
This item is the archived peer-reviewed author-version of:

IntensityPatches and RegionPatches for image recognition

Reference:
de Carvalho Tiago B.A., Sibaldo Maria A.A., Tsang Ing Ren, Cavalcanti George D.C., Sijbers Jan, Tsang Ing Jyh.- IntensityPatches and RegionPatches for image
recognition
Applied soft computing - ISSN 1568-4946 - 62(2018), p. 176-186
Full text (Publisher's DOI): https://doi.org/10.1016/J.ASOC.2017.09.046
To cite this reference: https://hdl.handle.net/10067/1460410151162165141

Institutional repository IRUA

https://repository.uantwerpen.be

Page 1 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

IntensityPatches and RegionPatches
for Image Recognition

Tiago B. A. de Carvalhoa,∗, Maria A. A. Sibaldoa, Ing Ren Tsangb, George D.
C. Cavalcantib, Jan Sijbersc, Ing Jyh Tsangd

aUniversidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, PE, Brasil
b Universidade Federal de Pernambuco, Centro de Informática, Recife, PE, Brasil

c University of Antwerp, IMEC - Vision Lab, Antwerp, Belgium
dNokia, Antwerp, Belgium

Abstract

In this paper, we propose a framework for defining feature extraction techniques,

called Pixel Clustering. It is an extension of feature extraction with Wavelets.

We propose two linear feature extraction techniques using Pixel Clustering: In-

tensityPatches and RegionPatches. We assess the methods in color and grayscale

image datasets: two face datasets and two object datasets. The proposed meth-

ods present a short computation time for feature extraction and high accuracy

compared with linear feature extraction methods and other state-of-the-art fea-

ture extraction techniques.

Keywords: Dimensionality reduction, Feature extraction, Feature learning,

Linear methods, Principal Component Analysis, Unsupervised machine

learning, Wavelets

1. Introduction

Image shrinkage seems to have only a minor influence on recognition tasks.

This can be observed in the experiments performed using Waveletfaces [1]. Here,

we investigate and present a reasonable explanation for this effect, which is

IThis work was partially supported by Brazilian agencies CNPq, CAPES, FACEPE and
by the Fund for Scientific Research Flanders (FWO).

∗Corresponding author
Email address: tbac@cin.ufpe.br, tiago.buarque@ufrpe.br (Tiago B. A. de Carvalho)

Preprint submitted to Applied Soft Computing July 1, 2017

*Manuscript
Click here to view linked References

http://eeslive.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=21987&rev=2&fileID=541413&msid={B759CCDD-9262-45B7-97B0-FBA8BCA279BC}

Page 2 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

used to propose a dimensionality reduction method based on this idea. In5

Waveletfaces a 2D Discrete Wavelet Transform (2D-DWT) is applied to an

image. The 2D-DWT produces 4 images, each one with 1/2 of the original

height and 1/2 of the original width: a low resolution image and three detail

images. Waveletfaces uses only the low resolution image (approximation image).

Various Wavelet functions can be used, Chien & Wu suggest applying the10

Haar Wavelet[1]. The Haar approximation image is trivially computed, since

the value of each pixel in the approximation image is simply the summation of

the four corresponding neighborhood pixels in the original image. If each pixel

intensity value in the approximation image is multiplied by the constant value

1/4, the approximation image is a resized (or shrank) version of the original15

image. It is possible to compute Waveletfaces Level 3, Level 4, and so on, by

applying Waveletfaces to the previous level. As described in the experiment

section, it is possible to reduce the number of features by 1/1, 000 with small

impact on the classification accuracy.

Assuming without loss of generality that each Level of Waveletfaces is equiv-20

alent to image shrink, the following question arises: why does image shrinkage

has only little influence on the recognition task? This is a very intriguing ques-

tion because information is lost when the image is rescaled to a smaller size.

On the other hand, it is expected that examples can be better classified in a

lower dimensional space due the curse of dimensionality [2]. Why is this kind25

of dimensionality reduction suitable for image recognition? The first probable

explanation is that it retains the rough information while eliminating the details.

The second explanation, and the basis for the proposed method, is that each

extracted feature averages similar intensity values. Most of the neighborhoods

in an image are non-border pixels, see Figure 1. Averaging those values does30

not cause information loss. Also, information loss is not so large in some border

pixels as shown in the middle image in Figure 1, because most of the pixels

in those cases have similar intensity values. A relevant information loss occurs

when each half of the pixels belongs to different intensity range as shown on the

left image of Figure 1.35

2

Page 3 of 36

Acc
ep

te
d

M
an

us
cr

ip
tBorder pixel Border pixel Non-border pixel

Figure 1: Border and non-border pixels highlighted within their neighborhoods.

Assuming that most of the neighborhoods are non-border pixels. The process

of averaging neighboring pixels should reduce the number of correlated features

retaining a more diverse set of features. This can be easily visualized in a frontal

face image, in which there are various pixels with similar intensity value: skin

pixels, hair pixels etc. The proposed method, Pixel Clustering, automatically40

finds regions of similar intensity values and extracts features by averaging the in-

tensity values within each region. This process is an unsupervised linear feature

extraction method which is discussed in the next sections.

The paper is organized as follows: the proposed method is described in

Section 3. Experiment and discussion are presented in Section 4. Conclusions45

are presented in Section 6.

2. Unsupervised linear feature extraction methods

Feature extraction is the task that aims to find a characteristic representation

for the original data. This task is also known as representation learning (or

feature learning) and plays a major role in deep networks and other machine50

learning applications [3]. If the set of extracted features has less elements than

the original set of features, feature extraction can also be called dimensionality

reduction.

Attention has been given to linear feature extraction methods because they

are computationally efficient and have solid mathematical properties [4]. The55

composition of linear operations yields another linear operation thus those meth-

ods have restricted expression power. In spite of the limitation of the linear

methods, they are a base for more sophisticated non-linear feature extraction

such as Autoencoders [3] and PCANet [5].

3

Page 4 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Unsupervised feature learning deals with extracting features without con-60

sidering class labels. Nevertheless, it is applied to labeled data in supervised

tasks, such Principal Component Analysis (PCA) for classification [6], Autoen-

coders for Deep Neural Networks (DNN) [3], and Convolutional Neural Net-

works (CNN) for image recognition [7]. Unsupervised linear feature extraction

is also important in the classification of high dimensional data, especially for65

hyperspectral imagery [8].

PCA is a widely used unsupervised linear method for dimensionality reduc-

tion and can be interpreted as a linear Autoencoder [3]. PCA is also known

as the Karhunen-Loève Transform, and one of its properties is a minimum re-

construction error. It means that using the eigenvectors of maximal eigenvalues70

guarantees that no other linear projection has a smaller squared error for the

reconstructed data using the same number of extracted features [9].

