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Abstract—Feature selection has always been a critical step in pattern recognition, in which 

evolutionary algorithms, such as the genetic algorithm (GA), are most commonly used. 

However, the individual encoding scheme used in various GAs would either pose a bias 

on the solution or require a pre-specified number of features, and hence may lead to less 

accurate results. In this paper, a tribe competition-based genetic algorithm (TCbGA) is 

proposed for feature selection in pattern classification. The population of individuals is 

divided into multiple tribes, and the initialization and evolutionary operations are 

modified to ensure that the number of selected features in each tribe follows a Gaussian 

distribution. Thus each tribe focuses on exploring a specific part of the solution space. 

Meanwhile, tribe competition is introduced to the evolution process, which allows the 

winning tribes, which produce better individuals, to enlarge their sizes, i.e. having more 

individuals to search their parts of the solution space. This algorithm, therefore, avoids 

the bias on solutions and requirement of a pre-specified number of features. We have 

evaluated our algorithm against several state-of-the-art feature selection approaches on 

20 benchmark datasets. Our results suggest that the proposed TCbGA algorithm can 

identify the optimal feature subset more effectively and produce more accurate pattern 

classification.  
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1. Introduction 

Numerical features, a bridge between input and models, play a pivotal role in data mining 

and pattern recognition. Although more features are expected to have more discriminatory power, 

a large number of features may contain a lot of redundancy, and hence significantly degrade the 

accuracy and generalization of learned models as well as the learning speed, which is widely 

known as the curse of dimensionality [1]. Therefore, an indispensable step in data mining and 

pattern recognition procedures is dimensionality reduction, which can be roughly categorized 

into feature transformation and feature selection. 

Feature transformation targets at projecting features from a high-dimensional space into a 

low-dimensional space [2]. Well-known feature transformation algorithms include the principal 

component analysis (PCA) [3], independent component analysis (ICA) [4], linear discriminant 

analysis (LDA) [5] and their variants. Although being able to reduce the dimensionality of 

features, these algorithms may destroy the physical meaning of each feature component during 

the transformation, which complicates further analysis of the model and makes it less 

interpretable [6]. Alternatively, feature selection aims to choose a subset of available features 

that are associated with the response variable by excluding relevant and redundant features [7]. 

Since it can reduce the dimensionality of features while keeping the physical meaning of each 

feature component, feature selection has distinct advantages over feature transformation in terms 

of model readability and interpretability. 

During the past decades, many feature selection algorithms have been proposed in the 

literature, which can be divided into three categories [1]: filter methods[8], embedded methods 

[9] and wrapper methods [10]. In filter methods, selecting or removing a feature component is 

decided by a criteria function, such as the mutual information, interclass distance or statistical 

measures. In spite of their computational efficiency, filter methods usually have limited accuracy, 

due to the absence of optimizing the performance of any specific classifiers directly. On contrast, 

wrapper methods use the classification performance of a specific classifier to assess the 

discriminatory power of candidate feature subsets, and thus identify the optimal feature subset 

with respect to the classifier. However, since the classifier has to be trained by using each 



selected subset of features, respectively, wrapper methods have intrinsically higher complexity. 

As the special cases of wrapper methods, embedded methods are characterized by a deeper 

interaction between feature selection and classifier construction. In these methods, the optimal 

feature subset is generated while the classifier is constructed.  

Since the performances of features and classifiers depend mutually on each other, wrapper 

methods have been widely used, in which the strategy for searching the optimal feature subset 

can be either greedy or stochastic. Two of the most classical wrapper methods with the greedy 

search strategy are the sequential forward selection (SFS) [11] and sequential backward selection 

(SBS) [12], which, however, suffer from the nesting effect, i.e. the feature that is selected or 

removed cannot be removed or selected in subsequence steps. This issue can be alleviated by 

jointly using SFS and SBS. A typical example is the “plus 𝑙 take away 𝑟” method [13], which 

enlarges the feature subset by adding 𝑙 features using SBS and then deletes 𝑟 features using 

SBS. To avoid the difficulty of determining appropriate values for 𝑙 and 𝑟, Pudil et al. [14] 

proposed the sequential backward floating selection (SBFS) and sequential forward floating 

selection (SFFS) algorithm, in which the values of 𝑙 and 𝑟 are updated adaptively. 

Since greedy search makes local decisions, stochastic search should be employed to identify 

the globally optimal feature subset. Shehata and White [15] proposed a randomization method 

to assess the statistical significance for best subset regression. Despite the method corrected a 

non-trivial problem with Type I errors, it would still take into account the number of potential 

features and the inter-dependence between features. However, Evolutionary algorithms, such as 

the genetic algorithm (GA), genetic programming (GP), ant colony optimization (ACO) and 

particle swarm optimization (PSO), have proven performance in finding optimal solutions for 

complex and nonlinear problems [6] with neither prior domain knowledge nor a differentiable 

objective function, and hence are very suitable for solving the feature selection problem. Muni 

et al. [16] assumed that each classifier has 𝑐 trees, where 𝑐 is the number of classes, and 

developed a multi-tree GP algorithm for simultaneous feature selection and training a classifier. 

Sheikhpour et al. [10] proposed the PSO-KDE model, which combines PSO with a non-

http://xueshu.baidu.com/s?wd=author%3A%28Y.%20A.%20Shehata%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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parametric kernel density estimation (KDE) based classifier to distinguish benign breast tumors 

from malignant ones. In this model, PSO simultaneously optimizes the selected feature subset 

and the kernel bandwidth in the KDE-based classifier. Jensen and Shen [17] applied ACO to 

searching a feature subset in a rough set and achieved good results on a relatively small set of 

features. The comparative study conducted by Santana et al. [18] shows that, if the number of 

features is small, ACO performs better than other evolutionary approaches; otherwise, GA 

performs better.  

1.1 Related Work 

GA is most likely the first evolutionary computation technique that has been applied to 

feature selection [19]. Kabir et al. [20] incorporated local search operations into GA and utilized 

the correlation information in conjunction with the bounded scheme to select a subset of salient 

features. Li et al. [21] proposed a bi-encoding scheme-based GA to select features for image 

annotation, in which each individual consists of a pair of strings, a binary string encoding the 

selection of features and a real valued string indicating the weights of selected features. Hamdani 

et al. [22] proposed a bi-coded representation in GA for feature selection. They encoded each 

individual with two chromosomes: a binary chromosome representing the presence of features 

in the candidate solution and a real-valued chromosome representing the confidence rates of 

features, which are used to assign different weights to features during the classification 

procedure. Chen et al. [23] developed a GA-based approach to feature selection and 

classification of microarray data, in which each individual has two parts: an integer that 

represents the number of selected features and an integer string that gives the selected feature 

components. Yahya et al. [24] explored variable length representation of individuals, in which 

each individual gives the selected features only and different individuals may have different 

lengths, and thus developed an evolutionary filter approach to feature selection. 

