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Abstract

In forecasting, evolutionary algorithms are often linked to existing forecast-
ing methods to optimize their input parameters. Traditionally, the fitness
function of these search heuristics is based on an accuracy measure. In this
paper, however, we combine forecasting accuracy with business expertise by
defining a flexible and easily interpretable profit function for sales forecast-
ing, which is based on the profit margin of a given product, the volume of
its sales and the accuracy of the forecast. ProfARIMA is a new procedure
that selects the lags of a Seasonal ARIMA model according to the profit of
a model’s forecasts by taking advantage of search heuristics. This proce-
dure is tested on both publicly available datasets and a real-life application
with datasets of The Coca-Cola Company in order to assess its performance,
both in profit and accuracy. Three different evolutionary algorithms were
implemented during this testing process, i.e. Genetic Algorithms, Particle
Swarm Optimization and Simulated Annealing. The results indicate that
ProfARIMA always performs at least equally to the Box-Jenkins methodol-
ogy and often outperforms this traditional procedure. For The Coca-Cola
Company, our new algorithm in combination with Genetic Algorithms even
leads to a significantly larger profit for out-of-sample forecasts.
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1. Introduction

In forecasting, many biologically inspired algorithms have been used to
improve the accuracy of both linear and non-linear forecasting methods for
different applications, including sales forecasting [16, 22]. Especially neural
networks have become extremely popular in many forecasting applications,
such as load forecasting [5, 19, 23, 38, 54], as they perform well on non-linear
and high-frequency time series. Many applications combine these evolution-
ary algorithms with traditional forecasting techniques in order to capture
both linear and non-linear time series information [2, 6, 13, 61], or use the
same algorithms to optimize the input parameters of existing forecasting
methods. In this introduction, we will focus on this last group, as param-
eter optimization is exactly the problem setting that this paper deals with.
The real-life use case in this paper consists of a sales forecast for a range
of products of The Coca-Cola Company. In sales forecasting, classical time
series modeling has been popular in business applications for many decades.
Especially exponential smoothing models, such as the Holt-Winters method-
ology, and Autoregressive Integrated Moving Average models (ARIMA) are
regarded as go-to techniques for any application and are therefore often used
as benchmarks for new methodologies as well [50]. We turn to traditional
Seasonal ARIMA models for the application in this paper, because of their
interpretability, their simplicity and their popularity within business settings.
These are three key aspects in any business application, as these enhance the
trust in the methodology and increase the maintainability of the final model.
However, an important issue with ARIMA modeling, as with many forecast-
ing techniques, is the expert knowledge that is necessary to select the input
parameters, as this usually, at least partly, involves a trial-and-error process.
Automated order identification with evolutionary search heuristics seems to
be an answer to this problem.

Parameter optimization significantly influences the performance of all
forecasting techniques, from ARIMA models [49] to neural networks [62],
and from Support Vector Regression [14] to GARCH models [30]. The fore-
cast accuracy of these models has been improved by optimizing their input
with evolutionary search heuristics, such as Particle Swarm Optimization
[4, 32, 60, 62, 63], Genetic Algorithms [22, 30, 39, 42, 43, 49, 54], Simu-
lated Annealing [23, 40], Artificial Bee Colony Algorithm [5, 24, 47], Dif-
ferential Evolution [25, 57] and Fruit Fly Optimization [38, 41]. These hy-
brid methodologies have been applied to many different fields in forecasting,
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including tourism flow forecasting [14], electricity demand forecasting [63],
rainfall prediction [60], price forecasting [47] and many others. The litera-
ture on evolutionary algorithms for AR(I)MA modeling mainly focuses on
Genetic Algorithms [1, 21, 29, 45, 49], with a few exceptions, such as [26].
Most of these papers deal with the correctness of the identification by turn-
ing to simulated or real-life datasets of which the number of lags is known
[1, 45, 49]. This paper, however, aims to assess the performance of the pro-
posed methodology on several real-life datasets, which greatly adds to the
strength of the conclusions.

However, the true novelty of this paper consists in the use of an entirely
different fitness function when optimizing the input parameters. All evolu-
tionary algorithms require a fixed fitness function that needs to be maximized
or minimized in order to select the optimal solution to a given problem. In
parameter optimization for forecasting models, several typical fitness func-
tions exist that are either based on the goodness of fit of the model or the
accuracy of the forecast on a validation set. The first group is mainly popular
in AR(I)MA settings, where the Akaike’s Information Criterion (AIC) [9, 45]
and the Bayesian Information Criterion (BIC) [21, 49] play an important role
in order identification. Especially the AIC value is often used when manually
selecting the parameters of an AR(I)MA model [19, 65]. However, the most
popular criterion for optimization in forecasting is accuracy, which can take
many forms, such as the Mean Squared Error (MSE) [1, 4, 5, 30, 34, 54, 62],
the Mean Absolute Percentage Error (MAPE) [14, 23, 38, 39, 42, 47, 57, 63]
or the Root Mean Squared Error (RMSE) [22, 25, 27, 38]. In this paper,
however, we turn to a profit measure for sales forecasting to optimize the
order identification of Seasonal ARIMA models. This measure combines the
aspect of forecast accuracy with expert knowledge on the profit margins of
a set of products. By constructing an easily interpretable and flexible profit
measure that incorporates business expertise, we increase the usability and
credibility of the model in business contexts. Optimization according to ac-
curacy and goodness-of-fit measures does not necessarily lead to a higher
profit, even though both evaluation criteria do play a role in any profit cal-
culation. This profit measure is therefore based on two components that are
fundamentally important to the business side of sales predictions. Firstly,
profit is always driven by the amount of sales, but also by the profit margin
of a given product. Companies usually sell an array of products that each
have their own value, so the profit function should be able to capture this
variation. This is where expert knowledge comes in to adapt the profit func-
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tion to a specific product by setting the size of this profit margin. Secondly,
a forecast should still be as accurate as possible, so it will not result in profit
loss by, e.g., unforeseen production costs, storage costs or a loss of sales. The
proposed profit function therefore also aims to achieve an accurate forecast.
By penalizing inaccuracy, we incorporate the impact of the forecasting error
on the profit of a product.

