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Abstract

In many real world applications classification models are required to be in line with domain knowledge and to respect
monotone relations between predictor variables and the target class, in order to be acceptable for implementation.
This paper presents a novel heuristic approach, called RULEM, to induce monotone ordinal rule based classification
models. The proposed approach can be applied in combination with any rule- or tree-based classification technique,
since monotonicity is guaranteed in a postprocessing step. RULEM checks whether a rule set or decision tree violates
the imposed monotonicity constraints and existing violations are resolved by inducing a set of additional rules which
enforce monotone classification. The approach is able to handle non-monotonic noise, and can be applied to both par-
tially and totally monotone problems with an ordinal target variable. Two novel justifiability measures are introduced
which are based on RULEM and allow to calculate the extent to which a classification model is in line with domain
knowledge expressed in the form of monotonicity constraints. An extensive benchmarking experiment and subse-
quent statistical analysis of the results on 14 public data sets indicates that RULEM preserves the predictive power
of a rule induction technique while guaranteeing monotone classification. On the other hand, the post-processed rule
sets are found to be significantly larger which is due to the induction of additional rules. E.g., when combined with
Ripper a median performance difference was observed in terms of PCC equal to zero and an average difference equal
to -0.66%, with on average 5 rules added to the rule sets.The average and minimum justifiability of the original rule
sets equal respectively 92.66% and 34.44% in terms of the RULEMF justifiability index, and 91.28% and 40.1% in
terms of RULEMS, indicating the effective need for monotonizing the rule sets.
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1. Introduction

Classification algorithms are a family of data mining techniques that are used to predict group or class membership
of data instances [26, 46]. In ordinal classification, the values of the target class possess a natural ordering, e.g., from
small to large or from good to bad [52]. A typical example of an ordinal classification problem is the estimation
of bond ratings based on financial information [55]. Ratings represent the risk involved in a financial product, for
instance a corporate or government bond. Financially healthy organizations are rated higher by rating agencies than
organizations in financial distress. The target class, i.e., the rating, hence incorporates an ordering from good to bad.
Other examples are the classification of customers in segments according to future spending, or any other classification
problem with a continuous target variable that can be segmented into categories, such as for instance age, value, etc.
Also binary classification problems can be of ordinal nature, such as good versus bad loan applications in credit
scoring [56] and false versus non-false in customer churn prediction [60].

Many powerful classification algorithms have been developed that are able to classify instances with high preci-
sion. The workings of most of these classification algorithms are based on modeling repeated patterns or correlations
which are present in the data. However, it may occur that patterns or relations which are evident for a human domain
expert are not appropriately modeled by a data mining algorithm because the pattern does not appear sufficiently fre-
quent in the data set or non-monotonic noise in the data set perturbs the pattern [38, 41, 50]. Hence, the intervention
and interpretation of the induced model by a domain expert remains crucial in many applications. A data mining
approach that takes into account the knowledge representing the experience of domain experts is therefore much pre-
ferred and of great focus in current data mining research [7, 8, 18, 40]. Domain knowledge in a classification setting is
typically expressed as a relation between an attribute and the target class. For instance, the rating of a bond is expected
to be positively related to the solvency of a company.

In the literature, monotonicity is the most frequently encountered domain constraint to be incorporated within a
classification model. A positive (negative) monotonicity constraint demands that an increase in a certain input cannot
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lead to a decrease (increase) in the output. Monotonicity constraints exist in almost any domain. It should be stressed
that in practice the justifiability and comprehensibility of a model will almost always be more important to the users
of the model than the predictive power [2, 40].

For example, let’s consider the credit scoring case, where classification models are used to predict the creditwor-
thiness of new loan applications. Suppose a rule-based technique provides a single rule that states if (profitability
> 10%) then creditworthiness = bad. Although this rule might quite accurately describe the available observations,
the domain knowledge of the credit analyst will likely state the inverse: low profitability should lead to bad credit-
worthiness. In that case, the analyst will prefer a model that is in line with domain knowledge instead of the, possibly
limited amount of, available data. A second example in the field of health analytics concerns predictive classification
models that are used to predict the probability of breast cancer recurrence based on the characteristics of a patient.
Domain knowledge states that an increase in tumor size leads to higher probability of recurrence. Therefore, a predic-
tive model that classifies two patients with a small and a large tumor, assuming all other characteristics to be exactly
the same, as respectively having a high and a low probability of recurrence, violates the expected monotone relation
between probability of recurrence and tumor size.

Beyond this intuition, numerous case studies reveal that users are reluctant or even refuse to use a model that is
contradicting domain knowledge, e.g. in domains such as credit scoring [55], customer churn prediction [59], medical
diagnosis [27], audit mining (predicting the going concern opinion as issued by the auditor) [35], fraud detection [3],
and software effort prediction [15].

The main contributions of this paper are as follows. A novel heuristics approach is presented to induce monotone
ordinal classification models, and more specifically monotone rule or tree based classifiers, which incorporate and
respect monotonicity constraints. The proposed approach is called RULEM, which stands for RUle LEarning with
Monotonicity constraints. RULEM enforces monotonicity during a postprocessing step, i.e., after the classifier is
induced. Therefore RULEM can be applied in combination with any rule or decision tree induction technique, which
is a major advantage. The RULEM algorithm exists of two modules. The first module checks whether an existing rule
set or decision tree violates the imposed monotonicity constraints. If so, additional rules are induced by the second
module to resolve the violations and to guarantee monotone classification.

The advantages of the novel technique are manifold. Since monotonicity is enforced during a postprocessing
step, there is no interference with the inner workings of the classification techniques that RULEM is combined with.
The optimal model induced by a classification technique is adjusted by the postprocessing module to the smallest
possible extent, in order to preserve the predictive power. Furthermore, the imposed constraints can be set freely by
a domain expert. The constrained variables can be selected individually and both positive and negative constraints
can be imposed directly without need to preprocess the data. Moreover, the number of class labels is unrestricted,
and the data set does not have to be monotone and may contain non-monotonic noise, i.e., non-monotone data pairs.
The resulting classification model remains comprehensible since a minimal number of additional rules is induced, and
most importantly, guarantees monotone relations between the constrained attributes and the class variable. Finally,
based on the RULEM technique two novel justifiability measures are formulated which both provide an intuitive and
sensible indication of the extent to which a rule or tree based classifier is in line with domain knowledge.

2. Monotone ordinal classification

The first part of this section discusses prior work, after which a general framework to the problem of ordinal
monotone classification is provided [14, 33]. The third part finally introduces rule based classifiers.

2.1. Prior work

There is an extensive body of literature on monotone classification, which can be roughly categorized depending
on the phase during the model induction process when the algorithm imposes monotonicity constraints or restrictions:
before, during, or after inducing the actual model.

A first set of approaches presented in the literature handles monotonicity by monotonizing the data set that is
used to build the classification model [13, 19, 34, 49]. Such approaches remove or adjust non-monotonic noise in
the data set, as will be further explained in section 2.2, with the aim to direct the model induction technique towards
a classification model that respects the monotone relations present in the data [42]. However, approaches solely
comprising a data pre-processing step do not guarantee the final classifier to be monotone, as will be further discussed
below.

A second category of approaches comprises algorithms that directly build a monotone classification model by
taking into account the monotonicity constraints during the actual induction phase [1, 4, 5, 9, 10, 12, 16, 18, 25, 29,
30, 31, 33, 36, 45, 51]. Different types of classifiers have been adjusted in order to allow imposing constraints on
the nature of the relations between the predictor and target variables as incorporated in the resulting classification
model. The most common types of classification techniques that have been adjusted to incorporate monotonicity are
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decision trees [4, 9, 30, 45], neural networks [12, 14, 31, 51], Bayesian networks [1], linear programming [10], and
rule-based classifiers [5, 16, 25, 29, 36]. More recently, Support Vector Machine based approaches and ensembles
have been adapted for this purpose [24, 32, 47]. Remark that these approaches apply to a single type of classification
technique, whereas the first set of approaches monotonizing the data apply to every possible type, but do not guarantee
the monotonicity constraints to be respected.

A final class of approaches consists of algorithms to post-processes classification models in order to resolve pos-
sible conflicts with regards to monotonicity. Post-processing approaches have been developed that apply to decision
trees [20, 21, 44, 54], linear regression models [55], as well as a dominance-based-rough set approach to monotone
ordinal classification [28] that solves a K class problem as a set of K − 1 binary sub-problems.

The presented approach in this paper to monotonize ordinal rule sets is partly similar to the methods developed
for decision trees by [54] and [44], but allows a more fine-grained relabeling of parts of the attribute space, i.e., of
parts of rules. This is required since changing the class label assigned by one or more rules in a rule set may resolve
violations, but likely at the cost of losing significant classification power. Moreover, leaf nodes of a decision trees
apply to mutually exclusive regions in the attribute space, whereas rules are typically not mutually exclusive and
therefore ordered. This complicates the problem of building a monotone ordinal rule set, as will be further elaborated
in the following sections.

Next to these three different types of approaches, four important challenges can be identified in the literature with
regards to the monotone classification problem, i.e.: 1) improving versus guaranteeing monotonicity; 2) the ability to
handle both partial and total monotonicity; 3) the applicability to a binary versus an ordinal classification problem; 4)
the applicability to a single classifier (type) versus multiple classifier (types).

