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Abstract

A post-processing technique for Support Vector Machine (SVM) algorithms
for binary classification problems is introduced in order to obtain adequate
accuracy on a priority class (labelled as a positive class). That is, the true
positive rate (or recall or sensitivity) is prioritized over the accuracy of the
overall classifier. Hence, false negative (or Type I) errors receive greater
consideration than false positive (Type II) errors during the construction of
the model.

This post-processing technique tunes the initial bias term once a solution
vector is learned by using standard SVM algorithms in two steps: First, a
fixed threshold is given as a lower bound for the recall measure; second, the
true negative rate (or specificity) is maximized.

Experiments, carried out on eleven standard UCI datasets, show that the
modified SVM satisfies the aims for which it has been designed. Furthermore,
results are comparable or better than those obtained when other state-of-the-
art SVM algorithms and other usual metrics are considered.

Key words: support vector machines, post-processing strategies, pattern
recognition, cost-sensitive SVM

1. Introduction

There exist situations where the correct detection of instances of one class
(the positive class) is considered to be of greater importance or priority than
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the other class (the negative class) in binary classification problems. Prob-
lems which involve this situation arise: in the medical diagnosis of certain
disorders, such as the detection of breast cancer [16, 30] or cardiac care [23]; in
certain financial problems, such as credit-card fraud detection [29], financial
crisis [18], detection of financial statement fraud [24, 6], bankruptcy predic-
tion [27, 21], prediction of liquefaction potential [28] and bank marketing
[20]; and in criminological investigations, among other applications.

For these kinds of problems, the attainment of a high percentage for
the true positive rate (also named recall or sensitivity) is more important
than the overall accuracy measure. That is, Type I errors should receive
serious consideration during the model construction. For these cases, models
should therefore exhibit a high performance in the priority class, while simul-
taneously striving to maintain a low error performance in the non-priority
class. For instance, when classifying whether a firm is bankrupt, Type I er-
ror occurs when the classifier incorrectly classifies a bankrupt firm into the
non-bankrupt class. Type II errors are based on the classifier incorrectly
classifying a non-bankrupt firm into the bankrupt class. A higher Type I
error rate incurs greater costs on financial institutions, which can enhance
business risk.

In order to handle this kind of problem, the application of Support Vec-
tor Machines (SVMs) is a popular choice in the machine-learning research
area since these are learning machines that implement the structural-risk-
minimization inductive principle to obtain good generalization on a limited
number of learning patterns [25, 26, 22]. The theory of SVMs was developed
on the basis of a separable binary classification problem where the optimiza-
tion criterion is the width of the margin with `2-norm1, between the positive
and negative examples. An SVM with a large margin separating two classes
has a small Vapnik-Chervonenkis dimension, which provides good general-
ization performance [5].

Furthermore, SVMs present an attractive option for binary problems with
a priority class, since they can be modified in order to incorporate information
on the penalties associated with erroneous predictions for each class into the
learning problem . Therefore, SVMs can afford to prioritize one class over
the other.

The main contribution in this paper is that once the solution vector for

1A generalization is given in [13].
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Table 1: The confusion matrix for a classifier f on a test set D.

XXXXXXXXXXXXPredicted
Actual

Positive Negative

Positive True Positive (tpos) False Positive (fpos)
Negative False Negative (fneg) True Negative (tneg)

Number of instances Npos Nneg

the standard SVM problem is obtained, the bias is considered as a param-
eter to be tuned in order to improve the generalization performance on the
non-priority class, whereas a generalization performance with a threshold is
maintained on the priority class.

It must be emphasized that the proposed solution neither modifies the
original optimization problem for SVM training, nor introduces new hyper-
parameters. Thus, no increase in the computational cost is incurred.

The remainder of this paper is organized as follows: Section 2 introduces
the metrics commonly employed in classification problems. In Section 3, the
standard SVM approach is outlined and a family of classifiers that depends
on the bias is considered. Furthermore, certain results on the metrics are
obtained. An SVM, called Biased SVM (BSVM), is introduced in Section 4,
based on both recall and specificity metrics. Experiments are carried out
in Section 5 which illustrate the performance of the BSVM in comparison
with the standard SVM and the well-known cost-sensitive SVM approach.
Finally, conclusions are drawn.

2. Metrics

Let Z = {(x1, y1), . . . , (xN , yN)} be a training set, with xi ∈ X ⊂ Rd,
yi ∈ Y = {+1,−1}, and zi = (xi, yi). Let f(x) be a binary classifier such that
outputs are obtained as h(x) = sign(f(x)), where sign(· ) is the sign function.
Let Zpos = {zi ∈ Z|yi = +1} 6= ∅ and Zneg = {zi ∈ Z|yi = −1} 6= ∅ be
the sets of training patterns for the positive class and the negative class,
respectively. Let Npos = #Zpos and Nneg = #Zneg be the number of positive
and negative instances, respectively. Hence N = Npos +Nneg.