The use of profit measures in model evaluation has already arisen in other
predictive applications, such as [55, 56], and revenue forecasting remains a
hot topic in many businesses [37, 58]. Profit therefore seems to be an ideal
fitness function to drive model selection, as it combines the business perspec-
tive with the traditional research goal of an accurate forecast. This paper
aims to test this by looking into the performance of search heuristics for
ARIMA order identification in a real-life business setting. Concretely, we
perform a sales forecast for two publicly available data sets, as well as a
real life data set from the Coca-Cola Company, which consist of 50 different
test cases in total. Furthermore, we implement this profit fitness function
in three different search heuristics, i.e. Genetic Algorithms, Particle Swarm
Optimization and Simulated Annealing. Genetic Algorithms were chosen be-
cause of its history in ARIMA modeling, while Particle Swarm Optimization
and Simulated Annealing were selected because of their popularity and ease
of implementation. By combining a profit-driven search heuristic for model
identification with Maximum Likelihood Estimation for parameter estima-
tion, we define the hybrid ProfARIMA procedure. The performance of this
model is then compared to a Seasonal ARIMA model that was estimated
according to the traditional Box-Jenkins procedure.

The paper will start with an overview of relevant theoretical background
concerning the techniques that were used during the testing process. Section
3 then explains the exact methodology of the ProfARIMA procedure with its
unique fitness function. Finally, we apply the technique to the two publicly
available and the real-life use case of The Coca-Cola Company in order to
assess its performance.

2. Theoretical background

2.1. ARIMA modeling

Autoregressive Integrated Moving Average (ARIMA) models constitute
one of the most popular time series techniques to tackle univariate fore-
casting problems. Because of its interpretability, speed and accuracy, the
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technique remains one of the go-to methods in many business applications.
ARIMA models are generalizations of ARMA models, which were first de-
scribed by Whitle [59], but were more widely distributed by Box and Jenk-
ins in the 1970’s [12]. They consist of three components, which define the
ARIMA(p, d, q) model with p autoregressive terms, q moving average terms
and d differencing terms. In this paper, we will solely deal with the seasonal
variant of ARIMA models, the SARIMA(p, d, q)(P,D,Q)s model, which in-
cludes three additional seasonal variants of all aforementioned terms [12].
The formula for a SARIMA(1, 1, 1)(1, 1, 1)12 model, for example, is given in
equation 1. Yt and εt respectively stand for the forecast at time t and the
forecast error at time t, while φi represents the weight of the given parameter,
of which the estimation is explained in the next paragraph.

(Yt−φ1Yt−1)(Yt−φ2Yt−12)(Yt−Yt−1)(Yt−Yt−12) = (εt+φ3εt−1)(εt+φ4εt−12) (1)

For each component, the number of terms needs to be identified and
the weights of the AR and MA terms need to be estimated. Firstly, the
two differencing terms need to be considered, as the correct identification
of the other terms can only be achieved for a stationary time series. The
addition of both trend and seasonal differencing is typically decided on by
performing unit root tests, such as the Augmented Dickey-Fuller test [15]
and the Osborn-Chui-Smith-Birchenhall test [51] respectively. Further model
identification can then be done by utilizing expert knowledge or by comparing
models using several evaluation criteria. The latter can, for example, consist
of Akaike’s Information Criterion, which both checks for goodness of fit and
model simplicity [3], or choosing the model that had the lowest forecasting
error in a pre-defined testing period. Lastly, the weights of every AR and
MA term, both non-seasonal and seasonal, need to be estimated as well.
Typically, this optimization is achieved by minimizing the sum of the squared
errors (SSE). This error is calculated by taking the difference between the
actual value at time t and the forecasted value at time t when only t− 1 was
known. We therefore look to an in-sample error for this estimation:

SSE =
T∑
t=1

(Yt − Ŷt|t−1)2 =
T∑
t=1

e2t (2)
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The processes of model identification and weight estimation are repeated
until the model satisfies the selected evaluation criterion/criteria. Finally,
the model is ready to forecast a chosen amount of time periods in the future.

The parameter optimization of AR(I)MA models therefore consists of
both order identification and parameter estimation. Both problems can be
tackled by search heuristics, where authors can either treat them separately
[29, 49] or deal with them at the same time [1]. While some dismiss the
parameter estimation by genetic algorithms as too complex compared to tra-
ditional estimation methods, such as Maximum Likelihood or Least Squared
Error [8], others actually prefer it for solving the same problem [29]. Most
authors emphasize one of the two topics, while some authors explicitly try to
combine them into one framework [1, 45]. In this paper, we opted to leave pa-
rameter estimation out of our methodology, as traditional techniques provide
a fast and accurate way of assessing the correct weight of each parameter.
Furthermore, by combining both problems, the scalability of the search space
quickly becomes an issue, especially in real-life applications. Therefore, we
preferred slightly enlarging the search space by taking a larger number of
possible lags into account, to limiting this amount because of the added
complexity of the parameter estimation.

2.2. Iterated F-racing

Before we turn to the explanation of the search heuristics that were con-
sidered in this paper, it is important to note that all of these methods have
input parameters themselves. Therefore, the parameters of each evolutionary
algorithm had to be optimized (or tuned) themselves before they were im-
plemented as parameter optimization tools. There are several methodologies
for selecting the best set-up of an evolutionary algorithm, of which [18] and
[46] give a nice overview.

