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Highlights 

 New strategy or rail breakage detection for a double-track railway line. 

 Outputs: breakage railway identification, broken track detection, broken zone 

detection. 

 Experimental results show a 100% success rate identifying the breakages. 

 The results show that the proposed system helps to have a safety control of the railway 

traffic.  

 

Abstract 

This work describes a classifier designed to identify rail breakages in double-track railway lines, 

completing the electronic equipment carried out by authors. The main objective of this proposal 

is to guarantee the integrity of tracks before the railway traffic starts working. In addition, it 

facilitates maintenance tasks providing information about possible breakages. The detection of 

breakages is based on the analysis of eight currents provided by the electronic equipment, one 

per rail, at the ends of the section (emitting and receiving nodes). The imbalance that occurs 

among the value of these currents implies that there is at least a breakage in the track section 

under analysis. This analysis is conducted according to three phases. The first one identifies 

whether there is a breakage, and, in that case, the damaged track is identified. The second phase 

provides information about which rail is broken (internal, external or both of them) in the 

previously identified track. Finally, if there is only one breakage, the third phase estimates its 

most likely zone along the track section. This situation is considered as a classification problem, 

and solved by means of the Principal Component Analysis technique. This means that a 

significant number of measurements is required for every breakage pattern (types of breakages) 

to be considered. Due to the difficulty of having real data, the proposal has been validated using 

an 8km-long double-track hardware simulator specially designed by the authors, with specific 

localizations for breakages.  

Keywords: Double-track circuit monitoring, breakage railway identification, broken track 

detection, broken rail detection, broken zone detection, Principal Component Analysis. 

1. Introduction 

The detection of broken rails in railway environments has been widely studied during the last 

decade. The early broken rail detection has become a critical issue especially in high-speed lines, 

not only for safety reasons but also for the efficient maintenance [1]-[4]. For that purpose, 

several approaches have been proposed, depending on the sensory technology applied, as well 

as different techniques [5]. An extended overview about technologies regarding broken rail 

detection can be found in [6][7]. Particularly we would like to highlight the systems based on 

non-destructive testing (NDT) [8]-[12] and track circuit [13]-[19]. 

NDT approaches are often based on ultrasounds to explore railways [11][12][20]. They allow to 

detect not only breakages, but also cracks or superficial damage. Nevertheless, they are 

frequently characterized by a complex infrastructure to be installed along the tracks, as well as 

a limited maximum distance (around 2 km) to be scanned by a single setup. Optic fiber has been 

also installed along the railways [21], in order to detect broken rails [22]. Although this approach 
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provides flexible and easily installable solutions, it can be rapidly degraded due to the high strain 

supported by rails [23]. The most extended track circuits as breakage detector are the ones 

based on AC audio-frequency [19]. They achieve distances around 2km, what means a 

considerable number of electronics systems along the track to properly monitor long railway 

lines, thus increasing installation and maintenance costs.  

In addition to the technologies, some commercial proposals are also described in [7], concluding 

that there is a paucity of literature with regard to reliable solutions for high speed broken rail 

detection in real-time, being the ultrasonic-based method the most common inspection 

technique for broken rail. One of the few automated commercial solutions available on the 

market is the Ultrasonic Broken Rail Detector (UBRD) from RailSonic [24]. However, the section 

coverage is limited up to 2.5km, requiring a monitoring system every 1.75km.  

Other issue arises when sensory data are analyzed to determine whether there is or not a 

breakage along the track, and where it is located. For that purpose, not only sensor data can be 

considered, but also any previous information about the system that could increase reliability. 

This is the reason why some works propose high-level algorithms in order to make fusion and 

decisions about the rail status over time. In [25] a Bayesian network is designed for the diagnosis 

of a railway, especially for the classification of defects. Some authors propose the use of 

different classifiers for the fault diagnosis in railway track circuits, such as neuro-fuzzy systems 

[26], Dempster-Shafer theory [27], or support vector machine (SVM) [28]. Neural networks and 

SVMs have been also analyzed and compared in [29], for monitoring wooden railway sleepers. 

