination of task t represented as a vector
λt Number of the period combinations in APC(t)

δ(vi, vj) The shortest distance from vertex vi to vj
S A solution to PCARP
Rpk A route traversed by vehicle k in period p
lpk Total number of served tasks in Rpk

ad(t, p) Accumulated demand of task t in period p
cost(Rpk) Cost of route Rpk

load(Rpk) Load of route Rpk

nrp Number of routes in period p
nv(S) Number of vehicles used in solution S over horizon H
tc(S) Total cost of solution S
α Coefficient of nv(S) in the objective function

f(S) Objective function

3. Route Decomposing Operator for PCARP

Based on the existing methods for CARP, researchers have presented modified algorithms for PCARP, such as

LMA and SS. To solve PCARP, these algorithms extended the solution representation and search operators that115

were designed for CARP. However, the modified approaches can hardly deal with the objective nv of PCARP well,

because they mainly focus on minimizing tc alone. For LMA and SS, the improvement of objectives largely depends

on the crossover and local search operators. Analysis in [34] has shown that it is hard to get high-quality solutions

with smaller nv’s from their parents by crossover and traditional local search with small-step operators that move
5

one or two tasks. To address this issue, a Route-Merging (RM) operator [34] was proposed for directly reducing nv.120

The RM operator keeps merging two routes in the period with the maximum number of routes until the number of

routes is reduced to the pre-specified lower bound. It has been shown that the RM operator can help the search

achieve a significantly smaller nv value. However, it ignores the other objective (tc) when merging the routes, and

may result in a much higher tc value that makes the subsequent search less efficient.

Based on the above discussions, we aim to consider tc while reducing nv. Motivated by this, the Route Decom-125

position (RD) operator is developed. The basic idea is to select a route from the period with the maximal number

of routes, and decompose it. During the decomposition, each task in the selected route is moved to a position in

another route that leads to the minimal additional cost. This way, the RD operator not only improves nv, but also

makes effort to reduce tc.

3.1. The Route Decomposing Operator130

The pseudo code of the RD operator is given in Algorithm 1 . First, it examines whether there are periods with

excessive number of routes, which is larger than the lower bound lbnv (lines 2–4). The lower bound is calculated as

follows:

lbnv =

⌈
1

npw ·Q
∑
t∈ER

np∑
p=1

dp(t)

⌉
(12)

where npw is the number of working periods.

If such periods exist, then the RD operator iteratively selects the period psel in which there are the maximum

number of routes and decomposes a route in it (line 5). If there is no infeasible route in the selected period, the

(feasible) route with the lowest load is selected to be decomposed. Otherwise, the two routes in psel with the lowest

and highest loads are randomly selected (lines 6–10). In the former case, decomposing the feasible route with the135

lowest load is expected to reduce the number of routes in psel with the least constraint violation. In the latter case,

decomposing the infeasible route with the highest load tends to reduce the constraint violation the most. Finally,

the selected route is removed and its tasks are inserted to other places by the function move() (lines 11–14). The

movement of a single task will be described in the next section in detail.

Algorithm 1 The Route-Decomposing (RD) operator

Input: A solution S, lbnv;
Output: A new solution S′;

1: S′ ← S;
2: if max{nrp} ≤ lbnv then
3: return S′;
4: end if
5: psel ← arg max{nrp | p = 1, . . . , np};
6: if there is no infeasible route in psel then
7: Rdec ← the route in psel with the lowest load;
8: else
9: Randomly select Rdec between the routes in psel with the lowest and highest loads;

10: end if
11: Remove Rdec from S′;
12: for each task t ∈ Rdec do
13: S′ ← move(S′, t, psel);
14: end for
15: return S′;

3.2. Movement of a Task140

The movement of a task t of solution S works is described in Algorithm 2. First, a new period combination

PCnew(t) ∈ APC(t) \ {PCcurr(t)} is found by the function selectPeriodCombination() (line 2), which will be
6

described in detail next. Then, all the services of t are removed from the periods that do not belong to PCnew(t).

Finally, a service of t is inserted into each period p ∈ PCnew(t) \ PCcurr(t), in which the service of t is missed

(lines 4–26). Here, the service insertion of t are also done in psel if psel ∈ PCnew(t) ∩ PCcurr(t), because it has145

been removed from psel by Algorithm 1. For inserting t into one period, all the routes and positions are examined

(including an empty route) (lines 11–18), and the best feasible route r∗ and position i∗ that yield the least additional

cost is selected to insert the service (lines 20–24). For the sake of convenience, such an insertion strategy is called

the best insertion strategy hereafter.

Algorithm 2 move(S, t, psel)

Input: A solution S and a task t;
Output: A new solution S′;

1: S′ ← S;
2: PCnew(t)← selectPeriodCombination(S, t, lbnv);
3: Remove all the services of t from the periods that do not belong to PCnew(t);
4: for each period p ∈ PCnew(t) do
5: if (p ∈ PCnew(t) \ PCcurr(t)) or (p = psel and psel ∈ PCnew(t) ∩ PCcurr(t)) then
6: r∗ ← 0, first position← true;
7: for k = 1→ nrp do
8: if ad(t, p) + load(Rpk) > Q then
9: continue;

10: end if
11: for i = 2→ lpk do
12: if first position = true then
13: r∗ ← r, i∗ ← i, ∆cost(t, p)← δ(tpk(i−1), head(t)) + δ(tail(t), tpki)− δ(tpk(i−1), tpki);
14: first position← false;
15: else if δ(tpk(i−1), head(t)) + δ(tail(t), tpki)− δ(tpk(i−1), tpki) < ∆cost(t, p) then
16: r∗ ← r, i∗ ← i, ∆cost(t, p)← δ(tpk(i−1), head(t)) + δ(tail(t), tpki)− δ(tpk(i−1), tpki);
17: end if
18: end for
19: end for
20: if r∗ = 0 then
21: Create a new route (0, t, 0) and add into period p of S′;
22: else
23: Insert a service of t into the position i∗ of the route r∗ in period p of S′;
24: end if
25: end if
26: end for
27: return S′;

In the function selectPeriodCombination(), a good new period combination should have the following three150

properties: (1) it overlaps with the current period combination PCcurr(t) well, (2) the additional cost caused by

moving the services from the current period combination to the new one (lines 4–26 in Algorithm 2) is small, and (3)

the maximal number of routes in the periods that the services are to be inserted into, if larger than lbnv, is small.

The first property reduces the number of service removal and insertion operations. The second property aims to

minimize the cost. The third property tends to reduce the maximal number of vehicles over the horizon.155

Based on the above intuition, we define a utility function U(PC(t)) for each PC(t) ∈ APC(t) \ {PCcurr(t)} as

follows:

U(PC(t)) =
C −∆cost(PC(t))

(η(t)− C1(PC(t))) · C2(PC(t))
(13)

where ∆cost(PC(t)) indicates the total additional cost caused by moving all the tasks from PCcurr(t) to PC(t)

(inserted by the best insertion). C is a large constant (3000 in our experiments), which can ensure that C −
∆cost(PC(t)) ≥ 0. C1(PC(t)) = |PC(t) ∩ PCcurr(t)| is the number of common periods shared by PC(t) and

PCcurr(t). C2(PC(t)) is defined as follows:

C2(PC(t)) = max{max{nrp|p ∈ PC(t) \ PCcurr(t)} − lbnv + 1, 1} (14)
7

From Eq. (13), we can see that a PC(t) with a smaller additional cost, more periods shared with PCcurr(t)

or smaller number of routes, tends to have a larger utility function value. Thus, the PC(t) with the largest utility

function value is selected as the new period combination. The pseudo code of selectPeriodCombination() is given

in Algorithm 3.

Algorithm 3 PCnew(t)← selectPeriodCombination(S, t, lbnv)

Input: A solution S, a task t, the lower bound lbnv;
Output: A new period combination PCnew(t);

1: Obtain the current period combination PCcurr(t) of t from S;
2: if λt = 1 then
3: return PCnew(t)← PCcurr(t);
4: end if
5: for PC(t) ∈ APC(t) \ {PCcurr(t)} do
6: Compute the utility function U(PC(t)) by Eq. (13);
7: end for
8: return PCnew(t)← arg max{U(PC(t))|PC(t) ∈ APC(t) \ {PCcurr(t)};

It should be noted that the capacity constraints may be violated during the route decomposition and infeasible

solutions may be obtained by the RD operator. From the description of the function move(), it can be seen that

the services of task t are not moved in the periods of PCnew(t) ∩ PCcurr(t) \ {psel}. In each of these periods, the

accumulated demand of t is updated according to PCnew(t), and the load of the route containing t will change. If

the accumulated demand of t increases, then the capacity constraints may be violated. Given the solution S, the

total overload tol(S) reflects the degree of constraint violation of S, and is calculated as follows:

tol(S) =

np∑
p=1

nrp∑
k=1

max{load(Rpk)−Q, 0} (15)

The task movement is similar to the λ-interchange operator proposed for VRP [40], which divides all the customers160

of a given solution into clusters and exchanges subsets between two given clusters. The size of the exchanged subsets

cannot be larger than the parameter λ. The task movement proposed in this paper is similar to the λ-interchange

operator, where one task is moved from one cluster to another, i.e. (λ1, λ2) = (1, 0). However, it is more complex

than the λ-interchange operator, since it may move multiple services of one task to different periods.