Inherently, the first class of approaches as listed above do not guarantee monotonicity, since no constraints are
imposed during model induction and no final check is performed on the resulting classifier whether monotonicity
is respected. Moreover, not all of the approaches of the second and third type, which handle monotonicity respec-
tively during and after model induction, guarantee monotone classification, and sometimes may only result in more
monotone models [4, 21]. In case of the AntMiner+ technique [36], the user has the choice of imposing soft or hard
monotonicity constraints. Soft constraints do not guarantee the final model to be monotone, but hint or direct the
learning algorithm towards a monotone classifier, to a degree depending on the user’s preferences. A fully monotone
model can be enforced by imposing hard constraints.

Some techniques are able to handle partially monotone problems [1, 14, 31, 36, 45, 55] without having to re-
move non-monotone variables or without having to enforce a monotone relationship for non-monotonic variables,
i.e., without having to treat the problem as a totally monotone problem while it is not.

Including monotonicity for an ordinal, as opposed to a binary target class variable, is limited to a relatively small
number and specific types of approaches [5, 10, 12, 14, 16, 23, 24, 28, 31, 33, 45, 51, 55].

Finally, only the techniques that handle monotonicity in a pre-processing step by removing all non-monotone
pairs, are generally applicable to any type of classifier, but as mentioned above do not guarantee monotonicity of the
resulting classifier.

The RULEM technique as presented in the following section has been developed with the aim to address these dif-
ferent issues and to offer as much flexibility as possible, as well as to comply with a number of additional requirements
with regards to justifiability measurement.

2.2. Problem description

Let X =
∏k

i=1Xi be an input space represented by k attributes, features, or variables. A particular observation
or instance x ∈ X is defined by the vector x = (x1, x2, . . . , xk), where xi ∈ Xi and i = 1 to k. Furthermore, a totally
ordered set of labels L = {`l} is defined, with l = 1 to h and `l < `l+1. A function f is defined which maps to each
attribute vector x a label ` ∈ L, i.e., f : X → L. In classification problems, the objective is to find an approximation f̂
of f as close as possible according to a certain distance measure, based on the information that is contained in a data
set D = (xa, `a) with a = 1 to o and o the number of observations. In the literature, a range of classification techniques
have been proposed to induce classification models f̂ . For an overview, one may refer to, e.g., [26, 53].

The main assumption in this study is that f exhibits monotonicity properties with respect to the input variables,
and therefore f̂ should obey these properties as well in a strict fashion. Two types of problems and models can be
distinguished, based on the set of input variables that are monotonically related to the target variable. Total positive
monotonicity of f̂ on x is defined on all independent variables by:

x1 ≥ x2 ⇒ f̂ (x1) ≥ f̂ (x2), (1)

Partial positive monotonicity of the classifier f̂ is defined by:

x1
nm = x2

nm and x1
m ≥ x2

m ⇒ f̂ (x1) ≥ f̂ (x2), (2)
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Rule set R
Rule ID Order Rule antecedents Rule consequent

r1 1 if profits ≥ 1 ∧ solvency ≥ 3 then rating = A
r2 2 if profits < 2 ∧ solvency ≥ 1 ∧ solvency < 2 then rating = B
r3 3 else then rating = C

Table 1: A simple example rule set, representing the classification of a company into three possible rating classes A, B, and C based on the values
of two attributes, i.e., profits and solvency.

with the subscripts nm and m referring to respectively the independent variables X that are non-monotonically and
monotonically related to the dependent variable, and which together constitute the instance vector x = (xnm, xm).
Therefore, Xnm denotes the set of non-monotone variables, and the complementary set Xm refers to the monotone
variables.

In case of positive monotonicity constraints, a pair of instances (x1, x2) of the data set D is called comparable if
x1 ≥ x2. Furthermore, this pair is also a monotone pair if the relationship f̂ (x1) ≥ f̂ (x2) holds. Note that although the
relation f might be totally monotone, not all the pairs in the data set are necessarily monotone, since non-monotonic
noise can exist in the data set D. Based on the concepts of comparable and monotone pairs, a test to measure the
degree of monotonicity (DgrMon) in a data set D has been introduced earlier [14] which is defined as follows:

DgrMon(D) =
#Monotone pairs(D)

#Comparable pairs(D)
(3)

The degree of monotonicity varies by definition between zero and one. A value close to one indicates that the label has
an increasing monotone relationship with the independent variables. A value close to zero on the other hand indicates
that the response variable is decreasing with the increase in the independent variables. A value close to 0.5 indicates
either that there are no monotone relationships between the class variable and the attributes, for instance when the
labels are randomly distributed, or either that there are an even amount of negative and positive monotone relations.

2.3. Rule-based classifiers
Rule-based classifiers are a type of classification model consisting of a number of if-then rules. Table 1 provides

a very simple example of a rule set, which will be used throughout the paper for illustrative purposes. The rule set
assigns a rating to a company (in an entirely fictional manner) based on its profits and solvency, which is defined as
the degree to which the current assets of a company exceed the current liabilities. Remark that rating A represents the
highest credit quality and rating C the lowest credit quality. The rules of this classification model are represented in a
disjunctive normal form, R = (r1 ∨ r2 ∨ . . . ∨ rn), with R the rule set containing q classification rules or disjuncts re

with e = 1 to q. A classification rule can be expressed as

re : pe (x)→ `e, (4)

with

pe (x) =

k∧
i=1

ci,e and ci,e = (xi op vi,e), (5)

where (xi, vi,e) is an attribute-value pair and op is a logical operator chosen from the set {=,,, <, >,≤,≥}. The if -part
of a rule, pe (x), is called the precondition or the rule antecedent, and contains a conjunction of attribute tests or
conjuncts ci,e. The then-part of each rule is called the rule consequent, and assigns a class label ` ∈ L to the instances
that match the precondition.

An instance x can match multiple rules if the rule set is ordered. However, a class label will be assigned by the
highest ranked rule that covers an instance, i.e., the rule with the highest priority. Mutually exclusive rule sets on the
other hand consist of non-overlapping rules, and an instance will trigger at most one precondition. The conversion of
a decision tree into rules yields a rule set that is mutually exclusive. The RULEM approach presented in this paper is
able to handle both ordered and mutually exclusive rule sets.

Rules can be represented as hypercubes in a k dimensional space, with k the number of attributes in the data set.
Each test in a conjunct of a rule defines the bounds of the hypercube in a particular dimension. For instance, the simple
rule set of Table 1 is represented by squares in the two-dimensional attribute space as depicted in Figure 1. Rules may
not explicitly set bounds for each dimension. For instance, the first rule in the example rule set does not set an upper
bound on the value of the solvency attribute. Therefore, in Figure 1 the corresponding hypercube stretches towards
the maximum possible value of the solvency attribute, which is set to four in this example. The representation of rules
as hypercubes will be used to explain the workings of the RULEM technique, and allows to visualize how violations
of monotonicity by a rule set can be detected and resolved.
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Figure 1: Graphical representation in the two dimensional attribute space of the rule set in Table 1.

3. Detecting violations of monotonicity constraints

3.1. Rule-based classifiers and violations of monotone classification

A totally or partially monotone rule-based classification model is defined as a rule set that complies with respec-
tively Equations 1 or 2 over the entire input space X =

∏k
i=1Xi. This means that Equations 1 or 2 apply to each

possible pair of comparable attribute vectors (x1, x2) ∈ X, with x1 ≥ x2 in case of total monotonicity or x1
nm = x2

nm
and x1

m ≥ x2
m in case of partial monotonicity. To our knowledge, the only approach that is described in the literature to

check whether a rule set is monotone over the entire attribute space X was introduced in [40]. However, this approach
requires the conversion of a rule set in a decision table (see, e.g., [58]) to calculate justifiability, which prohibits
automation and incorporation within a general algorithm to induce monotone rule sets.

An alternative approach exists in applying Equations 1 and 2 of total and partial monotonicity in a straightforward
manner, and to exhaustively check the classification of all comparable attribute vector pairs in the attribute space.
Remark that this is not equivalent to checking all the comparable attribute vector pairs in a data set, which is done
for instance to calculate the degree of monotonicity as defined by Equation 3. In most settings the attribute space X is
very large and checking all comparable attribute vectors infeasible. Therefore, a novel approach is introduced in this
paper which starts from the rules to check whether a rule set complies with the imposed monotonicity constraints.

The first step of this approach consists in partitioning the k-dimensional attribute space X into a grid G, which
consists of elementary cells g with homogeneous labeling, meaning that all attribute vectors x ∈ g yield the same class
label. Cells are bounded by the values of the attribute tests in the preconditions of the rules, and by the minimum
and maximum attribute values, i.e., the bounds of the attribute space X. All the attribute vectors in an elementary cell
trigger the same rule in the rule set and are assigned the same label, since by definition no rule in the rule set makes a
further differentiation between the attribute values within an elementary cell.

