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Abstract

This paper presents a new approach based on Ant Colony Optimization (ACO)
to determine the trajectories of a fleet of Unmanned Air Vehicles (UAVs) looking
for a lost target in the minimum possible time. ACO is especially suitable for the
complexity and probabilistic nature of the Minimum Time Search (MTS) prob-
lem, where a balance between the computational requirements and the quality
of solutions is needed. The presented approach includes a new MTS heuristic
that exploits the probability and spatial properties of the problem, allowing our
ant based algorithm to quickly obtain high-quality high-level straight-segmented
UAV trajectories. The potential of the algorithm is tested for different ACO
parameterizations, over several search scenarios with different characteristics
such as number of UAVs, or target dynamics and location distributions. The
statistical comparison against other techniques previously used for MTS (ad hoc
heuristics, Cross Entropy Optimization, Bayesian Optimization Algorithm and
Genetic Algorithms) shows that the new approach outperforms the others.

Keywords: Ant Colony Optimization, Probabilistic Path Planning, UAVs,
Minimum Time Search

1. Introduction

In Minimum Time Search (MTS) problems, there are one or several targets
in unknown locations that need to be found as soon as possible. The objective
of the problem consists of maximizing the probability of finding the target at
the earliest, by wisely using the available information about the target locations5

and dynamics (provided by sources such as maps or witnesses). MTS belongs to
the wider search problem family, and its distinguishing feature is the importance
of time. It has many real world applications, ranging from the target location
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Figure 1: Two UAVs searching for survivors after an earthquake, where time is a critical
factor.

problems of the Second World War to current search and rescue operations,
wildlife monitoring or tactical reconnaissance [1, 2, 3, 4]. An example applica-10

tion, schematized in Fig. 1, is searching for survivors after natural disasters,
where the time of search is critical to find them alive.

In our case, the search is carried out by one or several Unmanned Aerial
Vehicles (UAVs) that have sensors capable of providing detection measurements
about the target. UAVs are used because their cooperation can significantly15

improve the efficiency of the search operation, as they are a great advantage in
scenarios with abrupt terrain or that imply certain dangers.

A probabilistic approach to the search problem enables to handle the uncer-
tainty sources of the problem and return optimized UAVs search trajectories.
As a consequence of the high complexity of the search problem (NP-hard, [5]),20

and in order to find high-quality high-level straight-segmented UAV trajecto-
ries in an appropriated time, the problem is often simplified and tackled with ad
hoc heuristics [6] or generic approximated optimization methods such as Cross
Entropy Optimization (CEO, [7]), Bayesian Optimization Algorithms (BOA,
[8]) and Genetic Algorithms (GA, [9]). On one hand, the ad hoc heuristics25

are especially designed to construct high-level UAV trajectories that exploit the
intrinsic properties of search problems. On the other one, the generic opti-
mization methods achieve overall good UAVs trajectories by 1) sampling the
distribution learned from promising solutions identified, evaluating them with
an objective function, in previous iterations of the approach (CEO and BOA) or30

by 2) combining them (GA). Hence, the existing approaches for tackling MTS
exploit problem specific information either directly (using specific heuristics) or
indirectly (by means of the objective function).

For this reason, this work presents a new approach based on Ant Colony
Optimization (ACO, [10]), a technique that naturally combines the learning35

capabilities of the pheromone trails left by overall good UAV trajectories (ac-
cording to the objective function) and the benefits of a problem specific heuris-
tic. Besides, ACO has already been used to tackle successfully other high-level
straight-segmented UAV trajectory optimization problems (e.g. to minimize
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the threat exposure and travelled distance to a final point [11], and the dis-40

tance required to cover a given area [12]) or the MTS problem with low-level
smooth-curved UAV trajectories [13].

Our new approach uses a new heuristic function especially designed for MTS
that enables ACO to initially generate high-quality solutions and accelerates the
convergence of the algorithm. This is a great benefit in our problem, where a45

balance between the quality of solutions and the computational cost is needed.
Besides, two different encodings are analyzed: one closer to the original ACO
[10] and the other to the codification used by other search algorithms [7, 8, 14,
15, 16, 17]. Finally, in order to show the capabilities of the new approach, the
performance of both codifications is analyzed over different search scenarios and50

statistically compared against several existing MTS approaches that generate
solutions either exploiting problem specific properties (ad hoc heuristics) or
employing the information generated/learned from previous iterations of the
optimization method (CEO, BOA and GA). By contrast, our new algorithm
combines the benefits of the heuristic specifically introduced in this paper for55

the MTS problem and of its supporting optimizer (ACO).
In summary, the contributions of this paper are: solving the MTS problem

using ant colony optimization techniques to obtain high-level trajectories for
the searching UAVs and the proposal of a new heuristic for MTS that rates the
possible actions of the UAVs based on their locations and on the probability60

information about the target location.
This paper is organized as follows. In Section 2 the formulation of the MTS

problem is introduced. Next, in Section 3 the state of the art of the closest
related works is analyzed. Then, in Section 4 the proposed MTS algorithm
based on ACO is presented. Later, in Section 5 its performance with different65

parameterizations over several search scenarios is analyzed and compared to
other approaches previously used for MTS. And finally, in Section 6 the main
conclusion of the work and some open research lines are discussed.

2. Formulation of the MTS Problem

This section introduces the notation and probability models of the search70

problem, presents the objective function proposed in [8] for MTS, and illustrates
its use over a simplified scenario.

2.1. Notation and Preliminaries

In MTS, the exact target location is unknown, but it can be represented
with a random variable νt. The search problem starts with the assumption of75

a probability distribution function that models the target location information
available before the search starts. This probability function can be represented
with a grid-based probability map (belief map, b(ν0)), where each cell corre-
sponds to a discretization of the search area and has an associated probability
that the target is present in it [6, 7, 8, 9, 18]. In order to construct the initial80

probability map, the search area is discretized into a grid Ω of wx ∗ wy cells
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(i.e. Ω = 1 : wx ∗ wy), and a probability of target presence is given to each
cell (based on the available information, obtained from sources such as maps,
witnesses or intelligence). As it is assumed that the target is inside the search
area, the initial probability map satisfies

∑
ν0∈Ω b(ν

0) = 1.85

A bayesian approach is typically used to keep track of the target probability
function as time passes and the sensors of a fleet of U different UAVs make
observations of the search region. The bayesian approach allows to start from
the prior target belief b(ν0) and to update it with the sensor measurements ztu
(obtained at time t by the u-th UAV) through a sensor model P (ztu = D|νt, stu),
which gives the probability of target detection (ztu = D) conditioned by the
target and the UAV positions (νt and stu). Besides, by considering only target
detection and no detection measurements (i.e. ztu = D and ztu = D), P (ztu =
D|νt, stu) = 1 − P (ztu = D|νt, stu). In addition, in the case that the target is
not static, the belief is also updated considering the target dynamic information
through a target motion model P (νt|νt−1), which represents the probability that
the target moves from one cell νt−1 to another νt. This method, called Recursive
Bayesian Estimation (RBE, [19]), iterates through two steps and updates the
belief with the probabilistic information about the target motion (prediction
step, Eq. (1)) and the sensor measurements (update step, Eq. (2)):

b̂(νt)=
∑

νt−1∈Ω

P (νt|νt−1)b(νt−1) (1)

b(νt) =
1

ξ

∏
u=1:U

P (ztu|νt, stu)b̂(νt) (2)

where ξ is just a normalization factor used to ensure that the target presence
belief inside the area is always one (i.e.

∑
νt∈Ω b(ν

t) = 1). Therefore, with
the use of the sensor and target dynamic models, RBE forecasts and updates
the probability map with the measurements z1:t

1:U obtained by the UAVs while
following the search trajectories s0:t

1:U .90

2.2. MTS Objective Function

The search problem can be formulated as an optimization problem whose
solutions are the UAVs search trajectories. One of the most commonly used
utility functions to evaluate the search trajectories of the UAVs is to maximize
the cumulative probability of finding the target (in short, the probability of
target detection, Pd). However, maximizing the chances of finding the target
does not guarantee to minimize the time to localize it [8]. Hence, in the MTS
problem, which can be considered as a subproblem of the search problem family
where time is critical, the expected time of detection (ET, [7, 8, 20]) is usually
optimized. The ET can be computed, using Eq. (3), adding up to infinity the

probability P (D
1:t

1:U |s0:t
1:U ) of no detecting the target up to each time step.

ET (s0:∞
1:U ) =

∞∑
t=1

P (D
1:t

1:U |s0:t
1:U ) (3)
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The probability of no having detected yet the target at time t (P (D
1:t

1:U |s0:t
1:U ) ,

1− P (∪t=1:N,u=1:UD
t
u|s0:t

1:U ) = 1− Pd(s0:t
1:U )), can be expressed, according to [8]

and as Eq. (4) states, in terms of the unnormalized probability map b̃(νt). This
last function is computed, according to Eqs. (5) and (6), combining two steps
similar to those of the RBE (Eqs. (1) and (2)), but: 1) without a normalization
factor and 2) assuming no target detection (i.e. with ztu = D). For the initial
case (at t = 0) of the recursive process stated by Eqs. (5) and (6), b̃(ν0) = b(ν0).