Other authors propose the use of Principal Component Analysis (PCA) technique for solving the 

classification problem, which has been applied in numerous works to extract and classify 

information coming from different sensory systems [30]. Examples of use of PCA can be found 

as classification process with ultrasonic systems [31], as voice and character recognition [32], as 

machine defect classification [33], or face representation and recognition [34]. PCA is also a 

useful technique in the fields of fault detection and diagnosis [35][36][37]. 

In this context, the authors have proposed in a previous work [38] an electronic system for the 

real-time simultaneous detection of breakages in single- or double-track railway lines. The 

approach is based on the electrical discontinuity of one or more rails in a double track railway, 

always assuming that rails are electrically insulated from the railway infrastructure at the 

working frequency (800Hz). This electronic system provides simultaneously the measurement 

of 8 currents in different tracks and localizations (the distance between some of the measured 

currents can be more than 8 km). If the analysis of these currents is considered as a classification 

problem, not only does it help to identify the broken rail, but also to know which the 

corresponding track is and to estimate the zone in which the breakage is located. For solving the 

classification problem, we propose a high-level algorithm based on Principal Component 

Analysis to complete the previous developed electronic system. 

The remainder of the manuscript is organized as follows: Section 2 describes the background 

and an introduction to the developed double track hardware simulator; the PCA-based broken 

rail detector is detailed in Section 3; Section 4 presents experimental results for evaluating the 

proposed solution; Section 5 is dedicated to the discussion of the results and provides some 

directions for future work; and, finally, Section 6 concludes the paper. 

 

2. Background 
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In a first approach, we could evaluate each rail independently, but it would require a new electric 
cable parallel to the railway as returning circuit for the current, what would be part of the 
solution and source of new problems. This is why we bet on a system that does not require more 
electrical conductors than the own rails and we take advantage of the magnetic coupling among 
rails, that generate different current imbalance depending on the breakage location. The two 
main contributions of the authors’ proposal, compared to previous ones, are: a) the increase of 
the distances between nodes in double-track lines, thus implying a shorter time for analyzing 
the whole railway line; and b) the advantage of approximately detecting the breakage location.  
 
As we propose the use of PCA for classifying the different breakages, next subsections introduce 
the set of currents that will be used as feature vector, and the hardware platform for testing the 
classifier. 
 
2.1 Feature vector 

The active broken rail monitoring system has been designed for a high-speed railway with two 

tracks. The train is powered through the catenary and the pantograph, and the global electric 

power is distributed in electrically isolated sections, each one associated to an electrical 

substation. The voltage is kept constant along the section by means of auto-transformers. The 

section between two transformation centers is typically from 10km to 15km long. Fig. 1 shows 

the configuration proposed to measure the electrical continuity of rails in a section with two 

tracks. It includes emitting nodes at the transformation centers, whereas a receiving node is 

placed in the middle. The electronic system and measurement methodology designed by the 

authors is described in detail in [38]. The emitted currents are modulated with Kasami codes 

and the detection is carried out at the receiving nodes by using correlation techniques. 

Considering the distance between transformation centers, where the electronic system would 

be installed, this encoding scheme provides two important advantages: a significant process gain 

and a high immunity to noise. Furthermore, due to the suitable cross-correlation properties of 

these codes, simultaneous emissions can be carried out from every emitting node, being 

possible to distinguish the origin of each transmission at the receiving node.  
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Fig. 1. Configuration proposed to detect breakage (electrical discontinuity) in a double-track railway line. 

Locations of the emitting and receiving nodes between two transformation centers. 