Based on the confusion matrix or contingency table (see Table 1), the
most commonly used metric for the evaluation of the generalization perfor-
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mance of the classifier f(x) on a test set D ⊂ X ×Y is the accuracy, denoted
by Ac, which computes the proportion of instances that are correctly classi-
fied by the model, that is,

Ac(f,D) =
tpos + tneg
Npos +Nneg

.

Using this metric, both classes, positive and negative, have the same
priority for the purpose of classification. Hence, accuracy can be deceiving
when:

1. one class is considered of greater significance than the other class. Thus,
the cost for wrong classifications in the priority class (Type I error) is
greater than the cost for wrong classifications in the other class (Type
II error). For instance, a false negatives, which may deny medical treat-
ment to a patient, is more critical than a false positive that leads to
carrying out a medical check on a healthy person; and

2. prior probabilities of classes differ greatly (imbalanced datasets), since
the metrics fail to consider costs for wrong classifications, and thus re-
main very sensitive to the bias between classes [14]. For instance, when
detecting fraud in credit-card transactions, the ratio between fraudulent
and healthy transaction instances is around 1/6000; a naive approach
of classifying every example to be a negative instance would provide a
high accuracy, however this description fails to reflect the fact that none
of the fraudulent transactions is detected.

Therefore, other measures of assessment must be considered. By consid-
ering accuracy rates on Zpos and Zneg separately, the recall2 and specificity
metrics, denoted by Re and Sp, respectively, are defined as follows:

Re(f,D) =
tpos
Npos

, and Sp(f,D) =
tneg
Nneg

. (1)

The recall measure is the proportion of positive cases that are correctly iden-
tified (the true positive rate), that is, one minus the proportion of Type I
error. On the other hand, specificity is the fraction of correctly identified
examples among all instances that are negative (the true negative rate), that

2Also called sensitivity in certain fields.
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is, one minus the proportion of Type II error. Both metrics are measures of
completeness.

Hence, a new expression for accuracy can be derived as follows:

Ac(f,D) =
Npos ·Re(f,D) +Nneg · Sp(f,D)

Npos +Nneg

(2)

as a weighted arithmetic mean of recall and specificity, where the associ-
ated weights are the number of positive instances and negative instances,
respectively.

In the case that the set Zpos is considered a “priority” for the purpose
of classification, then the Re(f,D) measure is more representative than the
Sp(f,D) measure, and Ac(f,D) is no longer an adequate metric [8].

Therefore, a new approach to obtain a classifier when one class is con-
sidered a “priority” is introduced: For a fixed test set D ⊂ X × Y , when
seeking for a good classifier, the search is restricted to classifiers that hold
recall measures at a specified level. Within this set of classifiers, a classifier is
sought in order to maximize specificity. It is worth noting that, in general, it
is not possible to arbitrarily obtain great recall and specificity values, that is,
the capacity of any classifier cannot increase the number of the true positives
without also increasing the number of false positives.

According to the proposed approach, the following well-known metrics
will be also considered in the measurement of the performance of the classi-
fiers:

• The geometric mean (g-mean), defined as

Gmean(f,D) =
√
Re(f,D) · Sp(f,D).

• The precision, given by

Pr(f,D) =
tpos

tpos + fpos
.

• The F
value

metric (f-value), defined as

F
value

(f,D) = (1 + β2) · Pr(f,D) ·Re(f,D)

β2Re(f,D) + Pr(f,D)
,

where β is a tuning parameter (usually, β = 1).
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3. Support Vector Machine and Bias

Let φ : X → H, x = φ(x) be a mapping to a feature space endowed with
a dot product denoted by 〈·, ·〉. A binary linear classifier f : X → R, defined
as3 f(x) = 〈x,w〉 − b, is sought, where w ∈ H, b ∈ R. Outputs are obtained
as h(x) = sign(f(x)).

3.1. The standard primal SVM

The standard SVM formulation leads to the optimization problem [10]:

min
w∈H, b∈R

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t.

{
yi (〈xi,w〉 − b) + ξi ≥ 1,
ξi ≥ 0, zi ∈ Z i = 1, · · · , N

(3)

where ξi are slack variables and C > 0 acts as a term of regularization.
The solution of this problem can be written as w0 =

∑
i γiyixi, where

xi = φ(xi) and γi are Lagrange multipliers for the dual formulation of (3),
with

∑
i γiyi = 0. Term b is calculated a posteriori [11], and is denoted by b0

(bias standard). Hence, the classifier can be written as

f(x) =
N∑
i=1

γiyiK(xi, x)− b0 = 〈x,w0〉 − b0

where K : X × X → R, defined as K(x, y) = 〈x, y〉 = 〈φ(x), φ(y)〉, is called
the kernel function.

3.2. The cost-sensitive SVM

The cost-sensitive SVM modifies the standard optimization problem (3)
in order to incorporate information on the penalties associated with erroneous
predictions for each class into the learning problem [7]. Thus, the two types
of errors can be introduced into the formulation of the learning problem,
using two regularization parameters, as follows [4]:

min
w∈H, b∈R

1

2
‖w‖2 + C+

∑
i|yi=+1

ξi + C−
∑

i|yi=−1

ξi

s.t.