Recently, PCA has been applied in combination with other techniques such

as quantile regression for the regression task [10] and decision tree algorithm

for the classification task [11]. Also, extended versions have been proposed, like75

Convex Sparse PCA which aims to be easier to interpret and less sensitive to

noise [6]. Eigenfaces, the dual version of PCA for high dimensional data, is

still a benchmark technique for face recognition [12]. Moreover, extensions of

Eigenfaces, based on the fractional covariance matrix, [13, 14] has also been

proposed. The Wavelet transform is a linear filtering [15] thus Waveletfaces is80

also a linear unsupervised linear feature extraction method. Here, we compare

the proposed technique with PCA, PCANet, Waveletfaces and Autoencoder.

3. Pixel Clustering

Pixel Clustering is a framework for defining feature extraction techniques.

Our inspiration comes from the assumption that each pixel has many neighbors85

of similar intensity (recall Figure 1), it is true for several face and object images

datasets. The objective of Pixel Clustering is to cluster those pixels into regions

and extract features from those regions. Such sets of pixels are not segmentation

4

Page 5 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

of a single image; the image partition is unique and used for every image in the

training and test sets.90

The main contributions of the proposed framework are twofold: the cluster-

of-pixel approach; and the pixel-vector, extracted before performing the cluster-

ing algorithm. Those procedures result in a proper segmentation that is unique

for all training images.

Waveletfaces inspired the Pixel Clustering framework. Pixel Clustering is a95

generalization of Waveletfaces so that Waveletfaces is a method within the pro-

posed framework. Many other feature extraction methods can be defined using

Pixel Clustering. In this paper, we define two unsupervised feature extraction

methods: IntensityPatches and RegionPatches.

The proposed methods are defined using a precise algebraic notation. It al-100

lows an accurate interpretation and implementation of the proposed feature ex-

tractions. However, the proposed methods have simple interpretations. Region-

Patches is a direct extension of Waveletfaces. Waveletfaces sums pixel in 2× 2

non-overlapping patches, RegionPatches averages pixels intensities in squared

neighborhoods of arbitrary size. Every square has the same size, and they define105

a grid as shown in Figure 8. Each feature extracted with Region Patches is the

mean intensity in a specific square.

A feature extracted with IntensyPacthes is also the average intensity for a

set of pixels, but the region defined by this set of pixels is not a square. Each

region represents areas of similar intensity within the training set. The example110

in Figure 7 shows several regions automatically defined by IntensityPatches for

a set of frontal face images. Those regions are meaningful, the average intensity

level within each region describes many typical facial features. Comparing the

intensity of the regions on the top of the head with skin regions it is possible to

define baldness levels. The same for beard, mustache, and eyebrow. It describes115

position and color of the eyes using specific regions. It is also possible to define

many other features such the shape of the head.

Both methods are within the Pixel Clustering framework. For Intensity-

Patches, each cluster contains pixels of similar intensity. For RegionPatches, the

5

Page 6 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

From a gray scale image to feature

vector

From a color image to feature vector

Figure 2: Converting a image (gray scale or color) into a feature vector.

cluster is a set of neighbor pixels. We proposed a preliminary version of these120

methods in the conference paper [16]. Before formally defining those methods

in the remainder of this section, we present some preliminary concepts.

Even though the proposed technique can be used for other kind of dataset, we

focus in applications that use images. We consider the use of feature extraction

for two kinds of image: grayscale and color. A gray scale image is represented125

by a matrix, each scalar within the matrix is an intensity level. A color image is

typically represented with a color model with three primary colors: red, green,

and blue.

Each image (color or grayscale) can be converted into a feature vector by

concatenating the columns of each intensity matrix into a single column vector,130

as described in Figure 2. Consider an image with height h, width w and s color,

s = 1 for a gray scale image and s = 3 for a typical color image. This image

can be transformed into a column vector of h × w × s elements. Assuming a

training set of n images with m pixels each, there are n raw feature vectors

with dimension m = h× w × s. The proposed technique assumes, without loss135

of generality, that each training or test image has the same number of lines,

columns, and colors. Then the same cluster indexes pixels in any image.

3.1. Pixel vector

A pixel vector is a vector that contains information that is representative for

the same pixel on every image. It can be either: intensity pixel vector or region140

6

Page 7 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

96 72 64 40 32 64 0 16

18 23

Intensity pixel vector

Region Pixel Vector

Figure 3: Examples of the proposed pixel vectors for the ORL gray scale face database. The

region pixel vector (bellow) represent the position (18,23) in the image. The intensity pixel

vector (above) contains the intensity for position (18,23) in all the 8 images from this example.

pixel vector. Figure 3 shows examples of both pixel vectors.

Definition 1. An intensity pixel vector is an n-dimensional vector that

contains the intensity value for the same pixel position through the n training

images.

For the training set, m intensity pixel vectors are extracted. A pixel vector145

is constructed for every position in the feature vector. Each one representing

the pixel intensity for a pixed position for a specific color.

Definition 2. A region pixel vector is a 2-dimensional vector that contains

the position (x, y) of the pixel.

The region pixel vector ignores whether the image is in grayscale or color150

since it treats every image as grayscale. Then the clusters defined for a color are

the same for the others. This does not create any inconsistence because every

color is represented by a matrix of the same size. Also there is no inconsistencies

due the pixels intensity values because those values are not considered by this

definition of pixel vector. Finally, the h × w region pixel vector are extracted155

for the training set, in spite of the number s of colors.

3.2. Feature extraction

In order to define a feature extraction algorithm using the Pixel Clustering

framework it is necessary to set: (1) a definition of a pixel vector; (2) a cluster

algorithm; and (3) a linear combination of the pixels within a cluster. Once the160

set up is performed, the algorithm has three main steps:

7

Page 8 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Training
set

Test
set

Extract
pixel vectors

Cluster
pixel vectors

Define
projections

Project
Test set

Project
Training set

Figure 4: Flowchart of the Pixel Clustering framework.

1. Extract pixel vectors from the training set;

2. Apply a cluster algorithm to the pixel vectors;

3. Define, for each cluster, a projection of its features.

The first step is to extract pixel vectors according to the chosen definition. It165

can be one of the definitions described above. The second step is to apply a

clustering algorithm to these pixel vectors, such as k-means. The output of

this step is a set of clusters, which depend on the chosen cluster algorithm and

distance metric. The third step is to extract features that use the information

of the clustering. It extracts a new feature by combining the pixels within a170

cluster. Figure 4 shows the flowchart of the different steps of the proposed

method.

3.3. Notation

Let Ia be an image with s color band, height h and width w, represented

by an s-tuple of matrices, each one of dimensions h×w, where Ia(i, j, l) ∈ R is

the intensity at the image position (i, j, l), 0 ≤ i < w and 0 ≤ j < h, 0 ≤ l < s.

This image can also be represented as a vector

xa = [xa1 xa2 . . . xam]T (1)

8

Page 9 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

where m = h×w× s and xap = Ia(i, j, l), p = 1 + j+hl+ l(hw), as described in

Figure 2. For the pattern recognition task, xap is the p-th feature for the a-th175

example in a dataset, p = 1, 2, . . . ,m, and a = 1, 2, . . . , n; m is the number of

pixels intensities within an image and n is the number of training images.

The dimensionality reduction aims to find, for each image xa, a new feature

vector

x′a = [x′a1 x
′
a2 . . . x

′
ak]T , (2)

with k < m; x′aq is the new q-th feature for the a-th example, q = 1, 2, . . . , k.