4. Memetic Algorithm with Route-Decomposing165

Obviously, PCARP is a kind of permutation-based optimization problems for which lots of approaches have been

presented(e.g. [50], [51], [52], [53], [54]). As a relatively new population-based meta-heuristic approach, MA was

firstly introduced by Moscato in 1989 [55] and effective for the permutation-based optimization problems ([56]). It

was inspired by Darwinian principles of natural evolution and Dawkins’ notion of memes[57], and can be regarded

as a kind of hybrid genetic algorithm (GA) with local search strategies. Due to its powerful ability of searching in170

combinatorial solution spaces, MA has shown to be successful in many fields (e.g. [18], [19], [20], [21], [31], [34], [58],

[59], [60], [61], [62]).

The proposed MARD for PCARP uses the framework of MA and focuses on three aspects. First, the RD operator

is embedded between the crossover and local search operators. Second, in the initialization stage, a few high-quality

initial individuals are included to help improve the convergence of population in the subsequent search process. Last175

but not least, during the local search, a novel operator is constructed to select the period combination of one task.

In the following, we will describe the framework of MARD and each component in detail.

8

4.1. Framework of MARD

The framework of MARD for PCARP is given in Algorithm 4. Firstly, a population pop with psize nonclone

individuals is initialized. Then, in each generation, two parent solutions P1 and P2 are selected from pop randomly,180

and the Periodic Period-Based Crossover (PPBX) operator is applied to them to produce two offsprings C1 and C2

(line 6). Then, the RD operator is applied to both C1 and C2 to generate C ′1 and C ′2, respectively (lines 7 and 8).

After that, C ′1 and C ′2 are further exploited by local search with a certain probability (line 10). As a result, two new

solutions NS1 and NS2 are generated. Then, each of them is compared with the existing individuals in the current

population, and inserted into the population if it is not a clone (lines 11–16). After each insertion, the population185

is sorted by the stochastic ranking procedure [63], and the worst individual is removed to keep the population size

consistent. The stochastic ranking procedure sorts a list of solutions through a bubble-sort-like procedure. If the

compared solutions are both feasible, then they are compared by fitness. Otherwise, they are compared by fitness

or constraint violation, with a certain probability respectively. After the stochastic ranking procedure, the solution

with the highest ranks is considered as the worst solution.190

Algorithm 4 The framework of MARD

Input: A PCARP instance, psize, Gmax, Pls ;
Output: A best feasible solution BFS to PCARP;

1: Initialize a population pop with psize nonclone individuals;
2: Set g = 0;
3: while g < Gmax do
4: g ← g + 1;
5: Randomly select two parent solutions P1 and P2 from the population pop;
6: (C1, C2) = PPBX(P1, P2);
7: C ′1 = RD(C1, lbnv);
8: C ′2 = RD(C2, lbnv);
9: Set NS1 = C ′1 and NS2 = C ′2;

10: Apply local search to NS1 and NS2 with a probability Pls;
11: for i = 1→ 2 do
12: if NSi is nonclone solution then
13: Insert NSi into pop;
14: Remove the worst solutions from pop by using stochastic ranking procedure;
15: end if
16: end for
17: end while
18: return the best feasible solution BFS in pop;

4.2. Solution Representation and Evaluation

Like MARM([34]), we use an explicit task encoding scheme that represents a route as Eq. (1), and a solution as

Eq. (2). Fig. 1 shows a simple example, in which the tasks are represented by the solid lines, and the deadheading

paths are represented by the dashed lines. As mentioned before, each task is assigned two positive integer IDs, one for

each direction. Then, Fig. 1 shows a PCARP solution: Period 1 ((0, 1, 2, 3, 0), (0, 4, 5, 0)) and Period 2 (0, 11, 10, 6, 0).195

Given a solution S, the objectives tc and nv can be calculated according to Eq. (5) and (6) respectively, and fitness

is computed by Eq. (7).

Due to the explicit task encoding scheme employed in this paper, the complexity of the fitness evaluation is

O(
∑
t∈ER

η(t)) = O(γ), where γ is the total number of services over the horizon.

4.3. Population Initialization200

To ensure the diversity of pop, clones are not allowed in pop throughout the entire search process. Starting

from an empty pop, the initial individuals are generated and added to pop one by one. Since the full verification
9

Fig.1. An simple example of the explicit task encoding scheme for PCARP solutions.

of clone individual solutions in PCARP is computationally expensive, an efficient approximate scheme is applied to

two solutions S1 and S2, which only compares their tc, nv and tol values. S1 and S2 are considered to be clone to

each other if they have the same values in all the three properties.205

It has been showed that containing a few high-quality individuals in the initial population can help improve the

convergence of the population, and this initializing scheme was used by most approaches for PCARP (e.g. [31], [32],

[34]). Thus, we adopt two heuristics to produce a few good solutions during initialization. To this end, the Path

Scanning(PS) [6] and Best Insertion Heuristic(BIH) [30] are adopted and extended to fit the multi-period scenario.

The extended heuristics are called EPS and EBIH respectively. The extension process is described as follows:210

Step 1. Create np sub-lists of tasks sl1, sl2, . . . , slnp (one for each period), and set them to empty,

Step 2. For each task t ∈ ER , select a period combination PC(t) from APC(t) randomly;

Step 3. For each task t ∈ ER , add t to corresponding period’s sub-list based on the selected PC(t);

Step 4. For each sub-list slp, apply the single-period heuristic (PS or BIH) to generate a single-period sub-solution;

Step 5. Integrate all the sub-solutions obtained by Step 4 to form a complete PCARP solution.215

Due to the randomness involved in PS and BIH, one can generate multiple unique solutions by the same heuristic.

As a result, in the initial population, 1/6 individuals are generated by EPS, 2/3 individuals are generated by EBIH,

and 1/6 remaining individuals are generated randomly.

4.4. Crossover Operator

In this paper, a new Periodic Period-Based Crossover (PPBX) operator is developed by modifying the Periodic220

Linear Order Crossover (PLOX) [31]. It is described in Algorithm 5. In the beginning, r periods are randomly chosen

from the horizon. Then, C1 inherits the routes from P1 for the selected r periods, and from P2 for the remaining

periods (lines 7–11). After that, the period combination PC(t) of each task t is determined on the basis of the period

combination of t in P1 (lines 12–16). Briefly speaking, the new period combination includes all the periods in which

t is served in both P1 and C1, and covers the periods in which t is served in both P2 and C1 as much as possible.225

Finally, for all the tasks, the services are removed from the periods that are out of the new period combination, and

inserted into the missing periods in the new period combination (lines 30–38). The other offspring solution C2 can

be obtained by switching the roles of P1 and P2.

PPBX is similar to the Best-Cost Route Crossover (BCRC) proposed [39] in the sense that it inserts the missing

tasks into the best positions. Additionally, it consists of more complex components to deal with the periodic situation,230

such as period selection and adjustment of period combinations of the involved tasks.