P (D
1:t

1:U |s0:t
1:U ) =

∑
νt∈Ω

b̃(νt) (4)

b̄(νt)=
∑

νt−1∈Ω

P (νt|νt−1)b̃(νt−1) (5)

b̃(νt)=
∏
u=1:U

P (ztu = D|νt, stu)b̄(νt) (6)

Note that the values of the summation terms for calculating ET in Eq. (3)

are bounded (0 ≤ P (D
1:t

1:U |s0:t
1:U ) ≤ 1) and decrease as t grows (P (D

1:t

1:U |s0:t
1:U ) ≤

P (D
1:t−1

1:U |s0:t−1
1:U )). Besides, they reach a null value at the first time step where

P (D
1:t

1:U |s0:t
1:U ) = 0. This happens because Eq. (6) lacks of normalization term95

and because the values of the unnormalized probability map b̃(νt) decrease in

the cells νt under each UAV location stu . Moreover, P (D
1:t

1:U |s0:t
1:U ) ≈ 0 when the

sensors have gathered almost all the probability along s0:t
1:U , and therefore the

remaining probability of no having detected the target yet becomes negligible.
Nevertheless, the rapidly growth of number of possible solutions of the search

problem as the length of the trajectories increases derives in the optimization
of trajectories of limited horizon N . This approach is taken in several search
probability problems (e.g. [7] or [9]), and in the case of minimizing the ET, the
truncated version presented in Eq. (7) is often used ([7, 8, 18]) due to the de-
creasing behavior of its summation terms. From now on, we would indifferently
refer to ET or its truncated version.

ET (s0:N
1:U ) =

N∑
t=1

P (D
1:t

1:U |s0:t
1:U ) (7)

Finally, the search trajectories can be determined either by the sequence100

of visited cells s0:N
1:U , or by the corresponding sequence of actions c1:N

1:U and the
UAV initial positions s0

1:U . Moreover, this work considers that the UAV moves
from one cell to its neighbors following one of the 8 cardinal directions, allowing
ACO to determine UAV straight-segmented trajectories based on sequences of
high-level control actions (as in [6, 7, 8]).105

Summarizing, the problem at hand consists in minimizing the expected tar-
get detection time of trajectories of fixed length (defined by a sequence of N
high-level control actions) of a fleet of U UAVs. The ET of the possible trajec-
tories (in our case, codified by the discrete values of the 8 cardinal directions) is
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Search problem:
1 UAV, s01 = 1
wx = wy = 3

N = 4

Optimal solution:
c1:4
1 = {3, 5, 3, 5} or
s0:4
1 = {1, 4, 5, 8, 9}

ET = 2

(a) b(ν0) (b) b̃(ν4) and c1:4
1

Figure 2: Example search scenario. a) Initial probability map. b) MTS optimal solution.

obtained adding up the unnormalized belief at each time instant (Eqs. (7) and110

(4)), and the unnormalized belief is updated considering the target probability
motion model and UAV no detection probability function with the recursive
process of Eqs. (5) and (6).

2.3. Illustrative Example

To illustrate and evaluate our approach we use, as in [7, 8, 9], the ideal sensor115

model described by Eq. (8), which considers a detection probability equal to
one when the UAV and the target are over the same cell and equal to zero
otherwise. Hence, P (ztu = D|νt, stu) = 0 in the cell νt overflown by the UAV,
and P (ztu = D|νt, stu) = 1 otherwise. However, more complex sensor models like
the radar in [4] or the model with false negatives in [16] could also be considered.120

P (ztu = D|νt, stu) =

{
1 νt = stu
0 νt 6= stu

(8)

The selected example is shown in Fig. 2, where the search area is discretized
into a 3 ∗ 3 grid and one UAV starts the search at s0

1 from cell 1 (the cell
indexes are displayed on the upper left corner of each cell). Fig. 2(a) shows the
initial belief b(ν0), whose values, written in the centre of the cell and indicated
with a colormap (where warmer colors are associated to higher target presence125

probabilities and colder colors to lower probabilities), add up to 1 (
∑
b(ν0) = 1).

Figure 2(b) shows with white arrows the optimal trajectory of length N =
4 for a unique UAV that carries an ideal sensor and its corresponding final
unnormalized probability map b̃(ν4). Finally, the compass rose at the right
shows the actions encoding used for the eight cardinal directions.130

The UAV trajectory can either be described as the sequence of cells s0:4
1 =

{1, 4, 5, 8, 9} or by the initial position s0
1 = 1 and cardinal actions c1:4

1 =
{east, south, east, south} = {3, 5, 3, 5}. As previously explained, the expected
time of a trajectory is computed adding (with Eqs. (7) and (4)) the remaining
unnormalized belief at each time instant, which is updated (with Eqs. (5) and135
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(6)) using the target dynamic and sensor probability models. In this example,
after the first no detection measurement at t = 1, the unnormalized belief at
cell i = 4 (under the UAV s1

1 location) it set to zero, so
∑
ν1∈Ω b̃(ν

1) = 0.75.
Next, as the target is static, the unnormalized belief is not redistributed, and
the following measurement at t = 2 makes b̃(ν2) at cell i = 5 equal to zero,140

and
∑
ν2∈Ω b̃(ν

2) = 0.55. Following the same procedure, in the third time step

b̃(ν3 = 8) = 0 and
∑
ν3∈Ω b̃(ν

3) = 0.4, and in the fourth time step b̃(ν4 = 9) = 0

and
∑
ν4∈Ω b̃(ν

4) = 0.3. For these reasons, the final unnormalized belief of the
overflown cells has became zero and the expected detection time for the optimal
trajectory is ET (s0:4

1 ) = 0.75 + 0.55 + 0.4 + 0.3 = 2.145

It is worth noting that for this simple example, the number of possible solu-
tions is low and therefore the optimal solution can be easily computed. However,
neglecting the forbidden actions that lead the UAVs out of the search area, the
number of possible solutions/trajectories increases exponentially with the num-
ber of actions to optimize as 8N∗U . Moreover, as the number of cells in the150

scenario (wx ∗ wy) grows, the computational time required in the belief update
process also increases. Consequently, for more complex scenarios, the calcula-
tion of all possible trajectories in order to choose the optimal one (the one with
the lowest ET) becomes intractable, and heuristics/optimization algorithms for
discrete decision variables (e.g. actions to perform or sequence of visited cells)155

are generally used.

3. Related Work

In this section we discuss different existing approaches and formulations of
the search problem. This state of art is not exhaustive, as it is a compilation
of the works that have motivated this paper. Therefore, we focus on search160

works that consider high-level UAV trajectories specified with discrete decision
variables as a sequence of adjacent cells or as a sequence of the actions defined
by the cardinal directions, leaving out other works such as [18, 19, 20] that
do not share those properties. Besides, the selection ranges from the historical
background of our work to its updated counterparts.165

The comparison in this section shows the main differences among our work
and others, taking into account five properties, explained below and represented
in the columns of Table 1, where works are sorted by publishing date.

Objective Function indicates the criterium optimized, which directly de-
pends on the specific search problem tackled by each work. We are specially170

interested in MTS approaches, highlighted by the gray background on the sec-
ond column of the table. Within this group, the algorithms in [7, 8] and ours
optimize the expected value of the required time to find the target (ET), while
[6] evaluates the solutions by computing the mean of the finding times (Mean
Time To Find, MTTF) obtained in several Monte Carlo simulations that start175

with a different initial target position sampled from the initial belief. A differ-
ent search strategy consists on maximizing the probability of target detection
(Pd, [9, 14, 23]). However, maximizing Pd does not imply to find the target in
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Table 1: Search works comparison table.

Work
Obj.

Function
Multi-
Agent

Moving
Target

Optimization
Method

Optimality
Ad hoc
Heur.

[14] Pd X POMDP-DP Global(N)

[15] Pd+Cov. X Q-learning Local(2)+Heur(N)

[9] Pd GA/Greedy/LHC Local(N)

[7] ET/DTR X X CEO Local(N)

[16] Pd X MIQP Local Approx.(N)

[8] ET/DTR X X BOA Local(N)

[21]
TSP for
b̄(νt) >
threshold

X NN/GA Local Approx.(N)

[22]
Pd +

Entropy
+ Coop.

X X MPC Local Approx.(N)

[17] Pd X MIQP Local Approx.(N)

[6] MTTF Local Approx. X

[23] Pd X BILP Local Approx.(N)

This work ET X X ACO Local(N) X

minimum time, as this objective function does not take into account the time
order of the measurements [7, 17]. For this reason, the intermediate alternative180

approach in [7, 8] temporary discounts the probability of detection (Discounted
Time Reward, DTR), giving more importance to the probability collected by
the earlier measurements. Finally, the strategy in [15] maximizes a linear com-
bination of the probability of detection (Pd) and a Coverage (Cov.) criterium;
the method in [22] optimizes a linear combination of Pd, the entropy of the envi-185

ronment and a fleet Cooperation (Coop.) criterium; and the approach in [21] set
it up as a Traveling Salesman Problem (TSP) among the cells of the searching
region where the unnormalized belief b̄(νt) is bigger than a given threshold.

Multi-Agent points out whether the search algorithm is applicable for sev-
eral searchers [7, 8, 15, 16, 17, 21, 22] or for a unique UAV [9, 6, 14, 23]. In190

general, a multi-agent approach allows the algorithm to benefit from a greater
capability to overfly bigger areas in less time, and therefore it usually provides
more efficient solutions.

Moving Target denotes if the algorithm can consider the target dynamics.
The algorithms in [7, 8, 14, 23, 22] and this work assume a Markovian target195

motion model (where the current target state is only dependent on the previous
state), while the approaches in [9, 6, 15, 16, 17, 21] search for a static target.