Each x′aq is obtained by combining the features of xa as a linear projection:

x′aq = αT
q xa, (3)

αq is a column vector which contains the coefficients for the extraction of the

q-th feature.180

In order to extract the new feature vector x′a, it is necessary to extract all

the new k features. This can be performed as follows:

x′a = ATxa, (4)

where A is the projection matrix with columns αq, q = 1, . . . , k, as a projection

vector of the new space of features:

A = [α1 α2 . . . αk]. (5)

The pixel clustering approach creates hard clusters that can be written as a

vector

cq = [cq1 cq2 . . . cqm]T , (6)

where cqv = 1, if the feature v belongs to the cluster q, and cqv = 0, otherwise. A

cluster is defined for each new feature. From the q-th cluster cq, the projection

vector, αq, for the q-th feature is defined. A remark on the Pixel Clustering

approach is that the clustering algorithm is not performed on the examples of

the training set, but on the pixel vectors that are extracted from the training185

set.

9

Page 10 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

3.4. IntensityPatches

In the Pixel Clustering framework, we propose a feature extraction technique

called IntensityPatches, that uses the traditional k-means clustering algorithm

[17] applied to the pixel vectors. It combines the pixels within a cluster by taking190

the average of the pixels intensity values. The k-means algorithm associates each

pixel vector to the cluster of the closest prototype, iteratively recalculating the

prototype of each cluster as the mean vector of the cluster. Similar to PCA,

IntensityPatches generates orthogonal projection vectors and enforces each new

feature to be less correlated with the others by clustering similar features. The195

projection vectors for IntensityPatches are orthogonal because the coefficient for

a pixel is nonzero only for a single projection vector, but unlike PCA, it does

not combine all the features because it does not use features outside the cluster.

For an m-dimensional dataset with n samples, PCA is able to extract up

to n − 1 features [18]. However, IntensityPatches is able to extract from 1 to200

m features even in problems with high dimensionality (when m >> n). This

property is particularly useful for situations where new classes are added to the

dataset, as described in the experiments in [16].

The Intensity pixel vectors are extracted as lines from X = [x1 x2 . . . xn],

where a column xa, a = 1, . . . , n, is an image from the training set. Since an

image is described as xa = [xa1 xa2 . . . xam]T , an intensity pixel vector is

denoted as

pr = [x1r x2r . . . xnr]T , (7)

r = 1, . . . ,m, which contains the value of the r-th pixel for every image in the

training set.205

The k-means cluster algorithm [17] is then performed over pr vectors yielding

hard clusters cq = [cq1 cq2 . . . cqm]T , q = 1, . . . , k.

For each cluster cq a transform vector is created

αq =
1

‖cq‖2
cq, (8)

10

Page 11 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

where ‖·‖ is the norm of a vector. Once cqo ∈ {0, 1}, o = 1, . . . ,m, as discussed

in Equation 6, ‖cq‖2 is the number of pixel in the q-th cluster. Then αq is

1/‖cq‖2 for the pixels position that belong to the q-cluster, or zero otherwise.210

In this way, αT
q xa is the average of pixels intensity values within the q-th cluster.

According to Equation 5, the transformation matrix A is computed by:

A =

[
1

‖c1‖2
c1

1

‖c2‖2
c2 . . .

1

‖ck‖2
ck

]
. (9)

The IntensityPatches dimensionality reduction is obtained by applying this ma-

trix A in Equation 4.

3.5. RegionPatches

The second proposed algorithm, called RegionPatches, have a region pixel215

vector pr = [ir, jr]T which is the position of the pixel r, as in Definition 2. A

cluster includes pixels from all color that have the same pixel positions. Similar

to IntensityPatches, it averages pixel intensities values within each cluster in

order to create a new feature. It fits squares of the same size on the image,

whereas each pixel within a square belongs to this square cluster, which is the220

trivial result of a clustering algorithm using the Chebychev distance metric

[19]. The Chebychev distance between two vectors, a and b, is the function

d(a,b) = maxm
i=1 |ai − bi|. Using this metric, the place of the points that have

the same distance to the center is a square. We choose the Chebychev distance

because its a very simple case similar to the Haar Waveletfaces. More details225

on the correspondence between Waveletfaces and RegionPatches are provided

in the next section.

The RegionPatches clusters are extracted from spatial relations within the

images. They depend on the dimension of the images whereas in the Intensi-

tyPatches they depend on the pixel values. In RegionPatches each cluster is a

non-overlap squared region within the image, but for the last line and last col-

umn of these regions the squares may be cropped due to the image boundaries.

Each hard cluster within the RegionPatches approach is a h×w matrix C(d,e),

11

Page 12 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

this matrix is an image mask that is 1 for the pixels the belong to the square

(d, e) and zero otherwise, it is defined as:

C(d,e) =


c00 . . . c0w
...

. . .
...

ch0 . . . chw

 (10)

with

cij =

1 if du ≤ i < (d+ 1)u, eu ≤ j < (e+ 1)u

0 otherwise

, (11)

where 0 ≤ i < w and 0 ≤ j < h; u is the square side length, it is a parameter

for this technique similar to k in the IntensityPatches.

A large value of u results in a small number of clusters. The minimum value

for u is u = 1, which generates h × w clusters, each cluster containing a single

pixel. If u ≥ max(h,w) it generates a single cluster that contains every pixel.

The square side u can be approximated for a fixed number k of clusters as:

u =

⌈√
wh

k

⌉
. (12)

Each pair (d, e) defines a cluster, with d = 0, ..., dw/ue−1, and e = 0, ..., dh/u e − 1.

There are k′ = dw/ue × dh/ue clusters, k′ ≈ k. Each C(d,e) is converted into a

vector

c′q = [cq1, cq2, . . . , cqm]T , (13)

q = 1, . . . , k′, where m = hw, q = 1+e+ddh/ue, and cqp = cij for p = 1+i+wj.

For color images the computed clusters c′q are repeated s times in order to define

a projection vector for the whole image:

cq =


c′q1
...

c′qm

 =



c1q1
...

c1qm

csq1
...

csqm


, (14)

12

Page 13 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

with clqm = cqm, l = 1, . . . , s. This means that the cluster have su2 pixels for230

a region of u2 pixels. Pixels of different color belongs to the same cluster once

they all have the same position (i, j) within it own cluster.

In order to RegionPatches perfoms dimensionality reduction, it should re-

place the calculated clusters to compute A through Equation 9 and finally

replacing these results into Equation 4. If RegionPatches squares have side235

length, u = 2g, g = 1, 2, 3, ..., considering images with a single color, it emu-

lates Waveletfaces [1], because this is similar the low-low band of the Wavelet

transform using a Haar function. In this case, the only difference is that Re-

gionPatches averages pixel intensities while Haar Waveletfaces sum them up.