The grid G of elementary cells is formally defined as follows:

G =

k∏
i=1

Gi, (6)

with

Gi =

ni⋃
j=1

gi, j =

ni⋃
j=1

[vs
i, j, v

s
i, j+1), (7)

and
vs

i,1 = min(Xi), (8)

vs
i,ni+1 = max(Xi) + ε. (9)

The elementary value ε is added to the maximum attribute value in Equation 9 to account for the open upper bound
of the elementary intervals in Equation 7. Each dimension Xi of the attribute space X is partitioned into elementary
intervals gi, j, with i = 1 to k and j = 1 to ni. The bounds of the elementary intervals are defined by the ascending
set s of attribute values vs

i, j, which consists of (1) the minimum and maximum values vs
i,1 and vs

i,ni+1 of each attribute,
defined in Equations 8 and 9 respectively as the lower and upper bound of each dimension; (2) the unique attribute
values vi,e in the preconditions pe of the rules re in the rule set R, with vi,e , vs

i,1 and vi,e , vs
i,ni+1. Each cell g ∈ G
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consists of a unique combination of elementary intervals, i.e., g = (g1, g2, . . . , gk), with gi ∈ {gi,1, gi,2, . . . gi,ni }, and
ni the number of intervals constituting attribute dimension Xi. The number of elementary cells in the grid G equals∏k

i=1(ni).
RULEM adopts a convention which restricts the set of logical operators in a rule set to {=,,, <,≥}. The ≤ and >

operator are converted respectively into the < and ≥ operator by replacing attribute tests xi ≤ vi,e by xi < vi,e + ε, and
attribute tests xi > vi,e by xi ≥ vi,e + ε, with ε a value smaller than the minimum difference between any two values of
an attribute in the data set. This conversion increases the number of elementary intervals ni of attribute dimension Xi,
and consequently the total number of cells in the grid, but allows to partition a rule set in a gridGwith elementary cells
that are strictly complementary, i.e., gi, j ∩ gi′, j′ = ∅ with i , i′ or j , j′. Excluding the operators ≤ and > impedes
cells to overlap in the boundary values. The resulting intervals gi, j are all left-closed and right-open, as indicated in
Equation 7.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

g
1

g
2

g
3

g
4

g
5

g
6

g
7

g
8

g
9

g
10

g
11

g
12

profits

so
lv

en
cy

Grid G

Figure 2: The elementary grid of the example rule set.

Figure 2 shows the partitioning into a grid of the simple example rule set of Table 1, and labels each cell in the
grid. As can be seen, each cell in the grid is homogeneously labeled.

3.2. Detecting violations of monotonicity constraints

In a second step of the RULEM approach to detect violations of the monotonicity constraints, the Conflict or
C-score is calculated for each cell in the grid. The C-score of a cell indicates the extent to which the label of a cell
violates the imposed constraints. It is important to acknowledge that the label of a cell on itself does not cause any
violation, but that in combination with the labels of other cells a violation may exist. The C-score of a cell in the
grid is calculated as the number of other cells it is conflicting with, with respect to the monotonicity constraints. The
sum of all C-scores of the cells yields the total C-score of the rule set; if the total C-score is equal to zero, the rule
set respects the imposed monotonicity constraints. If the total C-score is different from zero, the rule set violates the
imposed monotonicity constraints. A formal algorithm describing the calculation of the C-score of each cell in the grid
G by the RULEM algorithm is provided by Algorithm 1. The algorithm first constructs the grid G and subsequently
checks for each cell (first for loop at line 3 of the algorithm) whether it is in violation with any of the constraints
that are imposed (second for loop at line 5), by checking whether conflicts exist by comparing to other cells in the
concerning dimension (third for loop at line 6). The actual comparison with other cells that is made depends on the
type of constraint, either positive or negative (if-else clause at lines 7-15-23), as well as whether the controlled cell
has an attribute value in the controlled dimension smaller than or larger than the cell it is compared to (inner if-else
clause at lines 8-11-14 and 16-19-22).

To illustrate the concept of the C-score let us return to the simple rule set of Table 1 and the corresponding
representations of Figures 1 and 2. Assume that a positive constraint is imposed on the solvency attribute. According
to this constraint, cell g1 is not in conflict with cells g2, g3, or g4 since for an increasing value of the solvency attribute,
neither of these cells assigns a label or class that is smaller, with C the lowest and A the highest rating class, than the
label assigned by cell g1. Therefore cell g1 is assigned a C-score equal to 0. Remark that conflicts are commutative,
meaning that if cell g1 is (not) in conflict with cell g2, then cell g2 is (not) in conflict with cell g1. Therefore in the
example, since cell g1 is not conflicting with cell g2, cell g2 is not conflicting with cell g1. Cell g2 is however in
conflict with cells g3 and g4. The labels assigned by cells g3 and g4 are smaller than the label assigned by cell g2,
although instances that are situated in cells g3 and g4 may have an identical value for profits and a larger value for
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Algorithm 1 RULEM pseudo-code to calculate the C-score of a rule set R

1: construct grid G =
∏k

i=1 Gi, with i the attribute dimension
2: Gi =

⋃ni
j=1 gi, j, with gi, j the elementary intervals

3: for all cells gu ∈ G, with u = 1 to n, n =
∏k

i=1 ni, and gu = (gu
1, g

u
2, . . . , g

u
k) do

4: set C-score(gu) = 0
5: for all constrained dimensions Xm ∈ X do
6: for all cells gu, j ∈ G, with j = 1 to nm, gu, j

i,m = gu
i , and gu, j

m = gm, j do
7: if positive constraint then
8: if gu, j

m < gu
m AND `(gu, j) > `(gu) then

9: violation of constraint
10: increase C-score(gu)
11: else if gu, j

m > gu
m AND `(gu, j) < `(gu) then

12: violation of constraint
13: increase C-score(gu)
14: end if
15: else if negative constraint then
16: if gu, j

m < gu
m AND `(gu, j) < `(gu) then

17: violation of constraint
18: increase C-score(gu)
19: else if gu, j

m > gu
m AND `(gu, j) > `(gu) then

20: violation of constraint
21: increase C-score(gu)
22: end if
23: end if
24: end for
25: end for
26: end for
27: C-score(R) =

∑n
u=1 C-score(gu)

solvency. As such, the positive constraint on the solvency attribute is violated. Hence, cell g2 is assigned a C-score
equal to 2.

When imposing a second, positive constraint on the profits attribute, the C-score of the cell g1 remains zero, since
no conflict exists with cells g5 and g9. The C-score of cell g2 on the other hand increases to three, since another
conflict arises with cell g10. For each cell in the grid the C-score can be calculated in a similar way, and the resulting
values are presented in Figure 3. Remark that the C-score is calculated by assessing violations of a single constraint,
so not of combinations of constraints. Therefore in the example in Figure 1 cell g11 has a C-value equal to zero, so
is indicated not to violate any constraint, although the values of both profits and solvency are larger in cell g11 than
in cell g2 and the assigned class label is smaller. The presented RULEM approach may be extended to handle such
multivariate constraints, and to calculate C-scores that take into account violations of such multivariate constraints.
However, the current version of RULEM does not implement this yet.

4. Resolving violations of monotonicity constraints

The previous section explained the workings of the RULEM algorithm to detect violations of monotonicity con-
straints by a rule set. In a second step, the RULEM algorithm resolves these violations by adding complementary
rules to the rule set, as will be explained in Section 4.1. Section 4.2 will describe how the RULEM algorithm induces
these complementary rules, in order to guarantee monotone classification with a minimum impact on the predictive
power and the size of the rule set.

4.1. Adding rules to resolve monotonicity violations

Violations of monotonicity constraints by a rule set can be resolved by adding complementary rules. For instance,
the example rule set of Figure 1 can be monotonized in order to respect the monotonicity constraints on the profits
and solvency attribute by adding rules that assign rating A to cells g3, g4, g7, and g11, and rating B to cell g10, as
shown in Figure 4(a). By adding these rules, the C-scores of all cells in the grid become zero, which indicates that
the resulting rule set respects the positive monotonicity constraints on both attributes. Since cells g3, g7, and g11 are
identically labeled, neighboring, and constituting a rectangular volume in the attribute space (i.e., a hypercube), the
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Figure 3: The C-scores of the elementary cells of the example rule set.

Rule set R
Rule ID Order Rule antecedents Rule consequent

radd,1 1 if profits < 1 ∧ solvency ≥ 3 then rating = A
radd,2 2 if solvency ≥ 2 ∧ solvency < 3 then rating = A
radd,3 3 if profits ≥ 2 ∧ solvency ≥ 1 ∧ solvency < 2 then rating = B

r1 4 if profits ≥ 1 ∧ solvency ≥ 3 then rating = A
r2 5 if profits < 2 ∧ solvency ≥ 1 ∧ solvency < 2 then rating = B
r3 5 else then rating = C

Table 2: The rule set resulting from adding complementary rules to the rule set of Table 1 to resolve the violations of the positive monotonicity
constraint imposed on the attributes profits and solvency, according to the solution shown in Figure 4(a).

related additional rules to relabel these cells can be merged into a single rule, and in total only three additional rules
are required to monotonize the rule set, as provided by Table 21. The additional complementary rules have priority
over the original rules in the rule set and are therefore assigned the highest orders in the rule set, since the additional
rules have to overrule the existing labels. Consequently, the order of the original rules is decreased. The ordering
among the additional rules does not matter, since by definition they cover non-intersecting subspaces of the attribute
space.
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Figure 4: Adding complementary rules to resolve violations of monotonicity.