Optimization Method shows the variability in the techniques used to
solve the search problem. Due to the high complexity of the problem, it is com-
monly solved with approximated methods such as Genetic Algorithms (GA,200

[9, 21]), Cross Entropy Optimization (CE0, [7]), Bayesian Optimization Algo-
rithm (BOA, [8]), Reinforcement Learning Techniques (Q-learning, [15]), Greedy
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Heuristics [9], or Nearest Neighbors (NN, [21]). Alternatively, [14] implements
a Partially Observable Markov Decision Process (POMDP) Dynamic Program-
ming (DP) solution, while [16, 17] formulate the problem as a Mixed-Integer205

Linear and Quadratic Programming (MIQP), [22] as a Model Predictive Con-
troller (MPC), and [23] as a Binary Integer Linear Programming (BILP). Fi-
nally, [6] does not apply any optimization method, but it evaluates (via Monte
Carlo simulations) the expected time of detection from the UAV trajectories ob-
tained with several deterministic techniques (e.g. following spiral trajectories)210

and greedy heuristics (e.g. moving towards the cell of maximum probability)
designed ad hoc for search problems with static targets and a unique UAV.

Optimality (Horizon) indicates if the solution is local or globally opti-
mal, and the optimization horizon N . In this regard, it is worth noting that the
approach in [14] is the unique that assures the global optimum in the horizon215

window, but it is only applicable to small search scenarios due to its high compu-
tational time. The majority of the solutions, not globally optimal in the horizon
window, are classified as locally optimal (Local, as a consequence of the nature
of the algorithms [7, 8, 9, 15]) or as locally approximated (Locally Approx., due
to the approximations performed in the objetive function [16, 17, 21, 22, 23] or220

used to construct the solutions [6]). Finally, [15] is local optimal for horizons of
two steps, but the evaluation of the solutions includes a heuristic that considers
the following N time steps, with the purpose of improving the solutions of the
algorithm.

Ad hoc Heuristic points out if a heuristic specially designed for the search225

problem is used to build the solutions. While most of the studied works [7, 8,
9, 14, 15, 16, 17, 21, 22, 23] use well known techniques in order to optimize a
search related objective function, they do not consider any constructive heuris-
tic related with the problem during the generation of their solutions. On the
contrary, the ant-colony-based algorithm employed in this work considers the230

information provided by a new MTS heuristic function in the generation pro-
cess of its solutions. Finally, [6] is classified as an approach with an ad hoc
constructive heuristic because it contains a compendium of methods (e.g. spiral
trajectories) specially suitable for search scenarios, while the heuristic used in
[15] is not considered within this category as it is not used for generating the235

algorithm solutions, but as a part of the optimization objective function.
In short, our method is a new efficient suboptimal approach especially tar-

geted for MTS problems with moving targets and searching UAVs following
straight-segmented trajectories, which benefits from the use, within the ACO
framework, of a new heuristic designed ad hoc for MTS.240

Finally, it is worth noting that a MTS planner supported by ACO-R ([24],
an ant colony optimizer for problems with Real-coded decision variables, which
does not have the heuristic support of the approach used in this paper) has
been recently published for optimizing the detection time of a fleet of UAV fol-
lowing smooth-curved trajectories [13]. That method can be used for obtaining245

low-level UAV trajectories at the expenses of a higher computational time (re-
quired to perform, in the evaluation step of the objective function, the realistic
simulations that generate the UAV trajectories given the low-level real-coded
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actions). Hence, the alternative presented in this paper is targeted to quickly
obtain high-level trajectories for UAVs capable of following straight-segmented250

trajectories (e.g. quadrotors). Besides, these types of trajectories can undergo
a smoothing second-optimization step to make them flyable by other types of
UAVs.

4. Ant Colony Optimization for Minimum Time Search

In this section, we introduce the main characteristics of our new MTS al-255

gorithm based on ACO, explain its two different encodings, detail the methods
used to construct the pheromone table, present the heuristic function that we
have developed for the MTS problem, describe the process followed to build new
solutions, and come out with the pseudo-code of the MTS ACO-based planner.

4.1. Introduction to Ant Colony Algorithms.260

ACO is inspired by the foraging activity of natural ants, capable of finding
through pheromone deposit the shortest path between a food source and their
nest. It is an iterative algorithm that uses a set of artificial ants to construct,
in each generation, M solutions combining the information of a problem spe-
cific heuristic with the information learned from previous iterations, saved in265

a pheromone table. When certain stop condition is reached, ACO returns the
best solution (ant trajectory) found so far.

The first ant colony based algorithm (Ant System, [10]) was originally ap-
plied to solve the Traveling Salesman Problem (TSP): finding the shortest closed
loop that traverses once a group of cities. Since then, different variants of ant270

algorithms have successfully been used to solve a variety of problems, such as
quadratic assignment [25], generating test data for software [26], or several path
planning problems with fixed initial and final destinations such as optimizing
the trajectory length [12] or the threat exposure [11]. In this regard, it is
worth noting that although the two last examples are close to our problem, in275

MTS only the initial UAVs locations are fixed and the objective function is a
probabilistic-based function.

Two more recent popular variants of ACO, Max-Min Ant System (MMAS,
[27]) and Ant Colony System (ACS, [28]), maintain the basic idea of the original
Ant System, but implement different methods to update the pheromones with280

the purpose of avoiding stagnation (i.e. that all the ants select the same path and
stop exploring the search space). We use MMAS to solve our problem because
we can benefit from a generation in parallel of the ants tours, which is not
possible with the ACS variant because it has a local pheromone update rule that
changes the pheromones after each ant step. Besides, in MMAS, maximum and285

minimum pheromones bounds are set with the purpose of limiting the relative
difference between the pheromones trails, in order to avoid stagnation.
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4.2. Solving MTS with MMAS.

In addition to the design of a MTS specific heuristic, there are other aspects
to take into account when solving MTS with ACO, which differentiate our MTS-290

ACO algorithm from the original TSP-ACO implementation. First, while in the
TSP implementation the initial positions are set at random, in MTS all ants
start from the UAVs initial positions. This happens because in TSP the tours are
circular and the initial position is not important, while in MTS we want to obtain
the search trajectories that commence at the UAVs initial positions. This is a295

common characteristic of the path planning problems, where the agents initial
positions are also given [11, 12]. Second, while in TSP all cities are connected,
in MTS the nodes (map cells) are connected according with a grid and each
UAV/ant can only move from its current node to its neighbors. Therefore, in
each step of an ant tour we only have to compute the transition rule for the300

connections allowed by the eight possible actions.
In addition, we propose and analyze two different encodings of the MTS-

ACO algorithm: ACO-NODE and ACO-TIME. In ACO-NODE encoding, the
pheromones learn the best actions to perform at each node, while in ACO-TIME
the pheromones learn the best actions to perform at each time step. Therefore,305

the first type of encoding is closer to the TSP node-to-node codification, while
the second is closer to earlier estimation distribution algorithms implementa-
tions for MTS such as CEO [7] or BOA [8].

4.2.1. Pheromones.

The pheromone deposit is a positive feedback mechanism that enables ants310

to learn the best tours from the trails followed by previous ants.
In ACO-NODE, the pheromone table learns the best actions to perform

at each node by each UAV, so τNODE (the pheromone table of ACO-NODE)
is a 3D matrix of size 8 ∗ (wx ∗ wy) ∗ U , whose elements τNODE[a, i, u] are
distributed in rows that correspond to each action (a), columns to each cell of315

the map (i), and depth to each UAV (u). In ACO-TIME, the pheromone table
learns the best actions to perform at each time step by each UAV, so τTIME

(the pheromone table of ACO-TIME) is a 3D matrix of size 8 ∗ N ∗ U , whose
elements τTIME[a, t, u] are distributed in rows that correspond to each action
(a), columns to each time step (t), and depth to each UAV (u).320

The pheromone update process of MMAS takes place at the end of each
algorithm iteration, and consists of a pheromone reinforcement step (Eq. (9) for
ACO-NODE and Eq. (11) for ACO-TIME), a pheromone evaporation process
(Eq. (10) for ACO-NODE and Eq. (12) for ACO-TIME), and a bounding
round.325

• ACO-NODE:

τNODE[∗ctu,
∗st−1
u , u]← τNODE[∗ctu,

∗st−1
u , u] +

1

ET (∗s0:N
1:U )

(9)

τNODE[a, i, u]← (1− ρ) · τNODE[a, i, u] (10)
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• ACO-TIME:

τTIME[∗ctu, t, u]← τTIME[∗ctu, t, u] +
1

ET (∗s0:N
1:U )

(11)

τTIME[a, t, u]← (1− ρ) · τTIME[a, t, u] (12)

where ∗ctu and ∗stu stand for the action and location (of the u-th UAV at time t)
of the best solution of the current algorithm iteration, and ρ is the evaporation
rate parameter. Hence, on one hand, Eq. (9) shows that the pheromone values
corresponding to the best solution of an iteration (∗s0:N

1:U ) are intensified by a
factor inversely proportional to its expected time, i.e. higher reinforced as bet-330

ter (lower) ET. Therefore, in ACO-NODE the corresponding actions ∗ctu applied
at ∗s0:N

1:U are intensified. On the other hand, Eq. (11) of ACO-TIME shows how
the corresponding actions ∗ctu of each time-step (∀t = 1 : N) are intensified.
Besides, in contrast to the pheromone reinforcement that only depends on the
best solution, the pheromone evaporation with ρ ∈ (0, 1) in Eqs. (10) and (12)335

is applied to the whole pheromone matrix. Finally, although MMAS imposes
pheromone bounds [τmin, τmax] to all the pheromones in order to avoid stagna-
tion, we set some null values in the pheromone table of ACO-NODE to avoid
the ants from choosing the forbidden actions that lead the UAVs outside the
search zone.340

To show how the best trajectories are learned, the pheromone tables of
the example of Fig. 2 obtained after 2 iterations of both ACO variants are
represented below. The pheromone elements that correspond to the optimal
solution are highlighted: in ACO-TIME the emphasized rows in each column of
τTIME directly encode the optimal sequence of actions (∗c1:4

1 = {3, 5, 3, 5}), while345

in ACO-NODE, the emphasized elements encode which action (row) should be
taken in each node (column) of the trajectory ∗s0:3

1 = {1, 4, 5, 8}. The high
values of the highlighted elements indicate how the optimal path has already
been learned for this simple scenario.