4. Image recognition experiments240

In the present experiments, we used four image datasets: a grayscale and a

color face dataset, and a grayscale and a color object dataset. We compare the

proposed methods with four unsupervised feature extraction techniques: two

linear, Haar Waveletfaces and PCA (Eigenfaces); and two non-linear, autoen-

coders [3] and PCANet [5]. Waveletfaces for color image computes Waveletfaces245

within each band and concatenates vector of extracted features. The level of the

Waveletfaces is computed as dlog4(hw/k)e, with h defined as the image height,

w the image width and k the requested number of extracted features. PCA is

computed in the standard way. The parameters for PCANet are k1 = 5, k2 = 5,

L1 = 2, and the histograms are computed for 8× 8 non-overlapping block size.250

The convolution window has dimension k1 × k2. The number of principal com-

ponents is L1. We tuned the parameters for the ORL dataset, they differ from

the authors suggestions only in L1, which they set equal to 8 [5]. To perform

PCANet on colored images, we transformed each color image to grayscale. We

tuned the autoencoder parameter for the ORL dataset: the number of features255

is equal to the number of neurons in the hidden layer; the activation function

is the logistic sigmoid; the maximum number of training epochs is 300 because

we did notice a significant improvement in accuracy for a longer training.

13

Page 14 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

The methods are compared for approximately 16 extracted features, depend-

ing on the restriction of the method. However, only three k-means iterations260

are used, which results in a lower computational time for the proposed Intensi-

tyPatches.

We compared the methods in two different scenarios: the original data and

data with random Gaussian noise. The noise has zero mean and standard devia-

tion equal to 50. This means that each feature from each sample is summed with265

a pseudo-random number from a Gaussian distribution. Prior the summation

the pseudo-random number is multiplied by 50, i.e., the standard deviation.

Accuracy, defined as the number of corrected classified instances divided by

the total number of test instances, is used to evaluate the experiments. For

every database 100 holdout experiments were performed, except when using270

autoencoder for which we perform only 10 holdouts. Then, we computed the

mean and standard deviation of the accuracy.

There are two setups for training and test partition. In the first setup, each

training set in a holdout experiment has a single example from each class, the

other examples from each class are in the test set. It means 40 examples in the275

training set and 360 in the test set for the ORL dataset, 50 in the training and

700 in the test for the GT dataset, 20 in the training and 1,420 in the test for

the COIL20 dataset, and 100 in training and 7,100 in the test for the COIL100

dataset. In the second setup, each training set in a holdout experiment has nine

examples from each class, the other examples from each class are in the test set.280

It means 360 examples in the training set and 40 in the test set for the ORL

dataset, 450 in training and 300 in test for the GT dataset, 180 in training and

1,260 in the test for the COIL20 dataset, and 900 in training and 6,300 in the

test for the COIL100 dataset.

The results presented only for the Nearest Neighbor Classifier (1-NN) with285

Euclidean distance. However the same experiments were also tested using other

classifiers: decision tree, linear support vector machine (SVM), and linear dis-

criminant and the results where either very similar to the ones obtained us-

ing 1-NN or presented a very lower accuracy (around 10%) depending on the

14

Page 15 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

dataset.290

We used a deterministic seed for random sampling. This allows an exact

replication of the results. Matlabr code is fully available upon request. Datasets

and results are presented in the following subsections.

4.1. Datasets

Four datasets were used in the experiments. Two face dataset: one in gray295

scale (ORL) and one in color (GT). Two datasets of images from objects: one in

gray scale (COIL20) and one colored (COIL100). The colored datasets are RBG,

i.e.; they have three color spectra: red, green and blue. Table 1 summarizes the

information on the datasets that are described below:

• ORL1: This dataset contains 10 images for each 40 subjects (a total of 400300

images). Each cropped gray scale image has 92× 112 pixel, consequently

each image is represented by a 10, 304-dimensional vector. Samples from

this dataset are shown in Figure 5.

• Georgia Tech (GT) 2: This dataset contains 15 images for each 50 subjects

(a total of 750 images). Each cropped color image has a different size, all305

the image were resized to 150 × 200 pixel, consequently each image is

represented by a (30, 000× 3) 90, 000-dimensional vector.

• COIL20 database3: This dataset contains 1,440 images (72 for each of its

20 objects) with 256 gray levels. The size of each image is 128×128 pixels,

consequently each image is represented by a 16,384-dimensional vector.310

• COIL100 database4: This dataset contains 7, 200 images (72 for each of

its 100 objects) with 2563 color levels (256 for each color band: red, green,

blue). The size of each image is 128×128 pixels, consequently each image

is represented by a (16, 384× 3) 49, 152-dimensional vector.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://www.anefian.com/research/face_reco.htm
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

15

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.anefian.com/research/face_reco.htm
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Page 16 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Figure 5: Each line contains randomly selected example from each dataset, from top to bottom:

ORL, GT, COIL20, and COIL100.

Figure 6: Noisy examples from each dataset, from left to right: ORL, GT, COIL20, and

COIL100.

4.2. Results and discussion315

The results of these experiments are evaluated concerning the number of

extracted features, accuracy, and computational time. As noticed, we defined

for each method to extract 16 features. For Waveletfaces and RegionPatches

this number can not always be defined precisely, so we used an approximated

number. The same occurs for PCANet, but few features were extracted since320

this method has a significant impact on classification accuracy. The mean ac-

curacy is expressed in percentage and the standard deviation is presented in

round brackets. The time was measured using the same computer with the

16

Page 17 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 1: Description of the dataset

Dataset Type Color Classes Instances Dimension

ORL face gray 40 400 (10× 40) 10, 304

GT face RGB 50 750 (15× 50) 90, 000

COIL20 object gray 20 1,440 (72× 20) 16,384

COIL100 object RGB 100 7,200 (72× 100) 49,152

same configuration and softwares5. The mean time for the feature extraction

was measured in seconds; the standard deviation is also presented in round325

brackets.

We describe the results for the ORL dataset using a single training image per

class in Table 2. First, the “original data” or data without noise was considered.

The accuracy of the raw data (10,304 features) was 68.29%. Comparing to the

feature extraction methods, the highest accuracy for extracted features was330

obtained using PCA (16 features), 62.96%. Followed by Waveletfaces 62.5%

(12 features), RegionPatches (20 features) adn PCANet (672 features) ≈ 59%,

IntensityPatches ≈ 58% (16 features), the lowest accuracy is from Autoencoder

≈ 31% (16 features). The proposed methods did not present great accuracy for

this dataset using so few features. This behavior was expected once the proposed335

methods present higher accuracy for more extracted features, as described in

the next section. Similarly, Autoencoder, which is widely used in Deep Neural

Networks [3], has a very low accuracy using few features. Autoencoder demands

more than 256 features to have accuracy close to the other methods, for this

dataset.340

The minimum mean time for feature extraction is achieved by RegionPatches,

0.03 seconds. Moreover, the maximum mean time by Waveletfaces, 2.19 sec-

onds, two orders of magnitude greater than RegionPatches. IntensityPatches

and PCA have the mean time of 0.21 and 0.11 seconds respectively, they are

5A8-5500B processor with 28GB DDR3 RAM, Windows 7r and Matlab 2016br .

17

Page 18 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 2: Experiment results for ORL face dataset using a single example per class in the

training set.