In this paper, we turn to the concept of Iterated F-racing for parameter
tuning, which was first mentioned in [7] and was further extended in [10].
This methodology is a racing method, which essentially compares different
combinations of parameters to one another as if they were in a race [46].
During this process, all possible solutions are ranked and the worst perform-
ing ones are eliminated once it can be statistically proven that the other
solutions are significantly better [18]. In F-racing, this ranking is performed
by the Friedman test in order to determine if there is a significant difference
between the solutions, followed by post-hoc analyses that select the com-
binations that can be eliminated [10]. Iterative F-racing further improves
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the process by first defining a probability measure over the parameter space
at each iteration that is acquired by selecting the best combinations from
the previous iteration. The algorithm then generates new possible solutions
based on the best solutions from the previous round and applies F-race on
these new parameter combinations [7]. The best parameter combinations
over all test cases are given as an output.

2.3. Genetic algorithms

Genetic algorithms (GA) are a form of evolutionary computation that
was first described in 1975 by Holland [28]. The idea behind these algo-
rithms is to mimic nature in its evolution from generation to generation in
order to find optimal solutions to given problems. Essentially, an original
population of possible solutions is allowed to ’reproduce’ and create new so-
lutions. The survival of these solutions depends on a fitness criterion that
is decided beforehand, so the best solution will ultimately be chosen by the
algorithm after a number of iterations [8, 64]. This general procedure of GA
is formalized in Figure 1.

Initialize
population

Profit

Is
stopping
criterion

met?

Selection

CrossoverMutation

stop

no

yes

Figure 1: The Genetic Algorithm process
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Before we can initialize the population, the solutions and their features
need to be encoded in the chromosome, which is usually formalized in binary
or decimal string values [64]. Once the possible solutions are encoded, we can
choose an initial population of solutions, which often consists of a random
selection process that can be guided by pre-set rules. These initial solutions
are immediately evaluated by calculating their fitness, which is done by the
predetermined fitness function. The algorithm then decides which chromo-
somes to select as the ’parents’ of the next generation. According to the
principle of the ’survival of the fittest’, the fittest chromosomes should be
more likely to reproduce than the less fitter ones. Therefore, a selection pro-
cedure should assign a larger probability of being selected to the stronger
chromosomes. Once these probabilities are calculated, the crossover step can
commence, where pairs of chromosomes are selected to produce children that
form combinations of their genes. The probability of crossover has to be de-
termined beforehand and usually lies between 0.5 and 1. Additionally, there
are three common methods for crossovers to choose from: one-point crossover,
multiple-point crossover and uniform crossover [1]. Next, the chromosomes
can possibly undergo the process of mutation, according to a predetermined
probability as well, albeit a small probability. Mutation occurs when, for
example, a binary 0 turns into a 1 or vice versa, but examples of this type of
evolution are rare in nature and therefore also rare in the algorithm [8]. After
this last genetic operator, the chromosomes are evaluated once more and the
best ones are selected to maintain a population. This process iterates until
a stopping criterion is met.

The steps in Figure 1 require the selection of a number of factors that ul-
timately define the GA and that need to be tuned before applying the search
heuristic. Concretely, we need to determine the chromosome encoding, the
initial population size, the initial population selection, the fitness function,
the distribution of the selection probabilities, the probabilities for crossover
and mutation, the crossover method, the elitist strategy and the stopping
criterion in order to execute the technique [64].

2.4. Particle Swarm optimization

In 1995, Kennedy and Eberhart introduced a new search heuristic called
Particle Swarm Optimization (PSO) [35]. In this paper, we turn to Standard
PSO (SPSO), which was created by [52]. The algorithm is inspired by the
behaviour of a flock of birds that can fly together, scatter suddenly and
regroup again. Each bird or particle not only keeps track of its own behaviour,
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but of the behaviour of others as well [64]. Each particle knows four elements:
its current location, its current velocity, its best location so far and the
global best location so far, which takes the entire swarm into consideration.
This memory aspect is the main difference with GA, next to the ability of
particles to move in completely different directions than other solutions. As
chromosomes in GA always share some information, the group of solutions
gradually moves towards an optimum together [17]. In PSO, the particles
are aware of the best solution so far, together with their own best solution,
which both influence the next position of the particle. The particles therefore
typically converge faster than GA, but might be trapped in a local optimum
more easily as well [11].

In order to find the optimal solution, PSO uses a similar procedure as
GA [64]. The initial swarm is randomly selected, but the swarm size still
needs to be determined beforehand. Each particle consists of a location and
velocity, which are both randomly initialized as a first step. A fitness value
is calculated at each iteration, which is based on the profit function. Once
the fitness values of all particles are calculated, the particle best value and
the global best value are updated. These values are needed to update the
location and the velocity of each particle. These updates at time t + 1 are
done for each particle i by Equation 3 and Equation 4 for location x and
velocity v respectively [52, 64].

xit+1 = xit + vit+1 (3)

vit+1 = ωvit + ϕ1rand1(p
i
t − xit) + ϕ2rand2(gt − xit) (4)

where 0 < ω < 1 is the inertia coefficient, ϕ1 > 0 and ϕ2 > 0 are the
acceleration coefficients, rand1 and rand2 ∼ U(0, 1), pit is the personal best
location of particle i at time t and gt is the global best location of the entire
swarm at time t. The velocity update equation consists of three parts: the
momentum component, the cognitive component and the social component
[11]. The three coefficients ω, ϕ1 and ϕ2 influence these three sides of the
behaviour of the particles. It is therefore crucial that they are tuned properly.
The procedure of PSO keeps iterating over these steps until a certain stopping
criterion is achieved.