{
yi (〈xi,w〉 − b) + ξi ≥ 1,
ξi ≥ 0, zi ∈ Z i = 1, · · · , N

(4)

3For notation consistency, bias b is incorporated with a negative sign.
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where C+ and C− are the costs associated with errors in the positive class
and negative class, respectively.

Furthermore, the solution vector can be written in the same way as the
solution vector of the optimization problem (3).

It is worth noting that the cost-sensitive SVM usually provides a better
recall measure than does the standard SVM. Nevertheless, this approach fails
to provide a way to regulate the level of recall. The SVM proposed in this
paper regulates via the bias tuning.

3.3. The recall and specificity metrics

A key point of the proposed approach is that once the solution vector w0 is
obtained using the standard SVM formulation, the bias b can be considered as
a parameter. In accordance with to the notation in [12], the set of classifiers
F(w0) defined as

{fb : X → R, fb(·) = 〈φ(·),w0〉 − b, b ∈ R}

is considered. A map Θb : X → {−1, +1} is also defined, and is associated
to the classifier fb(x) ∈ F(w0) such that, given an input vector x, it assigns
a label as follows:

Θb(x) = sign(fb(x)) =

{
+1 if 〈x,w0〉 ≥ b,
−1 if 〈x,w0〉 < b.

(5)

Let us define the recall function, Re : R → [0, 1], as Re(b) = Re(fb,Z)
and the specificity function, Sp : R → [0, 1], as Sp(b) = Sp(fb,Z) from (1),
where fb ∈ F(w0).

Furthermore, let order

Zpos =
{

(x1,+1), · · · , , (xNpos ,+1)
}

=
{

(p1,+1), · · · , , (pNpos ,+1)
}

with pi = xσ∗(i), where σ∗ is a permutation of Npos such that

〈p1,w0〉 ≤ · · · ≤ 〈pi,w0〉 ≤ · · · ≤ 〈pNpos ,w0〉

for i = 1, · · · , Npos.
Let us consider the values

β = min
zi∈Zpos

〈xi,w0〉 = 〈p1,w0〉 and β∗ = max
zi∈Zpos

〈xi,w0〉 = 〈pNpos ,w0〉.

Hence, by defining the bias bi = 〈pi,w0〉 for i = 1, · · · , Npos, the following
results hold:
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• Re(b) is a decreasing function of b.

• Re(bi) ≥ Npos−(i−1)
Npos

∀i. Furthermore, if bi 6= bj for i 6= j, then Re(bi) =
Npos−(i−1)

Npos
and Re(bi) = Re(bi+1) + 1

Npos
.

• If bi < bi+1, then Re(bi) > Re(b) = Re(bi+1) for any b such that
bi < b ≤ bi+1.

• If b ≤ β < b′ ≤ β∗ < b∗, then Re(b) = 1 > Re(b′) > 0 = Re(b∗).

Analogously, let

Zneg =
{

(x1,−1), · · · , , (xNneg ,−1)
}

=
{

(q1,−1), · · · , , (qNpos ,−1)
}

with qj = xσ′(j) where σ′ is a permutation of Nneg such that

〈q1,w0〉 ≤ · · · ≤ 〈qj,w0〉 ≤ · · · ≤ 〈qNneg ,w0〉

for j = 1, · · · , Nneg.
Let us consider the values

α∗ = min
zi∈Zneg

〈xi,w0〉 = 〈q1,w0〉 and α = max
zi∈Zneg

〈xi,w0〉 = 〈qNneg ,w0〉.

Hence, by considering the bias bqj = 〈qj,w0〉 for j = 1, · · · , Nneg, it follows
that:

• Sp(b) is an increasing function of b.

• Sp(bqj) ≤ j−1
Nneg

. Furthermore, if bqi 6= bqj for i 6= j, then Sp(bqj) = j−1
Nneg

and Sp(bqj) + 1
Nneg

= Sp(bqj+1).

• If bqj < bqj+1, then Sp(bqj) < Sp(b) ≤ Sp(bqj+1) for any b such that
bqj < b ≤ bqj+1.

• If b ≤ α∗ < b′ ≤ α < b∗, then Sp(b) = 0 < Sp(b′) < 1 = Sp(b∗).

By applying a toy dataset, an example for both metrics is depicted in Fig-
ure 1, where x = (x1, x2), w0 = (1, 0)t, and fb(x) = x1 − b. It can be verified
that Npos = 4, Nneg = 5, α = 2, α∗ = −3, β = −2, and β∗ = 3.

As expected, recall and specificity are inverse measures in the sense that
an improvement of one of them implies a deterioration of the other.
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x1

x2 fb(x) = x1 − b

−3 −2 −1 1 2 3

Z
Positive
Negative

b

Re(fb,Z)

−3 −2 −1 0 1 2 3

.25

.50

.75

1.0

b

Sp(fb,Z)

−3 −2 −1 0 1 2 3

.20

.40

.80

1.0

Figure 1: Graphical representation on a toy dataset of the recall and the specificity metrics
with bias b taken as a parameter.