τNODE =

nodes

0 0.48 0.48 0 0.48 0.48 0 0.48 0.48

0 0.48 0.48 0 0.48 0.48 0 0 0

0.73 0.48 0.48 0.48 0.73 0.48 0 0 0

0.27 0.01 0 0.57 0.32 0 0 0 0

0.48 0.48 0 0.73 0.48 0 0.48 0.73 0

0 0 0 0.48 0.48 0 0.48 0.48 0

0 0 0 0.48 0.48 0.48 0.48 0.48 0.48

0 0 0 0 0.48 0.48 0 0.48 0.48



a
ctio

n
s

350
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τTIME =

time

0.48 0.48 0.48 0.48

0.48 0.48 0.48 0.48

0.73 0.48 0.73 0.48

0.48 0.48 0.48 0.48

0.48 0.73 0.48 0.73

0.48 0.48 0.48 0.48

0.48 0.48 0.48 0.48

0.48 0.48 0.48 0.48


a
ctio

n
s

Both codifications have advantages and disadvantages. On one hand, in each
ant step of ACO-TIME, the actions that take the ants outside the search region
have to be eliminated, while in ACO-NODE we ensure that the trajectories
are always valid by fixing to 0 the pheromones corresponding to the actions355

that will lead the ants outside the search region. On the other hand, as the
number of actions to optimize N is usually less than the total number of cells,
the pheromone table in ACO-TIME is more compact and requires less memory.

4.2.2. Heuristic.

For generating new solutions, ACO combines the information learned in360

previous iterations with the information given by a problem specific heuristic.
The heuristic we propose for MTS is a spatial function that depends on the

current position stu of the ant/UAV and on the current predicted unnormalized
belief b̄(νt). The calculation of the heuristic value for action a of UAV u located
at node i at time t, given by Eq. (13), can be divided in two steps. First,365

the current predicted unnormalized belief b̄(νt) is linearly weighted taking into
account the distance from the cells of the map j to the current UAV/ant at
cell i, giving higher values to the cells that are closer to the UAV. Second, the
heuristic value η(a, i, t) associated to action a of the UAV at cell i at time t is
obtained adding up the values of the weighted unnormalized belief contained370

in the associated triangle(a, i, l). This triangle is defined by the perpendicular
bisector associated to action a starting at cell i and by length l=N−t. In this
way, the heuristic function gives higher values to the actions that point towards
the highest and closer probability areas. Moreover, it considers only the cells
that are reachable from the UAV, that is, the cells that are not further that375

N−t.

η(a, i, t) =
∑

j∈triangle(a,i,N−t)

f(distance(i, j))b̄(νt = j) (13)

To better explain the heuristic we use the search scenario of 10 ∗ 10 cells
of Fig. 3(a), where b̄(νt) has four high probability areas and the UAV location
stu = i is in the center of the arrows that represent the eight possible actions. Fig.
3(b) shows the distance weighted belief and Fig. 3(c) the associated triangles380

for each of the eight possible actions. After adding up the weighted probabilities
of the cells j ∈ triangle(a, i,N− t), the highest heuristic value is given to action

13



(a) b̄(νt) (b) Distance weighted b̄(νt) (c) triangle(a, stu, N− t=4)

Figure 3: Heuristic sketch.

4, followed by action 1 and action 8. That is, η(4, stu, t) > η(1, stu, t) because
the triangle of action 4 includes the highest probability zone, and η(1, stu, t) >
η(8, stu, t) because the probability area included in the triangle of action 1 is385

closer to the UAV position, and thus it has a higher weight. Finally, the heuristic
values for the rest of the actions are equal and the probability area at the bottom
of the map is out of reach for the UAV, and thus it is not taken into account in
any of the heuristic values.

4.2.3. Solutions construction.390

The M artificial ants of an ACO iteration obtain for each UAV their action
sequence (c1:N

u ) combining the information from the heuristic and from the
pheromones.

To do it, the actions are sampled according to the probability rule in Eq.
(14) for ACO-NODE+H (ACO with NODE encoding plus Heuristic) and in Eq.395

(15) for ACO-TIME+H (ACO with TIME encoding plus Heuristic), which re-
turn the probability that the action a should be chosen at time step t for UAV u.
Note that the difference between both equations is due to the fact that in ACO-
NODE+H the pheromone table τNODE contains the previous learned informa-
tion about the best actions to perform at each node, and in ACO-TIME+H the400

pheromone table τTIME contains the information learned about the best actions
to perform at each time step.
• ACO-NODE+H :

p(a, t, u) =
(τNODE[a, stu, u]) α (η(a, stu, t))

β∑
a=1:8 (τNODE[a, stu, u]) α (η(a, stu, t))

β
(14)

• ACO-TIME+H :

p(a, t, u) =
(τTIME[a, t, u]) α (η(a, stu, t))

β∑
a=1:8 (τTIME[a, t, u]) α (η(a, stu, t))

β
(15)

Eqs. (14) and (15) state that actions with higher pheromones and heuristic
values are more likely to be chosen by the ants. Moreover, their parameters α
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and β control the relationship between the pheromone and heuristic influence.405

Finally, by making β = 0, we can disable the heuristic to create two variants
of ACO without heuristic (ACO-NODE and ACO-TIME), which only use the
pheromones trails to determine the best UAVs trajectories for MTS. And by
making α = 0, we can disable the pheromones effects of both encodings to
create one variant of ACO without pheromones (ACO-H), which only uses the410

heuristic to determine the best UAVs trajectories for MTS.

4.3. MTS ACO-based Planner

This section introduces our planner in an algorithmic form (detailing the
pseudo-code of ACO-NODE+H and highlighting the modification required for
ACO-TIME+H) and analyzes their computational complexity.415

4.3.1. MTS ACO-NODE+H Planner

The inputs, steps, and outputs of the proposed MTS planner for the node
encoding with heuristic are presented in Algorithm 1, where we extend the nota-
tion previously used in the paper with the following elements. On one hand, bold
subindexed variables (sm, cm,ETm) respectively stand for the whole trajectory,420

actions sequence and ET obtained by each antm in an iteration of the algorithm.
On the other one, bold superindexed variables (ibs,ibc,ibET ,gbs,gbc,gbET ) rep-
resent the information of the best solution of each algorithm main iteration
(iteration best, ib) or of all iterations (global best, gb).

The planner inputs (requirements) are: initial positions of the UAVs s0
1:U ,425

number of control actions of the trajectories N , probability functions (target ini-
tial probability map P (ν0), target dynamic model P (νt|νt−1) and sensor model
P (ztu = D|νt, stu)), and MMAS parameters (number of ants M , pheromone in-
fluence α, heuristic influence β and evaporation rate ρ). The planner outputs are
the best trajectory found by the algorithm (gbs) and its corresponding expected430

time of detection (gbET ).
The steps of the algorithms are the following. It starts initializing the global

best variables (gbs,gbc,gbET ) and the pheromone table (τNODE, nullifying the
values of the pheromones corresponding to the actions that lead the UAVs out-
side the search area). Within the main iteration loop (lines 3 up to 27), M435

solutions/ants are constructed (line 13) step by step combining (line 12, Eq.
(14)) the information obtained by the heuristic function (line 11, Eq. (13))
and the pheromones. Besides, the unnormalized belief b̃(νt) is updated with
the target motion (line 8, Eq. (5)) and sensor no-detection measurements (line
16, Eq. (6)) as the value of b̄(νt) is required to compute the heuristic function440

(line 11). Moreover, in line 17 we take advantage of this calculation to compute
the ET of the solutions by iteratively adding up each of its summation terms
(Equations (4) and (7)), instead of obtaining the ET once the whole trajectory
is available at line 19. In other words, in order to reduce the computational
cost of the algorithm, we have interlaced the operations required to construct445

the solution and compute its ET. Once the whole population of ants have fin-
ished constructing the solutions, the best solution obtained within the current
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Algorithm 1 ACO-NODE+H

Require: N, s0
1:U . Number of control actions and initial UAVs locations

Require: P (τ0), P (τ t|τ t−1), P (D
t|zt, sta) . Target and sensor models

Require: M,α, β and ρ . ACO parameters
1: gbET ←∞,gbs← [],gbc← [] . Initialize fitness function (global best solutions)
2: τNODE ← InitializePheromoneNode() . Initialize pheromone table
3: while no finished do . Main loop
4: for m=1:M do . Loop for each ant in the population (it can be parallelized

to speed the algorithm)
5: ET (s0

1:U )← 0 . ET due to the initial location of the UAVs
6: b̃(ν0)← b(ν0) . Initialize unnormalized belief
7: for t=1:N do . Solution construction loop
8: b̄(νt)=

∑
νt−1∈ΩP (νt|νt−1)b̃(νt−1) . Predict the unnormalized belief,

Eq. (5)
9: for u=1:U do . Loop for each UAV

10: i← st−1
u ∈ s0:t−1

1:U . Get the current location (cell) of the UAV

11: η(a, i, t) =
∑

j∈triangle(a,i,N−t)

f(distance(i, j))b̄(νt = j) . Calculate

de heuristic value, Eq. (13)

12: p(a, t, u) =

(
τNODE[a, stu, u]

)
α
(
η(a, stu, t)

)β∑
a=1:8 (τNODE[a, stu, u]) α (η(a, stu, t))

β
. Calculate the

ACO probability to sample from, Eq. (14)
13: ctu ∼ p(a, t, u) . Sample the cardinal action to move to the

following cell
14: end for
15: s0:t

1:U ← {s0:t−1
1:U , ct1:U} . Add new components to UAVs trajectories

16: b̃(νt)=
∏
u=1:U

P (ztu = D|νt, stu)b̄(νt). Update the unnormalized belief, Eq.