In many cases multiple solutions exist to resolve violations of monotonicity by adding complementary rules. For
instance, an alternative solution to monotonize the rule set of Table 1 would be to assign class label A to cell g4, and
class label B to cells g3, g7, g10, and g11, as shown in Figure 4(b). Figure 4(c) proposes a third possible solution to
resolve the violations, i.e., by overruling the entire second rule of the rule set and changing its class label to C. Many
more solutions could be thought of, which illustrates the need for a formal strategy to induce complementary rules.
The next section will elaborate such a solution strategy, with the aim to induce the optimal set of additional rules.

1In fact, RULEM will even further merge the additional rules with the original rules, yielding a rule set of in total only two rules.
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Optimal will be defined in terms of both the predictive power, which is preferably high, and the number of rules,
which is preferably small in order to maintain comprehensibility.

The RULEM approach to resolve violations of monotonicity constraints by adding complementary rules can also
be applied to ensure monotone classification by decision trees. A decision tree can easily be converted into a rule
set, which can then be checked for violations of monotonicity by applying the RULEM algorithm. Violations can be
resolved by adding rules, and the resulting rule set can be converted back into a decision tree or table [57, 58]. A
decision tree induction technique is included in the experimental part of the study to illustrate this approach.

An alternative to the proposed approach of adding rules in a post-processing step would be to alter the inner
workings of existing rule induction techniques, or to develop a novel rule-based classification technique that allows to
incorporate monotonicity constraints during the induction of a rule set and directly yield a fully monotone rule set.

In case of a binary target variable such approaches exist and involve a rather simple adjustment to sequential
covering algorithms such as AntMiner+ [36] or Ripper, i.e. a limitation of the use of the logical operator in the
attribute tests for a constrained variable to either larger than or smaller than, depending on the nature of the imposed
constraint (cfr. Section 6). However, in case of ordinal target variable a more profound adaptation would be required
in order for a sequential covering algorithm to generate a monotone rule set. Two alternative meta-approaches could
be conceived.

A first approach would be to alter the rule induction mechanism to only generate rules that respect the imposed
monotonicity constraints in combination with the already induced rules, by reducing the search space of candidate
rules to be added to the rule set. A second approach would be to discard rules that are not compliant with the
imposed monotonicity constraints immediately after their induction and in combination with the already induced
rules, before inducing a next rule. In fact, both approaches may generate identical rule sets but will significantly differ
implementation-wise.

Compared to the post-processing method presented in this paper however, these approaches will likely produce
suboptimal rule sets, since both approaches are unable to take into account the impact of rules that will be generated
in following iterations with respect to possible violations of monotonicity constraints by a rule that is (to be) induced.
In other words, an approach that incorporates constraints during rule set induction, will drastically and unnecessarily
reduce the solution space of candidate rule-sets, since good rules in terms of classification accuracy would be omitted
from the set of candidate rules to add to the rule set in each iteration.

This stems from the fact that rules may not be violating constraints in combination with rules that will be induced
in subsequent iterations, and consequently before the entire rule set is induced not every rule will already be respecting
the imposed constraints although they might eventually. Additionally, since the attribute space is initially unlabeled
we cannot check rules (unless some approach to deal with unlabeled parts of the attribute space would be conceived).
For instance, when the second rule in the example rule set of Table 1 is induced, the third rule, i.e., the default rule,
has not been defined yet, and no label is assigned to cells g1, g3, and g4. Hence, at the moment rule r2 is induced it
essentially cannot be judged whether it is violating monotonicity constraints or not.

Therefore approaches imposing constraints before the entire rule set is induced, i.e. approaches that incorporate
monotonicity constraints during the induction of a rule set and directly yield a fully monotone rule set, most likely
will generate suboptimal rule sets. Hence, a sensible approach is to control and enforce monotonicity during a post-
processing phase by assessing the induced rule-set as a whole, in order to induce a monotone classifier with good
predictive power.

4.2. Solution strategy

The basic idea behind the solution strategy to resolve violations is that the impact of the additional rules on the
workings of the original rule set should be as small as possible, in order to restrict possible negative effects on the
predictive performance, and to limit the number of additional rules. As illustrated by Figure 4, multiple solutions may
exist to resolve violations of monotonicity by adding rules. RULEM aims to induce the optimal solution; the set of
additional rules that is induced to resolve the violations and to guarantee monotonicity should preserve or even improve
predictive power and consist of a small number of rules. Algorithm 2 provides the pseudo-code of the solution strategy,
and concerns a greedy minimization procedure similar to an approach presented by [13]. Alternative relabeling
approaches as presented by [49] or [19] and originally developed to relabel data sets could be adopted, however may
not scale to large data sets. Since the grid that is to be relabeled by RULEM may contain a relatively large amount of
cells, the presented greedy approach is justified although further research may identify a more advanced (i.e. resulting
in more optimal labels), yet scalable, relabeling procedure.. For instance, in the experiments described in Section 6
the largest grid that is to be relabeled contains more than 500, 000 cells, whereas the approaches presented by [49] and
[19] have been designed to relabel data sets containing up to respectively 1000 and 100 data points. Moreover, one
may remark that optimal relabeling does not guarantee an optimal (in terms of predictive accuracy as well as number)
set of additional rules to be induced, since in a following step the relabeled cells are merged which has an impact on
the final number of additional rules that is generated.
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Algorithm 2 Pseudo-code of the RULEM algorithm to resolve violations of monotonicity constraints
1: while C-score of rule set R > 0 do
2: sort cells g ∈ G in descending order of C-score, yielding the set gs, j, with j = 1 to n
3: set j = 0
4: while no decrease in C-score of rule set R do
5: j = j + 1
6: select cell gs, j

7: for all labels `l ∈ L, with l = 1 to h do
8: add rule radd : gs,j → `l to rule set R
9: calculate C-score(R)l

10: remove rule radd from R
11: end for
12: select l, with arg minl(C-score(R)l)
13: if C-score(R)l < C-score(R) then
14: add rule radd : gs,j → `l to rule set R
15: end if
16: end while
17: end while
18: merge additional rules
19: remove redundant rules

The RULEM algorithm resolves violations and guarantees monotonicity by adjusting class labels of cells in the
grid in a stepwise procedure until the C-score of the rule set equals zero. In each iteration of the outer while loop
starting on line 1 in Algorithm 2, RULEM first calculates the C-score of each cell in the elementary grid resulting from
the current total rule set, which consists of the original rules and the complementary rules that have been generated
in previous iterations of this while loop, and subsequently ranks the cells in order of decreasing C-score (line 2). The
underlying reasoning is to first adjust cells which appear to conflict with many other cells, since adjusting these cells
will likely have the largest impact in terms of reducing the C-score. Remark that as such a greedy procedure is adopted
for minimizing the C-score. The inner while loop starting on line 4 iteratively selects the cell with the highest C-score
that has not been selected before during this iteration of the outer-while loop, until adjusting the label of a selected
cell yields a reduced total C-score. The optimal relabeling of the selected cell is found by exhaustively calculating the
impact of assigning all alternative class labels on the C-score of the rule set (for loop running from line 7 to 11). The
optimal relabeling that results in the smallest total C-score is selected (line 12) and effectively implemented by adding
a rule to the rule set if reducing the C-score (if clause on lines 13 to 15). As long as the total C-score of the rule set
is larger than zero, the procedure as such continues to adjust labels of cells by adding rules. Once the total C-score of
the complemented rule set equals zero, the added rules are merged to reduce the number of complementary rules (line
18). Finally, redundant rules, such as original rules that are fully overruled by additional rules, are removed from the
rule set (line 19).

When this procedure is applied to the example rule set in Figure 3, in a first step the label of cell g2, having the
highest C-score in the grid equal to three, would be changed into rating C. This will result in the C-scores of cells
g3 and g4 to become equal to zero, and the C-score of cell g10 equal to one. In a second iteration the label of cell
g6, having the highest remaining C-score equal to two, would be changed into rating C as well. This will resolve all
remaining conflicts, and the C-score of the rule set becomes zero. So, solution c in Figure 4 would be generated by
algorithm 2.

4.3. Refining the solution strategy

The solution strategy of the RULEM algorithm, as presented in the previous section, can be further refined in
order to yield improved classification performance of the final total rule set, consisting of the original rules induced
by any rule or decision tree induction technique and the additional complementary rules induced by RULEM. The
definition of the C-score of a cell, which in fact controls the induction of additional rules, can be extended to take
into account the predictive power of the cells it is conflicting with, leading to the definition of the I-score. The I-score
is calculated similar to the C-score, but instead of counting the number of cells a cell is conflicting with, it counts
the number of correctly classified instances within the cells it is conflicting with. Hence, the I-score is calculated
following Algorithm 1, increasing the score of a cell by adding the number of correctly classified instances of a
conflicting cell. By implementing the I-score, the RULEM algorithm will avoid to induce rules that overrule existing
rules with high accuracy, thus preserving the predictive accuracy. The C-score on the other hand guides the algorithm
towards a small number of additional rules, by selecting cells that conflict with many other cells.
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As discussed above, besides the justifiability, both the predictive power and the comprehensibility of a rule set are
two important requirements for a successful implementation of a classification model. By implementing the CI-score,
which is defined as a weighted sum of the normalized C-score and the normalized I-score with a weight that can be set
by the user, the RULEM algorithm aims to induce a small set of additional rules that preserves the predictive power
of a rule set. The C-scores and I-scores of the cells are normalized to lie within a range between zero and one by
dividing each score by the largest prevalent score. Adjusting the weights of the C- and the I-score in the formula of
the CI-score allows to indicate a preference towards a smaller rule set by increasing the weight of the C score, possibly
at the cost of losing predictive accuracy, or towards a rule set with good predictive accuracy by increasing the weight
of the I-score, possibly at the cost of generating more additional rules. By default, the weights of both scores are set
equal to 0.5.