2.5. Simulated Annealing

The final search heuristic that we consider in this paper, is Simulated
Annealing (SA), which was created by Kirkpatrick, Gelatt and Vecchi [36].
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The authors were inspired by the Metropolis procedure [44] and realised this
algorithm could be used for general optimization purposes instead of being
limited to thermodynamic systems alone. During SA, the temperature is
slowly decreased, which translates to a lower probability of accepting bad
solutions in the optimization algorithm [64]. Essentially, temperature is a
control parameter that allows for exploration of the solution space when it is
high, but limits this freedom when it is low. The entire procedure of SA again
starts with a random solution, which is immediately evaluated according to
a fitness function. The algorithm then jumps to a neighbouring state, which
is also generated randomly, and assesses the probability of changing to this
state or remaining in the current one by comparing the fitness values of the
two candidates. This acceptance probability is heavily influenced by the
temperature. If the new solution has a better fitness value than the current
one, the new solution is accepted. If, however, the new solution is worse,
it still has a chance of getting accepted. This acceptance depends on the
temperature, see equation 5, and a randomly generated number.

Pt(accept(n)) = e
f(o)−f(n)

t (5)

With o as the original solution, n as the new solution, f as the function
to minimize and t as the current temperature. This equation only holds if
the new solution is worse than the original one. If the acquired probability is
larger than the randomly generated number, the worse solution is accepted
as the new state. This enables the algorithm to make large jumps in the
search space. However, the acceptance rate of bad solutions decreases as
the temperature decreases as well. Temperature is therefore an essential
parameter to tune correctly. The procedure of SA iterates until a predefined
stopping criterion has been reached.

3. Methodology

3.1. Datasets

In this paper, we consider two publicly available datasets and one company-
specific dataset from The Coca-Cola Company. As the profit function focuses
on the difference in profit between product categories, all datasets consist of
multiple types of products. This section provides a short overview of the
characteristics of each dataset.
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The first dataset consists of the US monthly sales of petroleum and related
products from January 1971 until December 1991. This dataset is publicly
available in the Time Series Data Library on DataMarket1. Four different
categories are defined: chemicals, coal, petrol and vehicles. Each of these
time series has different properties concerning volume, season and trend. As
the necessary profit information was not available, see section 3.3.1, the β
weights for this dataset were randomly set at 1, 3, 2 and 5 for the product
categories in the order that they were mentioned above.

The second dataset contains the monthly sales of Australian wine from
January 1980 until July 1995. It consists of six product categories: dry white,
fortified, red, rose, sparkling and sweet wine. This dataset is also available
in the Time Series Data Library on DataMarket2. The product categories
again differ in terms of volume, season and trend. In this case, the β factors
needed to be determined randomly as well. For the six categories in the same
order as above, the weights are 2, 6, 4, 1, 2 and 1 respectively.

The real-life use case of this paper consists of monthly sales datasets from
The Coca-Cola Company, which consist of five countries with completely dif-
ferent product ranges and market characteristics. While some countries are
examples of relatively stable and therefore more easily predictable markets,
the others represent more irregular markets, where the time series fluctuate
strongly from year to year. Each country then consists of eight separate prod-
uct categories, which differ a great deal from one another in both absolute
sales volume and profitability. As a result, a total of 40 unique instances con-
stitute the testing process. Each time series includes sales from January 2005
until September 2015. The β factors for all of these datasets were estimated
by business experts of The Coca-Cola Company.

3.2. Meta-heuristic parameter tuning

While all the search heuristics mentioned above will be used for param-
eter optimization, their own input parameters need to be estimated as well,
according to the given dataset. In this section, the results of the Iterated
F-racing methodology for parameter tuning are presented for the three cho-
sen search heuristics. This optimization was performed for each of the three
datasets: US petroleum, Australian wine and The Coca-Cola Company. The

1https://datamarket.com/data/list/?q=provider:tsdl
2https://datamarket.com/data/list/?q=provider:tsdl
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results of the parameter tuning for each of the search heuristics in the next
paragraph were obtained by taking a random sample out of the given dataset
and then optimizing on a validation set. Therefore, the input parameters of
the search algorithms were also optimized according to the profit fitness func-
tion, which will be thoroughly explained in the next sections.

3.2.1. Genetic Algorithms

As an ARIMA model is most easily encoded as a binary string, this
representation was selected beforehand [8], as well as the unique fitness func-
tion that consists of a profit function. As the stopping criteria, we chose a
maximum number of iterations, i.e. 150 generations, and a cut-off of 25 gen-
erations if there is no improvement in the best solutions. The elitist strategy
keeps the best ten percent of the solutions after each iteration. All other
input parameters were tuned according to the Iterated F-racing procedure,
of which the result can be found in Table 1.

Petroleum Wine Coca-Cola
Population size 20 20 30
Initial population Random Random Random
Selection probabilities Linear-rank Roulette wheel Roulette wheel
Crossover probability 0.8 0.7 0.7
Crossover method Single point Single point Single point
Mutation probability 0.15 0.15 0.1

Table 1: Genetic Algorithm parameter tuning

3.2.2. Particle Swarm Optimization

Binary encoding is not needed for PSO, but it is important to note the
value of the fitness function is multiplied by -1, as PSO searches for a global
minimum. This fitness function again consists of the profit function that
is explained in the next section. Furthermore, the stopping criteria for this
algorithm also consist of a maximum number of iterations, i.e. 1000, and no
improvement in the best solution for 100 generations. This number is higher
than the GA configuration as PSO is meant for real-valued optimization
and the search space of ARIMA order identification is a discrete problem.
The final solution was therefore mapped to the discrete search space after
optimization by simply rounding the numbers of the best solution. Thus,
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because the continuous search space was much larger, we opted for a higher
number of iterations as a stopping criterion. The Iterated F-racing procedure
tuned the swarm size, together with the acceleration coefficients and the
inertia coefficient. The results thereof can be found in Table 2.