4. BSVM: Biased Support Vector Machine

Within the set of classifiers F(w0), a tradeoff must be found between
Re(b), a decreasing function of b, and Sp(b), an increasing function of b, in
order to maximize generalization.

By assuming that the positive class is of a higher priority than the neg-
ative class, then β = max {b ∈ R, Re(b) = 1} is the best bias for the train-
ing set Z, which leads to the classifier fβ(x) = 〈x,w0〉 − β. Nevertheless,
Sp(β) can be arbitrarily small if the instance p1 is an outlier. It can be
seen in Figure 1 that if β = −2, then Re(−2) = 1, Sp(−2) = 0.20 and
Ac(−2) = 5

9
= 0.5556.

One way to circumvent this problem, given the set of classifiers F(w0),
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is to fix a threshold 0 ≤ r ≤ 1, such that Re(b) ≥ r in order to guarantee a
minimum true positive rate in the positive class and to maximize Sp(b). For
example, from Figure 1, if r = 0.70 then it can be seen that by considering
b = 1, one obtains Re(1) = 0.75 > 0.70, Sp(1) = 0.80, and Ac(1) = 7

9
=

0.7778.
Hence, the following problem is considered:

max
b∈R

Sp(b)

s.t. Re(b) ≥ r, 0 ≤ r ≤ 1, fb ∈ F(w0)
(6)

Proposition 4.1. A classifier fb(x) ∈ F(w0) exists such that it is a solution
of the problem (6).

Proof:
Let us consider the two possible cases:

• If α < β, then Z is a linearly separable training set [9], and hence, for
any b such that α < b < β, Re(b) = 1 and Sp(b) = 1 from the results
given in Section 3, whereby both metrics obtain the maximum value.
Therefore, b is a solution of the problem (6) for any 0 ≤ r ≤ 1.

In this case, the bias b∗r = (1 − r)β + rα is a solution of (6) such
that 100r% of the space between α and β is given for the positive
instances. Hence, if r is near to 1, more space is given to the positive
class (priority class) than to the negative class in order to carry out
a better generalization with the positive class than with the negative
class.

• If α ≥ β, then by taking into account that Re(bi) ≥ Npos−(i−1)
Npos

and by

imposing r ≤ Npos−(i−1)
Npos

, it is obtained that i ≤ 1 +Npos(1− r). Hence,

the bir bias is considered, where ir = max {i, i ≤ 1 +Npos(1− r)}, that
is, bir is the (1-r)th q-quantile of Zpos.
Clearly, bir exists since Zpos is a non-empty and finite set. Furthermore,

if b > bir, then Re(b) ≤ Re(bir+1) = Npos−(ir+1−1)
Npos

< r. Therefore,

since the specificity function is an increasing function, the bir bias is a
solution of the problem (6) for 0 ≤ r ≤ 1.

The proof is completed. �
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From the optimization problem (6), a mixed SVM is proposed, which is
called Biased SVM (BSVM), where the solution of the problem (3) is tuned
in order to obtain Re(br) ≥ r, and specificity is maximized.

It should be indicated that the proposed approach can be viewed as hy-
pothesis testing from Inference Statistics [3], that is, the value (1− r) in the
BSVM approach is similar to the significance level α in hypothesis testing.

Therefore, given an r value such that 0 ≤ r ≤ 1, then the classifier
f ∈ F(w0) considered is as follows:

f(x) = fbr(x) =
N∑
i=1

γiyiK(xi, x)− br = 〈x,w0〉 − br

where

br =

{
b∗r if α < β,
bir otherwise.

(7)

Given a set of classifiers F(w0) = {fb(x) = 〈x,w0〉 − b, b ∈ R} on a train-
ing set Z, the influence of the threshold on the performance of the BSVM
can be analysed: for 0 ≤ r ≤ r′ ≤ 1, the br′ bias is a solution of (6) for
r′ and verifies that Re(br′) ≥ r′ ≥ r, and therefore Sp(br′) ≤ Sp(br), where
br is a solution of (6) for r. Furthermore, since Sp(b) is an increasing func-
tion of b, then br ≥ br′ and, since Re(b) is a decreasing function of b, then
Re(br) ≤ Re(br′).

Therefore, if 0 ≤ r ≤ 1, then Re(br) is an increasing function of r, and
Sp(br) is a decreasing function of r on the training set Z. This result can be
seen clearly in the experimentation given in the following section.

5. Experimentation

To the best our knowledge, there is no machine-learning approach for
classification problems with an associated optimization problem similar to
the problem proposed (6). Learning machines tend to strive to maximize the
recall and specificity metrics simultaneously. No lower bound is determined
for the recall measure on the training set. Hence, a comparative is carried
out with the standard SVM and the cost-sensitive SVM in order to analyse
the behaviour of the BSVM.