Note that each emitting node encodes its emission with a different code (A or B) whereas the 

receiving node has to detect both of them (see Fig. 1); in this way the breakage testing time is 

significantly reduced. Both kinds of nodes measure the current associated to each rail. Then, 

considering an emitter-receiver pair, eight currents 𝐼𝑡𝑟
(𝑛

 are available according to (1) which 

complete the 8-dimensional feature vector (2) to be used in the classifier. The emitting node is 

the same for two consecutive cells, so the currents 𝐼𝑡𝑟
(𝑛

are simultaneously measured in both of 

them. 

𝐼𝑡𝑟
(𝑛

;    

𝑛 = {
𝑒
𝑟

measured at emitter

measured at receiver

𝑡 = {
1
2

measured at track no. 1

measured at track no. 2

𝑟 = {
𝑒
𝑖

measured at external rail in the corresponding track

measured at internal rail in the corresponding track

 (1)  

�̇� = [𝐼1𝑒
(𝑒

  𝐼1𝑖
(𝑒

  𝐼2𝑖
(𝑒

  𝐼2𝑒
(𝑒

 𝐼1𝑒
(𝑟

  𝐼1𝑖
(𝑟

  𝐼2𝑖
(𝑟

  𝐼2𝑒
(𝑟

 ] (2) 

The electronic system implemented to measure and process these currents (2) provides two 

different ways of generating the signal injection:  either independently for each track t, or jointly 

for both tracks [38]. In the first case, the modulated signal is applied to each track by using a 

time division multiplexing (see Fig. 2a). This means that four independent currents are obtained 

for each track. However, in the joint injection, the modulated signal is applied between both 

tracks by means of the suitable connection, as is shown in Fig. 2b. In this second case, eight 

currents are simultaneously measured, existing a correlation among them. These two injection 

modes play a significant role in the detection and location of rail breakages as it is discussed in 

the following section. 
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Fig. 2. Configuration at the emitting and receiving nodes according to the signal injection mode: a) 

independent injection; b) joint injection.  

 

2.2. Hardware simulator 

Although broken rails are the leading cause of major derailments accidents [39][40], it is very 

difficult to get enough evidences to validate a proposal as the one described in this paper. For 
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that reason the authors have developed a double track hardware simulator, based on the 

impedance of the high speed tracks [41]. The objective of this simulator is to generate track 

breakages [38] in different positions of the track section. It includes four impedance modules 

equivalent to 2km-long track sections in dry conditions (water content is 0.1%) and at a working 

frequency of 800Hz. Every module is composed of a set of discrete RLC. Their serial connection 

provides the electrical characteristic of a track section between the emitting and receiving 

nodes, with a length of 8km. This system allows to simulate a breakage in any rail at three 

different positions: near the emitting node (a quarter of the track length, 2km), near the 

receiving one (three quarters of the track length, 6km), or in an intermediate area (half the track 

length, 4km). Fig. 3 shows the block diagram of the developed system, the possible location of 

the breakages (breakage switches) along the track section under supervision and the nodes 

where the currents 𝐼𝑡𝑟
(𝑛

 belonging to the feature vector are measured (the emitting node on the 

left and the receiving one on the right). Besides, the figure includes the labels that will be used 

to identify every considered breakage corresponding to the third phase of the detection process 

described in Section 3.  

The hardware simulator includes the electronic equipment for both nodes, providing the two 

types of signal injection: independently for each track and jointly for both tracks.  
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Fig. 3. Block diagram of the hardware simulator for a double-track section of 8km in length. Location of 

the breakages in the simulator.  

 

3. Railway breakage detection process 

The global idea of the detection system is shown in Fig. 4. By means of eight measurements 

(currents 𝐼𝑡𝑟
(𝑛

) we can supervise railway sections ended by an emitting node and a receiving one.  

The basic objective is to determine whether the railway cell between the emitting and receiving 

nodes is free of breakage or not. Nevertheless, in case of one breakage, our main challenge is to 

provide information about its location: close to the emitting node, close to the receiving one or 

in the intermediate area. To the best of our knowledge, this extra information has not been 

previously generated by any current broken rail detector. Moreover, considering the long 

distance between the emitting and receiving nodes, this approach can be very useful for 

maintenance operations.  