(6)
17: ET (s0:t

1:U )← ET (s0:t−1
1:U ) +

∑
νt∈Ω b̃(ν

t) . Evaluate the ET due to new
segments of the trajectories

18: end for
19: sm ← s0:t

1:U , cm ← c1:t
1:U ,ETm ← ET (s0:N

1:U ) . Store the information
obtained for the current ant

20: end for
21: [ibET ,ibs,ibc]← SelectBest(ET1:M , s1:M , c1:M ) . Select main loop iteration

best solution
22: [gbET ,gbs,gbc]← SelectBest([gbET ,ibET ], [gbs,ibs], [gbc,ibc]) . Select best

overall (global) solution
23: τNODE[ibctu,

ibst−1
u , u]← τNODE[ibctu,

ibst−1
u , u] + 1/ibET . Pheromone

reinforcement with best iteration solution, Eq. (9)
24: τNODE[a, i, u]← (1− ρ) · τNODE[a, i, u] . Pheromone evaporation for all

pheromone values, Eq. (10)
25: [τmin, τmax]← PheromoneLimits(gbET ) . Determine pheromone limits

taking into account gbET , Ref. [27]
26: τNODE ← max{τmin,min{τmax, τNODE}} . Pheromones are kept between

the allowed range
27: end while
28: return gbs,gbET (solution with minimum ET)
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population (line 21, ib) and so far (line 22, gb) are identified and stored. Next,
the pheromone update process takes place: the pheromone values corresponding
to the iteration best solution (ib) are reinforced (line 23), all pheromone values450

are evaporated (line 24) and bounded (line 26) between the pheromone limits
([τmin, τmax]), computed in line 25 following the process described in [27].

4.3.2. MTS ACO-TIME+H Planner

Although Algorithm 1 corresponds to the node encoding, it can be used
for ACO-TIME+H after modifying the lines highlighted in navy blue with the455

following changes. In line 2, all the values of the time encoding pheromone
table τTIME have to be initialized to the same value. In line 12, the probability
distribution has to be obtained with Eq. (15) and modified to avoid the actions
that lead the UAVs outside the search area. And, in lines 23, 24 and 26, the
pheromone reinforcement of Eq. (11), the pheromone evaporation of Eq. (12)460

and the pheromones bounds obtained according to [27] have to be applied.

4.3.3. Computational cost of the MTS Planner

Finally, we calculate the computational complexity of our planner. To do
it, we can study Algorithm 1 and observe that within the main loop (between
lines 3 and 27), there are three nested loops: for each ant of the population,465

for each time step of the trajectory and for each UAV of the fleet. Besides,
as the beliefs are defined over the wx ∗ wy cells of the search region Ω, the
cost of the computational demanding operations in Eqs. (5), (13) and (6) are
respectively proportional to (wxwy)3, (wxwy)2 and (U(wxwy)2). Hence, the
computational complexity of the main loop is O(MN((wxwy)3 +U(wxwy)2)) =470

O(MNw2
xw

2
y(wxwy + U)), what implies that the computational cost is 1) sig-

nificantly dependent on the number of cells in Ω, on the number of ants and on
the number of time steps of the trajectory, and 2) that is slightly modified by
the numbers of UAVs. However, when we make M = 8∗N ∗U (as in the exper-
iments presented in Section 5), the computational complexity of the main loop475

becomes O(UN2(wxwy)3). Finally, it is worth noting that the computational
cost for some scenarios can be reduced. For instance, in static scenarios, Eq.
(5) becomes b̄(νt) = b̃(νt−1). Hence the general computation complexity of the
main loop becomes O(MNw2

xw
2
yU) and the one obtained when M = 8 ∗N ∗ U

O(U2N2(wxwy)2).480

In order to calculate the total complexity of the planner, we can also account
for the number of iterations of the main loop. However, this total complexity will
not provide information about the convergence speed of the algorithm, which
is highly dependent of the probability functions of the problem (initial belief,
target motion model and sensor detection function). Hence, in the following485

section we will analyze our MTS planner temporal performance over different
scenarios to be able to determine, empirically, the time needed to optimize them.
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5. Results

This section shows the potential of the proposed MTS algorithm based on
ACO. First, we describe several MTS scenarios and the evaluation setups, next490

we analyze the performance of multiple parameterizations of the different ACO
variants and, finally, we compare them against three other MTS optimization
algorithms (CEO, BOA and GA) and heuristics.

5.1. Scenarios Setup

We analyze the results of all methods over six search scenarios, several of495

them already used in [8] to compare CEO and BOA performance in MTS.
All scenarios have the same grid size (wx = wy = 20) and differ in the initial

probability map b(ν0), target motion model P (νt|νt−1), number of steps of the
horizon N , number of UAVs U and their initial locations s0

u.
Their properties are sketched in Fig. 4: the UAVs initial positions are500

indicated with gray circles; the target motion models are outlined with white
arrows; and the initial beliefs are represented with colored maps (where cells
with higher probabilities of target presence are represented with warmer colors).
Other characteristics of each scenario are detailed in the labels at the top of each
graphic of Fig. 4 and below.505

Scenario A has two high probability areas equally spaced from the UAV
initial position. Its difficulty is due to the small difference in ET of the solutions
that go to each of the probability zones, as the probability of the area situated
in the south is only slightly higher.

Scenario B has the belief initially concentrated in the center of the search510

area and as time passes the probability moves towards the southeast. The UAV
has to intercept and gather the probability mass as soon as possible.

Scenario C complexity lies on the circular spreading movements of two
initially concentrated probability areas. Each of the two UAVs in this setup
should follow and gather one of the two probability masses.515

Scenario D has a complex target dynamic model that simulates the move-
ments of a lost boat in the sea, which is obtained from a probabilistic wind map.
The two central UAVs are expected to intercept the belief and the bottom left
UAV to follow the target displacements.

Scenario E initial belief is concentrated in the center of the area and as520

time passes it spreads out towards the initial position of the two UAVs, which
should first move towards the belief and then turn back to overfly the remaining
probability.

Scenario F has two static high probability areas on each side of a single
UAV. The UAV needs to go east first, towards the highest probability area, and525

then fly back over the same trail, towards the other probability zone.

5.2. Representative Solutions

Fig. 5 shows one of the final solutions (UAVs trajectories represented with
the colored lines) obtained with ACO-NODE+H (as the results of Section 5.5
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Scenario A
U=1, N=10

Scenario D
U=3, N=20

Scenario B
U=1, N=20

Scenario E
U=2, N=10

Scenario C
U=2, N=10

Scenario F
U=1, N=20

Figure 4: Search scenarios.

Scenario A

Scenario D

Scenario B

Scenario E

Scenario C

Scenario F

Figure 5: Solutions obtained with ACO-NODE+H.
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show that it produces slightly better results than ACO-TIME+H) and its cor-530

responding updated unnormalized probability map b̃(νN ) at the end of the tra-
jectory. The fitness function of the selected solution (ET ) and its associated
probability of detection (Pd) are also indicated within each graph.

It is important to notice that due to the high Pd gathered by the UAVs
sensors in most of the scenarios, the colormaps and z-axis limits of b̃(νN ) in Fig.535

5 have been rescaled with respect to the initial beliefs in Fig. 4. For instance,
in Scenario F the value of the red color of the highest probability area in the
original belief is slightly bigger than 0.15 (see bottom right graphic of Fig. 4),
while the value of the red color of the highest unnormalized belief areas in b̃(νN )
is 0.025 (see bottom right graphic of Fig. 5). This happens because the UAV540

has overflown both initial probability areas gathering most of the belief.
The results of Fig. 5 show that the solutions returned by ACO overfly sooner

the areas with higher chances of target presence (those with higher b̃(νt)), mak-
ing the UAVs cooperate in order to gather the unnormalized belief as soon as
possible. For instance, in Scenario A the heuristic in ACO-NODE+H makes545

the algorithm prefer the actions that lead the UAVs to the highest probability
area, helping to overcome the difficulty of the scenario. Besides, in Scenario C
both UAVs cooperate, by each one following one of the highest spreading prob-
ability areas. Moreover, in Scenarios C and D, where the spreading probability
movements complicate the search, the UAVs fly first to the areas with higher550

concentrated belief to achieve soon a high probability of target detection. Or
in Scenario F, the heuristic helps the algorithm to identify the high probability
area first and then make the UAV turn in the opposite direction to overfly the
unnormalized belief finally gathering 86% of the initial probability (Pd = 0.86).