Experimentation is conducted on the following standard UCI datasets [2]:
Iris plants, Teaching assistant evaluation, Glass identification database,
Thyroid disease, protein localization sites (Ecoli), Bupa liver disorders,

11



Table 2: UCI datasets used in the experimentation. The number in parentheses indicates
the priority class. These datasets are ordered in terms of the number of instances.

datasets total priority brief description
Iris (2) 150 50 The best known dataset for classification
Tae (1) 151 49 Evaluations of teaching performance
Glass (1) 214 70 Motivated by criminological investigation
Thyroid (3) 215 30 Thyroid disease
Ecoli (6) 331 52 Localization site of protein
Bupa (1) 345 145 Medical diagnosis of livers
Japanese (1) 653 203 Relative to financial problems
Australian (1) 690 307 Relative to financial problems
Pima (2) 768 268 Medical diagnosis of diabetes
German (2) 1000 300 Relative to financial problems
Bank (1) 4521 521 Relative to financial problems

Japanese credit screening, Australian credit approval, Pima Indians di-
abetes, German credit data, and Bank marketing4. A summary of the
characteristics and a brief description of these data sets is shown in Table 2.

In order to apply the BSVM, datasets are split in the form of one class
(the priority class), indicated in the first column, versus the rest of the classes.
The priority class has been chosen with a lower number of examples than the
non-priority class, that is, there is an imbalanced ratio between positive and
negative instances [17, 19]. This selection is considered in order to better
illustrate the performance of the BSVM.

Three experiments are considered:

• In the first experiment, the performance of the BSVM with a lineal
kernel is analyzed.

• Next, a similar approach is carried out with a lineal kernel where the
priority is changed with respect to the former experiment in several
datasets.

• In the last experiment, the rbf kernel is used instead of the linear kernel.

4For this dataset only the quantitative features have been considered.
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The first experiment is carried out by following a similar experimental
framework to that used in [1] as suggested in [15]. Performance is evaluated
on SVM classifiers using the linear kernel, which is chosen as a baseline for
the empirical evaluation, and the regularization term C is explored on a one-
dimensional grid with the following values: C = [2−4, 2−3, . . . , 29, 210]. A
cost-sensitive SVM, denoted by CS-SVM, is employed to train an SVM on
the listed UCI datasets. The Matlab Bioinformatic toolbox is used where
the values for C+ and C− in (4) are calculated from C as,

C+ =
C ·N
2Npos

, C− =
C ·N
2Nneg

.

The criterion employed for the estimation of the generalized accuracy in
the standard SVM and the cost-sensitive SVM, and the specificity in the
BSVM is the three-fold (Nfold = 3) cross-validation on the whole set of
training data. This procedure is repeated 100 times in order to ensure good
statistical behaviour. The values considered for r, the minimum true positive
rate in the positive class for the training set, are set to 0.85, 0.90, and 0.95,
following a similar experimental framework for hypothesis testing. It is worth
noting that optimization problems (3), (4) and (6) are carried out on the
training set, whereas results are given on the test set, hence recall values on
the test set are not always greater or equal to the selected r bound when
training the BSVM.

The results obtained, given as percentages, are displayed in Table 3. Sev-
eral conclusions can be drawn from this empirical experimentation:

• It is observed that specificity values are greater than recall values in the
standard SVM (except for the Iris, Australian and German datasets).
As mentioned earlier, the standard SVM is inherently biased towards
the majority class when classifying imbalanced datasets. This is the
main difference between SVM and BSVM, since BSVM focuses on the
priority class regardless of whether it is the majority class.

• Due to the generalization capacity of BSVM, recall values on the test
set are about 85%, 90% and 95% for all datasets, respectively. Hence,
empirical results show that BSVM produces a good hypothesis in terms
of recall, by using the optimization problem of the same SVM. It should
be noted that recall value is greater (near to 95% of r) for the Thyroid
dataset, since this optimization problem is linearly separable and the
chosen bias is b∗r (7).
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Table 3: Average figures of the results of the experiment with a linear kernel.
datasets approach 100r recall specificity accuracy g-mean precision f-value
Iris (2) SVM *** 79.35 66.07 70.35 72.41 53.90 64.20

CS-SVM *** 68.21 81.49 72.64 74.14 88.51 76.63
85 82.02 62.86 69.31 71.80 52.48 64.00

BSVM 90 86.91 57.20 67.16 70.51 50.38 63.78
95 92.37 49.11 63.49 67.35 47.58 62.80

Tae (1) SVM *** 55.14 76.77 68.85 65.06 53.28 54.19
CS-SVM *** 61.90 75.04 66.17 67.76 84.05 70.93

85 82.78 39.98 53.63 57.53 39.85 53.80
BSVM 90 88.24 30.51 49.23 51.89 37.89 53.01

95 93.28 18.28 42.45 41.29 35.42 51.34

Glass (1) SVM *** 67.91 77.75 74.33 72.66 59.74 63.56
CS-SVM *** 81.90 65.47 70.84 72.93 53.92 64.75