10

Algorithm 5 The PPBX operator

Input: Two parent solutions P1 and P2;
Output: An offspring solution C1;

1: C1 ← ∅;
2: Randomly choose r ∈ {1, . . . , np} periods Hx = {px1

, px2
, . . . , pxr

} ⊆ H from the horizon H;
3: for each task t ∈ ER do
4: Set the served periods SP (t) to ∅ and period combination PC(t) to that of t in P1;
5: end for
6: for each period p ∈ H do
7: if p ∈ Hx then
8: Add all the routes in period p of P1 to period p of C1;
9: else

10: Add all the routes in period p of P2 to period p of C1;
11: end if
12: for each task t served in period p of C1 do
13: if t is served in period p of P1 then
14: SP (t)← SP (t) ∪ {p};
15: end if
16: end for
17: end for
18: for each period p ∈ H do
19: for each task t served in period p of P2 do
20: if SP (t) = ∅ then
21: Set PC(t) to that of t in P2, SP (t)← SP (t) ∪ {p};
22: else if p /∈ PC(t) then
23: Look for a new PC ′(t) ⊇ SP (t) ∪ {p};
24: if PC ′(t) is found then
25: PC(t)← PC ′(t), SP (t)← SP (t) ∪ {p};
26: end if
27: end if
28: end for
29: end for
30: for each task t ∈ ER do
31: for each period p ∈ H do
32: if p ∈ PC(t) and t is not served in period p of C1 then
33: Insert a service of t into period p of C1 with best insertion;
34: else if p /∈ PC(t) and t is served in period p of C1 then
35: Remove the service of t from period p of C1;
36: end if
37: end for
38: end for
39: return C1;

4.5. Local Search

The process of local search is shown in Fig. 2. It consists of two stages. The first stage is a traditional small-step

local search with four traditional move operators, i.e. Single Insertion (SI), Double Insertion (DI), Swap and 2-opt,

along with a novel Replace Period Combination (RPC) operator which is given in Algorithm 6. In Algorithm 6,235

given a solution S and a task t, each feasible period combination PCnew(t) ∈ APC(t) \ {PCcurr(t)} is examined,

and a corresponding solution Snew is generated by removing redundant services and inserting missing services of t

(lines 4–10). Then, the best solution Sbest is obtained to replace the original solution S. In line 11, the solutions are

compared in terms of fitness value and constraint violation. That is, a solution S1 is better than another solution

S2 if 1) tol(S1) < tol(S2) or 2) tol(S1) = tol(S2) and f(S1) < f(S2).240

For the RPC operator, all the possible t’s are examined, and the best neighbor is selected to be the next solution.

Similarly, four other solutions are produced by the SI, DI, Swap and 2-opt operators. Then, the first stage returns

the best solution S′ among the five solutions produced by the five operators.

11

Algorithm 6 The RPC operator

Input: A solution S, a task t;
Output: A new solution S′;

1: Obtain the current period combination PCcurr(t) of t from S;
2: Sbest ← S;
3: for PCnew(t) ∈ APC(t) \ {PCcurr(t)} do
4: Snew ← S;
5: for each period p ∈ PCcurr(t) \ PCnew(t) do
6: Remove the service of t from p in Snew;
7: end for
8: for each period p ∈ PCnew(t) \ PCcurr(t) do
9: Conduct the best insertion for t into p in Snew;

10: end for
11: if Snew is better than Sbest then
12: Sbest ← Snew;
13: end if
14: end for
15: return S′ ← Sbest;

Fig.2. The local search process.

The second stage is an extended local search employing the Merge-Split (MS) operator proposed by Tang et al.

[18], in an attempt to further exploit in a larger promising region. Although the MS operator has shown promise in245

generating high-quality solutions, it suffers from a very high computational complexity. In this paper, we improve

the efficiency of the MS operator as follows: First, randomly shuffle the routes. Then, for each period, apply the

MS operator to the ith and (i+ 1)th route (i = 1, . . . , bnrp/2c). The resultant two routes replace the original ones

if they are better. Finally, the resultant solution S′′ is returned.

4.6. Summary of MARD250

Finally, we summarize the characteristics of MARD by comparing with the state-of-the-art algorithms including

MARM [34], LMA [31] and SS [32]. The differences between MARD and other algorithms are as follows:

1) A new Route Decomposition (RD) operator is developed and embedded in MARD to improve both nv and tc

simultaneously. The RD operator selects a route from the period with the maximum number of routes, removes

it from the period, and re-inserts the tasks to other periods so that the additional cost is minimized.255

2) To benefit the convergence of the search, a hybridized initialization is employed to include high-quality solutions.

The PS and BIH constructive heuristics for CARP are extended to PCARP for generating the initial solutions.

3) A new crossover operator called the PPBX operator is designed to combine both the period combination and

routing information of the two parents to produce the offsprings.

4) A new local search operator is designed for modifying the period combination of tasks.260

12

5. Experimental Studies

In this section, we evaluate MARD by comparing it with MARM[34], LMA [31] and SS [32] on the pgdb, pval

and pG test sets. In addition, the effect of the RD operator is verified by comparing MARD and its counterpart

without the RD operator.

5.1. Dataset and Parameter Settings265

The pgdb, pval and pG test sets are used in our experiments. The pgdb and pval instances were generated by

Chu et al. [32] by extending from the gdb and val single-period CARP test sets. The pG instances were generated

by Mei et al. [34] from the G large-scale CARP test set in the same way.

The gdb set contains 23 small size instances with 11 to 55 edges. The val set consists of 34 instances based on

10 different graphs with 34 to 97 edges. In each graph, different instances were created by changing the capacity of270

vehicles. The real-world data set G was built by Brandão and Eglese in [11], which contains 10 large-scale CARP

instances with 375 edges based on a road network of the country in Lancashire, U.K. The G set can be divided into

two groups based on the required edges, i.e., the G1 and G2. Each group has 5 instances (denoted as 1-A ∼ 1-E and

2-A ∼ 2-E), and different instances in each group were generated by varying vehicle capacities.

For extending a CARP instance to a PCARP instance, we adopt the definition used in previous works [32, 34],275

which is a weekly horizon H with two idle days (weekend) is defined. For each task t, the demand vector is defined

as ~d(t) = (d1(t), . . . , d7(t)), where all the dp(t)’s equal the demand of t in the CARP instance. The service frequency

of t is defined as η(t) = 1 + (v1(t) + v2(t)) mod 5, where v1(t) and v2(t) are the IDs of the two end-vertices of t. If

η(t) is 2 or 3, then the period combinations with services in consecutive days are forbidden. Otherwise, all the period

combinations are allowed. Note that after the conversion, the accumulated demand of a task can exceed the original280

capacity. To address this issue, in the PCARP instances, the capacity is multiplied by 2, 3, 4 or 5, depending on

the instance. Details of the instance generation can be found in [32] and [34]. For the pG instances, the 1-D, 1-E,

2-D and 2-E instances are essentially the same as 1-A, 1-B, 2-A and 2-B after the capacity multiplication, and are

omitted in the experiments.

In MARD, the population size and local search probability are set to 30 and 0.1, which are the same as MARM.285

To make a fair comparison, the maximal number of iteration is set to 5000 for the pgdb and pval sets, and 500 for

the pG instances. All the compared algorithms are run for 30 times independently. The results of LMA and SS were

obtained from the reimplemented version in [34].

5.2. Experimental Results and Analysis

5.2.1. Small and Medium Sized Instances290

First, we compare the algorithm on the small and median sized instances. To this end, the pgdb and pval test

sets are used. The results of the average performance are summarized in Table 2, and the detailed average results

are shown in Tables 12 and 13 in the Appendix. The results of LMA, SS and MARM are obtained directly from

the corresponding literatures. For LMA, three versions (DMA, PMA and IPMA) were presented in [31] and IPMA

showed the best performance. Thus, in our comparison, the column LMA stands for the results of IPMA. Note that

LMA and SS were run only once in the original literature. On the other hand, MARD and MARM were run for 30

times. With no guarantee on the accuracy of our reimplementation, the best we can do is to consider the results

obtained from the single run of LMA and SS as their average performances. Additionally, there is no result available

for LMA on the pval set from the original literature. Thus the comparison with LMA on the pval set is ignored.

For each algorithm and each objective (nv and tc) in Table 2, there are three columns that stand for the mean value

13

over all the instances (denoted as “Mean”), the number of the best mean values among all the compared results

(denoted as “NB”) and the average percentage deviation from the corresponding lower bound respectively (denoted

as “APD”). APD is calculated as follows:

APD =
1

N

N∑
i=1

fi − lbi
lbi

× 100 (16)

where N indicates the number of instances, and fi and lbi stand for the objective value and lower bound of the ith

instance respectively. For nv, the lower bound is obtained from Eq. (12). For tc, the lower bound is obtained from

[32]. All of the results can be downloaded from http://homepages.ecs.vuw.ac.nz/~yimei.

Table 2: Summary of the average results obtained by the compared algorithms on the pgdb and pval sets. For each instance, MARM

and MARD were run 30 times independently. The results of LMA and SS were obtained from literature, which were obtained by

running once using sophisticated parameter settings.