5.3. Comparison Method555

Due to the stochastic nature of many of the approaches compared in this
paper, a statistical analysis of their results is needed. Therefore, for each search
scenario we store the computation time1 and the solutions with the best ET
(gbET ) obtained at the end of each iteration by 50 runs of each algorithm. With
this information, we calculate the mean computation time of each algorithm560

iteration and the information represented in the two types of comparative graphs
detailed below and represented in Figs. 6, 7, 8, 9 and 10. Note that the graphics
within each of the columns of these figures are associated to two scenarios, whose
information is divided by a horizontal line (e.g. in Fig. 6 the top two graphics of
the first column correspond to Scenario A while the bottom two graphics within565

the same column belong to Scenario D).
On one hand, we apply the Wilcoxon test to compare the results obtained at

the mean computation time of each iteration by the different algorithms/variants
in order to determine if the results are statistically different. We present the

1All algorithms are implemented in Matlab and run over a 2.5 GHz Intel Core i7 with 6GB
RAM PC with Windows 7. Besides, the operations used to evaluate the ET of the solutions
are speed up using the Matlab Parallel Toolbox.
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results of this test in the dominance graphs of the first and third rows of Figs.570

6, 7, 9 and 10; and of the first and fourth rows of Fig. 8. To build these domi-
nance graphs, we first compare all algorithms/variants against a base algorithm
(indicated in the caption of each figure). This comparison is performed with
the results obtained at the mean computation time of each iteration of the base
algorithm against the results obtained by the iteration with the closest (equal575

or small) mean computation time of the other algorithms. Next, we represent
the outcomes of the comparison for the different approaches (indicated in the y-
axis) at the different computation times of the base algorithm (displayed at the
x-axis) using the following colors: green if the approach indicated in the y-axis
dominates the base algorithm, red if the base algorithm dominates the approach580

indicated in the y-axis, gray if there is not statistical difference, and black when
the method in the y-axis has still not finished when the first iteration of the
base algorithm has ended. Therefore, the results of the iterations of the algo-
rithms in green are statistically better than the results of the base algorithm, in
red statistically worse and in gray similar. Note that, as one algorithm/variant585

can not dominate itself, the corresponding row of the base algorithm is always
completely gray.

On the other hand, we also use the stored values to obtain, for each algorithm
and the mean computation time of each iteration, the mean ET and its standard
deviation. This information is presented in the ET evolution graphs that appear590

in the second rows of each scenario in Figs. 6, 7, 9 and 10; and in the last
two rows of each scenario in Fig. 8. These ET evolution graphs represent in
different colors (for each algorithm or parameterization under study) and against
their computation time, the mean ET and the shadowed area that delimits its
standard deviation. Therefore, those algorithms/parameterizations that show595

lower ET mean values sooner, converge to a better solution quicker. Besides,
over the mean ET curve, we mark with dots the mean computation time of every
10 iterations of each algorithm/variant. Hence, the reader can 1) determine the
computation time required by 10 iterations of an algorithm/variant by observing
the computation time of two consecutive dots of its ET curve and 2) compare600

the scenarios computation costs based on the density of these dots.
Finally, it is worth noting that both types of graphics complement each

other. The dominance graphs show at the computation time of the base algo-
rithm/variant if there is a statistical difference between the algorithms/variants
under analysis, but they do not show how different they are. The ET evolu-605

tion charts graphically represent the magnitude of the ET difference against the
computation time, but they lack of the statistical significance information of the
dominance graphs. For instance, the dominance graph of Scenario D represented
in the first column and third row of Fig. 6 shows that the parameterizations
labelled as 2, 3, 8, 9 11, 12, 14, 15, 17 and 18 are statistically better (in green)610

than the base parameterizations (labelled as 1) during the 5 initial seconds and
that become worse (in red) that the base parameterization after 15 seconds. Or
equivalently, that for Scenario D the base parameterization becomes the best of
the ones analyzed in Fig. 6 after 15 seconds. However, this dominance graph
does not show the magnitude of the improvement, which is represented in the615
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Table 2: ACO parameter configurations under study.

Config.
Labels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ρ 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.02 0.02 0.02 0.02 0.02 0.02
α 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2
β 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

ET evolution curves of the first column and fourth row of Fig. 6, that for the
same scenario show how the mean of the ET of the first configuration (labelled
as Conf. 1) converges quicker to better (lower ET) solutions than the other
three parameterizations represented within this graphic (labelled as Conf. 2, 7
and 10).620

5.4. MTS ACO Performance Analysis

This section presents the results of the analysis of our ACO planner under
both encodings (NODE and TIME) and different parameterizations, obtained
by modifying the ACO parameters (ρ, α, β) and enabling/disabling the use of
the pheromones and heuristic function.625

The common characteristics of the ACO planner in all the analysis of this
work are the following. Similarly to [8], we set bigger population sizes (M) for
more complex scenarios, by making them proportional to the planning horizon
N , the number of UAVs U and the number of possible actions (i.e, the popu-
lation size M = 8 · N · U). Besides, a predefined maximum computation time630

long enough to see the convergence values of the configurations is set as stop
condition, and the values of τmin and τmax are determined and recomputed each
time a new best solution is found, following the methodology proposed in [27].

5.4.1. General Parameterization Analysis

The best set of values of ACO parameters depends on the given problem, its635

heuristic and the available computational time. Hence, the analysis presented
in this section is intended to find the set of parameters that proportionate high
quality solutions of MTS in reasonable time. To obtain them, we have tested 18
different configurations of ACO parameters, varying ρ, α and β within a range of
values (ρ = {0.5, 0.1, 0.02}, α = {1, 2}, β = {1, 2, 3}) that can be typically found640

in the literature [10, 27, 29]. Each configuration appears in a different column
of Table 2, where it is labelled with the numbers appearing in its first row and
parameterized with the values of ρ, α and β shown underneath. The main results
of the analysis for ACO-NODE+H (ACO with NODE encoding plus Heuristic)
and ACO-TIME+H (ACO with TIME encoding plus Heuristic) are respectively645

presented in Figs. 6 and 7, and the selection of the base configuration (Conf.
1) of the dominance graphs is justified in Appendix A.

The dominance graphs of Fig. 6 for ACO-NODE+H show, in all scenarios
but A, that after 10 seconds the majority of the other configurations are usually
worse (in red) than Conf. 1 and that, after a while, Conf. 2, 7 and 10 are usually650

as good (in gray) as Conf. 1 in at least three scenarios. Hence, we represent
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Scenario A Scenario B Scenario C

Scenario D Scenario E Scenario F

Figure 6: Comparison of all parameter configurations for ACO-NODE+H (base parameteri-
zation = Conf. 1).

the ET evolutionary curves of these four configurations and observe that Conf.
1 converges quicker to a final ET value similar to the final ones obtained by
the others. Besides, Conf. 2 presents a higher ET variance in several scenarios;
for Scenarios B and F Conf. 10 becomes equally good as Conf. 1 quicker than655

Conf. 7; and for Scenario A the majority of the configurations are equally good
(the dominance graph is almost gray).

Analogously, the dominance and ET evolution graphs of all parameter con-
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Scenario A Scenario B Scenario C

Scenario D Scenario E Scenario F

Figure 7: Comparison of all parameter configurations for ACO-TIME+H (base parameteriza-
tion = Conf. 1).

figurations for ACO-TIME+H are presented in Fig. 7. The dominance graphs
suggest us to represent the ET evolution graphs of Conf. 1, 2, 7 and 10, because660

1) the majority of the configurations are usually worst (in red) that the base
(Conf. 1) in all scenarios but A; and 2) Conf. 2, 7 and 10 become as good
(in gray) as or better (in green) than Conf. 1 in four scenarios. Again, the
ET evolution graphs show that Conf. 1 converges quicker than the others to
solutions with similar ET.665
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Table 3: ACO encodings and heuristic variants.
Short Label Pheromone table Heuristic α β ρ M

NODE+H τNODE X 1 1

0.5
8 ·N · U

NODE τNODE 1 0
TIME+H τTIME X 1 1

TIME τTIME 1 0
H - X 0 1 -

From the analysis of the graphics of both encodings and the values of the
parameters of Table 2, we can draw the following conclusions. First, four config-
urations (two with ρ = 0.5 and two with ρ = 0.1) produce pretty similar results.
Second, within ρ = 0.5, although Conf. 2 starts at better solutions than Conf.
1 in some scenarios, Conf. 1 usually converges quicker to good solutions than670

Conf. 2. Third, within ρ = 0.1, Conf. 10 converges quicker to good solutions
than Conf. 7. And fourth, although Conf. 1 converges also quicker than Conf.
10, in ACO-TIME+H Conf. 10 is able to slightly improve the results of Conf.
1 in some scenarios. These facts show how the balance (obtained through the
combined values of ρ, α and β) is achieved for our MTS planner: when the675

evaporation rate is higher (ρ = 0.5), the values of the pheromones and heuristic
influence parameters should be low and equally considered (α = β = 1); when
the evaporation rate is lower (ρ = 0.1) the pheromones importance should be
increased (α = 2, β = 1). Finally, due to quickest convergence of Conf. 1 to
good solutions, we will select its parameterization for both ACO encodings.680

Finally, it is worth noting that we have also tested the performance of the
configurations with different fixed M , but the results showed that the variants
that make M = 8 ·N · U usually outperformed the others.

5.4.2. Encodings and Heuristic Analysis

In order to evaluate the capabilities of the two ACO encodings and the685

power of the new heuristic that we have proposed for the MTS problem, we
compare the results obtained with the five variants of ACO: the two ones with
the heuristic enabled (ACO-NODE+H and ACO-TIME+H), the two ones with
the heuristic disabled (ACO-NODE and ACO-TIME) and the one with only
heuristic information (ACO-H). Hence, the results in this section will let us690

determine if our approach benefits mainly from the pheromone trails associated
to the good solutions identified by the evaluation of the objective function, from
the new heuristic introduced in this paper for MTS or from the capabilities of
MMAS (the supporting ACO approach of our planner) to combine both of them.