85 80.40 68.40 72.28 74.16 55.29 65.52
BSVM 90 86.53 63.63 71.06 74.20 53.63 66.22

95 92.42 58.18 69.34 73.33 51.79 66.38

Thyroid (3) SVM *** 88.98 99.37 97.90 94.03 95.82 92.27
CS-SVM *** 93.33 98.37 95.88 95.01 90.14 90.10

85 93.70 98.64 97.89 96.14 91.78 92.73
BSVM 90 94.25 98.93 98.29 96.56 93.46 93.85

95 95.23 98.11 97.69 96.66 89.10 92.06

Ecoli (6) SVM *** 81.73 91.42 89.76 86.44 63.97 71.77
CS-SVM *** 91.61 87.35 88.01 89.39 57.70 70.53

85 82.63 91.80 90.29 87.09 65.26 72.92
BSVM 90 86.28 88.58 88.36 87.42 58.47 69.71

95 94.49 64.90 69.59 78.31 33.41 49.37

Bupa (1) SVM *** 45.46 83.81 67.70 61.73 67.06 54.19
CS-SVM *** 65.01 66.08 65.63 65.31 58.38 61.31

85 83.15 36.53 56.05 55.11 48.71 61.43
BSVM 90 87.59 26.11 52.02 47.82 46.22 60.51

95 92.93 16.24 48.52 38.85 44.58 60.25

Japanese (1) SVM *** 44.37 68.71 60.94 55.21 67.29 53.47
CS-SVM *** 54.33 58.70 57.34 56.25 37.27 44.10

85 80.59 28.24 44.49 47.70 61.97 70.07
BSVM 90 86.00 20.44 40.63 41.86 61.07 71.42

95 91.78 11.93 36.67 32.83 60.19 72.71

Australian (1) SVM *** 82.90 87.12 85.30 84.98 83.76 83.33
CS-SVM *** 92.42 79.91 85.48 85.92 78.74 85.00

85 81.71 88.91 85.71 85.23 85.52 83.57
BSVM 90 87.43 84.62 85.87 86.01 82.00 84.63

95 94.26 70.49 81.07 81.51 71.91 81.58

Pima (2) SVM *** 54.13 84.83 73.93 67.76 65.67 59.34
CS-SVM *** 70.65 77.78 75.29 74.04 63.16 66.58

85 83.93 63.37 70.60 72.93 55.12 66.54
BSVM 90 89.35 55.55 67.32 70.45 51.86 65.63

95 94.12 43.47 61.13 63.96 47.16 62.83

German (2) SVM *** 74.87 64.93 67.86 69.73 47.78 58.33
CS-SVM *** 71.96 71.86 71.89 71.86 52.36 60.56

85 82.22 58.06 65.28 69.09 45.65 58.37
BSVM 90 87.75 48.34 60.16 65.13 42.13 56.92

95 93.46 34.37 52.11 56.68 37.90 53.93

Bank (1) SVM *** 42.43 90.87 85.25 62.09 84.01 56.38
CS-SVM *** 66.92 82.97 81.12 74.49 33.89 44.97

85 84.50 66.56 68.63 75.00 74.07 78.94
BSVM 90 89.25 57.53 61.19 71.66 70.37 78.69

95 94.42 40.87 47.05 62.13 64.35 76.54
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• If the recall value is low for the initial SVM, then the ‘price to pay’
in order to improve this metric in the BSVM is a significant reduction
in the specificity. This reduction can be observed in the Tae, Bupa,
Japanese, Pima, and Bank datasets. Nevertheless, this does not con-
stitute a drawback since BSVM is specifically designed for problems in
which this balancce is not a critical point.

• The values for recall using BSVM are always greater than those using
standard SVM, for all datasets except in the Australian dataset for
BSVM with r = 0.85. In this case, it can be seen that the value of
specificity is greater with BSVM than SVM.

• It is clear that cost-sensitive SVM is better than SVM for the increase in
the recall metric (except for the Iris and German datasets). Neverthe-
less, the value for recall in certain datasets (Iris, Tae, Bupa, Japanese,
Pima, German, and Bank) can be considered poor in comparison with
BSVM.

• The best result for g-mean, precision and f-value metrics in each dataset
is indicated in bold in Table 3. As expected, BSVM produces the
optimal hypothesis in terms of recall without penalizing too much other
criteria, so that there is no model which is the best with respect to all
metrics. Hence, when the objective is the recall metric, then BSVM
with a high value of r is the best option in all cases.

Let us now turn our attention to the case where the priority between
classes is changed. Thus, in order to observe how priority affects metrics, a
similar experiment to that reported previously is carried out with the Iris,
Tae, Glass, Japanese and German datasets5. The results can be observed in
Table 4, where symbol “*” denotes that the considered class is a non-priority
class and the rest of the classes provide the priority class.