Since there are different situations of breakage, each one is characterized by a class 𝛼𝑡,𝑟, where 

t represents the number of the track {1, 2} and r means if the breakage is on the external rail (e), 

on the internal one(i), or on both (ie).  According to the measurements  𝐼𝑡𝑟
(𝑛

, the classifier reports 

the most likely breakage class 𝛼𝑡,𝑟.  
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Fig. 4. Block diagram of the detection system. 

 

The detection process is divided into the following phases: 

 Phase 1. This first phase evaluates if there is a breakage in the railway cell under test. 

For doing that, the signal injection is carried out independently for each track t (see Fig. 

2a). In this case four currents per track are measured (two in the emitting node and two 

in the receiving one). This information can be represented with two 4-dimensional 

feature vectors: �̇�𝟏and �̇�𝟐 (3). As a result of this phase, the state of track t can be 

concluded: correct (𝛼𝑡,𝑂𝐾) or broken (𝛼𝑡,𝐵𝑅). Considering both tracks, four classes can 

be determined as Table 1 shows.  

�̇�𝟏 = [𝐼1𝑒
(𝑒

  𝐼1𝑖
(𝑒

𝐼1𝑖
(𝑟

  𝐼1𝑒
(𝑟

  ]

�̇�𝟐 = [𝐼2𝑒
(𝑒

  𝐼2𝑖
(𝑒

 𝐼2𝑖
(𝑟

  𝐼2𝑒
(𝑟

  ]
 (3) 

If the conclusion of the first phase is that there is only one broken track t, the detector 

continues with the next phase, otherwise the detection process finishes.  
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Track breakage Class Broken track(s) 

Track no. 1 {t=1} or Track no. 2 {t=2} 
(4 classes, 2 per track) 

𝛼𝑡,𝑂𝐾  Track t is not broken 

𝛼𝑡,𝐵𝑅 Track t is broken 

Table 1. Classes related to the first phase of the detection process. 

 Phase 2. This phase detects which the broken rail r is: either the external, the internal 

or both. For this phase and the following one, the signal injection is carried out jointly 

for both tracks (see Fig. 2b), so an 8-dimensional feature vector �̇� is obtained (2) for the 

cell under test. Table 2 shows the six classes 𝛼𝑡,𝑟 related to the second phase of the 

detection system. 

Track breakage Class Broken rail(s) 

Track no. 1 {t=1}  
or Track no. 2 {t=2} 
(6 classes, 3 per track) 

𝛼𝑡,𝑖  Track t, internal rail (r=i) 

𝛼𝑡,𝑒  Track t, external rail (r=e) 

𝛼𝑡,𝑖𝑒  Track t, internal and external rails (r=ie) 

Table 2. Classes related to the second phase of the detection process. 

If it is detected that both rails of the same track are broken the process finishes here 

(class 𝛼1,𝑖𝑒 or 𝛼2,𝑖𝑒). Otherwise the next phase is run.  

 Phase 3. Assuming that the result from the previous phases is only one breakage (one 

track t, one rail r and no more than one breakage per rail), the objective at this point is 

to estimate the position of this breakage along the track. Although three possible 

locations z have been considered (close to the emitter z=ne, close to the receiver z=nr, 

or in the intermediate area z=in), the study could be extended to more positions without 

loss of generality. Considering both tracks, Table 3 shows the new twelve classes 𝛼𝑡,𝑟,𝑧. 

Track breakage Class 𝛼𝑡,𝑟,𝑧Estimated position of the breakage 

Track no. 1 {t=1} 
or Track no. 2 
{t=2} (12 classes) 

𝛼𝑡,𝑟,𝑛𝑒  Track t, rail r {i or e}, near the emitting node (z=ne) 

𝛼𝑡,𝑟,𝑛𝑟 Track t, rail r {i or e}, near the receiving node (z=nr) 

𝛼𝑡,𝑟,𝑖𝑛  Track t, rail r {i or e}, in the intermediate area (z=in) 

 

Table 3. Classes 𝛼𝑡,𝑟,𝑧 related to the third phase of the detection process. 