The total CI-score of a rule set provides to some extent an indication of the justifiability of a rule set and the
number of additional rules that will be required to resolve the violations. A high CI-score indicates that the rule set is
strongly violating the imposed constraints, and that many additional rules are likely needed to resolve the violations.
This in turn might result in poor predictive power. Therefore, in the experiments in Section 6, a maximum value for
the CI-score is implemented. If a rule set yields a total CI-score larger than the maximum value, no additional rules
will be generated and the rule set is deemed to be unsuitable to generate an acceptable final classification model.

When a rule set yields a high CI-score, the imposed constraints appear to be contradicted by the empirical evidence
in the data and may need to be checked by the user. Hence, by calculating the CI-score, the RULEM algorithm may
provide the user an indication of the reliability of the imposed constraints. However, a fully monotone data set may
yield a non-monotone classification model with a high CI-score, and therefore a formal assessment of the support or
evidence for a constraint in the data should make use of the degree of monotonicity as defined by Equation 3 or a
similar measure. Moreover, there is no explicit or direct relation between the CI-score of a rule set on the one hand
and its justifiability and the required number of additional rules on the other hand. Although unlikely, a very high CI-
score may be resolved by adding a single rule to the rule set for instance. Therefore, the CI-score provides merely an
indication of the justifiability of a rule set. In the next section, two formal measures based on the RULEM algorithm
to calculate the justifiability of a rule set will be introduced.

5. Measuring justifiability

In this section two novel justifiability measures are defined based on the C-scores of the elementary cells in the
grid as calculated by the RULEM algorithm. These measures indicate the extent to which a rule set or decision tree
is in concordance with the imposed monotonicity constraints. The second section introduces a feature of the RULEM
algorithm which allows to set a minimum justifiability that a rule set or decision tree needs to attain. This parameter
allows to restrict the number of additional rules induced by the RULEM algorithm in case a trade-off exists between
justifiability and comprehensibility.

5.1. Two novel justifiability measures: the RULEMS and RULEMF measures

The idea of measuring the justifiability of a rule or tree based classification model, i.e., the extent to which a rule
set or decision tree is intuitively correct and respects domain knowledge in the form of hard monotonicity constraints,
was pioneered by [40]. A metric was introduced, which requires the conversion of rule sets or decision trees into
decision tables to find violations of monotonicity. The number of existing violations are then weighted to yield a
measure between zero and one hundred percent. Decision tables are a tabular representation used to describe and
analyze decision situations [57, 58].

The C-scores of the elementary cells in the grid as calculated by the RULEM algorithm allow to formulate two
novel justifiability metrics, the rule set monotonicity Space (RULEMS) and Fraction (RULEMF) measure. These
measures can be calculated in an automated manner and have a straightforward intuitive interpretation.

The RULEMS measure is calculated as one minus the fraction of the attribute space that is occupied by the
elementary cells in the grid with a C-score that is different from zero, times 100%. The intuition behind this measure
is that instances in these cells are not classified in line with the imposed monotonicity constraints. The lower and
upper bound of a continuous numeric attribute are defined by Equations 8 and 9, which allows to calculate the fraction
of the related dimension that is occupied by a rule. The fraction of a dimension related to a categorical variable that is
covered by a rule is defined as the fraction of the categorical values that are covered by the rule. For instance, imagine
an attribute space that consists of a single, categorical attribute with ten possible values. A rule that assigns a certain
class label to instances with one specific value of this attribute then covers 1/10 = 10% of the attribute space.

Let us return to the simple example rule set of Table 1 represented in Figure 1. The total size of the attribute
space equals 4 × 3 = 12. The proportion of the attribute space covered by cells with a C-score different from zero, as
indicated by Figure 3, equals (3 × 1 + 2 × 1 + 1 × 1)/12 = 6/12. The RULEMS justifiability measure therefore equals
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(1 − 6/12) × 100% = 50%, which means that the rule set of Table 1 is 50% in line with the imposed constraint. The
following equation provides a formal definition of the RULEMS measure:

RULEMS = (1 −
∑
GV(gC,0)∑
GV(g)

) × 100%, (10)

with gC,0 the elementary cells in the grid G with C-score different from zero, andV(g) the volume in the attribute
space occupied by an elementary cell.

The RULEMS measure has a very intuitive interpretation, i.e., the fraction of the attribute space that is in con-
cordance with domain knowledge expressed in the form of monotonicity constraints. It suffers however from one
major drawback, which is the fact that large parts of the attribute space might be empty or sparsely populated with
data points or observations, and other parts more densely. Therefore, from an intuitive point of view it might be more
interesting to know how many of the observations in the data set are classified monotonically by a rule set. This is
the basic idea behind the RULEMF measure, which indicates the fraction of the data instances that are classified in
accordance with the imposed monotonicity constraints. The RULEMF measure hence equals oone minus the fraction
of instances that are covered by the elementary cells with a C-score larger than zero, times 100%:

RULEMF = (1 −
∑
G

Cov(gC,0)) × 100%, (11)

with Cov(gC,0) the coverage of the elementary cells gC,0 in the grid G with a C-score different from zero. Both
the RULEMS and RULEMF measure are independent of the selected set of additional rules, and only depend on the
original rule and data set.

5.2. Setting a minimum justifiability

In practical applications a trade-off may exist between justifiability on the one hand side, and comprehensibility
and predictive power on the other hand. Monotonizing a rule set or decision tree using RULEM, resulting in a
100% justifiable classifier, might come at the cost of a large number of additional rules and/or a large decrease in
predictive power. Typically, the more rules or branches and leaves, the less comprehensible a rule set or decision
tree is considered to be [40]. This might be undesirable when the model needs to be comprehensible, for instance
to understand why exactly a rating is assigned by a classification model. In case the number of rules should be as
small as possible to guarantee comprehensibility, or when the predictive power should be maintained at a certain level,
RULEM can be tuned in order to result in a smaller number of additional rules or to yield a required minimum level
of predictive power, at the cost of a reduction in justifiability.

The RULEMS and RULEMF measures introduced in the previous section can be used as parameters within
RULEM to fine-tune the trade-off between justifiability, and comprehensibility or predictive power. When the user
deems the decrease in predictive power or the number of additional rules added by RULEM to a rule set or a decision
tree to be too large, a smaller value of the RULEMS or RULEMF justifiability measure that needs to be attained by the
resulting monotone classifier can be specified. For instance, instead of demanding that a rule set is entirely monotone
and yields a RULEMS or RULEMF measure equal to 100%, the user could set the required RULEMS or RULEMF
measure equal to a lower value, e.g. 95%.

The RULEM algorithm will then induce in a first step additional rules following Algorithm 2, including steps
18 and 19 where rules are merged and removed when necessary, to yield a fully monotone classifier. In a second
step a number of additional rules will be removed again from the rule set. Therefore, the rules are ranked according
to their volume in case a RULEMS value is set, and according to their coverage in case a RULEMF value is set.
Subsequently, rules are added to the rule set in order from large to small volume or coverage, until the requested
justifiability is attained by the resulting rule set. A dense description of this procedure in pseudo-code is provided as
Algorithm 3.

Equivalently, RULEM allows to specify a maximum number of additional rules or a minimum value for the
predictive power that needs to be guaranteed by the final rule set. A similar procedure is followed as described by
Algorithm 3. First, additional rules are generated to yield a fully monotone classifier. In case a maximum number
of additional rules is specified, the induced additional rules are ranked by coverage or volume, depending on the
preferred justifiability measure, respectively RULEMF or RULEMS. This will ensure the resulting rule set to yield
maximal justifiability for the specified number of additional rules. In the while loop of the algorithm additional rules
are added to the resulting rule set until the maximum number of rules is reached. In case a minimum predictive power
is required, the additional rules are ranked according to both their classification accuracy and the justifiability of the
resulting rule set, in order to attain maximal justifiability for the specified predictive power.
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Algorithm 3 Pseudo-code of the RULEM algorithm to induce a rule set with a minimum justifiability parameter
1: original rule set Ror =

∨nor
e=1 re,or

2: apply RULEM to induce additional rules
Radd =

∨nadd
e=1 re,add, with re,add : pe,add (x)→ `e,add

3: switch: set minimal justifiability value
4: case: RULEMS = vs

5: rank additional rules: Rr
add =

∨nadd
e=1 rr

e,add,
withV(pr

e,add) ≥ V(pr
e+1,add)

6: set Rtot = Ror

7: set i = 1
8: while RULEMS(Rtot) < vs do
9: add rule rr

i,add to rule set Rtot

10: RULEMS(Rtot) = RULEMS(Rtot) +V(pr
e,add)

11: set i = i + 1
12: end while
13: case: RULEMF = v f

14: rank the additional rules Rr
add =

∨nadd
e=1 rr

e,add,
with cov(pr

e,add) ≥ cov(pr
e+1,add)

15: set Rtot = Ror

16: set i = 1
17: while RULEMF(Rtot) < v f do
18: add rule rr

i,add to rule set Rtot

19: RULEMF(Rtot) = RULEMF(Rtot) + cov(pr
e,add)

20: set i = i + 1
21: end while
22: end switch

6. Experiments

A benchmarking experiment is set up in order to assess the performance of the RULEM algorithm to induce
monotone classifiers, both in terms of classification accuracy, induced number of rules, and average number of terms
per rule. Section 6.1 describes the data sets and the imposed constraints, and Section 6.2 the experimental setup.
Finally, in Section 6.3, the results of the experiment are discussed.