Petroleum Wine Coca-Cola
Swarm size 20 30 30
Inertia coefficient 0.7988 0.2719 0.5363
Acceleration coefficient 1 1.9318 1.8761 1.8565
Acceleration coefficient 2 1.5382 1.4757 1.7829

Table 2: Particle Swarm Optimization parameter tuning

3.2.3. Simulated Annealing

For this paper, we turn to an extended version of SA, called Generalized
Simulated Annealing [53], which combines classical and fast SA. This com-
bination leads to a faster convergence than the classical format and has been
tested on many applications [53]. We tuned most input parameters according
to the extensive analyses in the aforementioned paper. However, the initial
temperature of the algorithm was estimated by the Iterated F-racing proce-
dure. All final parameter settings can be found in Table 3. The stopping
criteria of the SA algorithm are a maximum number of iterations, i.e. 1000,
and no improvement after 100 iterations, as SA also implements real-valued
optimization. Because SA also searches for a global minimum, the outcome
of the fitness function was multiplied by -1 as well.

Petroleum Wine Coca-Cola
Initial temperature 4000 4000 3000
Visiting temperature 2.7 2.7 2.7
Acceptance temperature -5 -5 -5

Table 3: Simulated Annealing parameter tuning
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3.3. ProfARIMA

The proposed new algorithm, ProfARIMA, focuses on the model identifi-
cation of an ARIMA model and leaves the weight estimation to the traditional
method of Maximum Likelihood Estimation. However, instead of implement-
ing a variation on a given accuracy measure, we aim to incorporate the profit
of a forecast as the fitness function of the search heuristic. It is, therefore,
a new hybrid technique that sets the number of lags for Seasonal ARIMA
models by maximizing the expected profit. In this section, we will firstly
discuss the profit measure that we have defined, before fully explaining the
general procedure of the algorithm.

3.3.1. Profit measure

The fitness function of the genetic algorithm consists of an estimation of
the expected profit in a sales forecast. This indication of profit is an easily
interpretable formula that is based on both the volume of a certain product’s
sales and the accuracy of the forecast. As the literature has widely discussed
in the past, both over- and under-forecasting lead to a list of potential costs,
ranging from a loss in sales or overstock costs to shipment or storage costs [31,
33]. It is difficult to put an exact number on the profit loss that is contributed
to each of these cost categories for any company. Additionally, not every
company has the same costs that are linked to their product sales nor the
same business strategy with regards to a preference for either an under- or
an over-forecast. Therefore, our profit-driven genetic algorithm aims to find
the most profitable model that stays within the realistic boundaries of sales
by using a general formula that is penalized by the forecast error. In order
to adjust the formula to a specific business, some input is required from
business experts in the form of one weight per product, which indicates its
profit margin, and an accuracy margin for penalization, which influence the
profit according to the cost of forecasting errors. The specifics of this profit
measure will be thoroughly described in the next paragraphs.

Firstly, the accuracy measure that will be used in the profit function is the
Percentage Error, which is defined in equation 6. This evaluation measure
takes into account the error over the entire forecast period m and therefore
allows the effects of monthly under- and over-forecasting to cancel each other
out over this period of time. This error metric was chosen because certain
costs are not calculated at the same rate as the forecast frequency, but over a
longer period of time, such as a quarter. For example, in the practical appli-
cation of this paper, the sales volumes per quarter are considered to be more
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useful than monthly sales, as the growth of sales is publicly communicated
for each quarter by The Coca-Cola Company. This motivated us to select a
less strict accuracy metric that is more closely linked to the business goal at
hand. However, when performing the same experiments with a profit that
is based on MAPE, the exact same models were selected. Naturally, models
that forecast results with a low MAPE automatically produce forecasts with
a low PE as well. In terms of the profit defined, however, the PE was more
interesting for the business context of this paper and was therefore ultimately
selected as our primary evaluation metric, next to the profit itself.

PE =

m∑
i=1

Forecasti −
m∑
i=1

Actualsi

m∑
i=1

Actualsi

∗ 100 (6)

The complete calculation of the profit measure can be found in the fol-
lowing stack formula 7. As we can immediately notice, the profit is only
penalized when the forecast error exceeds the 1% mark. These boundaries
can naturally also be adjusted, but we have determined, in agreement with
the business experts for this project, that any error larger than 1% in both
directions, starts having a significant effect on the profit for our use case.
This margin can be set accordingly for any sales forecast, where the option
of simply setting it to zero makes sure that any forecasting error influences
the profit. Furthermore, if over- or under-forecasting is worse for a specific
case, this margin can also be set unequally in order to integrate this differ-
ence into the profit calculation. Therefore, these boundaries also incorporate
expert knowledge into the profit function, which makes it more flexible.

Profit =

{
((1− (α ∗ |PE|)) ∗ (βcat ∗ V olumecat PE > 1 or PE < −1

βcat ∗ V olumecat otherwise
(7)

As we mentioned above, the β factor should be set by business experts,
while we chose to determine α by performing a sensitivity analysis on a sam-
ple of all three datasets. β refers to the weight that indicates the expected
profit per volume unit of the product in question. Naturally, every product
of a company has a different profit margin associated with it. This profit
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margin can be expressed relatively by comparing different products to one
another, but can also take on an absolute form in a currency of the com-
pany’s choosing. The α weight of the equation, however, is more difficult to
determine by business experts, as it requires them to precisely estimate the
loss of profit due to inaccuracy. Therefore, in order to establish the value for
this factor that leads to the best results, we turned to a sensitivity analysis
on a sample of datasets. By setting this weight with this methodology, we
ensure that the model with the lowest PE for the validation set is found.
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Figure 2: Sensitivity analysis of weight α

We performed this sensitivity analysis on our datasets by calculating the
PE of the chosen model as a response variable to the value of α. We let
α range from 0% to 4% with 0.25% intervals and took a random sample of
five datasets to test the profit measure on, in which all three data sources
are represented. It is important to note that the response variable is the
PE of the validation sets and not the PE of the test sets. We therefore
expect this response variable to be higher for the smallest values of α, as
over-forecasted models will be preferred because of their higher sales volume,
which is linearly linked to the final profit. We are therefore interested in
discovering the point that penalizes highly over-forecasted models enough,
but still gives an accurate representation of the expected profit. Figure 2
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shows the results of the sensitivity analysis by means of a scatterplot. As we
can clearly observe, any penalization that is smaller than 1% of error, leads
to highly over-forecasted models. However, once this mark has been passed,
only very accurate models seem to be chosen by the GA. In order to ensure
that our technique selects the optimal model in as many cases as possible,
we have decided to fix the α weight to 1.5% for this project. In Figure 2, the
results of the sensitivity analysis show that the results become stable at this
point.