Fig. 5 depicts the flow chart of the described detection process. According to it, if the third phase 

is reached it means that there are twelve different classes 𝛼𝑡,𝑟,𝑧 to describe the situation of the 

railway cell as Table 3 shows. In this case the classes are sorted according to the position of the 

breakage. 
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Fig. 5. Detection process: detection phases and classes. 

 

4. PCA-based classifier 

Once the measurements are available, the next step is to process them and to conclude which 

of the described classes is the most likely according to the value of the feature vector 

(distribution of the currents 𝐼𝑡𝑟
(𝑛

 ) following the described detection phases. For the first phase, 

the measurements of the four correlated currents per rail are used as input data (without 

correlation between both sets of currents since the independent injection is applied). If the 

obtained result entails to continue with the following detection phases, the input data is a set 

of 8 correlated currents (due to the joint injection) as is indicated in (2).  

The existing correlation among the obtained currents at the second and third phases justifies 

the use of multivariate analysis in order to reduce the number of variables and to create the 

minimum set of uncorrelated ones. One approach to reach this objective is the use of PCA 

(Principal Component Analysis) [30].  

ACCEPTED M
ANUSCRIP

T



Working with PCA two statistics are commonly used: Q statistic (squared prediction error, SPE) 

and Hotelling’s T2 statistic [35][37], for sensor fault detection as well as for classification 

applications. In our work we use the reconstruction error based on the Mahalanobis distance, 

which is similar to the Q statistic. With regard to the T2 statistic, it measures the statistical 

variation due to systematic errors within the model of PCA. Since in this application the 

systematic error is negligible, this statistic is very low as we show in Section 6.  

4.1. PCA technique overview 

This technique transforms the input information from the original space to the PCA transformed 

space, with only the uncorrelated information. This transformation is carried out through the 

so-called transformation matrix 𝑼.  If there are j classes, one transformation matrix 𝑼𝑗  is 

calculated for each class 𝛼𝑗, j={1, …, c}. For the sake of clarity each class is defined in this Section 

as 𝛼𝑗. The relationship between both notations is shown in Section 5. Without loss of generality, 

it is assumed the use of 8 currents, being the first phase a particular case (only four currents). 

In general terms, PCA is divided into two stages. The first one, also called the training stage, is 

carried out off-line, when varying operational conditions have been taken into account, with the 

track section simulating one of the classes j.  In this situation a data set �̇�𝑗 is captured, and the 

zero mean data set 𝒙𝑗 is used to obtain the transformation matrix 𝑼𝑗 between the original space 

and the transformed one, or vice versa. The matrix 𝑼𝑗 is obtained from the eigenvectors 

associated with the most significant eigenvalues 𝜆𝑖 of the covariance matrix 𝑺𝑗 of the data set 

𝒙𝑗.  

This training stage uses a number of measurements K from the input data set representing 

different track conditions for the class 𝛼𝑗. Every feature vector is then described by �̇�𝑘𝑗 (4),  

�̇�𝑘𝑗  ∈  ℝ8 (8 currents). Then the mean vector 𝝍𝑗 (5), the zero-mean one 𝒙𝑘𝑗 (6) and the 

covariance matrix 𝑺𝑗 (7) are calculated.  