Test set LMA(IPMA) SS MARM MARD

nv tc nv tc nv tc nv tc

Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD

pgdb 3.13 19 8.7 752.22 0 12.48 3.35 14 13.84 743.35 0 10.73 2.98 23 1.16 711.06 0 6.77 3.2 16 9.94 698.95 23 4.86

pval 4.38 10 25.14 1208.85 0 26.12 3.65 34 1.5 1129.97 0 17.72 3.93 20 11.79 1097.22 34 14.51

From Table 2, it can be seen that MARD performed much better than other compared algorithms overall. It

achieved the best mean nv values for 16/23 pgdb and 20/34 pval instances, which is much better than SS. MARM295

performed the best, achieving the best mean nv value for all the 23 pgdb and 34 pval instances. However, in terms

of tc, MARD significantly outperformed the other algorithms. It achieved the best mean tc value for all the 23 pgdb

and 34 pval instances, and its APD value is 4.86 and 14.51 for the pgdb and pval sets respectively, which is much

lower than that of the other algorithms. For the pgdb test set, MARD outperformed LMA (12.48) by 61.06%, SS

(10.73) by 54.71% and MARM (6.77) by 28.21%. For the pval test set, MARD outperformed SS (26.12) by 44.45%300

and MARM (17.72) by 18.12%.

Table 3 shows the t-test results between MARD and all the other algorithms on the pgdb and pval datasets. For

each instance, the 30 outputs of MARD and MARM are assumed to approach the normal distribution, and the single

outputs of LMA and SS are considered to be the mean value. Therefore, t-test is considered to be applicable. In

the table, W, D and L stand for Win (significantly better), Draw (no significant difference) and Lose (significantly305

worse), respectively. It is obvious that MARD is significantly better than both LMA and SS on most instances.

Compared to both algorithms, MARD obtained the same nv on most instances, and significantly better tc, and

thus significantly better fitness value on most instances. Compared to MARM, MARD still obtained the same nv

and significantly better tc on a fair number of instances. As a result, MARD performed significantly better than

MARM on most instances (34 out of the total 57 instances) in terms of fitness. In addition, we conduct the t-tests310

with Bonferroni correction between MARD and other three compared algorithms simultaneously to see if MARD

performed significantly the best, and Bonferroni correction is necessary here to do multiple comparisons. The test

results on fitness are given in Table 4, in which “W” indicates the number of instances for which MARD performed

significantly better than all the other algorithms. “D” stands for the number of instances for which MARD performed

either significantly the same as at least one algorithm, and significantly better than the remaining algorithms. “L” is315

the number of instances for which MARD performed significantly worse than at least one of the compared algorithms.

From the table, it can be seen that MARD achieved significantly better fitness values than all the other compared

algorithms on more than half (14 out of 23 pgdb and 19 out of 34 pval) instances.

14

http://homepages.ecs.vuw.ac.nz/~yimei

Table 3: The results of the t-tests with signficance probability of 95% between MARD and the other compares

algorithms on the pgdb and pval instances.

Test set
MARD and LMA MARD and SS MARD and MARM

nv tc fitness nv tc fitness nv tc fitness

W D L W D L W D L W D L W D L W D L W D L W D L W D L

pgdb 1 18 4 23 0 0 18 1 4 6 17 0 23 0 0 23 0 0 0 15 8 23 0 0 14 1 8

pval 18 16 0 34 0 0 31 3 0 0 20 14 33 1 0 20 0 14

Overall 1 18 4 23 0 0 18 1 4 24 33 0 57 0 0 54 3 0 0 35 22 56 1 0 34 1 22

Table 4: The results of the t-tests with Bonferroni

correction (significance probability of 95%) between

MARD and the other compared algorithms on the

pgdb and pval instances.

Test set
fitness

Test set
fitness

W D L W D L

pgdb 14 2 7 pval 19 1 14

Table 5 shows the summary of the best results obtained by the compared algorithms on the pgdb and pval test

sets, and Tables 14 and 15 show the detailed results. Note that the results of LMA and SS were obtained by a single320

run with a sophisticated setting, thus we still keep them in the tables for reference.

Table 5: Overall comparison of the best results obtained by the compared algorithms on the test sets pgdb and pval. MARM and

MARD were run for 30 times independently, and LMA and SS were run once using sophisticated parameter settings.

Test set LMA(IPMA) SS MARM MARD

nv tc nv tc nv tc nv tc

Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD Mean NB APD

pgdb 3.13 19 8.7 752.22 0 12.48 3.35 14 13.84 743.35 0 10.73 2.96 23 0 696.91 2 4.75 3.13 19 8.7 688.13 23 3.43

pval 4.38 10 25.14 1208.85 0 26.12 3.62 34 0 1106.5 3 15.14 3.74 30 5.88 1083.18 34 12.8

From Table 5, it is clear that MARD performed competitively in terms of both nv and tc in the best case. It

achieved the best nv value on 19 pgdb and 30 pval instances, which is slightly worse than MARM, the same as

LMA and much better than SS. In terms of tc, MARD achieved the best results on all the 57 instances, and further

updated the best-known results for 19 pgdb and 31 pval instances (see Tables 14 and 15). On the other hand, the325

APD values of nv obtained by MARD on test sets pgdb and pval are 8.7 and 5.88, they are still comparable with

those achieved by the other algorithms like the compared algorithms’ average performance. However, in terms of tc,

the APD value of the best tc obtained by MARD on test set pgdb is 3.43, which is better than that of LMA (12.48)

by 73.24%, SS (10.73) by 68.03% and MARM (4.75) by 17.03%. For the pval test set, the APD value of the best

tc obtained by MARD is 12.8, which is better than that of SS (26.12) by 51.00% and MARM (15.14) by 15.46%.330

Overall, in the best case, MARD outperformed all the other algorithms and the best-known results.

Table 6 shows the average running time (in seconds) of the compared algorithms. Note that the running time

depends on various factors such as CPU frequency, RAM, programming language, compiler, etc. It is hardly possible

to make a fair comparison between the running times on different platforms. However, we can still get a rough

idea by normalizing the running times with respect to the CPU frequency. MARD was run on Intel(R) Core(TM)335

i3-3240 M 3.40 GHz. MARM was run on Intel(R) Xeon(R) E5335 2.00 GHz. LMA and SS were run on Pentium 4

at 1.40 GHz and 2.40 GHz, respectively. Therefore, the running times of MARM, LMA and SS are multiplied by

15

2/3.4, 1.4/3.4 and 2.4/3.4, respectively. The table shows that MARD is slower than MARM and SS, while faster

than LMA. The high complexity of MARD is mainly due to the RD operator, which enumerates all the possible

positions when inserting each task service. In addition, during the local search MARD employs more operators than340

the other algorithms (e.g. MS and RPC). How to improve the efficiency of MARD by identifying and removing

possible redundant computations will be our future direction. Some studies in memetic computing take advantage

of the domain knowledge (represented as the so-called memes) learned from solving related problems in the past

and/or online learning. For instance, Feng et al. [41] proposed to use the promising solution structure learned from

solving CVRP to initialise better solutions for CARP, and vice versa. Chen et al. [64] proposed to use memes storing345

different local search operators, and developed an algorithm to learn when to use which local search operator during

the search process. To improve efficiency, we can employ similar ideas to learn the domain knowledge to focus on

the promising regions in the search space.

Table 6: Average running time (in seconds) of the com-

pared algorithms, normalized by CPU frequency. The

running times of LMA, SS and MARM are multiplied

by 2/3.4, 1.4/3.4 and 2.4/3.4, respectively.

Test set LMA(IPMA) SS MARM MARD

pgdb 192.2 78.8 7.2 82

pval 312.6 30.9 358.6

Since the RD operator is the main contribution of this work, it is important to verify its efficacy in MARD. To

this end, we remove the RD operator (lines 7 and 8 in Algorithm 4) from MARD, and compare this variant, called350

MA∗, against MARD on the pgdb and pval instances over 30 independent runs. The summarized average results are

given in Table 7. From the table, it can be seen that MARD achieved much smaller nv value than MA∗, while the tc

value is nearly the same. This is consistent with our expectation, which suggests that the RD operator can reduce

nv while not much deteriorating tc.

Table 7: Summary of the average results obtained by 30 independent

runs of MARD and MA∗ on the test sets pgdb and pval.