It is commonly acknowledged that the encoding scheme for individuals plays an important 

role in GA-based feature selection. Above-mentioned approaches mainly employ two types of 

encoding schemes: binary encoding and integer encoding [23]. Supposing selecting an optimal 

feature subset from 𝑁  features, binary encoding defines each individual as a 𝑁-bit binary 



string, where “1” shows the corresponding feature is selected and “0” means discarded, and 

integer encoding defines each individual as an integer string with the length of selected features, 

where each integer gives a selected feature component. Binary encoding does not pose any 

constraints to the number of selected features. When selecting 𝑚 feature components, we have 

𝐶𝑁
𝑚 possible solutions. It is obvious that 𝐶𝑁

𝑚1 ≫ 𝐶𝑁
𝑚2 , when 𝑚1 ≅

𝑁

2
 and 𝑚2 is a very small 

or very large number. That means the vast majority of possible solutions in the search space 

contains about 
𝑁

2
 selected feature components. Thus the binary encoding is prone to resulting 

in a larger feature subset than the optimal one. The integer encoding can not only avoid this bias, 

but also has a fixed individual size that does not enlarge with the increase of candidate features. 

However, this scheme requires a pre-determined number of selected feature components, which 

is usually hard to estimate. 

Besides the encoding scheme, multi-population techniques have been widely investigated in 

recent GA-based feature selection studies. Although conventional GA has one single population, 

it has recently been shown that better results can be achieved by introducing multiple parallel 

populations [25]. Chang et al. [26] proposed a two-phase sub-population GA. In the first phase, 

the population is decomposed into many sub-populations, which are independent and unrelated 

to each other, and each sub-population is fixed for a pre-determined criterion. In the second 

phase, non-dominant solutions are combined and all sub-populations are unified as one big 

population. As Affenzeller [27] suggested that sub-populations should communicate to each 

other to bring better convergence and diversity and eventually to further improve the solution, 

they extended their two-phase method to the SPGA II algorithm [28], which introduces the 

mechanism to exchange information among sub-populations. Once a sub-population reaches a 

better non-dominated solution, other sub-populations are able to apply it directly within their 

searching areas. The idea of this mechanism is to share the Pareto set generated by different sub-

populations and to save these Pareto sets as a global archive, which will guide all individuals in 

the same population searching toward the true Pareto front. However, it is difficult to know 

whether the decomposition is reasonable and an inappropriate decomposition may result in bad 



performance. To further improve the interaction and cooperation among sub-populations, Li et 

al. [29] proposed a multi-population agent GA with a double chain-like agent structure for 

feature selection, in which every sub-population is connected to each other with one cycle chain 

and shares two common agents. Due to the shared agents, sub-populations can exchange genetic 

information with each other to explore the optimal solution. Different from the sharing strategy, 

Pourvaziri et al. [25] proposed a hybrid multi-population GA, in which multiple sub-populations 

first evolve independently and then are combined to form a main population that continues to 

evolve until the stopping criterion is met. In this way, the various parts of the solution space are 

most likely explored. In multi-population GAs, sub-populations can optimize different 

objectives [30]. Derrac et al. [31] proposed a cooperative co-evolutionary algorithm for feature 

selection, in which the GA has three sub-populations, one focusing on feature selection, one on 

instance selection and the other one on both feature and instance selection. 

1.2 Outline of Our Work 

In this paper, we propose a tribe competition-based genetic algorithm (TCbGA) for feature 

selection in pattern classification, which takes the advantages of binary and integer coding 

schemes as well as the multi-population technique. The population of individuals is divided into 

multiple tribes. Initialization and evolutionary operations are designed to ensure that the number 

of individuals, which select a specific number of features, follows a Gaussian distribution 

𝒩(𝜇𝑘 , 𝜎) in each tribe 𝑇𝑘. Thus the tribe 𝑇𝑘 is mainly responsible for exploring a part of the 

solution space, where the number of selected features ranges from 𝜇𝑘 − 3𝜎 to 𝜇𝑘 + 3𝜎. Since 

the features that make up the global optimum must exist in the subspaces searched by one or two 

elite tribes, inter-tribe competition is introduced to the evolution to predict the elite tribe. The 

size of the predicted elite tribe is enlarged to give it more search power, and the size of worst-

performed tribe is reduced to keep the population size unchanged. This penalty and award 

strategy enables the algorithm not only to search the solution space locally, but also to quickly 

look for the global optimal. We have evaluated the proposed algorithm against the state-of-the-

art feature selection methods on 20 benchmark datasets. 



2. Algorithm 

As a heuristic-guided parallel and stochastic search approach, TCbGA searches a global 

optimal subset of features from 𝑁 candidates through evolving a population of 𝑁𝑃 individuals. 

Each individual encodes a feature selection scheme using binary coding and has a fitness that is 

defined as the classification accuracy obtained by applying those selected features to the linear 

SVM [32] in 10-fold cross validation. 

Since it is hard to estimate how many features are selected in the global optimal solution and, 

without this value, traditional binary-coded GA is prone to select about 𝑁 2⁄  features, we divide 

the solution space into 𝑁𝑇 partly overlapped subspaces and, accordingly, divide the population 

evenly into 𝑁𝑇 tribes, each exploring one subspace. Those tribes evolve in a two-step iterative 

way. In the intra-tribe evolution step, each tribe evolves independently and the highest fitness in 

it improves gradually as new generations of the tribe are iteratively produced by using the 

selection, crossover, and mutation operations, which mimic the genetic processes of biological 

organisms, such as reproduction, natural selection and natural mutation. In the inter-tribe 

competition step, different tribes compete against each other by comparing the best individual 

in each of them. As a result, the tribes that produce better individuals win the right to enlarge 

their size, and thus obtain the privilege to have more individuals to search their part of the 

solution space; whereas other tribes have to reduce their size to keep the total number of 

individuals in the entire population unchanged. This reproduction and competition process goes 

through one generation to another, until it converges when the highest fitness is constant for 

many generations or the required number of generations 𝑁𝐺  is reached. The diagram of the 

proposed algorithm is summarized in Fig. 1. 

2.1 Initialization 

Let Ω𝑚 be the assembly of all admissible individuals, which select 𝑚 feature components. 

TCbGA aims to identify the individual with highest fitness from the solution space Ω =

⋃ Ω𝑚
𝑁
𝑚=1  by simultaneously evolving 𝑁𝑇 tribes.  

In the 𝑘-th tribe 𝑇𝑘, the number of individuals belonging to Ω𝑚, can be calculated as 



 

Fig. 1. Diagram of the proposed algorithm 

 

n𝑘𝑚 = |𝑇𝑘 ⋂ Ω𝑚|                               (1) 

where |∙| gives the cardinality of a set. We assume that n𝑘𝑚 follows a Gaussian distribution 

𝒩(𝜇𝑘 , 𝜎2) and {𝜇1, 𝜇2, ⋯ , 𝜇𝑁𝑇
} equally distribute in the range [1, 𝑁]. The mean value 𝜇𝑘 

largely determines which part of the solution space is explored by the tribe 𝑇𝑘, and the standard 

deviation 𝜎 governs the searching scope of each tribe.  