ORL (original) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 57.86% (2.78%) 0.21 (0.12)

RegionPatches 20 59.43% (2.66%) 0.03 (0.00)

Waveletfaces 12 62.50% (2.29%) 2.19 (0.17)

PCA 16 62.96% (2.75%) 0.11 (0.03)

PCANet 672 59.73% (2.67%) 6.30 (1.09)

Autoencoder 16 30.58% (9.82%) 77.57 (15.88)

Raw 10,304 68.29% (2.50%) −

ORL (noisy) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 54.56% (2.94%) 0.18 (0.01)

RegionPatches 20 59.01% (2.62%) 0.04 (0.02)

Waveletfaces 12 61.70% (2.49%) 2.02 (0.07)

PCA 16 38.65% (4.02%) 0.10 (0.01)

PCANet 672 9.58% (1.78%) 6.38 (1.33)

Autoencoder 16 15.22% (3.31%) 76.02 (1.43)

Raw 10,304 67.51% (2.46%) −

in the same order of magnitude. PCANet is about three times slower than345

Waveletfaces, training a PCANet requires computing PCA for every overlap

patch in the training set. Training an Autoencoder demands a huge amount of

computational time, about 1,000 more than the faster method.

For noisy data, the time analysis is very similar, but the accuracies for the

recognition after feature extraction are different. Accuracy using PCA shows an350

enormous difference of 24.31%. PCA is very sensitive to noise, which probably

caused an overfit in the learning by expecting that the noise in the test set to be

18

Page 19 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

in the same pixel position of the training set. The same effect is noted PCANet,

reducing the accuracy to about 1/6. The accuracy of Autoencoder is reduced

form 30.58% to 15.22%.355

The other methods are less sensitive to the Gaussian noise. Since, the noise

inserted in the data has zero mean, the sum of the intensities from a set of

pixel does not vary much from the same sum without noise. The summation

of images with Gaussian noise tends cancel the effect of the noise – the sum of

zero mean samples approaches zero.360

RegionPatches with accuracy of 59.01%, presented the smalled difference:

0.42% less than accuracy with the original data. Waveletfaces have accuracy

reduced to 61.70%, a difference of 0.80%. IntensityPatches had the accuracy

reduced to 54.56%, a difference of 3.30%. IntensityPatches is probably more

sensitive to noise than the other two methods because it learns its regions from365

the training set, similarly to PCA and its projections. So the learned regions

can be biased by the noise. Nonetheless IntensityPatches presented an accuracy

difference much smaller than PCA.

The Nearest Neighbor classifier is also not very sensitive to Gaussian noise.

The accuracy for the raw data with noise was 67.51% and without noise 68.29%,370

the difference is of 0.78%. This small sensitivity for Gaussian noise is also due

the summation effect. The classifier used here calculates the Euclidean distance,

which sum the squares of the differences between each feature. As expected,

the sum of the squares of the noise also approaches zero.

Waveletfaces showed to be the best method for the ORL dataset in this ex-375

periment, this same dataset was evaluated in the Waveletfaces paper [1]. How-

ever the proposed method also presented a compatible accuracy, small sensitivity

to noise, and very small time for feature extraction.

When using nine training examples per class for the ORL dataset (3), most

of the methods have accuracy higher than 96% even in the presence of noise.380

The accuracy for IntensityPacthes is close to 93% (with or without noise). The

accuracy for autoencoder are 62% (noise free) and 47% (with noise). PCANet

accuracy is greatly reduced to 14% for noise data. The computational time did

19

Page 20 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 3: Experiment results for ORL face dataset using nine examples per class in the training

set.

ORL (original) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 92.92% (3.88%) 1.12 (0.07)

RegionPatches 20 96.38% (2.83%) 0.03 (0.00)

Waveletfaces 12 95.59% (3.19%) 2.14 (0.11)

PCA 16 97.13% (2.43%) 1.86 (0.29)

PCANet 672 96.28% (2.83%) 15.34 (1.05)

Autoencoder 16 62.05% (16.21%) 254.61 (4.74)

Raw 10,304 97.41% (2.32%) −

ORL (noisy) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 92.82% (3.64%) 1.10 (0.01)

RegionPatches 20 96.08% (2.88%) 0.03 (0.00)

Waveletfaces 12 95.05% (3.14%) 2.08 (0.04)

PCA 16 96.74% (2.52%) 1.63 (0.04)

PCANet 672 14.46% (4.50%) 16.71 (1.57)

Autoencoder 16 47.44% (11.67%) 256.67 (2.01)

Raw 10,304 96.90% (2.71%) −

not increase for RegionPatches and Waveletfaces. It is about five times greater

for IntensityPatches, 16 times higher for PCA, and the triple for PCANet and385

autoencoder. The proposed method still presents low computational time and

high accuracy even in the presence of noise.

The results for the GT color face dataset, using a single example per class in

the training set, are shown in Table 4. Similar to the ORL dataset, the feature

extraction time has three different orders of magnitude: 10−1 for RegionPacthes,390

100 for IntensityPatches and PCA, and 101 for Waveletfaces. The reason is the

same. The time to evaluate the original and noisy data were, respectively, 0.40

20

Page 21 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 4: Experiment results for GT face dataset using a single example per class in the training

set.

GT (original) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 41.73% (2.65%) 1.64 (0.03)

RegionPatches 20 47.67% (2.69%) 0.40 (0.04)

Waveletfaces 12 35.33% (2.21%) 17.45 (0.10)

PCA 16 42.20% (3.07%) 1.72 (0.09)

PCANet 1,900 2.09% (0.13%) 30.04 (1.21)

Autoencoder 16 10.97% (4.01%) 695.81 (12.08)

Raw 90,000 44.63% (3.28%) −

GT (noisy) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 40.11% (2.56%) 1.68 (0.06)

RegionPatches 20 47.57% (2.72%) 0.40 (0.05)

Waveletfaces 12 35.25% (2.21%) 17.95 (1.27)

PCA 16 19.98% (2.97%) 1.67 (0.03)

PCANet 1,900 30.16% (2.18%) 30.90 (1.12)

Autoencoder 16 5.77% (2.41%) 678.50 (11.19)

Raw 90,000 44.45% (3.18%) −

and 0.40 for RegionPacthes, 1.64 and 1.68 for IntensityPatches, 1.72 and 1.67

for PCA, 17.45 and 17.95 for Waveletfaces. These times were approximately

10 times larger than for the ORL dataset because there were approximately 10395

times more features to be evaluated, as can be seen in the difference in the raw

images from the two datasets.

The highest accuracy was achieved by RegionPatches (20 features), 47.67%

in the original data, with a small difference with the noisy features (47.57%). For

the original data, the accuracies of IntensityPatches, 41.73%, and PCA, 42.20%,400

are on par. The PCA accuracy decreases to about half 19.98% with noisy

21

Page 22 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 5: Experiment results for GT face dataset using nine examples per class in the training

set.