Test set MA*(without RD) MARD

nv tc nv tc

pgdb 3.35±0.11 699.79±5.82 3.20±0.10 698.95±5.23

pval 4.42±0.20 1092.92±10.02 3.93±0.12 1097.22±11.42

Overall 3.89±0.16 896.36±7.92 3.56±0.11 898.09±8.33

More specifically, Table 8 gives the numbers of Win, Draw and Lose instances of MARD against MA∗ when355

conducting the t-test under the confidence probability of 95%. It can be seen that MARD improved the solutions

on the test sets greatly in contrast with MA∗ in both objectives. In term of nv, MARD is significantly better on 10

pgdb and 24 pval instances, while never performed significantly worse. In term of tc, MARD and MA∗ performed

statistically the same on 17 pgdb and 23 pval instances. Note that MARD was significantly outperformed by MA∗ on

10 pval instances. However, MARD achieved significantly better nv values on most of these instances. As a result,360

MARD still showed significantly better performance than MA∗ in terms of fitness.

5.2.2. Large-Scale Instances

In addition to the small and medium sized instances, we also compared MARD with MARM, LMA and SS on

the large pG instances to evaluate its scalability. The results were obtained directly from [34]. Note that LMA
16

Table 8: The statistical test results obtained by 30 inde-

pendent runs of MARD and MA∗ on the test sets pgdb and

pval.

Test Set nv tc fitness

W D L W D L W D L

pgdb 10 13 0 4 17 2 11 12 0

pval 24 10 0 1 23 10 24 9 1

Overall 34 23 0 5 40 12 35 21 1

and SS were not tested on the pG set in their original works [31], [32], but reimplemented in [34]. Thanks to365

the clear description of the algorithms in the original literatures, we believe that the reimplemented version will

have statistically comparable behaviour with the original ones. The best and average results (with the t-test under

confidence probability of 95%) of the compared algorithms are presented in Tables 9 and 10. The summarized

statistical test results are shown in Table 11. Being a new PCARP test set, the lower bounds of tc are unavailable

for the pG test set.

Table 9: Best results of the composed algorithms on pG. The results in bold face are best and the new best results

achieved by our MARD are showed with “*”.

Name |V | |E| γ LBV LMA SS MARM MARD

nv tc nv tc nv tc nv tc

G1-A 255 347 1062 10 11 3623482 12 3513307 10 3678504 10 3106420*

G1-B 255 347 1062 12 14 3874996 15 3808003 13 3947359 13 3437158*

G1-C 255 347 1062 11 13 3690919 14 3710681 11 3799614 12 3260348*

G2-A 255 375 1138 11 12 3820365 14 3814253 11 3923292 11 3383565*

G2-B 255 375 1138 13 15 4118258 16 4108672 14 4235707 14 3656182*

G2-C 255 375 1138 11 14 4019023 15 3949113 13 4103535 12* 3501008*

Mean 11.3 13.2 3857840.5 14.3 3817338.2 12.0 3948001.8 12.0 3390780.2

370

From Table 9, MARD is superior to LMA and SS on all the 6 pG instances and obtained the same number of best

nv as MARM. In particular, MARD achieved solutions with significantly smaller tc than that of all other composed

algorithms on all the 6 instances, Although on instance G1-C, nv obtained by MARD is worse than that of MARM,

fitness achieved by MARD is better than that of MARM (α = 100000 in the experiment). Thus, MARD achieved

the best solutions on all pG instances.375

In terms of average performance, Tables 10 and 11 show that MARD showed significantly better performance

than both LMA and SS on all the 6 pG instances in terms of nv, tc and fitness. When comparing to MARM, MARD

performed significantly better on 3 instances in terms of both nv and tc. On the remaining 3 instances, MARD

achieved the same nv and significantly better tc, and thus significantly better fitness. In addition, we conducted

the t-tests with Bonferroni correction between MARD and other three compared algorithms, and the results show380

that MARD obtained significant better fitness than all the other algorithms on all the pG instances.

In summary, MARD showed significant advantage over all the compared state-of-the-art algorithms on the large-

scale pG instances. That is, MARD has a good scalability in terms of solution quality, i.e. its advantage becomes

more obvious as the problem size increases. This may be because when the problem becomes larger and more

complicated, the solution repairing (reinsertion of missing tasks) needs to be more sophisticated to improve the385

convergence of the population. In this sense, the RD operator has a strong advantage over the previous operators.

17

Table 10: Average results obtained by 30 independent runs of the composed algorithms on pG. The results with “†” obtained by one

of the compared algorithm are significantly better than that of all the others (with confidence probability of 95%)

Name LMA SS MARM MARD

nv tc nv tc nv tc nv tc

G1-A 12.1±0.6 3846199.2±204563.0 13.1±0.4 4191076.8±589288.5 11.0±0.4 3758286.1±48305.9 10.9±0.4 3157654.0±37669.3†

G1-B 15.1±0.8 4170835.4±223624.0 16.3±0.6 4319454.0±457226.7 14.0±0.7 4093805.0±67843.8 13.6±0.6 3488414.7±34891.7†

G1-C 13.6±0.6 4034616.1±185334.1 14.8±0.4 4230602.5±593157.0 12.3±0.7 3935364.7±66648.1 12.4±0.5 3315679.9±36691.5†

G2-A 13.5±0.8 4189723.8±233001.0 14.6±0.5 4306027.1±504355.2 12.3±0.5 4051017.5±56278.0 12.0±0.4† 3414931.2±29000.3†

G2-B 16.3±0.8 4515713.9±273187.1 17.6±0.6 4584540.6±511354.6 15.0±0.8 4411075.3±81881.3 14.5±0.5† 3720668.8±40338.2†

G2-C 14.6±0.6 4362438.9±299696.1 15.8±0.5 4493359.9±586055.1 13.4±0.5 4210976.6±55288.2 13.2±0.5 3531334.8±34262.3†

Mean 14.2 4186587.9 15.4 4354176.8 13 4076754.2 12.8 3438113.9

Table 11: The statistical test results obtained by 30 independent runs

of MARD and other compared algorithms on the pG set.

Item MARD and LMA MARD and SS MARD and MARM

W D L W D L W D L

nv 6 0 0 6 0 0 3 3 0

tc 6 0 0 6 0 0 6 0 0

fitness 6 0 0 6 0 0 6 0 0

6. Conclusions and Future Work

In this paper, we investigate an extended version of CARP, i.e., PCARP, which is considered over the horizon

with multiply periods. PCARP is closer to practical applications (e.g. waste collection) than CARP. In addition,

there are two objectives for PCARP, i.e, nv and tc. PCARP is more complex than CARP due to the interaction390

between the service allocation and routing sub-problems in minimizing both nv and tc.

The difficulty in coping with PCARP is to provide high-quality solutions with both small nv and tc values

simultaneously. The existing approaches for PCARP either focus on one of the two objectives or tackle them

separately. As a result, their performance are not satisfactory especially when facing the large-scale problems. To

overcome these drawbacks, we propose a novel Route Decomposition (RD) operator which can improve nv and tc at395

the same time. The main idea of the RD operator is to decompose routes of the periods with the maximum number

of routes, and reinsert the task services to other periods with possibly fewer routes. Additional cost is considered

during the insertion to improve tc as well. We further develop a MARD by embedding the RD operator into a

Memetic Algorithm (MA) framework. The experimental studies show that MARD outperformed significantly better

than the state-of-the-art algorithms including LMA, SS and MARM, especially on the large-scale pG instances. We400

also verified the importance of the RD operator in MARD.

In the future, we will take more real-world factors into account, e.g. the time window constraints, time-dependent

service costs and multi-depots. In addition, we will improve the efficiency of MARD by identifying and removing

redundant computations.

Acknowledgements405

This work was partially supported by the Natural Science Key Research Project for Higher Education Institutions

of Anhui Province (No. KJ2016A438, No. KJ2014A140, No. KJ2013A177) and the Anhui Provincial Natural Science

Foundation (No. 1408085MF131). Yi Mei is supported by the Marsden Funds of New Zealand (VUW1209), and the

University Research Funds of Victoria University of Wellington (No. 203936/3337).

18

References410

[1] B. Golden, R. Wong, Capacitated arc routing problems, Networks 11 (3) (1981) 305–315.

[2] M. Yaghini, M. Momeni, M. Sarmadi, A simplex-based simulated annealing algorithm for node-arc capacitated

multicommodity network design, Appl. Soft Comput. 12 (2012) 2997–3003.

[3] J. Kratica, M. Milanović, Z. Stanimirović, D. Tošić, An evolutionary-based approach for solving a capacitated

hub location problem, Appl. Soft Comput. 11 (2011) 1858–1866.415

[4] R. Hirabayashi, Y. Saruwatari, Tour construction algorithm for the capacitated arc routing-problems, Asia-

Pacific J. Oper. Res. 9 (2) (1992) 155–175.

[5] P. Lacomme, C. Prins, W. Ramdane-Chérif, Competitive memetic algorithms for arc routing problems, Annals

of Operations Research 131 (1–4) (2004) 159–185.