During initialization, we generate random individuals and select some of them form the tribe 

𝑇𝑘 by ensuring   

n𝑘𝑚 = 𝑟𝑜𝑢𝑛𝑑 (𝑁𝑇𝑘
𝒩(𝑚; 𝜇𝑘,𝜎2)

∑ 𝒩(𝑖; 𝜇𝑘,𝜎2)𝑖∈ℵ
)                      (2) 



where 𝑟𝑜𝑢𝑛𝑑(∙) is the nearest integer function, 𝒩(𝑚; 𝜇𝑘 , 𝜎2) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑚−𝜇𝜅)2

2𝜎2 ], and 

𝑁𝑇𝑘 is the number of individuals in 𝑇𝑘 and is initially set to 
𝑁𝑃

𝑁𝑇
.  

Obviously, n𝑘𝑚 takes a large value if 𝑚 approaches to 𝜇𝑘, and a small value otherwise. 

Such bias enables the tribe 𝑇𝑘 to be mainly responsible for exploring the subspace Ω𝜇𝑘
 and its 

adjacent subspaces. However, there might not be enough individuals to search the subspace Ωm, 

which is far away from Ω𝜇𝑘
. To compensate this bias, we let any two adjacent tribes be half-

overlapped. Thus each tribe 𝑇𝑘 explores 
2

(𝑁𝑇+1)
 of the solution space. A typical example is 

shown in Fig. 2. Readers are referred to the discussion section for details on the settings of the 

standard deviation 𝜎, population size 𝑁𝑃 and number of tribes 𝑁𝑇. 

 

 

Fig. 2. An example of the distribution of individuals which selected different numbers of features in three 

tribes (denoted by T1, T2 and T3). 

 

2.2 Intra-Tribe Evolution 

The intra-tribe evolution, including selection, crossover and mutation, is similar to that of 

traditional GA, except for keeping n𝑘𝑚 as fixed as possible to ensure its Gaussian assumption 

is satisfied.  

First, we use an elitism roulette wheel selection scheme based on the rank of fitness to 

perform selection. The individuals with high fitness have more chance to be selected even 



tautologically as parent chromosomes for the next generation. 𝑁𝑇𝑘  individuals are selected 

after this step in 𝑇𝑘. 

Then, segments of the two parent individuals are exchanged during crossover for generating 

better individuals. Each individual in the original Gaussian tribe would take crossover with the 

one generated in the selected step. To ensure that n𝑘𝑚 is unchanged, the crossover between two 

parent individuals can be expressed by swapping the same number of non-zero elements in their 

strings.  

Fig. 3(a) shows a typical example, in which two parent individuals χ𝑖 = "1011001100" 

and χ𝑗 = "0100110000" represent the selected feature set 𝐹𝑖 = {𝑓1, 𝑓3, 𝑓4, 𝑓7, 𝑓8} and 𝐹𝑗 =

{𝑓2, 𝑓5, 𝑓6}, respectively. The crossover position in χ𝑖 is located between the third and fourth 

bits. Consequently, the selected feature set 𝐹𝑖 is divided into two subsets 𝐹𝑖𝐹 = {𝑓1, 𝑓3} and 

𝐹𝑖𝑅 = {𝑓4, 𝑓7, 𝑓8}. To ensure the same number of selected features to be swapped, the crossover 

position in χ𝑗  must locate between the fifth and sixth bits, resulting in 𝐹𝑗𝐹 = {𝑓2, 𝑓5} and 

𝐹𝑗𝑅 = {𝑓6}. The crossover operator swaps the segments of both individuals. As a result, two 

newly generated children individuals are χ′𝑖 = "0101101100"  and χ′𝑗 = "1010010000" , 

representing the selected feature sets 𝐹′𝑖 = 𝐹𝑗𝐹 ∪ 𝐹𝑖𝑅 = {𝑓2, 𝑓5, 𝑓4, 𝑓7, 𝑓8}  and 𝐹′𝑗 = 𝐹𝑖𝐹 ∪

𝐹𝑗𝑅 = {𝑓1, 𝑓3, 𝑓6} . Let the number of selected feature components in the individual χ𝑖  be 

denoted by 𝑛(χ𝑖). We have 𝑛(χ𝑖) = 𝑛(χ′𝑖) = 5 and 𝑛(χ𝑗) = 𝑛(χ′𝑗) = 3. Therefore, n𝑘5 

and n𝑘3 in tribe 𝑇𝑘 keep unchanged after this crossover operation. 

In the above example, 𝐹𝑖𝐹 ∩ 𝐹𝑗𝑅 = ∅ and 𝐹𝑗𝐹 ∩ 𝐹𝑖𝑅 = ∅. However, if any of those two 

intersections is not empty, a children individual will select less feature components than its 

corresponding parent, due to the duplication caused by the crossover. Fig. 3(b) shows a typical 

example of this case, where 𝐹𝑗𝐹 ∩ 𝐹𝑖𝑅 = {7} ≠ ∅. Then, after the crossover |𝐹′𝑖| = |𝐹𝑖| − 1. 

To keep the number of selected features unchanged, we force one bit in the child individual 𝐹′𝑖 

to reverse from 0 to 1. Alternatively, when 𝐹𝑖𝐹 ∩ 𝐹𝑗𝑅 ≠ ∅, we have |𝐹′𝑗| < |𝐹𝑗| and have to 

force one or more bits in the child individual 𝐹′𝑗 to reverse from 0 to 1. 

 



  

(a) (b) 

Fig. 3. Example of the crossover process in the proposed algorithm: χ𝑖 and χ𝑗 are two parent individuals, 

and χ′𝑖 and χ′𝑗 are two children individuals generated by the crossover. 

 

Next, the mutation operation is applied to individuals to produce sporadic and random 

alteration of the bits of strings, which can bring the diversity of the species. When a bit of the 

individual χ𝑖 in the tribe 𝑇𝑘 mutates from 0 to 1, a new feature component is added to the 

subset specified by χ𝑖, and hence 𝑛(χ′𝑖) = 𝑛(χ𝑖) + 1, which leads to  

{
n′𝑘𝑚 = n𝑘𝑚 − 1       

n′𝑘(𝑚+1) = n𝑘(𝑚+1) + 1
                      (3) 

where 𝑚 = 𝑛(χ𝑖). To keep the Gaussian distribution of n𝑘𝑚 unchanged, we randomly choose 

an individual χ𝑗 ∈ 𝑇𝑘 ⋂ Ω𝑚+1  and mutate one of its bits from 1 to 0, shown as in Fig. 4. 