6.1. Data sets

Fourteen publicly available data sets with both monotone (positive and negative) and non-monotone attributes and
an ordinal target variable have been collected. The main characteristics of these data sets are summarized in Table 3.

ID Name # Att. # Obs. # Class Source # Pos. C. # Neg. C.

1 Auto 7 398 2 UCI 2 1
2 Balance 4 625 3 UCI 2 2
3 Bcl 9 286 2 UCI 3 0
4 Car 6 1728 3 UCI 6 0
5 Churn 19 5000 2 UCI 0 1
6 Contraceptive 8 1473 3 UCI 2 0
7 Era 4 1000 5 MLD 4 0
8 Esl 4 488 5 MLD 4 0
9 German 24 1000 2 UCI 3 1

10 Haberman 3 306 2 UCI 2 1
11 Housing 13 506 5 UCI 0 1
12 Lev 4 1000 5 MLD 4 0
13 Pima 8 768 2 UCI 4 0
14 Swd 10 1000 4 MLD 10 0

Table 3: The characteristics of the 14 ordinal data sets included in the benchmarking study: ID, name, number of attributes, observations, and
class labels, and the source of the data sets, which is either the UCI Machine Learning Repository (archive.ics.uci.edu/ml), or the MLD Machine
Learning Data Set Repository (www.mldata.org). The last two columns indicate the number of positive and negative constraints that are imposed
in the experiments.

The monotonicity constraints that are imposed on the attributes in the Auto, Bcl, German, Haberman, and Pima
data sets have been copied from [36]. The Auto data set concerns the prediction of car fuel consumption in gallons
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per mile (less or more than 28), based on eight car properties. Domain knowledge states that larger weight and
displacement will lead to higher fuel consumption, where more recent models are presumed to be more fuel-efficient.
In the Bcl data set the recurrence of breast cancer needs to be predicted, where it is expected that an increase in tumor
size, number of nodes involved, and the degree of malignancy will lead to higher probability of recurrence. The
target variable to predict in the Pima data set is whether a person shows signs of diabetes. Increasing age, number
of pregnancies, body mass index, and pedigree risk would suggest a higher chance of being diabetic. In the German
data set, the classification problem consists of predicting clients as either good or bad (defaulted). Expert knowledge
suggests bad customers will have less amount on checking and savings accounts, and have had more problems with
their credit history. The Haberman data set concerns the prediction of the survival status of a patient that has undergone
breast cancer surgery. Medical knowledge suggests a lower survival rate for patients that are older, have more detected
positive axillary nodes, and whose operation was less recent.

The ERA, ESL, LEV, and SVD data sets have been described in [6]. All attributes in these data sets are positively
related to the target variables, and total monotonicity of the classification model is demanded. The Balance, Car,
Churn, Contraceptive, and Housing data sets have been gathered from the UCI Machine Learning Repository. The
instances in the Balance data set are classified as having the balance scale tip to the left, tip to the right, or being
balanced. The correct way to find the class is the greater of right-distance times right-weight and left-distance times
left-weight. If they are equal, an instance is classified as balanced. Hence, a negative constraint is imposed on the
left-distance and the left-weight, and a positive constraint on the right-distance and right-weight, with the ordering
of the class variable left, balanced, and right. The target variable to predict in the Car evaluation database is the
acceptability of a car. A higher buying and maintenance price is expected to have a negative impact on acceptability,
while the number of doors and persons the car can carry, the size of the luggage boot, and the estimated safety of
the car are expected to have a positive impact. The Churn data set concerns the prediction of customers that are
about to churn. Typically, customers that have called the helpdesk are expected to have a lower probability to churn.
The problem in the Contraceptive data set is to predict the current contraceptive method choice (no use, short-term
methods, or long-term methods) of a woman based on her demographic and socio-economic characteristics. A positive
constraint is imposed on the number of children a women has given birth, and on an attribute that indicates the standard
of living (low to high). Finally, the class variable in the Housing data set is the median value of owner occupied homes
in suburbs of Boston, which is expected to be smaller in suburbs where a large fraction of the population has a lower
status. A full description of the data sets can be obtained from the respective source repositories as indicated in
Table 3.

6.2. Experimental setup

Three classification techniques will be applied on the selected data sets to illlustrate and assess the impact of the
application of RULEM in terms of predictive power and rule set comprehensibility; Ripper [11] and AntMiner+ [37],
two state-of-the-art rule induction techniques, and C4.5 [48], a decision tree induction technique. The classifiers
induced with Ripper, AntMiner+, and C4.5 will be postprocessed using RULEM to check whether the imposed
constraints are respected, and if not, to resolve violations by inducing additional rules. Both Ripper and C4.5 have
been implemented in the Weka2 environment [62]. AntMiner+ on the other hand has been implemented in Matlab
and can be downloaded freely from the web3.

When the target variable is binary, AntMiner+ allows to impose monotonicity constraints directly during the
induction of classification rules [36]. This version of AntMiner+, denoted AntMiner+ DK (Domain Knowledge),
will be applied in the benchmarking experiments on the data sets with a binary target variable. A similar feature has
been developed and implemented for the Ripper algorithm, allowing to impose monotonicity constraints and to induce
monotone rule sets for binary classification in a direct manner during the actual data mining process. This extended
version of the Ripper algorithm will be denoted Ripper DK.

Each classification technique is applied to five random split ups of the data sets in 2/3 training and 1/3 test data.
The discrimination power of the classification models will be reported as the Percentage Correctly Classified instances
(PCC), since the number of values of the target attribute varies over the data sets in a range from two to five. The PCC
is calculated as the fraction of observations in the test set that are assigned a correct class label by the classification
model. When the output of a classifier is a score or probability, the PCC measure depends on a threshold value(s).
However, the applied classification techniques result in a model that assigns an explicit class label to each instance, and
not a score or probability. Furthermore, PCC can be applied regardless of the number of values of the class attribute.
Therefore, in this experimental setting the PCC serves well to compare the discrimination power of the original
classification models resulting from the applied techniques and the RULEM postprocessed classifiers. Additionally,

2www.cs.waikato.ac.nz/ml/weka
3www.antminerplus.com
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the Mean Absolute Error (MAE) and the Mean Squared Error (MSE) will be reported for the data sets having a
non-binary ordinal target variable. These measures are calculated as follows:

MSE =
1
n

n∑
i=1

(ŷi − yi)2 (12)

MAD =
1
n

n∑
i=1

|ŷi − yi| (13)

with n the number of observations in the test set, ŷi the estimated class label for observations i and yi the true class
label. Remark that for applying these measures the ordinal target variable needs to be transformed into an interval
variable, e.g. A = 1, B = 2, C = 3. Application of these measures will provide additional insight with respect
to the impact of RULEM on the accuracy in an ordinal classification context, when the total difference between the
predicted and the observed labels may be important with regards to the use of the prediction. For instance in a credit
scoring context, misclassification of a triple A rated obligor into the double A category has a less severe impact than
misclassification into the double B category.

As mentioned in the introduction, the existing literature on predictive modeling or classification mainly focuses
on the predictive power of classification models. However, it must be stressed that in a practical setting the com-
prehensibility and justifiability of classification models are often the determinant factors deciding upon the effective
implementation and use of a model. Therefore, the number of rules in rule sets in the experiments will be reported
as a measure of the comprehensibility of the induced models, as well as the average number of attribute tests in each
rule. The justifiability of the original classification models on the other hand will be reported in terms of both the
RULEMS and RULEMF measures, which were introduced and discussed in the previous section.

A procedure described in [17] is followed to statistically test the results of the benchmarking experiments and con-
trast the accuracy, the number of induced rules, and the average number of terms per rule of the different techniques.
To compare two techniques, the Wilcoxon signed-ranks test [61] is applied, which ranks the differences in perfor-
mances for each data set, ignoring the signs, and compares the ranks for the positive and the negative differences.
When comparing multiple techniques, in a first step the non-parametric Friedman test [22] is performed to check
whether differences in performance are due to chance. If the null hypothesis that no significant differences exist is
rejected by the Friedman test, then the post-hoc Nemenyi test [43] is performed to compare the individual classifiers.

6.3. Results

Table 4 summarizes the average results of the experiments over the five random holdout splits for the original
and the postprocessed rule sets with RULEM. The top panel reports the mean accuracy, and the middle and bottom
panel provide respectively mean absolute errors and mean squared errors for data sets with a non-binary ordinal target
variable. Table 5 reports the average size of the induced rule sets in terms of mean number of rules and mean number
of conjuncts per rule in the resulting rule sets, for both the original and the monotonized rule sets. Table 6 provides
the mean RULEMS and RULEMF measures of the induced rule sets.