GT (original) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 71.74% (2.23%) 13.13 (0.44)

RegionPatches 20 79.98% (1.88%) 0.39 (0.03)

Waveletfaces 12 67.65% (2.22%) 18.51 (0.52)

PCA 16 76.77% (1.97%) 19.38 (0.19)

PCANet 1,900 2.66% (0.31%) 58.94 (1.99)

Autoencoder 16 8.87% (8.54%) 2,528.86 (20.55)

Raw 90,000 77.96% (1.88%) −

GT (noisy) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 73.67% (1.74%) 12.69 (0.04)

RegionPatches 20 79.90% (1.87%) 0.40 (0.01)

Waveletfaces 12 67.01% (2.09%) 17.77 (0.17)

PCA 16 73.99% (2.13%) 19.25 (0.17)

PCANet 1,900 54.77% (2.16%) 60.37 (2.08)

Autoencoder 16 13.47% (5.11%) 2,435.73 (37.43)

Raw 90,000 77.75% (1.87%) −

features while the accuracy for IntensityPatches presented a small reduction

to 40.11%. Waveletfaces was restricted to extract 12 features and showed an

accuracy of 35.33% and 35.25% for original and noisy data, respectively.

An important issue for the Waveletfaces in this dataset is that it extracted405

only four features for each of the three color band. Wavelet level 7 for an

150 × 200 image defines four regions and level 6, 12 regions. The number of

features for a color image for level 7 is 12 features, for level 6, 36 features.

RegionPatches is more flexible than Waveletfaces and allows more options for

the number of extracted features. Using the same example, RegionPatches410

22

Page 23 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

allows choosing 12, 20, 24, 30, 35, or 42 in the same range.

To compare RegionPatches and Waveletfaces for the same number of fea-

tures, the accuracy of RegionPatches for 12 extracted features was 44.47%(2.27%)

for original data and 44.46%(2.43%) for noisy data. The computational time

for feature extraction was 0.31 (0.03) seconds. RegionPatches also differs from415

Waveletfaces dealing with color images. It explains the difference for the same

number of extracted features. While Waveletfaces extracts features from each

color band, RegionPatches averages the pixel intensities from all color within

the same position. For this dataset, the RegionPatches approach achieved a

higher accuracy.420

For the noiseless GT dataset, PCANet has the accuracy close theoretical

minimum (the inverse of the number of classes). Such result reveals another ad-

vantage of proposed methods: few parameters. PCANet is 30 times slower than

proposed methods; it takes too long for tuning to many parameters. Strangely,

its accuracy increased from 2% to 30% in the noisy data. Autoencoder also425

was not able to extract discriminant features in this case. Its accuracy is sig-

nificantly low, mainly with noise data. Moreover, its training time is hundred

times larger compared with proposed methods.

A larger training set for the GT dataset 5 increases the accuracy for most

of the methods. PCANet and autoencoder presented a significantly low accu-430

racy. The other methods have accuracy close or higher than 70%. The greatest

accuracy of 80% is reached by RegionPatches. Computational time increased

for most of the methods compared with smaller training set case. We conclude

for the GT dataset that the proposed methods are simple, fast, demand few

parameters, and present high accuracy even in the presence of noise.435

The COIL20 dataset is composed of a grayscale object images, the experi-

mental results for COIL20 are shown in Table 6. This dataset is very different

from the datasets of the previous experiments. For the face datasets, each image

has a similar structure. However, for object datasets, the shapes and background

areas vary depending on the class. For the COIL20 the shapes also vary within440

the class because the images of each object are rotations of the original image.

23

Page 24 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 6: Experiment results for COIL20 object dataset using a single example per class in the

training set.

COI20 (original) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 63.15% (3.09%) 0.29 (0.02)

RegionPatches 16 58.42% (2.28%) 0.14 (0.02)

Waveletfaces 16 58.31% (2.28%) 8.43 (0.08)

PCA 16 60.51% (2.41%) 0.20 (0.02)

PCANet 1,024 55.14% (2.25%) 28.07 (1.00)

Autoencoder 16 38.01% (9.51%) 113.34 (3.86)

Raw 16,384 61.39% (2.21%) −

COIL20 (noisy) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 61.53% (3.02%) 0.28 (0.02)

RegionPatches 16 58.37% (2.27%) 0.13 (0.02)

Waveletfaces 16 58.22% (2.29%) 8.36 (0.06)

PCA 16 50.69% (4.75%) 0.19 (0.02)

PCANet 1,024 19.46% (2.31%) 28.87 (0.90)

Autoencoder 16 33.44% (6.34%) 115.32 (3.92)

Raw 16,384 61.39% (2.21%) −

RegionPatches, IntensityPatches, and PCA presented similar average time.

IntensityPatches and PCA timing increase with more training examples (7) but

still at least 8 times faster than Waveletfaces, 30 faster than PCANet, and 300

faster than Autoencoder.445

The mean accuracy for raw images (16,384 dimensions) is 61% with or with-

out noise; with more training examples it goes to 89%. The greatest mean accu-

racy was obtained when the features are extracted with the proposed method In-

tensityPatches: 63% for the original data and 61% for the noisy data (1 example

24

Page 25 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 7: Experiment results for COIL20 object dataset using nine examples per class in the

training set.

COIL20 (original) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 91.08% (1.31%) 1.07 (0.03)

RegionPatches 16 87.94% (1.23%) 0.13 (0.01)

Waveletfaces 16 87.85% (1.25%) 8.63 (0.09)

PCA 16 90.62% (1.29%) 1.60 (0.13)

PCANet 1,024 84.33% (1.30%) 33.88 (1.64)

Autoencoder 16 53.71% (8.19%) 356.18 (4.24)

Raw 16,384 88.73% (1.18%) −

COIL20 (noisy) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 90.76% (1.44%) 1.07 (0.03)

RegionPatches 16 87.89% (1.24%) 0.13 (0.01)

Waveletfaces 16 87.75% (1.25%) 8.54 (0.08)

PCA 16 90.01% (1.33%) 1.23 (0.02)

PCANet 1,024 30.90% (1.68%) 35.38 (1.88)

Autoencoder 16 46.30% (7.43%) 365.73 (19.47)

Raw 16,384 88.68% (1.21%) −

per class) and 91% for 9 examples per class in training (noisy or noiseless data).450

The accuracy for IntensityPatches was higher than for the raw data. It probably

occurs because IntensityPatches reduces the influence of the background image

in the classification. The proposed methods presented low computational time

and accuracy comparable to or greater than other methods. They also suffer

small influence of noise for classification.455

The COIL100 is a color object image dataset, which is a colored and extended

version of COIL20. While COIL20 has 20 objects (classes), COIL100 has 100

25

Page 26 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 8: Experiment results for COIL100 object dataset using a single example per class in

the training set.