Similarly, when a bit of the individual χ𝑖  mutates from 1 to 0, we randomly choose an 

individual χ𝑗 ∈ 𝑇𝑘 ⋂ Ω𝑚−1 and mutate one of its bits from 0 to 1. 

 

 

Fig. 4. Example of the mutation process in the proposed algorithm: χ𝑖 and χ𝑗 are two individuals before 

mutation, and χ′𝑖 and χ′𝑗 are two mutated individuals. 



After selection, crossover and mutation, a new generation of tribe is produced with the same 

number of individuals and the same Gaussian distribution of n𝑘𝑚. It should be noted that, to 

ensure the highest fitness in each tribe increases monotonously during the evolution, we directly 

inherit the elitist, which has the highest fitness, to the next generation to replace the individual 

with the lowest fitness in the corresponding sub-solution space. 

2.3 Inter-Tribe Competition 

Tribe competition occurs after all tribes independently evolve two generations, and is 

revealed by the change of the sizes of tribes. In this step, we gather the elitists of all tribes and 

sort them by ranking their fitness. The tribes with high-ranking elitists are more likely to be 

exploring the sub-solution spaces, where the global optimum lies, and hence should be awarded 

with more searching resources. On the contrary, the tribes with low-ranking elitists are not likely 

to work in the right places, and hence should release some of their resources to those capable 

ones. There are different strategies to adjust the size of tribes according to the competition result. 

In this study, we choose to enlarge the size of the tribe with the best elitist by one and accordingly 

to shrink the size of the tribe with the worst elitist by one.  

Specifically, one individual is added to the enlarged tribe and one individual is discarded in 

the shrunk tribe, which leads to  

{
𝑁′

𝑇𝑘 = 𝑁𝑇𝑘 ± 1      

n′′𝑘𝑚 = ⌊
𝒩(𝑚; 𝜇𝑘,𝜎2)

∑ 𝒩(𝑚; 𝜇𝑘,𝜎2)𝑁
𝑚=1

∗ 𝑁′𝑇𝑘⌋
.                     (4) 

The update of n′′𝑘𝑚  from the n𝑘𝑚  is smooth and the individuals would be fine-tuned 

according to 𝑐𝑘𝑚. 𝑐𝑘𝑚 can be calculated as 

      𝑐𝑘𝑚 = n′′𝑘𝑚 − n𝑘𝑚.                          (5) 

When 𝑐𝑘𝑚  is positive, 𝑇𝑘  would add 𝑐𝑘𝑚  individuals {χ1,χ2,…,χ𝑐𝑘𝑚
} ∈ Ω𝑚  randomly. 

When 𝑐𝑘𝑚 is negative, 𝑇𝑘 would cut down −𝑐𝑘𝑚 individuals {χ1,χ2,…,χ−𝑐𝑘𝑚
} ∈ 𝑇𝑘 ⋂ Ω𝑚. 

After the tribe competition, tribes continue to evolve independently until the next tribe 

competition occurs or the convergence is reached. 



3. Experiments and Results 

The proposed algorithm was evaluated against several state-of-the-art feature selection 

methods on 20 benchmark datasets acquired from the UCI Machine Learning Repository [33]. 

These datasets have diversified physical background, number of features, number of classes and 

number of instances, representing a variety of pattern classification problems. The detailed 

descriptions of the datasets are shown in Table 1. 

 

Table 1. List of 20 datasets used in this study 

 
Dataset No. of Classes No. of Features No. of Instance 

 

 

 

 

 

 

Bi-class  

datasets 

WBCD 2 9 699 

Heart 2 13 270 

Australian 2 14 690 

German 2 21 1000 

WDBC 2 30 569 

Ionosphere 2 34 351 

KR vs KP 2 36 3196 

Spam Base 2 57 4601 

Sonar 2 60 208 

 

 

 

 

 

 

Multiple-class 

 datasets 

Wine 3 13 178 

Zoo 7 16 101 

Waveform 3 21 5000 

Lung 3 56 32 

Vehicle 4 18 846 

Dermatology 6 33 366 

Arrhythmia 16 279 452 

 

 

 

High-dimensional 

 datasets 

Hill-Valley 2 100 606 

Musk1 2 166 476 

Musk2 2 166 6598 

Colon Cancer 2 2000 62 



These datasets were divided into three groups, including bi-class datasets, multiple-class 

datasets and high-dimensional datasets. In each bi-class dataset, the number of classes is two; in 

each multiple-class dataset, the number of classes ranges from 3 to 16; and in each high-

dimensional dataset, the number of candidate features varies from 100 to 2000.  

As a wrapper approach, the proposed algorithm adopted the SVM with a linear kernel [32] 

as a classifier. The pattern classification performance of a selected feature set was assessed by 

the percentage of correctly classified patterns obtained in the 10-fold cross-validation. It should 

be noted that other classifiers can also be used in the proposed approach and may lead to different 

performance. However, the discussion on optimal classifier selection is beyond the scope of this 

work.  

The first group of experiments was performed on the nine bi-class datasets, in which the 

number of features ranges from 13 to 60 and the number of instances ranges from 208 to 4601. 

The parameters used in the proposed algorithm were listed in Table 2. Readers are referred to 

the Discussion Section for more details on parameter settings. 

 

Table 2 Parameter settings in the proposed algorithm on the binary classification datasets 

Dataset 
Number of 

Tribes 𝐍𝐓 

Tribe Size 

𝐍𝐓𝐤 

Gaussian Mean 

𝛍𝐤 

Standard 

Deviation 

𝝈 

WBCD 3 600 {2,5,8} 0.75 

Heart 3 600 {3,7,11} 1.08 

Australian 3 600 {3,7,11} 1.17 

German 3 600 {5,11,17} 1.75 

WDBC 3 600 {7,15,23} 2.50 

Ionosphere 3 600 {8,17,26} 2.83 

KR vs KP 3 600 {9,18,27} 3.00 

Spam base 3 600 {14, 28, 32} 4.75 

Sonar 3 600 {15, 30, 45} 5.00 

 



We compared the proposed TCbGA algorithm to several state-of-the-art feature selection 

algorithms, including DEMOFS [34] , MOEA/D [35], MDisABC [36], W-QEISS [37], SB-ELM 

[38], HPSO-LS [39], MoDE [40], GASNCM [41], GCACO [42], GCNC [43], UFSACO [44], 

FFW-DGC [45], QIFS [46], FSFWISIW [47], BALO [48], MI-SC [49], VMBACO [50], 

HDBPSO [51] and bGWO [52]. Table 3 shows the mean and standard deviation of the 

classification accuracy obtained by applying our algorithm to each dataset 25 times and the 

performance of other algorithms reported in the literature. It reveals that TCbGA achieved the 

highest average classification accuracy on six datasets and the second highest average 

classification accuracy on the other two datasets. The results demonstrate that the proposed 

feature selection algorithm has substantially improved performance in bi-class pattern 

classification problems. 