A maximum value of the CI-score equal to 50 was set in the experiments for RULEM to be executed and to
induce additional rules to resolve violations of the imposed monotonicity constraints. When the initial CI-score is
high, a large number of additional rules will likely be required to resolve the violations, and the resulting rule set
becomes unacceptable for implementation. The maximum CI-score has been set to provide an unbiased indication of
the performance of the RULEM technique, both in terms of predictive power and required number of additional rules
that are induced to make a rule set monotone. It needs to be stressed that setting a minimum CI-score does not imply
that RULEM is not able to induce a solution, but the quality of the induced solution is likely to be low. By setting a
minimum CI-score we believe to provide a fair indication of the applicability of RULEM. In a real life setting it is the
user which has to decide about the acceptability of a classification model, as well as upon the constraints to impose.

The results in Tables 4 and 5 that are marked with an asterisk are the average over less than five holdout splits. In
case of RULEM, a dash indicates that for all five holdout splits an initial CI-score was obtained that was larger than
50. In case of Ripper DK and AntMiner+ DK, a dash indicates that the target variable in the data set is not binary,
and consequently the classifiers could not be executed. Table 7 reports the number of times RULEM was not executed
because the initial total CI-score was larger than 50.

The reason why the average number of induced rules by AntMiner+ with RULEM is smaller than without RULEM
for the Churn and Housing data sets is because the result of AntMiner+ with RULEM is averaged over respectively
two and one holdout splits, yielding an average number of rules for the monotonized rule sets that is smaller than the
average number of rules over five hold-out splits for the original rule set.

As can be seen from Table 4, in general, the performance of the RULEM postprocessed rule sets is either slightly
worse or slightly better than the performance of the original rule set in terms of PCC. RULEM yields the best classifier
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Ripper AntMiner+ C4.5

OR RULEM DK OR RULEM DK OR RULEM

PCC (%)

Auto 89.33 81.04 86.81 89.47 83.46 84.66 90.07 82.47∗

Balance 81.32 81.32 − 77.22 77.51 − 80.57 81.23
Breast Cancer Ljubljana 71.13 71.13 71.13 71.25 73.26∗ 72.50 71.13 70.93

Car 94.80 94.86∗ − 92.92 − − 96.67 97.04
Churn 93.88 93.68∗ 91.44 88.85 88.79∗ 89.24 92.76 −

Contraceptive 51.14 51.98 − 42.16 42.36∗ − 52.61 −

Era 45.06 44.53 − 39.34 38.08 − 45.18 44.71
Esl 70.84 70.84 − 48.83 − − 70.00 70.00

German Credit Scoring 73.65 71.65 72.18 70.06 67.96∗ 70.24 70.94 −

Haberman 75.00 75.00 73.46 71.76 72.75 72.75 72.69 72.69
Lev 59.53 60.41 − 47.66 45.63 − 60.76 60.88

Pima 74.94 74.94 74.41 71.17 70.70∗ 71.33 73.95 74.71∗
Swd 56.24 56.18∗ − 46.71 39.82∗ − 55.47 55.29∗

Housing 71.74 71.74 − 58.34 56.80∗ − 70.93 −

MAE

Balance 0.30 0.30 − 0.37 0.38 − 0.29 0.28
Car 0.06 0.08∗ − 0.09 − − 0.04 0.03

Contraceptive 0.76 0.76 − 0.91 0.91∗ − 0.69 −

Era 0.77 0.78 − 0.84 0.88 − 0.77 0.78
Esl 0.30 0.32 − 0.75 − − 0.30 0.30
Lev 0.45 0.45 − 0.60 0.61 − 0.44 0.44

Pima 0.25 0.25 − 0.29 0.30∗ − 0.26 0.25∗

Housing 0.33 0.33 − 0.57 0.60∗ − 0.31 −

MSE

Balance 0.53 0.53 − 0.66 0.67 − 0.48 0.46
Car 0.08 0.11∗ − 0.12 − − 0.05 0.04

Contraceptive 1.30 1.30 − 1.59 1.57∗ − 1.12 −

Era 1.24 1.26 − 1.32 1.42 − 1.29 1.32
Esl 0.34 0.35 − 1.36 − − 0.31 0.31
Lev 0.54 0.55 − 0.75 0.75 − 0.57 0.55

Pima 0.25 0.25 − 0.29 0.30∗ − 0.26 0.25∗

Housing 0.45 0.45 − 0.95 1.06∗ − 0.35 −

Table 4: Results of the experiments in terms of percentage correctly classified instances, mean absolute error and mean squared error. A result
marked with an asterisk is averaged over less than five hold out splits, as indicated in Table 7
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Ripper AntMiner+ C4.5

OR RULEM DK OR RULEM DK OR RULEM

# Rules

Auto 4.4 13.6 3.2 4.0 15.0 4.4 10.4 30.3∗

Balance 9.0 9.0 − 9.4 17.6 − 33.0 34.8
Breast Cancer Ljubljana 2.0 2.0 2.0 4.2 5.0∗ 4.2 8.8 14.0

Car 17.4 39.3∗ − 20.4 − − 44.8 61.2
Churn 8.0 20.8∗ 5.6 5.8 4.5∗ 6.0 30.6 −

Contraceptive 4.0 8.4 − 6.4 27.3∗ − 94.8 −

Era 4.4 6.0 − 6.6 25.6 − 10.6 18.4
Esl 10.4 16.8 − 15.6 − − 22.0 33.6

German Credit Scoring 4.4 16.6 2.8 3.2 11.3∗ 4.2 37.2 −

Haberman 2.0 2.0 2.0 4.0 10.4 4.4 3.8 4.0
Lev 9.6 26.6 − 8.0 22.2 − 24.4 46.2

Pima 3.4 3.4 − 4.2 9.3∗ − 16.2 36.3∗

Swd 8.4 17.7∗ 3.2 11.6 33.0∗ 7.6 17.2 60.5∗

Housing 7.8 7.8 − 7.8 6.0∗ − 29.8 −

# Tests/Rule

Auto 2.1 3.3 1.5 2.4 4.3 2.0 2.9 3.3∗

Balance 2.8 2.8 − 3.4 3.6 − 3.6 3.3
Breast Cancer Ljubljana 1.8 1.8 1.8 3.5 3.9∗ 3.8 3.1 3.4

Car 4.7 5.2∗ − 5.1 − − 4.1 3.9
Churn 2.6 5.7∗ 2.6 3.2 3.2∗ 3.2 5.0 −

Contraceptive 3.1 3.6 − 4.8 6.4∗ − 4.6 −

Era 2.9 3.1 − 3.4 3.8 − 2.7 2.8
Esl 1.7 1.9 − 3.4 − − 3.1 3.2

German Credit Scoring 2.9 4.0 2.9 3.3 3.8∗ 5.0 5.1 −

Haberman 1.8 1.8 1.6 2.7 2.9 2.8 1.9 1.3
Lev 2.9 3.4 − 3.6 3.8 − 3.2 3.5

Pima 2.0 2.0 − 3.8 5.0∗ − 3.7 4.1∗

Swd 2.9 4.7∗ 2.0 5.6 7.8∗ 3.7 3.3 5.6∗

Housing 1.9 1.9 − 5.7 6.9∗ − 4.3 −

Table 5: Results of the experiments in terms of average number of rules and conjuncts per rule over the hold-out splits.

Ripper AntMiner+ C4.5

RULEMF RULEMS RULEMF RULEMS RULEMF RULEMS

Auto 34.44 40.10 74.43 60.25 25.57 32.66
Balance 100.00 100.00 98.91 97.18 99.53 98.98

Breast Cancer Ljubljana 100.00 100.00 100.00 94.52 81.92 97.69
Car 100.00 97.87 − − 96.85 97.40

Churn 92.48 98.34 100.00 100.00 − −

Contraceptive 84.56 90.45 100.00 97.74 − −

Era 99.69 97.64 98.75 65.44 84.84 84.94
Esl 94.06 96.23 − − 87.66 94.26

German Credit Scoring 94.33 65.76 72.20 57.43 − −

Haberman 100.00 100.00 79.04 74.84 95.52 99.80
Lev 97.73 93.78 100.00 73.76 81.17 84.06

Pima 100.00 100.00 100.00 96.27 97.71 94.62
Swd 100.00 97.77 100.00 89.80 81.25 82.10

Housing 100.00 100.00 100.00 99.80 − −

Table 6: Justifiability measures of the original, without monotoniciy constraints, rule sets induced by Ripper, AntMiner+, and C4.5 classifiers.

17



Name Ripper AntMiner+ C4.5

Auto 0 0 2
Balance 0 0 0

Breast Cancer Ljubljana 0 2 0
Car 1 5 0

Churn 1 1 5
Contraceptive 0 2 5

Era 0 0 0
Esl 0 5 0

German Credit Scoring 0 1 5
Haberman 0 0 0

Lev 0 0 0
Pima 0 2 2
Swd 2 4 3

Housing 0 3 5

Table 7: The number of hold out splits resulting in a CI-score of the rule set or decision tree above the threshold value. These runs have not been
included in calculating the values in Table 4.

in 11 cases, and the original classifier in 17 cases. In eight cases the monotonicity is respected by the original rule
set for all data points in the test set, resulting in equal performance. The Wilcoxon signed-ranks test to compare the
predictive power of RULEM vs. the original rule set was not able to reject the null hypothesis that RULEM does not
affect the predictive power of a rule set in a statistically significant manner (p � 0.14). When comparing the RULEM
postprocessed rule sets to the rule sets induced using Ripper DK and AntMiner+ DK on the data sets with a binary
target variable, the same conclusion holds; the predictive power in terms of PCC of the RULEM postprocessed rule
sets is found not to be significantly different from the predictive power of the rule sets obtained using the DK versions
(p � 0.23). The Mean Absolute and Squared Error performance measures for the original and postprocessed rule sets
are only marginally different as can be seen from the lower two panels of Table 4. This confirms the above finding
based on the assessment of the PCC measure that the postprocessed rule sets perform similar when compared to to the
original rule set.