A final remark on this profit measure should be made with regards to
the choice of setting equal penalizations for under- and over-forecasting. As
the higher sales volumes for an over-forecast will result in a higher profit
even with these equal weights, the algorithm still shows a slight preference
for over-forecasts. We have decided not to correct this imbalance, because
a slight over-forecast was preferred to an under-forecast in our particular
project. However, by ensuring that the penalization on the accuracy is large
enough, the model will still stay clear of high over-forecasts. Additionally,
the lowest possible profit is zero for all cases, as large forecast percentage
errors for very small volume categories led to disproportionate profit losses
in our case. This motivated us to set the lower boundary of the profit at
zero, as we are mainly interested in whether or not a forecast is profitable,
and in the extent of this profit.

3.3.2. The ProfARIMA procedure

In order to correctly apply the ProfARIMA procedure, we limit the search
space to a maximum of five AR terms, five MA terms, two SAR terms and
two SMA terms. For GA, the solutions are binary encoded chromosomes
that consist of 14 binary bits. PSO and SA simply take a vector of four real
numbers as their input. Subset ARIMA models are not considered in this
instance, so when a larger AR term is selected and a smaller one is not, the
final model will contain all AR terms until the largest one. Additionally,
both the trend and seasonal differencing parameters are taken care of by
performing unit root tests beforehand [49], i.e. the Augmented Dickey-Fuller
test [15] and the Osborn-Chui-Smith-Birchenhall test [51]. The following
steps form the procedure of the hybrid model, which is adjusted for a hold-
out sample test process.
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Step 1 Split data into training, validation and test sets. The given time
series dataset should be split into a training set and a test set for
evaluation. The validation set is then taken from the end of the
training set and consists of a substantial time span, such as one year
in this paper’s application. This validation set will then be used to
calculate the profit in the chosen optimization algorithm.

Step 2 Optimize Seasonal ARIMA order by executing the chosen optimiza-
tion algorithm. The input parameters and procedures of GA, PSO
and SA were optimized themselves by applying Iterated F-racing
(see sections above). The fitness function remains the same across
all three search methods: the profit measure as defined above.

Step 3 Forecast and evaluate. The model with the highest expected profit
on the validation set is then applied to forecast and evaluate on the
test set. This evaluation consists of several known accuracy metrics
next to the new profit measure, as explained in section 3.4.

3.4. Evaluation

In order to assess the accuracy of our forecasts, we include three known
evaluation measures. The first one is the Percentage Error, as explained in
the section above, which constitutes the main accuracy assessment criterion
for this project. Secondly, we also include the Mean Absolute Percentage Er-
ror and the Root Mean Squared Error, of which the definitions are displayed
in equations 8 and 9.

MAPE =
1

n

n∑
t=1

|Actualt − Forecastt
Actualt

| ∗ 100 (8)

RMSE =

√√√√ 1

n

n∑
t=1

(Actualt − Forecastt)2 (9)

The evaluation of ProfARIMA is compared to the traditional Box-Jenkins
method for setting the lags of Seasonal ARIMA models [12]. This well-known
approach to ARIMA modeling consists of three stages that should lead to
the most suitable model for a given time series. Firstly, all parameters need
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to be set, including trend and seasonal differencing. Therefore, stationarity
testing is usually the first step in the process by means of unit root tests.
Next, the AR and MA parameters can be decided on by taking the autocor-
relation function and the partial autocorrelation function into consideration.
The second step estimates the weights of these parameters by means of uni-
versal algorithms, such as Maximum Likelihood Estimation. Finally, model
diagnostics test the goodness of fit of the model by looking at information
criteria, such as the AIC, and the significance of the residuals. When these
results are satisfactory, the selected ARIMA model is used to forecast and we
then apply the same evaluation measures as for the ProfARIMA algorithm.

4. Applications

The applications of this paper consist of forecasts for two public datasets
and a sales forecast for the Coca-Cola Company, which is executed by coun-
try and by product category. In this section, we will discuss the general
experimental set-up for all of these use cases and we will discuss the results
of the forecasts separately.

4.1. Experimental set-up

The general experimental set-up starts with splitting up the dataset into
training, validation and test sets. Firstly, the test sets were defined. For
the US petroleum datasets, we will predict all quarters of 1991, while for
the Australian wine datasets, we do the same for 1994. For The Coca-Cola
Company use case, the test set consists of the first three quarters of 2015.
Secondly, we decided that the validation set always includes the entire year
before the period that we are forecasting. In this way, we try to ensure that
the model fits the time series as well as possible, even over a longer period of
time. Therefore, the training set contains all data from the beginning date of
the given dataset until the starting point of the validation set when selecting
the model, while the training set for the actual forecast consists of both the
original training set and the validation set together. Essentially, we perform a
hold-out sample model selection, followed by a hold-out sample forecast. The
final evaluation is then comprised of the aforementioned evaluation measures,
together with the profit measure. Additionally, all results are compared with
the ARIMA models that were estimated using the traditional Box-Jenkins
method, as described in the methodology above.
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As mentioned above, the profit margin of each product category differs
from the other, based on the product categories. However, the weight in the
profit function is kept the same for all three datasets at a penalization rate
of 1.5% per forecast error of 1% in both directions.

4.2. Results

The results of the testing process consist of a total of 160 forecasts for each
of the four models that we consider, i.e. Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), Simulated Annealing (SA) and the traditional
Box-Jenkins methodology (B-J).