[6] B. Golden, J. DeArmon, E. Baker, Computational experiments with algorithms for a class of routing problems,420

Comput. Oper. Res. 10 (1) (1983) 47–59.

[7] G. Ulusoy, The fleet size and mix problem for capacitated arc routing, Eur. J. Oper. Res. 22 (3) (1985) 329–337.

[8] W. Pearn, Approximate solutions for the capacitated arc routing problem, Comput. Oper. Res. 16 (6) (1989)

589–600.

[9] W. Pearn, Augment-insert algorithms for the capacitated arc routing problem, Comput. Oper. Res. 18 (2) (1991)425

189–198.

[10] A. Hertz, G. Laporte, M. Mittaz, A tabu search heuristic for the capacitated arc routing problem, Oper. Res.

48 (1) (2000) 129–135.

[11] J. Brandão, R. Eglese, A deterministic tabu search algorithm for the capacitated arc routing problem, Comput.

Oper. Res. 35 (4) (2008) 1112–1126.430

[12] Y. Mei, K. Tang, X. Yao, A global repair operator for capacitated arc routing problem, IEEE Trans. Syst., Man,

Cybern. B, Cybern. 39 (3) (2009) 723–734.

[13] A. Hertz, M. Mittaz, A variable neighborhood descent algorithm for the undirected capacitated arc routing

problem, Transp. Sci. 35 (4) (2001) 425–434.

[14] M. Polacek, K. Doerner, R. Hartl, et al., A variable neighborhood search for the capacitated arc routing problem435

with intermediate facilities, J. Heuristics 14 (5) (2008) 405–423.

[15] P. Beullens, L. Muyldermans, D. Cattrysse, et al., A guided local search heuristic for the capacitated arc routing

problem, Eur. J. Oper. Res. 147 (3) (2003) 629–643.

[16] P. Repoussis, C. Tarantilis, G. Ioannou, Arc-guided evolutionary algorithm for the vehicle routing problem with

time windows, IEEE Trans. Evol. Comput. 13 (3) (2009) 624–647.440

[17] Y. Mei, K. Tang, X. Yao, Improved memetic algorithm for capacitated arc routing problem, in: Proceedings of

the 2009 IEEE Congress on Evolutionary Computation (CEC2009), IEEE Press, 18–21 May, 2009, pp. 1699–

1706.

19

[18] K. Tang, Y. Mei, X. Yao, Memetic algorithm with extended neighborhood search for capacitated arc routing

problems, IEEE Trans. Evol. Comput. 13 (5) (2009) 1151–1166.445

[19] Y. Mei, K. Tang, X. Yao, Decomposition-based memetic algorithm for multiobjective capacitated arc routing

problem, IEEE Trans. Evol. Comput. 15 (2) (2011) 151–165.

[20] R. Shang, J. Wang, L. Jiao, et al., An improved decomposition-based memetic algorithm for multi-objective

capacitated arc routing problem, Appl. Soft Comput. 19 (2014) 343–361.

[21] Z. Wang, H. Jin, M. Tian, Rank-based memetic algorithm for capacitated arc routing problems, Appl. Soft450

Comput. 37 (2015) 572–584.

[22] P. Lacomme, C. Prins, M. Sevaux, A genetic algorithm for a bi-objective capacitated arc routing problem,

Comput. Oper. Res. 33 (12) (2006) 3473–3493.

[23] Y. Mei, X. Li, X. Yao, Cooperative coevolution with route distance grouping for large-scale capacitated arc

routing problems, IEEE Trans. Evol. Comput. 18 (3) (2014) 435–449.455

[24] R. Eglese, Routing winter gritting vehicles, Discrete Appl. Math. 48 (3) (1994) 231–244.

[25] K. Doerner, R. Hartl, V. Maniezzo, et al., Applying ant colony optimization to the capacitated arc routing

problem, in: Proc. Ant Colony Optimization Swarm Intell., Lecture Notes in Computer Science 3172, Springer,

2004, pp. 420–421.

[26] A. Corberán, C. Prins, Recent results on arc routing problems: An annotated bibliography, Networks 56 (1)460

(2010) 50–69.

[27] P. Lacomme, C. Prins, W. Ramdane-Chérif, Evolutionary algorithms for multiperiod arc routing problems, in:

Proc. 9th Int. Conf. Inf. Process. Manage. Uncertainty Knowl.-Based Syst., 2002, pp. 845–852.

[28] F. Chu, N. Labadi, C. Prins, Lower bounds for the periodic capacitated arc routing problem, in: Oral Commu-

nication, 2nd International Workshop on Freight Transportation and Logistics (Odysseus 2003), Palermo, Italy,465

2003.

[29] F. Chu, N. Labadi, C. Prins, The periodic capacitated arc routing problem: Linear programming model, meta-

heuristic and lower bounds, J. Syst. Sci. Syst. Eng. 13 (4) (2004) 423–435.

[30] F. Chu, N. Labadi, C. Prins, Heuristics for the periodic capacitated arc routing problem, J. Intell. Manuf. 16 (2)

(2005) 243–251.470

[31] P. Lacomme, C. Prins, W. Ramdane-Chérif, Evolutionary algorithms for periodic arc routing problems, Eur. J.

Oper. Res. 165 (2) (2005) 535–553.

[32] F. Chu, N. Labadi, C. Prins, A scatter search for the periodic capacitated arc routing problem, Eur. J. Oper.

Res. 169 (2) (2006) 586–605.

[33] A. Kansou, A. Yassine, Ant colony system for the periodic capacitated arc routing problem, in: Proc. 2009475

International Network Optimization Conference, 2009, pp. 1–7.

[34] Y. Mei, K. Tang, X. Yao, A memetic algorithm for periodic capacitated arc routing problem, IEEE Trans. Syst.

Man Cybern. B 41 (6) (2011) 1654–1667.
20

[35] Á. Corberán, G. Laporte, Arc routing: problems, methods, and applications, Vol. 20, SIAM - Society For

Industrial And Applied Mathematics, 2015.480

[36] I. Monroy, C. Amaya, A. Langevin, The periodic capacitated arc routing problem with irregular services, Discrete

Appl. Math. 161 (4) (2013) 691–701.

[37] S. Huang, T. Lin, Using ant colony optimization to solve periodic arc routing problem with refill points, Journal

of Industrial and Production Engineering 31 (7) (2014) 441–451.

[38] J.-P. Riquelme-Rodŕıguez, M. Gamache, A. Langevin, Periodic capacitated arc-routing problem with inventory485

constraints, J. Oper. Res. Soc. 65 (12) (2014) 1840–1852.

[39] F. Hanshar, B. Ombuki-Berman, Dynamic vehicle routing using genetic algorithms, Appl. Intell. 27 (1) (2007)

89–99.

[40] I. Osman, N. Christofides, Capacitated clustering problems by hybrid simulated annealing and tabu search, Int.

T. Oper. Res. 1 (3) (1994) 317–336.490

[41] L. Feng, Y. Ong, M. Lim, et al., Memetic search with inter-domain learning: A realization between cvrp and

carp, IEEE Trans. Evol. Comput. 19 (5) (2014) 1–15.

[42] J. Luo, X. Li, M. Chen, et al., A novel hybrid shuffled frog leaping algorithm for vehicle routing problem with

time windows, Inf. Sci. 316 (2015) 266–292.

[43] L. Tan, F. Lin, H. Wang, Adaptive comprehensive learning bacterial foraging optimization and its application495

on vehicle routing problem with time windows, Neurocomputing 151 (2015) 1208–1215.

[44] M. Gaudioso, G. Paletta, A heuristic for the periodic vehicle routing problem, Transp. Sci. 26 (2) (1992) 86–92.

[45] E. Angelelli, G. Speranza, The periodic vehicle routing problem with intermediate facilities, Eur. J. Oper. Res.

137 (2) (2002) 233–247.

[46] P. Francis, K. Smilowitz, Modeling techniques for periodic vehicle routing problems, Transp. Res. Part B:500

Methodol. 40 (10) (2006) 872–884.

[47] F. Alonso, M. Alvarez, J. Beasley, A tabu search algorithm for the periodic vehicle routing problem with multiple

vehicle trips and accessibility restrictions, J. Oper. Res. Soc. 59 (7) (2008) 963–976.

[48] H. Longo, M. de Aragão, E. Uchoa, Solving capacitated arc routing problems using a transformation to the

CVRP, Comput. Oper. Res. 33 (6) (2006) 1823–1837.505

[49] E. Dijkstra, A note on two problems in connection with graphs, Numer. Math., Vol. 1, 1959, pp. 269–271.