An initial observation, the priority class corresponds to the class with the
highest number of examples, that is, the experiment presented is not specially
addressed to manage imbalanced datasets. A number of conclusions can be
drawn:

5These datasets are chosen since their specificity values in Table 3 are the lowest for
the standard SVM.
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Table 4: Average figures of the results of the experiment for r = 0.85, 0.90, and 0.95 with
a linear kernel for the Iris, Tae, Glass, Japanese, and German datasets by changing the
priority between classes.

datasets approach 100r recall specificity accuracy g-mean precision f-value
Iris (2)* SVM *** 66.33 79.36 72.85 72.55 86.54 75.10

CS-SVM *** 80.85 68.81 72.76 74.07 88.17 76.88
85 82.70 55.76 69.23 67.91 78.90 80.75

BSVM 90 88.28 41.26 64.77 60.35 75.04 81.12
95 93.25 25.62 59.44 48.88 71.49 80.93

Tae (1)* SVM *** 78.00 52.49 65.25 63.99 83.24 64.38
CS-SVM *** 75.42 61.68 66.25 67.89 84.29 70.96

85 83.42 45.17 64.30 61.38 76.00 79.54
BSVM 90 88.36 34.40 61.38 55.13 73.71 80.37

95 93.25 21.53 57.39 44.81 71.21 80.75

Glass (1)* SVM *** 77.76 67.90 72.83 72.66 86.26 75.99
CS-SVM *** 65.32 81.67 70.66 72.74 88.30 74.79

85 81.49 65.14 73.32 72.86 82.78 82.13
BSVM 90 86.54 50.77 68.66 66.28 78.34 82.23

95 92.30 29.06 60.68 51.79 72.80 81.40

Japanese (2)* SVM *** 68.17 45.19 60.76 55.51 64.35 66.20
CS-SVM *** 58.48 54.50 57.25 56.26 74.02 65.34

85 82.53 30.26 66.28 49.97 63.20 71.58
BSVM 90 88.27 20.39 67.19 42.43 61.67 72.61

95 93.86 10.34 67.90 31.15 60.30 73.43

German (2)* SVM *** 67.72 71.67 69.00 69.79 50.60 57.92
CS-SVM *** 71.87 72.01 71.81 71.88 85.73 78.15

85 82.76 58.96 75.62 69.85 46.36 59.43
BSVM 90 88.23 48.58 76.32 65.47 42.37 57.25

95 93.84 31.01 74.98 53.95 36.83 52.90

• Results obtained with standard SVM and cost-sensitive SVM differ
from those in Table 3 since the training sets provided by the cross-
validation procedure are different. However, the performance values
are very similar, with no significant differences between them, that is,
the change of priority between classes exerts no noticeable effect.

• Values for specificity when using BSVM are smaller than or equal to
those provided in Table 3 (except for the Japanese dataset) since the
majority class is now the positive class.

• In certain cases (Glass, Japanese, and German datasets), accuracy us-
ing BSVM is better than for standard SVM because the size of the
region in the feature space H has been increased for the majority class
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(see Section 3) and therefore the number of successes increases.

• With respect to the g-mean, precision and f-value metrics, results are
qualitatively similar to those depicted in Table 3.

Finally, a third experiment is carried out on SVM classifiers using the rbf
kernel with σ (the width of rbf) and C being explored on a two-dimensional
grid: σ = [2−4, 2−3, . . . , 23, 24] and C = [2−4, 2−3, . . . , 29, 210].

The criterion employed for the estimation of the generalized accuracy
in the standard SVM and the cost-sensitive SVM, and the proximity6 be-
tween the recall and the threshold r in the BSVM is that of the three-fold
(Nfold = 3) cross-validation on the whole set of training data. This procedure
is repeated 100 times in order to ensure good statistical behaviour.

The results obtained, given as percentages, are displayed in Table 5. Cer-
tain conclusions can be drawn from this empirical experimentation:

• As it is well-known, the accuracy with an rbf kernel is usually better
than that with a linear kernel in standard and cost-sensitive SVM. With
respect to the recall metric, sometimes it is better with a linear kernel
(Tae, Japanese, German, and Bank datasets). With respect to the
specificity metric, except for German datasets, the rbf SVM is better
than the linear SVM.

• It can be seen that, with the Iris, Thyroid Ecoli and Australian datasets,
the value of the recall metric is high for all the approaches considered.
Nevertheless, BSVM is currently improving the other approaches for
the Japanese and Bank datasets.

• It can be observed that using the rbf kernel, the g-mean, precision
and f-value performance metrics for standard SVM have improved with
respect to the linear kernel.

• With respect to the BSVM, it can be seen that the same conclusions
are obtained with the rbf kernel and with the linear kernel.