695

The performance for each scenario of the five variants under study, labelled
in this section without the ACO- prefix for simplicity and set up according to the
parameterization specified in Table 3, is presented in Fig. 8. The corresponding
graphs of the second and third rows of each scenario are respectively the ET
evolution graphs of the variants with pheromones and with heuristic.700
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The dominance evolution graphs in Fig. 8 show that 1) the variants without
heuristic (NODE and TIME) or without pheromone trails (H) are statistically
dominated (in red) by the base variant (NODE+H) and that 2) the domi-
nance behavior (red, gray, green) of the variants with heuristic (NODE+H and
TIME+H) depend on the scenario. However, these graphs do not show the mag-705

nitude of the improvement, which can be observed in the ET evolution curves
that show that the ACO variants with heuristic (NODE+H, TIME+H and H)
provide better solutions from the first iterations and quickly converge to solu-
tions that are at least as good as those finally found by the variants without
heuristic (NODE and TIME). Therefore, the new MTS heuristic is adequate for710

the problem and helps the algorithm to reach higher quality solutions in less
computational time.

Besides, NODE+H and TIME+H obtain solutions with lower ET sooner
than H. Hence, we can conclude that although the heuristic by itself is able to
achieve high-quality results quickly, the pheromone deposit and the heuristic-715

pheromone combination mechanisms of MMAS help indeed the algorithm to
achieve higher quality results faster.

Finally, respect the two encodings analyzed, NODE outperforms TIME in
scenarios A, B, C. So, learning the best actions to perform at each node seems to
be better for the MTS problem when the heuristic is disabled. However, when720

the heuristic is enabled NODE+H and TIME+H reach similar high quality
solutions quickly. Hence, enabling the MTS heuristic helps ACO-TIME+H to
overcome the drawbacks of its encoding and to find high quality solutions too.

5.5. Comparison of ACO Performance with other MTS Approaches

In this section we compare the results of the new ACO-based approach725

against the results obtained by the approaches of Table 1 that have been pre-
viously used in the MTS problem [6, 7, 8] or that can be used straightforward
[9]. The other methods in Table 1 have not been tested because the technique
in [14] does not scale well for scenarios of 20x20 cells, and the approaches in
[15, 16, 16, 17] have been adapted to exploit properties of its objective function730

(and therefore, they are not meant to be applied directly for optimizing ET).
In particular, we use: 1) the NODE encoding for this comparison as it

produces slightly better results than the TIME encoding, and 2) the same fitness
function and sensor models for evaluating all the approaches.

5.5.1. Comparison with ad hoc heuristics tested for MTS735

In this section we describe and compare, against our MTS heuristic, the
ad hoc heuristics that are presented/analyzed in [6] for generating a single-
UAV high-level searching trajectory for minimum time search problems with
static targets. All but ours are deterministic approaches that generate only one
straight-segmented trajectory for the UAV according to the following rules:740

• Heuristic towards the Global Maximum (HGM) moves, at each
time step t, the UAV according to the cardinal direction that will make the
UAV arrive quicker to the cell of higher b̄(γt). Additionally, it sequentially
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Figure 8: Comparison of ACO variants with and without heuristic (base variant =NODE+H).
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updates b̃(γt) taking into account the UAV locations and no-detection sen-
sor function. It has a straightforward implementation, but when multiple745

unconnected probability areas within the search region contain the max-
imum value, it makes the UAV move between the different areas without
collecting the remaining probability within each of them. Besides, when
it is directly used for multiple UAVs, it makes all the fleet move towards
the same point.750

• Heuristic towards the Local Maximum (HLM) moves, at each time
step t, the UAV according to the cardinal direction that will make the
UAV arrive quicker to the cell of higher unnormalized b̄(γt) within a circle
of radius rHLM around the UAV (i.e for those γt where distance(γt, sti) <
rHLM). Besides, to avoid getting stuck in a local minimum around the755

UAV location, this heuristic increments rHLM ← rHLM + ∆HLM when
the maximum of b̄(γt) falls outside the circle around the UAV location
sti during several consecutive time steps NHLM. Its strong dependency
with the initial UAV positions can make it a better choice than HGM for
distributing a fleet of multiple UAVs.760

• Heuristic Spiral (HS) moves the UAV towards the cell with higher b̄(γt)
and once there, it describes a spiral trajectory around that cell during
several time steps NHS. The movement to the maximum followed by a
spiral is repeated as many times as permitted by the number of steps
N of the UAV trajectory. Although this way of proceeding makes this765

heuristic ideal for static scenarios with mixtures of circular gaussians, it
is not straightforward applicable in dynamic scenarios, where the center
of the spiral should be moved to follow the displacements of the target.

In short, in order to show the power of our new heuristic for MTS, we
compare its behavior (by itself, without the pheromones) against others (HGM,770

HLM, HS) already tested in [6] for MTS. Although all of them take into account
b̃(γt), ours presents an stochastic behavior that combines and weights b̃(γt)
accordingly to eight regions around the cardinal directions and to the distance
between the UAV and target locations, while the others show a deterministic
greedy/spiral behavior towards/around the cell of highest probability.775

On one hand, to set up our heuristic, we use ACO+H (i.e. our approach
without pheromones) with its parameterization within last row of Table 3. On
the other, for the remaining heuristics we make rHLM = 5 initially, and fix
NHLM = 5, ∆HLM = 5 and NHS = 5. Besides, for all scenarios, we run 50 times
our stochastic heuristic within ACO+H and once the deterministic maximal780

heuristics (HGM, HLM). Finally, we only run once HS for the static scenarios,
as its deterministic behavior should be adapted for dynamic scenarios to make
the center of the spiral follow the motion of the target belief.

The results of the analysis over the six search scenarios are presented in
Fig. 9. The dominance graphs show that in all Scenarios but F, our heuristic785

(H) dominates the result of the others (HGM, HLM and HS). This happens
because our method directs the UAV towards regions with closer and higher
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Figure 9: Comparison of implemented ad-hoc heuristics (base variant = ACO+H).

probability of target presence, while the others move the UAV towards the cell
with the global/local maximum belief in order to follow its location (HGM and
HLM) or perform spirals around it (HS). The initial better behavior (in green)790

of HLM and HS in the dominance graph of Scenario F occurs because in that
particular static case, the initial target belief is a mixture of circular gaussians,
and therefore going towards the maximal probability cell and performing spiral
displacements around it is an overall good strategy. The ET evolution graphs
show the stochastic behavior of our approach (since there is a variance around795

the mean ET line) and the deterministic behavior of the others (represented by
a unique line and with an initial single dot associated to the time required to
obtain their solutions). Besides, in some scenarios (e.g. in Scenario B and E)
HGM is better (has lower ET) than HLM, and in others the opposite happens
(e.g. in Scenarios A, C and F). Moreover, in all scenarios but F, our heuristic800

by itself (that is without its combination with the pheromones trails due to the
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objective function) achieve overall better results than the others in the initial
steps, and in Scenario F our approach achieves as good solutions as the others
in only 10 seconds.

In other words, the new heuristic that we propose in this paper is a good805

method by itself to generate promising solutions for MTS, which are further
improved by our ACO-based planner due its combination with the pheromone
mechanism within MMAS. Finally, it is worth noting the high dependency of
the results of HLM and HS with their configuration parameters and the char-
acteristics of the search scenarios.810

5.5.2. Comparison with optimization methods

In this section we compare against ACO-NODE+H other optimization meth-
ods that have been previously used for MTS or that can be used straightforward
for generating high-level straight-segmented searching UAVs trajectories. Their
characteristics are presented below from the general idea to specific details:815

• Cross Entropy Optimization (CEO) learns the probability distribu-
tion of the solutions from the best solutions of each iteration, which are
randomly generated initially [30]. It is first applied to the MTS problem
in [7], where it learns the probability distributions of the best actions to
perform by the UAVs at each time step. Indeed, each iteration of the CEO820

in [7] can be divided in two steps: first the UAVs trajectories are sam-
pled from the learned probability distribution and evaluated, and then a
new probability distribution is estimated (under the assumption that the
actions are independent on each other) by counting the number of times
that each action is performed at each time step among the best solutions825

of the iteration.

• Bayesian Optimization Algorithm (BOA) also evaluates the sampled
solutions of each iteration to learn a Bayesian Network (BN, [31]), which is
a probability model more complex than the one used in CEO. It is applied
to solve the MTS problem in [8], optimizing the best actions to perform830

at each time instant and capturing the relationships among the actions
of the best solutions with a BN learned with a greedy algorithm that
requires a higher computation time than the action counting performed
in CEO. However, after performing a statistical comparison of different
BN learning strategies for the MTS problem, we substitute the one used835

in [8] by the one described in [32] that combines K2 learning strategy and
Dirichlet metric, as it converges quicker to similar ET values.

• Genetic Algorithm (GA) is a well-known evolutionary algorithm that
mimics the process of natural selection, where the population of candi-
date solutions gets better fitness at each iteration through mechanisms840

of crossover, mutation and selection [33]. It is the only technique of the
analysis that does not learn a probability distribution. It is applied in [9]
to maximize the Pd of a static target searched by from several UAVs that
can move following only four cardinal directions. That work considers two
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Figure 10: Comparison of all implemented MTS algorithms (base variant = ACO-NODE+H).

different path encodings: as a sequence of directions or as a sequences of845

nodes. We select the first because it is closer to the approaches analyzed
in this work and because it induces a smaller search space. Moreover,
the other encoding has two drawbacks: the resulting trajectories after
crossover may have different lengths (needing to be truncated or extended)
and the parents need to have at least one common node to be able to cross850

them.