[50] Z. Xiao, Z. Ming, A method of workflow scheduling based on colored petri nets, Data Knowl. Eng. 70 (2) (2011)

230–247.

[51] Z. Chen, M. Qiu, Z. Ming, et al., Clustering scheduling for hardware tasks in reconfigurable computing systems,

J. Syst. Architect. 59 (10) (2013) 1424–1432.510

[52] J. Li, M. Qiu, J. Niu, et al., Thermal-aware task scheduling in 3d chip multiprocessor with real-time constrained

workloads, ACM Trans. Embedded Comput.Syst. 12 (2) (2013) 24:1–24:22.

21

[53] H. Luo, J. Fang, G. Huang, Real-time scheduling for hybrid flowshop in ubiquitous manufacturing environment,

Computers & Industrial Engineering 84 (2015) 12–23.

[54] J. Li, M. Qiu, Z. Ming, et al., Online optimization for scheduling preemptable tasks on iaas cloud systems,515

Journal of Parallel and Distributed Computing 72 (5) (2012) 666–677.

[55] P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algo-

rithms, CalTech, Pasadena, CA, CalTech Concurrent Computation Program Rep. 826, 1989.

[56] Z. Zhu, J. Xiao, J.-Q. Li, et al., Global path planning of wheeled robots using multi-objective memetic algorithms,

Integr. Comput. Aided Eng. 22 (4) (2015) 387–404.520

[57] R. Dawkins, The Selfish Gene, Oxford, U.K.: Oxford Univ., 1989.

[58] Y. Ong, Artificial intelligence technologies in complex engineering design, Ph.D. dissertation, Sch. Eng. Sci.,

Univ. Southampton, Southampton, U.K., 2002.

[59] J. Smith, Co-evolving memetic algorithms: A learning approach to robust scalable optimization, in: IEEE

Congress on Evolutionary Computation, Vol. 1, IEEE Press, 2003, pp. 498–505.525

[60] H. Ishibuchi, T. Yoshida, T. Murata, Balance between genetic search and local search in memetic algorithms

for multiobjective permutation flowshop scheduling, IEEE Trans. Evol. Comput. 7 (2003) 204–223.

[61] Y. Mei, X. Li, X. Yao, On investigation of interdependence between sub-problems of the travelling thief problem,

Soft Comput. 20 (1) (2016) 157–172.

[62] Y. Richard, R. Liu, Z. Jiang, A memetic algorithm for the open capacitated arc routing problem, Transp. Res.530

Part E 50 (2013) 53–67.

[63] T. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Trans. Evol. Comput.

4 (3) (2000) 284–294.

[64] X. Chen, L. Feng, Y. Ong, A self-adaptive memeplexes robust search scheme for solving stochastic demands

vehicle routing problem, Int. J. Syst. Sci. 43 (7) (2012) 1347–1366.535

22

Appendix

In this section, the detailed results obtained by MARD and the other compared algorithms on the test sets are

given in Tables 12 – 15. Tables 12 and 13 show the detailed average results, and Tables 14 and 15 show the detailed

best results.

In Tables 12 and 13, the columns |V |, |E| and γ stand for the number of vertices, edges and services, and LBV540

and LB indicates the lower bounds of nv and tc, respectively.

In Tables 14 and 15, the achieved best results are compared against the best-known results (obtained from [31],

[32], [33], [34]), which is shown in the column BK. If the best-known result is updated, the new best result is marked

with “*”.

Table 12: The average results over 30 independent runs of MARM and MARD and the results of LMA and SS on the

pgdb instances. For each instance, the t-tests have been conducted between the compared algorithms under the confidence

probability of 95%. If an algorithm is significantly better than all the others, then its corresponding entry is marked with

“†”.

Name |V | |E| γ LBV LB LMA(IPMA) SS MARM MARD

Average Average

nv tc nv tc nv tc nv tc

1 12 44 65 3 771 3 890 3 869 3.0±0.0 827.4±8.6 3.0±0.0 818.3±7.3†

2 12 52 76 3 887 3 1030 3 997 3.0±0.0 934.6±12.7 3.0±0.0 915.2±9.4†

3 12 44 61 3 673 3 794 3 788 3.0±0.0 710.4±9.9 3.0±0.0 698.6±7.3†

4 11 38 52 2 673 2 858 2 795 2.0±0.0 762.1±12.7 2.0±0.0 744.0±5.9†

5 13 52 75 3 965 3 1120 3 1098 3.0±0.0 1032.4±14.2 3.0±0.0 1021.6±8.6†

6 12 44 67 3 861 3 1008 3 951 3.0±0.0 912.2±7.9 3.0±0.0 895.6±6.9†

7 12 44 65 3 801 3 935 3 882 3.0±0.0 836.0±8.1 3.0±0.0 818.6±5.2†

8 27 92 143 5 814 5 1000 6 1014 5.0±0.0 986.0±14.7 5.0±0.2 963.4±13.9†

9 27 102 155 5 772 5 934 6 966 5.0±0.0 917.3±11.5 5.2±0.4 892.0±10.0†

10 12 50 65 2 669 2 744 2 761 2.0±0.0 696.3±9.1 2.0±0.0 684.4±4.5†

11 22 90 133 3 1043 3 1172 3 1193 3.0±0.0 1113.4±11.0 3.0±0.0 1089.7±7.3†

12 13 46 67 3 1021 3 1218 3 1245 3.0±0.0 1149.8±14.5 3.0±0.0 1132.8±12.5†

13 10 56 81 3 1541 3 1597 3 1593 3.0±0.0 1564.9±5.3 3.0±0.0 1556.5±3.5†

14 7 42 64 2 278 3 300 3 285 2.5±0.5† 291.0±8.7 3.0±0.0 282.5±1.1†

15 7 42 64 2 174 2 182 2 180 2.0±0.0 176.2±1.5 2.0±0.0 174.0±0.0†

16 8 56 85 3 352 3 374 3 372 3.0±0.0 364.2±2.1 3.0±0.0 357.8±1.3†

17 8 56 85 2 255 3 267 3 265 2.0±0.0† 266.1±2.0 3.0±0.0 256.8±0.9†

18 9 72 106 2 484 3 506 3 506 2.0±0.0† 494.4±3.3 3.0±0.0 485.2±1.0†

19 8 22 30 2 155 2 181 2 173 2.0±0.0 172.7±0.8 2.0±0.0 171.5±0.8†

20 11 44 63 2 339 3 375 3 356 2.0±0.0† 357.8±4.1 2.8±0.4 348.6±3.3†

21 11 66 101 3 488 3 525 4 509 3.0±0.0 504.9±3.8 3.2±0.4 499.7±4.4†

22 11 88 129 4 578 4 600 5 597 4.0±0.0 593.0±2.7 4.4±0.5 587.6±3.0†

23 11 110 165 5 671 5 691 6 702 5.0±0.0 691.4±3.1 5.9±0.3 681.4±2.2†

23

Table 13: The average results over 30 independent runs of MARM and MARD and the results of SS on the

pval instances. For each instance, t-tests have been conducted between the compared algorithms under the

confidence probability of 95%. If an algorithm is significantly better than all the others, then its corresponding

entry is marked with “†”.