6This criterion has been used since it is well-known that the rbf kernel in certain cases
leads to overfitting on the training set.
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Table 5: Average figures of the results of the experiment with an rbf kernel.
datasets approach 100r recall specificity accuracy g-mean precision f-value
Iris (1) SVM *** 95.20 96.01 95.69 95.60 92.27 93.71

CS-SVM *** 96.06 96.37 96.27 96.15 93.40 94.51
85 85.29 97.44 93.35 91.16 94.34 89.59

BSVM 90 89.48 97.69 94.90 93.50 95.10 92.20
95 95.08 87.58 90.03 91.26 79.29 86.47

Tae (1) SVM *** 45.19 85.81 72.16 62.16 60.48 51.73
CS-SVM *** 38.62 97.45 78.36 60.82 88.58 53.00

85 79.90 47.49 57.97 61.60 42.23 55.25
BSVM 90 84.35 32.20 49.09 52.12 37.41 51.83

95 89.28 22.60 44.17 44.93 35.66 50.96

Glass (1) SVM *** 70.69 90.06 83.60 79.79 77.56 73.96
CS-SVM *** 82.01 75.73 79.97 78.61 67.71 71.14

85 86.73 59.81 68.34 72.02 51.20 64.39
BSVM 90 89.36 44.82 59.19 63.28 44.05 59.01

95 93.18 52.37 65.64 69.86 48.74 64.00

Thyroid (3) SVM *** 89.22 98.89 97.53 93.93 92.89 91.02
CS-SVM *** 91.73 98.75 97.77 94.96 93.05 91.77

85 86.96 98.80 97.17 92.69 92.17 89.49
BSVM 90 89.67 98.76 97.53 94.11 92.17 90.90

95 94.78 98.35 97.87 96.55 90.31 92.49

Ecoli (6) SVM *** 85.76 97.66 95.75 91.52 87.23 86.49
CS-SVM *** 83.31 96.94 94.80 89.75 84.06 83.36

85 85.18 90.32 89.49 87.71 62.11 71.84
BSVM 90 89.51 75.67 77.85 82.30 40.68 55.94

95 94.28 73.87 77.10 83.46 40.21 56.38

Bupa (1) SVM *** 48.57 85.17 69.61 64.32 70.36 57.47
CS-SVM *** 67.17 74.06 71.17 70.39 65.47 66.14

85 83.88 28.92 51.93 49.25 46.11 59.50
BSVM 90 87.30 35.07 56.98 55.33 49.36 63.07

95 96.75 7.88 45.26 27.61 43.23 59.76

Japanese (1) SVM *** 02.56 98.04 68.34 15.85 37.14 04.80
CS-SVM *** 00.33 98.48 67.95 02.26 07.73 00.55

85 72.55 27.04 41.11 44.29 30.97 43.41
BSVM 90 76.77 29.31 44.00 47.44 32.88 46.04

95 84.79 19.98 40.09 41.16 32.34 46.82

Australian (1) SVM *** 92.26 79.81 85.33 85.81 78.55 84.86
CS-SVM *** 92.45 80.55 85.84 86.27 79.28 85.33

85 81.13 89.39 85.72 85.16 85.97 83.48
BSVM 90 88.29 84.58 86.24 86.41 82.11 85.08

95 94.27 72.70 82.31 82.79 73.46 82.58

Pima (2) SVM *** 61.22 81.57 74.45 70.67 64.03 62.60
CS-SVM *** 68.94 76.83 74.08 72.67 61.59 64.92

85 83.56 63.18 70.31 72.66 54.88 66.25
BSVM 90 88.90 56.24 67.65 70.71 52.13 65.72

95 94.12 45.70 62.60 65.58 48.16 63.72

German (2) SVM *** 28.55 93.05 73.66 51.55 63.77 39.45
CS-SVM *** 65.90 75.03 72.29 70.25 53.20 58.79

85 85.14 40.68 54.03 58.85 38.09 52.63
BSVM 90 89.89 33.40 50.32 54.79 36.65 52.07

95 96.48 07.49 34.19 26.88 30.89 46.80

Bank (1) SVM *** 00.66 99.61 88.21 08.14 18.07 01.28
CS-SVM *** 00.23 99.68 88.22 03.71 11.95 00.45

85 79.27 54.77 57.61 65.89 18.58 30.11
BSVM 90 87.07 43.30 48.32 61.40 16.67 27.98

95 93.40 25.61 33.42 48.91 14.06 24.43
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6. Conclusions

A post-processing technique for Support Vector Machines, called BSVM,
has been introduced to deal with datasets where one class, the positive class,
is considered more relevant than another class in binary classification prob-
lems. Hence, BSVM is designed for the case when it is non-critical to increase
the true positive ratio in exchange for an increase in the false positive rate.

By modifying the bias on the standard SVM, the aim of BSVM is, given
a fixed minimum value for recall, to maximize specificity on the training set.

Empirical results show that due to the generalization capacity of SVMs,
recall on the test set in the BSVM is close to the fixed level r, that is, BSVM
produces a good hypothesis in terms of recall.

Furthermore, the algorithm presented can easily be applied in practice in
order to address to real-world complexities, such as those faced by practi-
tioners with an interest in benefitting management.
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• An SVM’s post-processing strategy is introduced which is specially de-
signed to handle bi-classication problems where one class (positive) is
considered of greater significance than the other (negative).

• Maximizing the true positive rate (Recall) is of a higher priority than
improving the accuracy of the overall classifier.

• A post-processing technique is provided, such that, given a fixed value
for Recall, the true negative rate (Specificity) is maximized.
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