 

Table 3 Pattern classification accuracy (mean ± standard deviation) of different algorithms on eight bi-

class datasets 

Dataset Algorithm 
Accuracy 

(% ) 
Dataset Algorithm 

Accuracy 

(% ) 

Spam Base 

MoDE, 2015 

VMBACO, 2016 

GCACO, 2015 

GCNC, 2015 

UFSACO, 2014 

MOEA/D, 2015 

Proposed TCbGA 

91.83 ± 0.31 

89.42 ± 1.44 

88.38 ± 1.33 

88.21 ± 1.15 

87.92 ± 0.76 

88.48 

91.85 ± 0.09 

Sonar 

MoDE, 2015 

FSFOA, 2016 

GCACO, 2015 

GCNC, 2015 

bGWO, 2016 

HSA, 2016 

Proposed TCbGA 

84.18 ± 0.73 

82.69 

82.38 ± 1.51 

76.33 ± 2.52 

73.1 

85.2 

84.62 ± 0.03 

German 

MOEA/D, 2015 

W-QEISS, 2016 

MDisABC, 2015 

Proposed TCbGA 

71.3 

76.0 

70.15 ± 1.87 

78.0 ± 0.05 

Australian 

QIFS, 2017 

MOEA/D, 2015 

FFWDGC, 2017 

W-QEISS, 2016 

Proposed TCbGA 

85.52 ± 5.20 

84.64 

88.09 

86.72 

87.25 ± 0.06 

KR vs KP 

BALO, 2016 

bGWO, 2016 

FSFWISIW, 2015 

Proposed TCbGA 

96.7 

94.4 

94.12 

99.40 ± 0.008 

Heart 

HPSO-LS, 2016 

W-QEISS, 2016 

bGWO, 2016 

HSA, 2016 

Proposed TCbGA 

78.84 ± 2.07 

84.3 

80.7 

82.64 

85.19 ± 0.06 



WDBC 

HPSO-LS, 2016 

GASNCM, 2016 

GCACO, 2015 

GCNC, 2015 

UFSACO, 2014 

Proposed TCbGA 

98.27 ± 0.4 

93.42 ± 2.0 

94.14 ± 1.36 

95.34 ± 1.09 

92.06 ± 0.77 

98.78 ± 0.004 

Ionosphere 

MoDE, 2015 

UFSACO, 2014 

GCACO, 2015 

QIFS, 2017 

MDisABC, 2015 

FSFOA, 2016 

Proposed TCbGA 

93.68 ± 0.26 

88.61 ± 0.76 

90.41 ± 1.90 

86.69 ± 5.87 

93.62 ± 1.64 

93.16 

98.32 ± 0.04 

 

To demonstrate the performance of TCbGA in multi-class classification problems, the second 

group of experiments was performed on the seven datasets, in which the number of features 

ranges from 13 to 279, the number of classes ranges from 3 to 16, and the number of instances 

ranges from 32 to 5000. The parameters used in TCbGA were listed in Table 4.  

 

Table 4 Parameter settings in the proposed algorithm on seven multi-class datasets 

Dataset 
Number of 

Tribes 𝐍𝐓 

Tribe 

Size 𝐍𝐓𝐤 

Gaussian 

Mean 𝛍𝐤 

Standard 

Deviation 𝝈 

Wine 3 600 {3,7,11} 1.08 

Zoo 3 600 {4,8,12} 1.33 

Vehicle 3 600 {4,9,14} 1.50 

Waveform 3 600 {5,11,17} 1.75 

Dermatology 3 600 {8,17,25} 2.75 

Lung 3 600 {14, 28, 42} 4.67 

Arrhythmia 6 2000 
{39,79,119, 

159,199,239} 
13.29 

 

Table 5 shows the mean and standard deviation of the classification accuracy obtained by 

applying our algorithm to each dataset 25 times and the performance of other algorithms reported 

in the literature. It reveals that the feature subset selected by TCbGA produces the highest 

average classification accuracy on six datasets and the second highest average classification 

accuracy on the other dataset. This experiment demonstrates that the proposed feature selection 

algorithm has substantially improved performance in multi-class pattern classification problems. 



To assess the performance of TCbGA in selecting optimal features from a relative large set 

of features, the third group of experiments was carried out on four datasets, including Musk1, 

Musk2, Hill-Valley and Colon Cancer data, in which the number of features ranges from 100 to 

2000 and the number of instances ranges from 62 to 6598. In this experiment, we divided the 

population into much more tribes than those in the first two groups of experiments. For instance, 

when applying our algorithm to the Colon Cancer dataset, which has 2000 features, we 

partitioned the population into 13 tribes, set the mean of the Gaussian distribution in these tribes 

to 136, 280, 424, 568, 712, 856, 1000, 1144, 1288, 1432, 1576, 1720 and 1864, respectively, and 

set the standard deviation to 47.62. Table 6 shows the parameters used on the four datasets in 

TCbGA.  

 

Table 5 Pattern classification accuracy (mean ± standard deviation) of different algorithms on seven 

multi-class datasets 

Dataset Algorithm 
Accuracy 

(% ) 
Dataset Algorithm 

Accuracy 

(% ) 

Wine 

GASNCM, 2016 

GCACO, 2015 

HPSO-LS, 2016 

GCNC, 2015 

VMBACO, 2016 

Proposed TCbGA 

95.37 ± 1.80 

94.09 ± 2.58 

97.17 ± 1.39 

94.42 ± 1.04 

99.10 ± 1.00 

99.60 ± 0.07 

Dermatology 

VMBACO, 2016 

QIFS, 2017 

FSFWISIW, 2015 

FSFOA, 2016 

GCNC, 2015 

Proposed TCbGA 

95.17 ± 2.66 

95.32 ± 4.37 

95.28 

96.99 

88.21 ± 1.15 

99.65 ± 0.004 

Zoo 

GASNCM, 2016 

MOEA/D, 2015 

FFWDGC, 2017 

bGWO, 2016 

W-QEISS, 2016 

Proposed TCbGA 

96.1 ± 3.50 

95.42 

98.02 

87.9 

99.22 

98.03 ± 0.009 

Arrhythmia 

HPSO-LS, 2016 

GCACO, 2015 

GCNC, 2015 

MOEA/D, 2015 

UFSACO, 2014 

Proposed TCbGA 

53 ± 2.28 

60.51 ± 5.42 

59.08 ± 2.38 

65.77 

59.22 ± 2.98 

74.80 ± 0.08 

Vehicle 

GASNCM, 2016 

FFWDGC, 2017 

MDisABC, 2015 

HSA, 2016 

Proposed TCbGA 

73.37 ± 0.01 

75.6 

79.31 ± 1.85 

80.07 

86.05 ± 0.06 

Waveform 

ABACO, 2015 

MOEA/D, 2015 

BALO, 2016 

bGWO, 2016 

Proposed TCbGA 

79.8 ± 0.56 

83.65 

80.0 

78.6 

85.43 ± 0.004 



Lung 

GASNCM, 2016 

MDisABC, 2015 

HSA, 2016 

Proposed TCbGA 

95.38 ± 3.97 

76.65 ± 4.36 

88.65 

96.23 ± 0.003 

   

 

We compared the mean and standard deviation of the classification accuracy obtained by 

applying our algorithm to each dataset 25 times to the performance of several state-of-the-art 

solutions reported in the literature in Table 7. It shows that our algorithm achieves substantially 

higher accuracy than other approaches on these datasets. Moreover, the comparative results also 

suggest that TCbGA algorithm has a more obvious advantage over other feature selection 

methods when the number of candidate feature components is relatively large. 