As the results for all evaluation metrics are too numerous to display and
as taking averages over those results can lead to misleading numbers, we
turn to ranking these four models according to the measure at hand. In
order to ascertain if the difference in ranking between models is significant
over all given datasets, we turn to two consecutive rank tests [55]. Firstly,
we perform the Friedman test, which is a non-parametric statistical test that
checks whether the difference between two treatments is due to chance or
not [20]. In our case, the four approaches constitute the treatments, k in the
formula below, and the datasets form the blocks, n in equation 10, which
are groups of similar experiment units by definition. The Friedman test then
ranks each of the blocks and compares the values thereof for each treatment.
In our case, this means that the four models are ranked according to the
expected profit for each of the product categories in the given dataset. The
Friedman test then indicates if the difference between the average ranks of
the models is significant.

χ2
F =

12N

k(k + 1)
[
∑
j

R2
j −

k(k + 1)2

4
] (10)

The resulting p-value indicates whether the null hypothesis, i.e. that
there is no difference between the treatments, is rejected or not. If this
hypothesis is rejected, the next step in the analysis consists of a post-hoc
analysis, such as the Nemenyi test [48]. This test compares all models to
one another and determines whether they differ significantly. This result is
obtained by establishing whether the average rankings of the models are at
a critical distance of at least:
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CD = qα

√
k(k + 1)

6N
(11)

with qα as critical values, which consist of the Studentized range statistic
divided by

√
2.

We will firstly discuss the results of the public datasets before turning to
the use case for The Coca-Cola Company.

2.5 3.0 3.5 4.0

Average profit ranking

SA

GA

PSO

B-J

Figure 3: US petroleum: Nemenyi plot of average profit ranking

4.3. Public datasets

The tests for the first dataset, i.e. US petroleum, consist of 16 forecasts
for each of the four models, as we predict four quarters of four product
categories. As a first step, we perform the Friedman test over all four models,
in which they were ranked according to the profit function. The p-value of
this first test is significant at the 99% level, with a value of 0.003801. This
result therefore clearly indicates that a post-hoc Nemenyi test is necessary in
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order to ascertain which models differ from one another. The results of the
Nemenyi test are displayed in Figure 3, where the horizontal lines connect the
average rank of each model on the left side with the 99% significant critical
distance on the right side. The vertical lines indicate, from left to right, the
90%, 95% and 99% critical distance with the best model.

As we can observe, all profit-based models outperform the traditional
Box-Jenkins methodology and show little variation between the three of
them. In terms of significance, we clearly see that all models are outper-
forming Box-Jenkins at the 95% significance level. When we perform the
same ranking procedure according to the other evaluation metrics, we can
see in Table 4 that the average rank of Box-Jenkins is always lower than
the average ranks of the other models. SA has a small advantage over the
other profit-based models in both profit and PE, but PSO is better than the
other two in terms of RMSE and MAPE. We can therefore only conclude
that for this dataset, the ProfARIMA procedure significantly outperforms
the traditional methodology regardless of which search heuristic is used.

Average ranking in:
Profit PE MAPE RMSE

GA 2.17 2.42 2.33 2.42
PSO 2.17 2.25 2.17 2.08
SA 2.08 2.08 2.33 2.25

Box-Jenkins 3.58 3.25 3.17 3.25

Table 4: US petroleum: Average ranks for all evaluation metrics

The testing process of the second dataset, i.e. Australian wines, con-
sists of 24 forecasts for each of the four models, since we are forecasting four
quarters of six product categories. Again, we firstly perform the Friedman
test according to the profit function. The p-value for this dataset is not
significant, with a value of 0.3284. This result therefore indicates that a
post-hoc test is not necessary, as there is no significant difference between
the four models. When we plot the results of the Nemenyi test in Figure 4,
we indeed see that none of the models differ significantly from one another.
SA performs slightly better than the Box-Jenkins methodology, which in turn
performs slightly better than the GA and PSO profit-based models.
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Figure 4: Australia wine: Nemenyi plot of average profit ranking

Finally, we also compare the rankings according to the other evaluation
metrics in Table 5. SA outperforms all others in terms of profit, PE and
RMSE, while Box-Jenkins is the best model in terms of MAPE. However, all
rankings are extremely close to one another and are not significantly different,
as proven above. We can therefore conclude that in this case, the ProfARIMA
procedure performs equally to the traditional Box-Jenkins methodology, es-
pecially the profit-based model with SA as its search heuristic.

Average ranking in:
Profit PE MAPE RMSE

GA 2.83 2.81 3.00 2.97
PSO 2.61 2.67 2.72 2.78
SA 2.22 2.25 2.17 2.00

Box-Jenkins 2.33 2.28 2.11 2.25

Table 5: Australian wine: Average ranks for all evaluation metrics
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4.4. The Coca-Cola Company use case

The real-life datasets from The Coca-Cola Company have a testing
process of 120 forecasts for each of the four models, as we predict three
quarters of 40 product categories. Firstly, we again perform the Friedman
test according to the profit function. The p-value of this test is significant at
the 90% level, with a value of 0.0948. This result indicates that a post-hoc
test will be interesting, as the Friedman test picked up on a significant effect.