In short, we compare three optimization methods (ACO-NODE+H, CEO
and BOA) that learn the distribution of the best solution (ACO through the
pheromones, and CEO and BOA through a probability distribution) and one
optimization approach (GA) that builds solutions by mixing previous ones. Be-855

sides, our new proposal (ACO-NODE+H) includes a new heuristic that is not
considered by the other optimization methods (CEO, BOA and GA).

The population size considered in the algorithms of this section is also pro-
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portional to the planning horizon N , number of UAVs U and number of actions
(i.e. M = 8 ∗ N ∗ U), and the stop condition for all the algorithms is a maxi-860

mum predefined computational time. It is worth mentioning that we have also
performed a statistical analysis over different parameterizations of CEO, BOA
and GA to make a fair comparison against good versions of all of them.

The results of the statistical analysis over the six search scenarios are pre-
sented in Fig. 10. The dominance graphs show that ACO-NODE+H outper-865

forms the other algorithms in all scenarios, while the ET evolution graphs show
that ACO-NODE+H finds solutions of similar (Scenarios B and E) or higher
quality (Scenarios A, C, D and F) than the others in significantly less com-
putational time. Besides, the ET evolution curves show that CEO and BOA
present the slowest convergence. For instance, in Scenario C, CEO converges870

into suboptimal solutions, while BOA has not yet converged after 50 seconds.
Additionally, the ET evolution graphs show that GA presents better results than
CEO and BOA, but ACO-NODE+H converges faster in all scenarios. This hap-
pens because while all methods but ACO-NODE+H start from random initial
populations and only use the information of previous iterations to improve their875

solutions, ACO-NODE+H combines the MTS heuristic with previously learned
information. Therefore, the heuristic generates solutions with better fitness
from the first iterations, guides the search and accelerates the convergence of
the algorithm to better solutions, which are usually found in just a few seconds.

In addition, since all algorithms have the same population size and the dots880

over the mean ET curve show the computation time of every 10 iterations of
each method, it is possible to compare the computational time of each algorithm
iteration. It can be observed that GA and CEO are the algorithms with lower
computational time per iteration, that ACO-NODE+H employs an extra time
(to calculate its heuristic) and that BOA is the algorithm that requires the885

biggest time by iteration (due the complexity of computing the underlying BN).
Besides, comparing the dots of the same algorithm for different scenarios, we
can observe how the computation time of all of them grows as the number of
UAVs (U) and trajectory time steps (N) are increased.

6. Conclusions890

This work presents a new approach based on an ant colony optimizer for
problems with discrete decision variables (MMAS) to minimize the searching
time of a fleet of UAVs following high-level straight-segmented trajectories.
These trajectories are generated combining the information of 1) promising
solutions identified in the previous iterations of the method and of 2) a new895

heuristic especially designed for the MTS problem. Besides, this paper presents
two variants of the approach supported by two different encodings (NODE and
TIME) for the pheromone table, one closer to the original ACO and the other
closer to the typical codification used in other search algorithms.

The potential of this new approach is tested over six search scenarios and900

compared against several heuristics (HGM, HLM, HS)/optimization algorithms
(CEO, BOA and GA) designed ad hoc or previously tested in MTS. The analysis
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of the new approach shows that some of its parameterizations are consistently
good over a range of scenarios, that the new heuristic proposed for MTS helps
our approach to generate pretty good solutions quickly, and that the combina-905

tion of the pheromone trails and of our heuristic improves the solutions further
in just a few seconds. The comparison against the other approaches shows that
1) our heuristic provides usually quicker better solutions than the other heuris-
tics, and that 2) our method obtains better or similar solutions than the other
optimization algorithms in significantly less computational time. On one hand,910

this happens because our heuristic drives the UAVs towards promising zones in-
stead towards the cells with maximal probability by the other heuristics (HGM,
HLM, HS). On the other one, it occurs because the optimization approaches
previously applied to the search problem only use the information of the best
solutions identified by the previous iterations of each method. In other words,915

the capability of MMAS of combining the effects of a good MTS heuristic with
the pheromone trails of good solutions, allows it to obtain much higher quality
solutions from the first iterations.

The main drawback of the approach is that the trajectories obtained by the
method presented in this paper can only be directly flown by UAVs capable920

of following straight-segmented trajectories (e.g. quadrotors) and have to be
smoothed/optimized in a second step for others (e.g. fixed-wing UAVs, provided
that the distance between the nodes is large enough). Besides, so far, this
method only optimizes a unique objective (the ET of target detection), leaving
out others (e.g. fuel consumption, avoiding forbidden areas) often considered925

in more realistic planners [18, 34]. Finally, it is worth noting that in spite of
the good results of our current heuristic for MTS, we are planning to combine
it with others that are known to be good in certain types of scenarios (e.g. HS
for mixtures of circular gaussians or lawn-movements for uniformly distributed
probability search regions).930
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Appendix A. Complementary Analysis1035

This appendix shows an illustrative example of the complementary analysis
that we have performed to select the base algorithm/variants to compare against
in the dominance graphics of Figs. 6, 7, 8, 9 and 10.

The analysis consists in, for each scenario and different computation times,
simultaneously comparing, without a previous selection of a base, all configura-1040

tions/algorithms under study. To do it, we build a table that, for each scenario
and configuration/algorithm, displays the mean and standard deviation of the
best ET at the associated closer iteration (with equal or immediately low com-
putation time). Besides, we represent, for each scenario and computation time,
the overall dominance relationships of each of the configurations against the1045

others, using the method in [35] and the graphics of Fig. A.11, where the color
of each cell of the graph determines if the configuration in the y-axis dominates
(white), is equivalent (gray) or is dominated (black) by the configuration in the
x-axis. Therefore, the configurations that perform better for the corresponding
scenario and computation time are the ones whose rows have more white cells.1050

In this way, these tables and overall dominance graphs complement each other,
the graphs allows to see at a glance which configurations dominate all the others
and the tables the magnitude of the improvement of the fitness function (ET).

The results of the data presented in Table A.4 and Fig. A.11 for analysing
ACO-NODE+H configurations at 50 seconds, show how Conf. 1, 2, 7 and 131055

usually dominate the others and that Conf. 1 (our selected base) dominates a
few more configurations than the other three when considering all the scenarios.
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Finally, note that although the same type of analysis has been performed at
different computation time for the different set of configurations/algorithms,
this appendix only displays the data of ACO-NODE+H configuration analysis1060

at computation time of 50 seconds.

Table A.4: ET mean and standard deviation values for ACO-node configurations at 50 seconds.

Conf.
Labels

Scenarios

A B C D E F

1 8.96± 0.02 9.58± 0.04 6.23± 0.01 3.38± 0.03 4.74± 0.01 9.27± 0.22

2 8.95± 0.00 9.74± 0.25 6.24± 0.01 3.40± 0.02 4.75± 0.01 9.37± 0.31

3 8.95± 0.00 10.06±0.23 6.26± 0.01 3.41± 0.02 4.87± 0.11 10.22±0.70

4 8.98± 0.02 9.68± 0.13 6.28± 0.03 3.41± 0.04 4.75± 0.02 9.43± 0.46

5 8.96± 0.01 9.97 ± 0.27 6.31 ± 0.06 3.41 ± 0.03 4.77 ± 0.05 9.72 ± 0.37

6 8.96± 0.01 10.24±0.10 6.36± 0.08 3.43± 0.02 4.93± 0.08 10.78±0.39

7 8.95± 0.00 9.58± 0.03 6.26± 0.03 3.38± 0.01 4.76± 0.02 9.10± 0.03

8 8.95± 0.00 9.63± 0.04 6.29± 0.02 3.40± 0.01 4.76± 0.02 9.64± 0.29

9 8.95± 0.00 10.07±0.22 6.30± 0.03 3.41± 0.01 4.84± 0.06 10.35±0.28

10 8.96± 0.02 9.60± 0.04 6.26± 0.02 3.38± 0.02 4.75± 0.01 9.17± 0.10

11 8.95± 0.00 9.61± 0.04 6.28± 0.04 3.39± 0.02 4.75± 0.02 9.38± 0.32

12 8.95± 0.00 10.05±0.25 6.30± 0.03 3.40± 0.00 4.85± 0.07 10.35±0.36

13 8.95± 0.00 9.71± 0.04 6.37± 0.04 3.43± 0.02 4.79± 0.02 9.32± 0.10

14 8.95± 0.00 9.76± 0.06 6.34± 0.03 3.43± 0.02 4.78± 0.02 9.51± 0.23

15 8.95± 0.00 10.03±0.20 6.35± 0.03 3.45± 0.01 4.81± 0.03 10.38±0.47

16 8.95± 0.00 9.68± 0.03 6.33± 0.04 3.42± 0.02 4.78± 0.02 9.26± 0.09

17 8.95± 0.00 9.74± 0.06 6.32± 0.03 3.41± 0.01 4.78± 0.02 9.58± 0.29

18 8.95± 0.00 10.04±0.17 6.34± 0.01 3.44± 0.02 4.82± 0.03 10.41±0.35

Scenario A

Scenario D

Scenario B

Scenario E

Scenario C

Scenario F

Figure A.11: Overall dominance comparison for ACO-NODE+H configurations at 50 seconds.
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