 

Table 6 Parameter settings in the proposed algorithm on four high-dimensional datasets 

Dataset 
Number of 

Tribes 𝐍𝐓 

Tribe 

Size 𝐍𝐓𝐤 
Gaussian Mean 𝛍𝐤 

Standard 

Deviation 𝝈 

Hill-Valley 3 1000 {25, 50, 75} 8.33 

Musk1 6 1000 {24, 48, 72, 96,120,144} 7.9 

Musk2 6 1000 {24, 48, 72, 96,120,144} 7.9 

Colon Cancer 13 6000 
{136,280,424,568,712,856,1000, 

1144,1288, 1432,1576,1720,1864} 
47.62 

 

Table 7 Pattern classification accuracy (mean ± standard deviation) of different algorithms on four high-

dimensional datasets 

Dataset Algorithm 
Accuracy 

(% ) 
Dataset Algorithm 

Accuracy 

(% ) 

Hill-

Valley 

DEMOFS, 2014 

MOEA/D, 2015 

MDisABC, 2015 

Proposed TCbGA 

60.46 

57.50 

54.05 ± 2.05 

60.53 ± 0.01 

Musk2 

FSFWISIW, 2015 

BALO, 2016 

MI-SC, 2016 

Proposed TCbGA 

93.3 

96.4 

91.9 

99.23 ± 0.05 

Colon 

Cancer 

HDBPSO, 2015 

GCACO, 2015 

GCNC, 2015 

HPSO-LS, 2016 

Proposed TCbGA 

90.28 ± 0.15 

81.42 ± 3.51 

82.37 ± 1.79 

83.88 ± 4.09 

96.50 ± 0.02 

Musk1 

MOEA/D, 2015 

W-QEISS, 2016 

MDisABC, 2015 

BALO, 2016 

Proposed TCbGA 

81.52 

76.02 

85.29 ± 2.07 

89.2 

94.27 ± 0.08 

 



Finally, the Friedman non-parametric test with a significant level of 0.05 [54] was employed 

to compare our proposed TCbGA algorithm against all the other methods that perform best on 

each dataset. In this statistic test, the null hypothesis 𝐻0  affirms the equal behavior of the 

comparable methods. Hence, under 𝐻0, each method possesses equal rank, which conforms that 

each method is equally efficient with others. The alternative hypothesis 𝐻1  endorses the 

difference in performances among the comparable methods. The Friedman test we performed 

shows that the chi-square (𝒳2) value is 5.47 and the p-value is 0.0193. The p-value is smaller 

than the significance level 0.05. Meanwhile, the chi-square value is larger than critical value, 

which is 3.84 at 0.05 significance level and (2-1) = 1 degree of freedom. Hence, 𝐻0 is rejected 

and 𝐻1 is accepted. This result demonstrates that the performance improvement of the proposed 

algorithm is significant. 

Table 8 gives the results of T-test. It shows that, when setting the significance level in the T-

tests to 0.05, TCbGA performs significantly better than eight out of 15 start-of-the-art feature 

selection methods, including GCACO, GCNC, MOEA/N, GASNCM, UFSACO, MDisABC, 

HAS and bGWO on the datasets used in this study. Therefore, three groups of comparative 

experiments suggest that the proposed TCbGA algorithm is able to select better feature subset 

to improve significantly the accuracy of pattern classification on those 20 datasets. 

 

Table 8 Results of T-test of 16 feature selection algorithms’ accuracy on 20 datasets 

 

 

 

 

 

 

 

 

 

Algorithm p-Value Algorithm p-Value 

GCACO 0.0080 * FFW-DGC 0.1028 

GCNC 0.0172 * QIFS 0.1849 

MOEA/D 0.0256 * FSFOA 0.1106 

GASNCM 0.0319 * MoDE 0.1541 

UFSACO 0.0029 * W-QEISS 0.0578 

MDisABC 0.0220 * VMBACO 0.1636 

HSA 0.0277 * HPSO-LS 0.2000 

  bGWO 0.0047* TCbGA / 



4. Discussion 

4.1 Parameter Settings 

As an evolutionary algorithm, the proposed feature selection method involves a number of 

parameters. Most of them, such as the size of population, maximum number of generations, 

crossover rate and mutation rate, are the commonly used parameters in traditional GA and can 

be set under the general guidelines for GA [55]. The number of tribes 𝑁𝑇 and the statistical 

parameters in each Gaussian distribution 𝒩(𝜇𝑘 , 𝜎2) are introduced to ensure that different 

groups of individuals can explore different parts of the solution space, and hence play an 

important role in this algorithm. 

To ensure that the features that make up the global optimum do exist in a single tribe, every 

subspace Ω𝑚  (1 ≤ 𝑚 ≤ 𝑁) should be explored by one or two tribes. As {𝜇1, 𝜇2, ⋯ , 𝜇𝑁𝑇
} 

equally distributes in the range [1, 𝑁], we let any two adjacent tribes be half-overlap and each 

tribe 𝑇𝑘 equally take care of 
2

𝑁𝑇+1
 of the solution space, shown as an example in Fig. 2. Hence, 

the part of solution space to be explored by the tribe 𝑇𝑘 can be denoted by ⋃ Ω𝑚
𝑚+

𝑚=𝑚− , where 

𝑚− = ⌈𝜇𝑘 −
𝑁

𝑁𝑇+1
⌉  and 𝑚+ = ⌊𝜇𝑘 +

𝑁

𝑁𝑇+1
⌋ . Since 𝑇𝑘⋂Ω𝑚− ≠ ∅  and 𝑇𝑘⋂Ω𝑚+ ≠ ∅ , the 

standard deviation 𝜎, population size 𝑁𝑃 and number of tribes 𝑁𝑇 must satisfy the following 

constraint 

∀𝑘, n𝑘𝑚− = n𝑘𝑚+ ≥ 1 .                            (6) 

Applying Eq. (2) to this constraint, we have 

1

𝜎√2𝜋
𝑒𝑥𝑝[−

(𝑚+−𝜇𝜅)
2

2𝜎2 ]

∑
1

𝜎√2𝜋
𝑒𝑥𝑝[−

i2

2𝜎2]𝑖∈ℵ

∙ 𝑁𝑇𝑘 ≥
1

2
 .                         (7) 