Name |V | |E| γ LBV LB SS MARM MARD

Average Average

nv tc nv tc nv tc

1a 24 78 105 2 434 2 544 2.0±0.0 488.8±6.6 2.0±0.0 480.4±5.1†

1b 24 78 105 3 458 3 585 3.0±0.0 540.0±4.7 3.0±0.0 528.9±4.2†

1c 24 78 105 4 532 5 701 4.0±0.0† 678.5±11.6 4.4±0.5 658.3±11.0†

2a 24 68 94 2 606 2 782 2.0±0.0 706.0±5.0 2.0±0.0 700.4±2.0†

2b 24 68 94 2 695 3 868 2.0±0.0 788.8±6.7 2.0±0.0 781.0±4.1†

2c 24 68 94 4 1012 5 1259 4.0±0.0 1183.3±16.1 4.0±0.0 1174.1±13.3†

3a 24 70 96 2 192 2 249 2.0±0.0 225.9±2.3 2.0±0.0 223.7±2.3

3b 24 70 96 2 212 3 278 2.0±0.0† 263.8±5.0 2.4±0.5 261.3±6.9

3c 24 70 96 4 289 4 358 4.0±0.0 347.1±4.5 4.0±0.0 343.4±4.7†

4a 41 138 205 2 1089 3 1330 2.0±0.0† 1262.4±18.6 2.8±0.4 1204.9±15.0†

4b 41 138 205 3 1113 4 1471 3.0±0.0 1314.7±14.0 3.0±0.0 1289.2±15.1†

4c 41 138 205 4 1205 4 1583 4.0±0.0 1438.7±13.6 4.0±0.0 1410.2±13.9†

4d 41 138 205 6 1502 8 1988 6.1±0.3† 1905.6±31.0 7.0±0.2 1831.2±17.3†

5a 34 130 194 2 1184 3 1454 2.0±0.0† 1353.3±18.8 2.9±0.2 1296.2±15.3†

5b 34 130 194 3 1241 4 1528 3.0±0.0 1417.6±15.6 3.0±0.0 1401.4±13.4†

5c 34 130 194 4 1348 4 1655 4.0±0.0 1541.9±9.6 4.0±0.0 1516.5±11.9†

5d 34 130 194 6 1638 7 2097 6.0±0.0† 2033.3±21.9 6.6±0.5 1980.5±37.5†

6a 31 100 150 2 658 3 754 2.0±0.0† 741.4±8.5 2.4±0.5 731.6±10.6†

6b 31 100 150 3 684 4 863 3.0±0.0 786.4±7.5 3.0±0.0 769.4±8.4†

6c 31 100 150 7 921 8 1183 7.0±0.0 1139.0±11.3 7.0±0.0 1119.7±10.7†

7a 40 132 201 2 833 3 1040 2.0±0.2† 997.7±24.4 3.0±0.0 924.1±7.5†

7b 40 132 201 3 835 4 1046 3.0±0.0† 978.5±11.2 3.4±0.5 955.4±18.3†

7c 40 132 201 7 949 8 1283 7.0±0.0 1190.8±14.5 7.0±0.0 1153.2±10.6†

8a 30 126 194 2 1150 3 1343 2.7±0.5† 1282.3±47.1 3.0±0.0 1226.6±8.8†

8b 30 126 194 3 1197 4 1453 3.0±0.0 1330.4±14.8 3.0±0.0 1295.6±12.8†

8c 30 126 194 7 1567 7 1970 7.0±0.0 1886.0±14.6 7.0±0.0 1852.2±16.8†

9a 50 184 274 2 867 3 1083 2.0±0.2† 990.0±13.4 3.0±0.2 931.4±8.8†

9b 50 184 274 3 891 4 1087 3.0±0.0 1014.0±9.6 3.0±0.0 970.5±10.4†

9c 50 184 274 4 913 4 1195 4.0±0.0 1050.9±12.3 4.0±0.0 1007.0±12.3†

9d 50 184 274 7 1064 8 1418 7.0±0.0† 1367.2±23.4 7.9±0.3 1294.6±13.6†

10a 50 194 300 2 1247 3 1478 2.3±0.4† 1401.8±31.6 3.0±0.0 1347.8±9.8†

10b 50 194 300 3 1259 4 1580 3.0±0.0 1415.9±11.2 3.0±0.0 1387.5±10.4†

10c 50 194 300 4 1301 4 1613 4.0±0.0 1477.1±11.0 4.0±0.0 1442.8±11.2†

10d 50 194 300 7 1551 9 1964 7.0±0.0† 1879.8±21.0 7.9±0.3 1814.4±14.2†

24

Table 14: The best results of the compared algorithms on 23 pgdb instances. For MARM and

MARD, “Best” stands for the best results obtained by 30 runs, while for LMA and SS, the

results were obtained by one run using sophisticated parameter settings. For each instance,

the best results among all the compared results are marked in bold, and the new best results

obtained by MARD are marked with “*”.

Name LBV LB LMA(IPMA) SS MARM MARD BK

Best Best

nv tc nv tc nv tc nv tc nv tc

1 3 771 3 890 3 869 3 810 3 799* 3 810

2 3 887 3 1030 3 997 3 917 3 899* 3 917

3 3 673 3 794 3 788 3 691 3 687* 3 691

4 2 673 2 858 2 795 2 740 2 729* 2 740

5 3 965 3 1120 3 1098 3 1004 3 1003* 3 1004

6 3 861 3 1008 3 951 3 900 3 881* 3 900

7 3 801 3 935 3 882 3 819 3 813* 3 819

8 5 814 5 1000 6 1014 5 953 5 928* 5 953

9 5 772 5 934 6 966 5 892 5 864* 5 892

10 2 669 2 744 2 761 2 677 2 675* 2 677

11 3 1043 3 1172 3 1193 3 1089 3 1075* 3 1089

12 3 1021 3 1218 3 1245 3 1118 3 1104* 3 1118

13 3 1541 3 1597 3 1593 3 1555 3 1551* 3 1555

14 2 278 3 300 3 285 2 290 3 280* 2 290

15 2 174 2 182 2 180 2 174 2 174 2 174

16 3 352 3 374 3 372 3 360 3 356* 3 360

17 2 255 3 267 3 265 2 261 3 255 2 261

18 2 484 3 506 3 506 2 487 3 484 2 487

19 2 155 2 181 2 173 2 171 2 171 2 171

20 2 339 3 375 3 356 2 348 3 345* 2 348

21 3 488 3 525 4 509 3 498 3 496* 3 498

22 4 578 4 600 5 597 4 589 4 583* 4 589

23 5 671 5 691 6 702 5 686 5 675* 5 686

25

Table 15: The best results of the compared algorithms on 34 pval instances.

For MARM and MARD, “Best” stands for the best results obtained by 30 runs,

while for LMA and SS, the results were obtained by one run using sophisticated

parameter settings. For each instance, the best results among all the compared

results are marked in bold, and the new best results obtained by MARD are

marked with “*”.

Name LBV LB SS MARM MARD BK

Best Best

nv tc nv tc nv tc nv tc

1a 2 434 2 544 2 470 2 466* 2 470

1b 3 458 3 585 3 530 3 518* 3 530

1c 4 532 5 701 4 653 4 646* 4 653

2a 2 606 2 782 2 697 2 697 2 697

2b 2 695 3 868 2 775 2 773* 2 775

2c 4 1012 5 1259 4 1149 4 1140* 4 1149

3a 2 192 2 249 2 222 2 219* 2 222

3b 2 212 3 278 2 255 2 249* 2 255

3c 4 289 4 358 4 336 4 333* 4 336

4a 2 1089 3 1330 2 1228 2 1201* 2 1228

4b 3 1113 4 1471 3 1288 3 1265* 3 1288

4c 4 1205 4 1583 4 1409 4 1382* 4 1409

4d 6 1502 8 1988 6 1858 6 1858 6 1858

5a 2 1184 3 1454 2 1315 2 1300* 2 1315

5b 3 1241 4 1528 3 1384 3 1378* 3 1384

5c 4 1348 4 1655 4 1522 4 1498* 4 1522

5d 6 1638 7 2097 6 1991 6 1950* 6 1991

6a 2 658 3 754 2 722 3 719* 2 722

6b 3 684 4 863 3 774 3 754* 3 774

6c 7 921 8 1183 7 1117 7 1098* 7 1117

7a 2 833 3 1040 2 966 3 912* 2 966

7b 3 835 4 1046 3 960 3 947* 3 960

7c 7 949 8 1283 7 1165 7 1137* 7 1165

8a 2 1150 3 1343 2 1292 3 1203* 2 1292

8b 3 1197 4 1453 3 1301 3 1267* 3 1301

8c 7 1567 7 1970 7 1853 7 1816* 7 1853

9a 2 867 3 1083 2 966 2 966 2 966

9b 3 891 4 1087 3 990 3 951* 3 990

9c 4 913 4 1195 4 1031 4 982* 4 1031

9d 7 1064 8 1418 7 1324 7 1278* 7 1324

10a 2 1247 3 1478 2 1385 3 1330* 2 1385

10b 3 1259 4 1580 3 1395 3 1367* 3 1395

10c 4 1301 4 1613 4 1461 4 1411* 4 1461

10d 7 1551 9 1964 7 1837 7 1817* 7 1837

26

	Introduction
	Problem Model of PCARP
	Route Decomposing Operator for PCARP
	The Route Decomposing Operator
	Movement of a Task

	Memetic Algorithm with Route-Decomposing
	Framework of MARD
	Solution Representation and Evaluation
	 Population Initialization
	Crossover Operator
	Local Search
	Summary of MARD

	Experimental Studies
	Dataset and Parameter Settings
	Experimental Results and Analysis
	Small and Medium Sized Instances
	Large-Scale Instances

	Conclusions and Future Work