COIL100 (original) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 63.62% (2.23%) 3.63 (0.12)

RegionPatches 16 49.60% (1.08%) 2.06 (0.20)

Waveletfaces 12 52.22% (1.19%) 131.09 (0.91)

PCA 16 62.87% (1.21%) 4.28 (0.18)

PCANet 1,024 2.00% (0.00%) 92.22 (6.06)

Autoencoder 16 21.74% (8.89%) 663.50 (10.14)

Raw 49,152 59.91% (1.13%) −

COIL100 (noisy) 1 example per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 63.36% (2.13%) 3.41 (0.16)

RegionPatches 16 49.52% (1.05%) 2.06 (0.35)

Waveletfaces 12 52.12% (1.17%) 131.83 (0.49)

PCA 16 58.70% (1.24%) 4.16 (0.15)

PCANet 1,024 38.88% (1.30%) 92.07 (0.36)

Autoencoder 16 17.16% (6.43%) 667.89 (8.81)

Raw 49,152 59.86% (1.13%) −

objects. Results for the experiments with COIL100 dataset are presented in

Table 8. The mean accuracy for the raw data (19,152 features) is 60% (noisy

or noiseless data) with a single training example per class; and about 89% with460

nine training examples per class (noisy or noiseless).

The highest mean accuracy for COIL100 within the small training set is also

achieved using IntensityPatches 63.62% (original data) 63.36% (noisy data).

This accuracy did not alter much when using noisy data. PCA is on par with

the original data with an accuracy of 62.87%, but the mean accuracy decreases465

26

Page 27 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 9: Experiment results for COIL100 object dataset using nine examples per class in the

training set.

COIL100 (original) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 90.35% (0.80%) 17.03 (0.14)

RegionPatches 16 81.64% (0.61%) 2.02 (0.12)

Waveletfaces 12 83.57% (0.70%) 135.28 (2.35)

PCA 16 90.74% (0.55%) 26.52 (0.38)

PCANet 1,024 2.00% (0.00%) 106.76 (0.37)

Autoencoder 16 39.67% (12.84%) 3,877.87 (50.83)

Raw 49,152 89.13% (0.59%) −

COIL100 (noisy) 9 examples per class in training

Method Features Accuracy Time (s)

IntensityPatches 16 90.56% (0.98%) 16.33 (0.15)

RegionPatches 16 81.46% (0.60%) 1.81 (0.07)

Waveletfaces 12 83.38% (0.68%) 133.27 (0.54)

PCA 16 90.53% (0.55%) 26.04 (0.36)

PCANet 1,024 65.96% (0.64%) 107.66 (0.45)

Autoencoder 16 43.06% (7.62%) 3,964.22 (46.34)

Raw 49,152 89.00% (0.59%) −

to 58.70% in the noisy version. RegionPatches and Waveletfaces presents a sim-

ilar result. Also, the mean accuracy did not alter much in the presence of noise.

RegionPacthes showed a mean accuracy of 49.60% and 49.52%, and Wavelet-

faces 52.22% and 52.12%, both for original and noisy dataset respectively. For

the larger traning set, results are similar. IntensityPatches and PCA have the470

greatest accuracies, about 90%. RegionPatches and Waveletfaces have around

80% accuracy.

PCANet and Autoencoder presented significantly lower accuracies in every

27

Page 28 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

case. It is worth to note that advantage of using linear feature extraction meth-

ods: they are simpler, faster, and can achieve higher accuracy in many cases,475

as in these experiments. Also, for this dataset, the proposed methods presented

the benefit os speed, high accuracy, simplicity, few parameters, and tolerance to

noise.

In the next section, we analyze the specific problem of face recognition using

IntensityPatches and extracting more features.480

5. Face recognition experiments

In this section, two experiments and their results are described to evaluate

Intensity Patches for the face recognition task. We compare IntensityPatches

and PCA accuracies using the Nearest Neighbor (1-NN) classifier is applied

using Euclidean distance. For each dataset, we randomly select half of the485

images as the training set, and the other half as the test set. These experiments

were performed using three well-known face data sets: Yale, ORL, and UMIST.

The Yale dataset has 165 images, 11 images for each one of the 15 subjects.

These images are well registered and have illumination variation and several face

expressions. The ORL dataset contains 10 images for each of its 40 subjects.490

The UMIST face database consists of 574 images of 20 subjects. The images

from ORL are all frontal faces, the images in UMIST are faces rotated up to 90

degrees. We resize the images in all datasets to have dimensions of h = 112 and

w = 92.

Figure 7 shows examples of extracted regions for IntensityPatches for the495

used databases. It defines regions of the face such as eyes, eyebrows, chin,

lips, cheek, hair, ear, and nose. It is worth to note that these regions do not

optimally fit each image because they are not defined for a individual image.

But these regions are unique for the entire training set. Figure 8 shows the

squared clusters defined by the RegionPatches algorithm, the squares can be500

cropped in the rightmost and the bottommost clusters. The smaller the square

side u the greater the number of clusters k, because more squares are needed to

28

Page 29 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Figure 7: The region of similar intensity. The features extracted by IntensityPatches are the

mean intensity of these regions. From left to right: ORL, Yale, and UMIST datasets.

Figure 8: Square clusters defined by RegionPatches. From left to right: ORL and UMIST

datasets. For ORL square side u = 16, number of clusters k = 42. For UMIST u = 23 adn

k = 20.

fill the image. In the following subsections two experiments are described along

with their results and discussion.

5.1. Choosing the number of clusters for IntensityPatches505

In this experiments, the choice for the number k of extracted features is

defined. We verify the mean accuracy for the three evaluated face datasets

(ORL, UMIST, and Yale) using different number of clusters (2, 4, 8, 16, 32,

64, 128, 256, 512, 1024, and 2048). The results for the mean accuracy for

10 holdouts are summarized in Figure 9. For the UMIST dataset, the mean510

accuracy has a maximum of 64 or more extracted feature. For the ORL and

Yale datasets, the mean accuracy has a maximum with 512 or more extracted

features. Therefore, we set k = 512 in the following experiment, since we are

looking for a low value for the number of features but also gives a high accuracy.

5.2. Inserting new classes after training515

This experiment evaluates the robustness of a face recognition system if new

subjects are added to the system. Normally the classifier have to be retrained,

29

Page 30 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

100 101 102 103

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of extracted features

A
cc

u
ra

cy

Yale
ORL

UMIST

Figure 9: Accuracy rate of the proposed IntensityPatches per number of features for the three

dataset: Yale, ORL, and UMIST.

however, what about the feature extraction method? We evaluate the system

by using images from only a few classes to train the feature extraction method

that projects every sample for all classes using the trained projections.520

The face recognition accuracy is compared for 512 features extracted with

the proposed method and the maximum number of features extracted with

Eigenfaces. The results are described in Table 10. For each dataset, three

experiment were performed using 1, 2, or 3 random selected classes. Mean

accuracy and its standard deviation were calculated for 10 holdouts. Training525

projection with only a few classes has minor effects for IntensityPatches but not

for Eigenfaces. The proposed method has accuracy from 11 to 23% greater than

Eigenfaces for the Yale dataset, from 12 to 38% greater for the ORL dataset,

and from 3 to 10% greater for the UMIST dataset.

The main advantage of the proposed method is that it does not have the same530

limitation for the number of extracted features as Eigenfaces. IntensityPatches

is a suitable feature extraction method for face recognition, since it showed

a relevant advantage in datasets with only a few samples. Also, it generates

projection that is discriminant even for classes that have not being evaluated

30

Page 31 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Table 10: Results of the mean accuracy and (standard deviation) for ORL, YALE and

UMIST datasets extracting features with PCA and IntensityPatches if only 1, 2 or 3 classes

are used to generate data projection. N. C. stands for the number of classes.