Another constraint on the standard deviation 𝜎 is that the search scope of each tribe 

falls into the range [𝜇𝑘 − 3𝜎, 𝜇𝑘 + 3𝜎]. Hence, we have 

𝜎 ≥
𝑁

3(𝑁𝑇+1)
 .                                   (8) 

Meanwhile, we notice that, when 𝜎 > 0.7,  

∑
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

i2

2𝜎2]𝑖∈ℵ ≈ 1.                           (9) 



Thus, Eq. (7) can be rewritten as  

1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑚+−𝜇𝜅)2

2𝜎2
] ∙ 𝑁𝑇𝑘 ≥

1

2
 .                        (10) 

Here we define a function  

φ(𝑚) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑚−𝜇𝜅)2

2𝜎2 ] ∙ 𝑁𝑇𝑘 .                       (11) 

Then, Eq. (10) can be rewritten as  

φ(𝑚+) ≥
1

2
 .                              (12) 

Since 𝜑(𝑚) decreases monotonously in the range (𝜇𝑘, +∞) and 𝜇𝑘 < 𝑚+ ≤ 𝜇𝑘 +

3𝜎, we get 

φ(𝑚+) ≥ φ(𝜇𝑘 + 3 ∗ 𝜎).                        (13) 

To ensure that φ(𝑚+) ≥
1

2
 , we just need set 

 φ(𝜇𝑘 + 3 ∗ 𝜎) ≥
1

2
 .                             (14) 

Applying Eq. (11) to Eq. (14), we have  

1

𝜎√2𝜋
𝑒𝑥𝑝 [−

((𝜇𝑘+3∗𝜎)−𝜇𝜅)
2

2𝜎2 ] ∙ 𝑁𝑇𝑘 ≥
1

2
 .                  (15) 

Simplifying Eq. (15), we get    

𝜎 ≤
2

√2𝜋
𝑒−

9

2 ∙ 𝑁𝑇𝑘 ≈ 0.008864𝑁𝑇𝑘 .                  (16) 

Therefore, the standard deviation 𝜎 is theoretically computed to take a value from the range 

[
𝑁

3(𝑁𝑇+1)
, 0.008864𝑁𝑇𝑘]. 

Meanwhile, applying Eq. (8) to Eq. (16), we have  

𝑁

3(𝑁𝑇+1)
≤

2

√2𝜋
𝑒−

9

2 ∙ 𝑁𝑇𝑘.                             (17) 

Hence 

𝑁𝑇 ≥
√2𝜋𝑁

6𝑒
−

9
2𝑁𝑇𝑘

− 1 ≈ 37.6066
𝑁

𝑁𝑇𝑘
− 1 .                       (18) 

Since the inter-tribe competition may not work when 𝑁𝑇 ≤ 2, we suggest to set the number of 

tribes 𝑁𝑇 to max (3, ⌈37.6066
𝑁

𝑁𝑇𝑘
− 1⌉). 



We also chose the WDBC, Lung, Dermatology and Musk1 datasets as a case study to 

investigate the setting of the number of tribes 𝑁𝑇. The number of features in those datasets is 

30, 56, 33 and 166, respectively. The size of tribe is set to 600 for WDBC, Lung and 

Dermatology, and 1000 for Musk1 due to a relatively large solution space. According to the 

above theoretical analysis, the optimal number of tribes should be 3, 3, 3 and 6, respectively. 

Fig. 5 plots the variation of the classification accuracy over the number of tribes. It shows that 

the estimated optimal number of tribes, marked by dotted lines in this figure, is highly consistent 

with our computational results. 

 

 

Fig.5. Variation of classification accuracy over the number of tribes on four datasets 

 

4.2 Tribe Competition 

A distinct feature of the proposed algorithm is to incorporate tribe competition into the 

evolution process. Since we divided the solution space into several half-overlapped subspaces, 

each being explored by a tribe, the features that make up the global optimum must exist in the 

subspaces searched by one or two tribes, which are named as the elite tribes. Ideally, we should 

keep only elite tribes and allocate them all individuals. Unfortunately, we do not know which 

tribe is the elite. Hence, we performed the inter-tribe competition and regarded the winners as 

the elite tribes. Then, we enlarged the size of the predicted elite tribes to enable them to have 



more search power and cut down the size of those defeated tribes to save computing resource. 

This penalty and award strategy enables the algorithm not only to search the solution space 

locally, but also to quickly look for the global optimal. The characteristic of human tribes in the 

primitive society, i.e. tribes evaluate themselves to get more adaptive ability and plunder other 

weaker tribes of their resources to make themselves stronger, contributes to better understand 

this competition strategy. 

Fig.6 illustrates the change of the size of three tribes during the evolution and competition 

when applying the proposed algorithm to the Dermatology dataset. It shows that, although the 

population size is maintained, the sizes of tribes change dynamically. Our result indicates that 

the highest classification accuracy is achieved when using a subset of 23 features. This optimal 

solution lies exactly in the subspace that is explored by the third tribe, in which the average 

number of selected features is 25. This result is completely consistent with our observation of 

the increase of third tribe’s size. 

 

 

Fig .6. Change of the size of three tribes (denoted by T1, T2 and T3) during the evolution 

 

However, our prediction of the elite tribe is not always correct, since it may perform worse 

than others at the early stage of evolution, due to the complexity of feature selection problems. 



Fig.6 also reveals that the size of each tribe is not changed monotonically and the elite tribe 𝑇3 

was even considered to be the worst one in early competitions. Therefore, we chose the most 

conservative implementation of the penalty and award strategy that is to enlarge and shrink only 

the best and worst tribe by one, although there are different implementations, including enlarging 

and/or shrinking one or more tribes by adding or removing one or more individuals each time. 

More aggressive implementations may speed up the convergence of the evolution, but at the risk 

of missing the elite tribe due to shrinking it too much at a too early stage. 

Another important issue related to the inter-tribe competition is how frequent it should be 

performed. Generally, more frequent competition gives the algorithm more opportunity to adjust 

the size of tribes, whereas less frequent competition gives each tribe more opportunity to find a 

better solution before its size is adjusted. 

 

  

Fig.7 Accuracy (left) and time-cost (right) of our algorithm on two datasets over different settings 

 

We adopted the Sonar and Dermatology datasets as a case study to explore the impact of the 

frequency of inter-tribe competitions on the algorithms’ performance. The results were shown 

in Fig. 7, in which 𝑁CS  stands for performing the inter-tribe competition after every 𝑁CS 

generations. It reveals that setting 𝑁CS  to 1 decreases the classification accuracy on both 

datasets; whereas using 𝑁CS greater than 2 results in almost the same accuracy but significantly  

increased time-cost. The reason for the increased time-cost lies in the fact that a larger 𝑁CS 



makes the algorithm converge more slowly and require more generations of evolution to achieve 

a satisfying result. Therefore, considering both the accuracy and complexity, we set 𝑁CS = 2. 