2.4 2.6 2.8 3.0 3.2

Average profit ranking

GA

PSO

SA

B-J

Figure 5: The Coca-Cola Company: Nemenyi plot of average profit ranking

As we can observe, the profit-based model with GA as its search heuristic,
outperforms all other models, while the traditional Box-Jenkins methodology
has the lowest average ranking. In terms of significance, we clearly see that
even when all models are considered together, GA is just short of outper-
forming Box-Jenkins at the 90% significance level. It therefore seems logical
to perform Friedman tests for the traditional approach and each of the other
models separately, in order to determine to which level each of them outper-
forms the traditional methodology. The result of the pairwise tests can be
found in Table 6.
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Box-Jenkins
GA 0.01
PSO 0.43
SA 0.98

Table 6: The Coca-Cola Company: Pairwise Friedman tests

As we can see, GA is significantly better than the Box-Jenkins approach
at the 99% significance level. All other profit-based methods are not signif-
icantly better than the traditional approach, but they do still outperform
the Box-Jenkins methodology on average. In order to examine the exact
size of these differences, we take a look at Table 7, where the average ranks
of the separate comparisons are displayed. The rows contain the average
ranks of GA, PSO and SA in the left column, while the right column con-
sists of the average rank of Box-Jenkins for each separate comparison. We
observe that the difference is always in favour of the profit-based algorithm,
but Box-Jenkins and the model with SA perform almost equally.

Box-Jenkins
GA 1.39 1.61
PSO 1.46 1.54
SA 1.49 1.51

Table 7: The Coca-Cola Company: Average ranking of separate comparisons

Finally, we take all evaluation metrics into account, as we consider the
average ranking according to PE, MAPE and RMSE as well. These results
consist of the ranking with all four models and can be found in Table 8.
Clearly, the model with GA outperforms all others for all evaluation metrics.
PSO is not far behind, but SA only outperforms Box-Jenkins in profit.

For the Coca-Cola Company datasets, we can clearly conclude that the
ProfARIMA procedure in combination with Genetic Algorithms outperforms
the traditional Box-Jenkins methodology on a significant level, both in ac-
curacy and profit. PSO and SA do not achieve the same results, but they
still perform slightly better or equal to the traditional methodology, while
providing an automated solution to the Seasonal ARIMA order identification
problem.
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Average ranking in:
Profit PE MAPE RMSE

GA 2.31 2.34 2.35 2.35
PSO 2.44 2.38 2.43 2.41
SA 2.60 2.73 2.68 2.67

Box-Jenkins 2.63 2.53 2.52 2.55

Table 8: The Coca-Cola Company: Average ranks for all evaluation metrics

5. Conclusion

The goal of this paper was to achieve a new way of automated ARIMA
order identification that connects to the business context of a forecast by
including profit in its estimation. We turned to three different evolutionary
search heuristics, as they allowed us to specify this profit as their fitness func-
tion in order to find the optimal model. The profit function that we defined,
which is applicable to any sales forecast, is a combination of business exper-
tise and the traditional view of profit as the balance between costs and the
volume of sales. This allows businesses to adjust this profit measure to their
own situation. ProfARIMA can then be used in both forecasting exercises
and in post-hoc analyses in order to determine which model has forecast the
most profitably in the past. In this paper, the forecasting part was evalu-
ated by applying the technique to both forecasts of public datasets and a
sales forecast for the Coca-Cola Company, which consisted of forecasting 50
product categories in total. The results indicated that ProfARIMA selects
a more profitable model in comparison to the Box-Jenkins methodology in
most cases. The Friedman tests on these results were significant for two out
of three applications, which indicates that optimizing according to the profit
function often leads to the desired result of a higher profit. Although this
test was not significant for the third dataset, ProfARIMA is still able to se-
lect an equally suitable model as the traditional methodology and also adds
the advantage of complete automation of the parameter selection process.
ProfARIMA has proven to be a successful way of automated ARIMA order
identification that is based on business expertise, but does not require the
manual labour of the traditional Box-Jenkins approach.

In terms of generalizability, the profit function was able to adjust to differ-
ent situations with other products, as we have proven by taking 50 different
cases into account that stem from three different datasets and application
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domains. However, the same function can also easily be deployed for differ-
ent product ranges. Experts have the flexibility of setting the profit margins
themselves, even in relative terms if exact numbers are difficult to obtain, as
well as the accuracy margins that need to be penalized. Furthermore, the
size of this penalization factor can be set by performing a sensitivity analysis
on a sample of the given datasets in order to ensure its correctness for the
application in question. Lastly, the use of publicly available datasets also
increases the generalizability of the ProfARIMA procedure. In terms of re-
liability, this study was enhanced by applying multiple search algorithms, of
which the parameters were all optimized according to an established proce-
dure. The ProfARIMA process was then tested on both publicly available
and company-specific datasets that contained a wide range of products from
different markets.

However, some limitations still remain, as further analysis can always
be done. Firstly, ProfARIMA should be tested on other applications by
extending the research to other sales domains with different characteristics,
such as retail. Future research also includes the expansion of the present
profit function in order to include additional variation between products.
For example, the purpose of a product can play a role in its profitability.
In the application of this paper, certain drinks can be meant for immediate
consumption, while others are intended for home use. In other situations, a
certain product might be bought for short-term or long-term use. In both
examples, the profit margin of the second type of products will generally be
slightly lower than for the first one. Furthermore, even though this paper
already considered three different search algorithms, there is still room for
expansion there as well. Lastly, the same profit function can be tested to
optimize the parameters of other forecasting techniques, such as Artificial
Neural Networks. However, many of these limitations are simply part of
future research on the integration of profit measures into model selection in
forecasting.

The main contribution of this paper consists of the flexible profit function
that can be adjusted to any sales forecast and that combines business exper-
tise with a traditional accuracy measure. This function can be used to guide
ARIMA model selection if it is used as a fitness function for evolutionary
search heuristics. Depending on the dataset, different search heuristics were
more successful than others. Especially Genetic Algorithms and Simulated
Annealing were extremely successful in selecting more profitable and more
accurate models than the traditional Box-Jenkins manual parameter selec-
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tion in the applications of this paper, although the performance of both was
highly dependent on the given dataset. While PSO was slightly less convinc-
ing, it still succeeded in selecting models that performed at least equally to
the traditional approach. Therefore, the ProfARIMA procedure seems to be
a reliable methodology for ARIMA order identification in sales forecasting
that is flexible, completely automated and easy to maintain, and that takes
into account the business aspect of a forecast.
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