N.C. PCA IntensityPatches

YALE

1 52.80% (6.51%) 75.98% (2.88%)

2 63.78% (3.90%) 76.34% (4.50%)

3 67.56% (2.52%) 78.66% (3.95%)

ORL

1 55.95% (6.23%) 94.15% (1.31%)

2 77.15% (5.15%) 95.05% (1.42%)

3 82.45% (3.69%) 95.00% (1.37%)

UMIST

1 87.84% (2.59%) 97.21% (0.79%)

2 92.37% (1.83%) 97.46% (0.99%)

3 94.25% (1.53%) 97.35% (0.87%)

during training.535

6. Conclusion

We proposed a framework for an unsupervised feature extraction. The basic

idea is the clustering of the pixels so to diminish the multicollinearity issue. Two

methods were proposed: IntensityPatches and RegionPatches. They were in-

spired in Waveletfaces and present similar property of being robust to Gaussian540

noise. RegionPatches is a direct extension of Waveletfaces, but it is more flexible

and deal differently with color images. For image dataset were evaluated in the

experiments. The results showed that RegionPatches have similar or greater ac-

curacy compared to Waveletfaces. Also, RegionPatches and Waveletfaces were

the methods that presented the highest accuracy for the face recognition task,545

mainly in the presence of noise.

Extra experiment with IntensityPatches for face recognition shows that this

method demands about 500 extracted features for a maximum accuracy in the

face recognition task. But it shows one of the highest accuracy for object recog-

31

Page 32 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

nition in these experiments, for color or grayscale images, with or without noise.550

The proposed the framework is a powerful linear feature extraction method and

opens the possibility for other combinations of clustering algorithms, distance

metrics, and combination rules, to create new feature extraction techniques.

References

[1] J.-T. Chien, C.-C. Wu, Discriminant waveletfaces and nearest feature clas-555

sifiers for face recognition, Pattern Analysis and Machine Intelligence, IEEE

Transactions on 24 (12) (2002) 1644–1649.

[2] T. J. Hastie, R. J. Tibshirani, J. H. Friedman, The elements of statistical

learning : data mining, inference, and prediction, Springer series in statis-

tics, Springer, New York, 2009, autres impressions : 2011 (corr.), 2013 (7e560

corr.).

[3] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review

and new perspectives, IEEE Transactions on Pattern Analysis and Machine

Intelligence 35 (8) (2013) 1798–1828.

[4] J. P. Cunningham, Z. Ghahramani, Linear dimensionality reduction: Sur-565

vey, insights, and generalizations, J. Mach. Learn. Res. 16 (1) (2015) 2859–

2900.

[5] T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, PCANet: A simple deep

learning baseline for image classification?, IEEE Transactions on Image

Processing 24 (12) (2015) 5017–5032.570

[6] X. Chang, F. Nie, Y. Yang, C. Zhang, H. Huang, Convex sparse PCA for

unsupervised feature learning, ACM Trans. Knowl. Discov. Data 11 (1)

(2016) 3:1–3:16.

[7] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, A. Ng, On ran-

dom weights and unsupervised feature learning, in: L. Getoor, T. Schef-575

fer (Eds.), Proceedings of the 28th International Conference on Machine

32

Page 33 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Learning (ICML-11), ICML ’11, ACM, New York, NY, USA, 2011, pp.

1089–1096.

[8] L. O. Jimenez-Rodriguez, E. Arzuaga-Cruz, M. Velez-Reyes, Unsupervised

linear feature-extraction methods and their effects in the classification of580

high-dimensional data, IEEE Transactions on Geoscience and Remote Sens-

ing 45 (2) (2007) 469–483.

[9] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Fourth Edition, 4th

Edition, Academic Press, 2008.

[10] Y. Fan, G. Huang, Y. Li, X. Wang, Z. Li, L. Jin, Development of PCA-585

based cluster quantile regression (PCA-CQR) framework for streamflow

prediction: Application to the xiangxi river watershed, china, Applied Soft

Computing (2016) –.

[11] V. V. Kamadi, A. R. Allam, S. M. Thummala, V. N. R. P., A computational

intelligence technique for the effective diagnosis of diabetic patients using590

principal component analysis (PCA) and modified fuzzy SLIQ decision tree

approach, Applied Soft Computing 49 (2016) 137 – 145.

[12] A. K. Jain, K. Nandakumar, A. Ross, 50 years of biometric research: Ac-

complishments, challenges, and opportunities, Pattern Recognition Letters

79 (2016) 80 – 105.595

[13] T. B. A. de Carvalho, M. A. A. Sibaldo, I. R. Tsang, G. D. C. Cavalcanti,

I. J. Tsang, J. Sijbers, Fractional eigenfaces, in: 2014 IEEE International

Conference on Image Processing (ICIP), 2014, pp. 258–262. doi:10.1109/

ICIP.2014.7025051.

[14] T. B. A. de Carvalho, A. M. Costa, M. A. A. Sibaldo, I. R. Tsang, G. D. C.600

Cavalcanti, Supervised fractional eigenfaces, in: 2015 IEEE International

Conference on Image Processing (ICIP), 2015, pp. 552–555.

[15] R. C. Gonzalez, R. E. Woods, Digital Image Processing (3rd Edition),

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

33

http://dx.doi.org/10.1109/ICIP.2014.7025051
http://dx.doi.org/10.1109/ICIP.2014.7025051
http://dx.doi.org/10.1109/ICIP.2014.7025051

Page 34 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

[16] T. B. A. de Carvalho, M. A. A. Sibaldo, I. R. Tsang, G. D. C. Cavalcanti,605

I. J. Tsang, J. Sijbers, Pixel clustering for face recognition, in: 5th Brazilian

Conference on Intelligent Systems (BRACIS), 2016, pp. 121–126.

[17] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silver-

man, A. Y. Wu, An efficient k-means clustering algorithm: analysis and

implementation, IEEE Transactions on Pattern Analysis and Machine In-610

telligence 24 (7) (2002) 881–892.

[18] M. Turk, A. Pentland, Eigenfaces for recognition, J. Cognitive Neuroscience

3 (1) (1991) 71–86.

[19] D. R. Wilson, T. R. Martinez, Improved heterogeneous distance functions,

J. Artif. Int. Res. 6 (1) (1997) 1–34.615

34

Page 35 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

- We propose a framework for defining feature extraction techniques
- This frameworks is an extension of feature extraction with Wavelets
- The proposed method is applied on face and object recognition
- Performance and accuracy compared to other methods

*Highlights (for review)

Page 36 of 36

Acc
ep

te
d

M
an

us
cr

ip
t

Training
set

Test
set

Extract
pixel vectors

Cluster
pixel vectors

Define
projections

Project
Test set

Project
Training set

From a gray
scale image to
feature vector

From a color
image to

feature vector

96 72 64 40 32 64 0 16

18 23

Intensity pixel vector

Region Pixel Vector

*Graphical abstract (for review)