4.3 Robustness 

The proposed method employs heuristic-guided stochastic search, and hence may produce 

different near optimal solutions in multiple runs. Table 9 gives average performance obtained 

by applying this algorithm with random initializations to those 20 datasets 25 times. In this 

table, ACave and ACstd are the mean and standard deviation of the classification accuracy, 

respectively, ASnum  is the average number of selected features, and Totalnum  is the total 

number candidate feature component to be selected. The very small standard deviation of 

accuracy shown in this table demonstrates that the proposed algorithm is relatively robust to 

initializations. 

 

Table 9 Average performance of the proposed algorithm on 20 datasets for 25 runs 

Dataset 𝑨𝑪𝒂𝒗𝒆 𝑨𝑪𝒔𝒕𝒅 𝑨𝑺𝒏𝒖𝒎/𝑻𝒐𝒕𝒂𝒍𝒏𝒖𝒎 

WBCD 98.09% 2.13e-03 5.2/9 

Heart 85.19% 5.81 e-02 4.2/13 

Australian 87.25% 6.23 e-02 6.4/14 

German 78% 5.32 e-02 12.3/21 

WDBC 98.78% 3.85e-03 20.8/30 

Ionosphere 98.32% 3.52e-02 14.2/34 

KR vs KP 99.40% 7.85e-03 26.0/36 

Lung 96.23% 2.79e-03 9.2/56 

Spam base 91.85% 8.93e-02 19.0/57 

Sonar 84.62% 2.75e-02 8.7/60 

Hill-Valley 59.23% 1.27e-02 38.2/100 



Musk1 94.27% 7.52e-02 97.3/166 

Musk2 99.23% 4.52e-02 85.5/166 

Colon cancer 96.50% 2.32e-02 19.3/2000 

Wine 99.60% 7.23e-03 9.0/13 

Zoo 98.03% 8.67 e-03 5.1/16 

Waveform 85.43% 3.85e-03 18.0/21 

Vehicle 86.05% 5.73e-02 12.5/18 

Dermatology 99.65% 4.25e-03 24.0/33 

Arrhythmia 74.80% 7.56e-02 34.7/279 

 

4.4 Computational Complexity 

As a wrapper feature selection method and an evolutionary approach, the proposed algorithm 

has a relatively high computational complexity. Most computation is spent on the evaluation of 

individuals’ fitness. Given the size of population N𝑃 and maximum number of generation N𝐺, 

such evaluation is performed N𝑃 ∙ N𝐺  times. Each time, the feature subset specified by an 

individual is used to train a classifier and test its accuracy via cross validation. Therefore, the 

computational complexity is also determined by the number of candidate features, number of 

classes and number of instances. More instances and classes usually require more computation, 

and more candidate features may lead to large selected feature subset and thus also require 

increased computation. Table 10 give the average time cost of training the model and testing one 

instance on seven datasets (Intel Core i7-4790 CPU 3.2GHz, NVidia GTX Titan X GPU, 32GB 

memory and Matlab Version 2014). Although the off-line training is extremely time-consuming, 

the proposed algorithm has the ability to select the optimal features for various classification 

problems. We believe the ever increase of computational power, particularly the prevalence of 

GPU-based parallel computation will make it more computationally attractive. Meanwhile, 



during online testing, applying the selected optimal feature subset to solving pattern 

classification problems is very efficient.  

 

Table 10 Average time-cost of the proposed algorithm on 20 datasets 

Dataset Train (h) Test (s) Dataset Train (h) Test (s) 

WBCD 0.21 0.01 Hill-Valley 4.88 0.59 

Heart 3.18 0.12 Musk1 5.62 0.68 

Australian 5.68 0.52 Musk2 8.53 1.23 

German 4.73 0.35 Colon cancer 5.48 0.52 

WDBC 2.23 0.24 Wine 2.05 0.17 

Ionosphere 2.97 0.35 Zoo 1.57 0.20 

KR vs KP 9.25 1.05 Waveform 10.21 1.30 

Lung 1.21 0.59 Vehicle 4.72 0.13 

Spam Base 11.23 0.80 Dermatology 4.20 0.32 

Sonar 1.52 0.29 Arrhythmia 7.22 0.86 

 

4.5 Feasibility 

The proposed algorithm has the ability to search the global optima, due to using the 

stochastic evolutionary strategy. However, it cannot guarantee to converge to the global optimal 

within limited generations. As a result, when the number of candidate features is small, it may 

have little advantage over other approaches. We used the WBCD dataset as a case study, where 

there are 699 instances from two classes and each instance consists of nine features. Since there 

are only 29 − 1 possible feature subsets in this problem, we can find the optimal feature subset 

with respect to different classifiers via exhaustive searching. Table 11 give the classification 

accuracy and time cost of the proposed algorithm and exhaustive searching. It shows that the 

proposed algorithm can achieve the optimal classification accuracy, but may spend even more 



time than exhaustive searching. Therefore, when the number of candidate feature is too small, 

it may not be necessary to utilize multiple tribes to search different parts of the solution space, 

particularly when the solution space can be explored exhaustively. 

 

Table 11 Classification accuracy and time cost of different approaches on the WBCD dataset 

Classifier Feature Selection Accuracy (%) Time Cost (s) 

SVM 

Exhaustive Search 98.09 19.25 

Proposed 98.09 761.08 

 

On the contrary, if the number of candidate features is huge, we have to either use a large 

number of tribes (𝑁𝑇 ≥ ⌈37.6066
𝑁

𝑁𝑇𝑘
− 1⌉) or set the standard deviation 𝜎 to a large value. 

The former increases the computationally complexity; whereas the later makes the algorithm not 

to be able to focus on a small solution space and hence may produce less accuracy results, unless 

we set the tribe size to an even larger number that satisfies 𝜎 < 0.008864𝑁𝑇𝑘. Meanwhile, a 

huge number of instances also makes the proposed algorithm computationally intractable. In this 

case, we may use a randomly sampled small training set to evaluate the fitness of each individual. 

The discrepancy caused by this is determined by the generalization ability of the classifier used 

in the wrapper method. 

 

5. Conclusion 

In this paper, we propose the TCbGA algorithm for feature selection in pattern classification, 

which divides the population into multiple tribes, each containing a cohort of individuals. We 

encode each individual as a binary string to represent a possible feature selection scheme and 

modify the initialization and evolutionary operations to ensure that the number of selected 

features in each tribe follows a Gaussian distribution. Besides evolving each tribe independently, 

we introduce tribe competition to allow the tribe elite individuals to have increased searching 

power. Our results suggest that the proposed algorithm outperforms several state-of-the-art 



feature selection approaches on 20 benchmark datasets. Our future work will focus on 

incorporating classifier selection into the optimization process, reducing the complexity and 

extending this algorithm to solve feature selection problems with a super large feature set. 
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