The size of the induced rule sets, both in terms of number of rules (p < 0.01) and average number of attribute
tests per rule (p = 0.075) appears to be significantly larger when applying the RULEM technique. Since RULEM
induces additional rules to resolve monotonicity constraints, this is not surprising. However, the comprehensibility of
the RULEM postprocessed rule sets appears to be maintained, given the overall relatively small total number of rules
and tests per rule of these rule sets. Converting a C4.5 decision tree into a rule set generally appears to yield a quite
large number of rules. Consequently, RULEM also requires a relatively large number of rules to resolve violations
and enforce monotonicity.

Table 6 reports the justifiability of the induced rule sets both in terms of the RULEMS and RULEMF measure,
as defined in the previous section. For each data set in the experiment either Ripper or AntMiner+, and in most
cases even both, results in a rule set that does not respect the imposed monotonicity constraints. C4.5 yields a
non-monotone classification model for each data set. This result indicates that in general rule and tree induction
techniques do not yield monotone classification models, and that there is a need for techniques which are able to
enforce monotone relations. Remark in Table 6 that the RULEMF measure may be equal to one hundred percent
while the RULEMS measure is not, for instance on the Car and swd data sets for the combination RULEM and
Ripper. When no instances in the data set are situated in the part of the attribute space where classification does not
respect the imposed constraints, the RULEMF measure will be equal to one hundred percent, while the RULEMS
measure clearly will not.

The results of the experiments indicate that the RULEM technique does not outperform the DK versions of the
classifiers, however, the DK versions can only be applied with a binary target variable, and not every rule or tree
induction technique has a DK version in place allowing to impose monotonicity constraints in a direct manner. This
exactly illustrates the main strength of the RULEM approach, which lies in the fact that RULEM can be combined
with any rule or tree induction technique and does not require adjustments to the workings of these techniques. As
shown by the experiments, RULEM preserves the predictive power of the original classification techniques. As such,
the resulting predictive power mainly depends on the performance of the base rule induction technique RULEM is
combined with, opening opportunities to further improve predictive power, for instance by applying active learning
strategies [39].

A final remark regarding the impact of RULEM on the predictive performance of a rule set concerns the definition
of the imposed constraints. When this impact is large, both in terms of predictive accuracy and number of rules, the
constraints that are imposed on the classification model might need to be reconsidered since they appear not to be in
line with the data. The domain knowledge or intuitive relations that result in the imposed constraints always has to be
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Figure 5: Number of additional rules (# AR) and difference in percentage correctly classified between the RULEM postprocessed and the original
rule set (∆ PCC), as a function of the justifiability of a rule set measured using the RULEMS (upper panel) and RULEMF measure (lower panel),
and simple linear regression models fitting # AR and ∆ PCC as a function of RULEMS and RULEMF.
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Figure 6: The number of additional rules (# AR) and the difference in accuracy (∆ PCC) as a function of the weight parameter α in the CI-score
(CI = αC + (1 − α)I), for data set Auto, rule induction technique Ripper, and α ranging between zero and one.

questioned before effectively imposing constraints on the resulting model.
Figure 5 plots the number of additional rules (# AR) and difference in percentage correctly classified between the

RULEM postprocessed and the original rule set (∆ PCC), as a function of the justifiability of a rule set measured using
the RULEMS and RULEMF measure. The figures also plot simple linear regression models, fitting the number of
additional rules and the difference in accuracy as a function of the justifiability. The inclination of these linear regres-
sion models indicates that the number of additional rules decreases as a function of the justifiability (R2 = 0.19 and
R2 = 0.33 for the linear regression models fitting the number of additional rules as a function of respectively RULEMS
and RULEMF), and that the difference in accuracy between the original model and the RULEM postprocessed rule set
decreases as well (R2 = 0.41 and R2 = 0.54 for the linear regression models fitting ∆PCC as a function of respectively
RULEMS and RULEMF). The plots in Figure 5 indicate that the stronger a rule set violates the imposed monotonicity
constraints, the lower the predictive power of the RULEM postprocessed rule set will be, and the more additional rules
will be required to resolve the violations.

Figure 6 plots the number of additional rules and the difference in accuracy between the RULEM postprocessed
rule set and the original rule set as a function of the weight parameter α in the CI-score, with CI = αC + (1 − α)I, for
each of the five holdout splits of the Auto data set, and with the original rule sets induced by Ripper. The weight α was
varied between zero and one. The figure indicates that for a smaller value of the weight RULEM in general results in
a more accurate rule set and a larger number of additional rules, while for a larger value of α less additional rules are
induced at the cost of a decrease in predictive power compared to the original rule set. As explained in Section 4.2,
the I-score was designed to preserve the predictive power of the original rule set, while the C-score aims at inducing a
small number of additional rules. The results of Figure 6 confirm that by varying the weight in the CI-score, RULEM
effectively allows to a certain extent to express a preference towards a smaller rule set or towards a rule set with better
predictive power. In the benchmarking experiment, the weight was set to 0.5, which incorporates a trade-off between
both comprehensibility and accuracy.

Finally, Figure 7 plots the number of additional rules induced by RULEM as a function of the initial CI-score
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Figure 7: The number of additional rules (# AR) as a function of the CI-score, and a third order polynomial fitting the data points.

of the original rule sets. The figure also plots a third order4 polynomial fitting the number of additional rules as a
function of the initial CI-score, with R2 = 0.32. The inclination of the polynomial clearly indicates that the number
of additional rules is a positive function of the initial CI-score, and therefore justifies the maximum threshold value of
the CI-score that was set in the experiments.

7. Conclusions and future research

Many real world applications require classification models to be in line with domain knowledge and to satisfy
monotone relations between predictor variables and the target class, in order to be acceptable for implementation.
Therefore, this paper presents the novel RULEM algorithm to induce monotone ordinal rule based classification mod-
els. A main asset of the proposed approach is its complementarity, which allows the RULEM approach to be combined
with any rule- or tree-based classification technique, since monotonicity is guaranteed during a post-processing step.
The RULEM algorithm checks whether a rule set or decision tree violates the imposed monotonicity constraints, and
existing violations are resolved by inducing a set of additional rules which enforce monotone classification. The al-
gorithm is able to handle non-monotonic noise, and can be applied to both partially and totally monotone problems
with an ordinal target variable.

Based on the RULEM algorithm, two novel justifiability measures are introduced. The RULEMS and RULEMF
measures allow to calculate the extent to which a classification model is in line with domain knowledge expressed in
the form of monotonicity constraints. Both measures provide an intuitive indication of the justifiability of a rule set,
and can be calculated in a fully automated manner.

An extensive benchmarking experiment has been set up to test the impact of the RULEM approach on the predic-
tive power and the comprehensibility of the resulting rule set. The results of the experiments indicate that the proposed
approach preserves the predictive power of the original rule induction techniques while guaranteeing monotone clas-
sification, at the cost of a small increase in the size of the rule set. Hence, the RULEM algorithm is shown to yield
accurate, comprehensible, and justifiable rule based classification models. The predictive power of the final rule set
therefore depends on the selected rule induction technique that RULEM is combined with.

An important topic for future research is the further development and refinement of the RULEM algorithm, and
more precisely the improvement of the heuristic approach to merge the induced additional rules. This will allow to
further reduce the size of the final rule set. Moreover, further analysis and experiments are needed to examine the exact
nature of the relation between the C(I)-score, the justifiability, and the induced number of additional rules. Finally, an
interesting and challenging topic for future research will be the development of a justifiability measure for non-rule
based classification models.

8. Appendix

Table 8 below lists the mathematical symbols used throughout the paper and their meaning.

4A first and second order polynomial yield the same conclusion, but result in a value of R2 < 0.20.
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Symbol Meaning

X Input space
Xi Attribute dimension
i Attribute index
m Constrained attribute index
k Number of attributes
x Attribute vector
L Ordered set of labels
l Label index
h Number of labels
f True classification function
f̂ Approximated classification function
D Data set
a Observation index
o Number of observations

DgrMon Degree of monotonicity
R Rule set
e Rule index
q Number of rules
r Classification rule or disjunct

op Logical operator
v Value
p Rule precondition or antecedent
c Conjunct or attribute test
G Grid
g Elementary cell in grid
u Cell index
n Number of cells

gi, j Elementary interval
j Elementary interval index

ni Number of intervals constituting attribute dimension Xi

ε Elementary value
s Ordered set of attribute values or cells
V(g) The volume in the attribute space of an elementary cell g
# AR Number of additional rules generated by RULEM
α Weight parameter of the CI-score

Table 8: Overview of mathematical notations.
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