 �̇�𝑘𝑗 = [𝐼1𝑒
(𝑒

  𝐼1𝑖
(𝑒

  𝐼2𝑖
(𝑒

  𝐼2𝑒
(𝑒

 𝐼1𝑒
(𝑟

  𝐼1𝑖
(𝑟

  𝐼2𝑖
(𝑟

  𝐼2𝑒
(𝑟

 ]
𝑘𝑗

 𝑘 = {1, … , 𝐾}; 𝑗 = {1, … , 𝑐} 
(4)  

𝝍𝑗 =
1

𝐾
∑ �̇�𝑘𝑗 

𝐾

𝑘=1

 (5) 

𝒙𝑘𝑗 = �̇�𝑘𝑗 − 𝜓𝑗 (6) 

𝑺𝑗 =
1

𝐾
∑(𝒙𝑘𝑗)

𝐾

𝑘=1

(𝒙𝑘𝑗)
𝑇

 (7) 

Fig. 6 represents the described off-line phase for a class 𝛼𝑗. The same process has to be carried 

out for every class.  ACCEPTED M
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Fig. 6. PCA off-line process for class 𝛼𝑗  (training phase). 

The second stage is on-line, known as classification phase. By using the transformation matrix 

𝑼𝑗, the feature vector �̇� that is received from the measuring system is converted to a zero mean 

vector 𝒙 and is projected onto each transformed space (one per class 𝛼𝑗) to obtain the new 

transformed feature vector 𝒚𝑗, according to (8).   

  𝒚𝑗 = 𝑼𝑗
𝑇𝒙  (8) 

Later the reconstruction is computed by using (9), obtaining the reconstructed vector �̂�𝑗 per 

class 𝛼𝑗. 

  �̂�𝑗 = 𝑼𝑗 𝒚𝑗 (9) 

The reconstructed information �̂�𝑗 differs from the original one 𝒙 in different magnitudes 

depending on the similarity level that exists between the new data 𝒙 and those which were used 

to obtain the transformation matrix 𝑼𝑗. This difference is known as the reconstruction error ℰ𝑗 

(10), and it is computed for every class 𝛼𝑗 by using the Mahalanobis distance between 𝒙 and �̂�𝑗. 

   ℰ𝑗 = (𝒙 − �̂�𝑗)
𝑇

𝑺𝑗
−1(𝒙 − �̂�𝑗) (10) 

Then, the minimum reconstruction error ℰ𝑗 classifies the input vector �̇� as a membership of the 

class 𝛼𝑗. Fig. 7 summarizes the described online process to classify a set of measurements. 

 

Fig. 7. PCA on-line process. Classification phase. 
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4.2. Railway breakage detection based on PCA 

The global detection process has been already described in Section 3, divided into different 

phases with a set of classes for each phase (see Fig. 5) identifying the corresponding breakage. 

In order to be consistent with the description carried out in Section 4.1, each class is denoted as 

𝛼𝑗. For the independent injection there are only two classes per track, whereas, for the joint 

injection, the number of classes for the second and third phases is six and twelve, respectively.  

a) Phase 1 

Table 4 shows the classes 𝛼𝑗 considered in this phase, taking into account no correlation 

between tracks (independent injection). The analysis of classes {𝛼1, 𝛼2} is carried out 

independently of classes {𝛼3, 𝛼4}.   

 

 

Class 𝛼𝑗 Class description Breakage classification 

𝛼1 𝛼1,𝑂𝐾  Track 1 is not broken 

𝛼2 𝛼1,𝐵𝑅  Track 1 is broken 

𝛼3 𝛼2,𝑂𝐾  Track 2 is not broken 

𝛼4 𝛼2,𝐵𝑅  Track 2 is broken 

Table 4. Classes in the first detection phase (independent injection). 

b) Phase 2 

This phase is reached when the result of the previous phase is a broken track (either class 𝛼2 or 

𝛼4 or both of them). Now the objective is to find out which the broken rail is by using joint 

injection. Table 5 shows the possible classes{𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6}. 

Class 𝛼𝑗 Class description 𝛼𝑡,𝑟 Breakage classification  

𝛼1 𝛼1,𝑖  Track 1, internal rail  

𝛼2 𝛼1,𝑒 Track 1, external rail 

𝛼3 𝛼1,𝑖𝑒 Track 1, both rails 

𝛼4 𝛼2,𝑖  Track 2, internal rail  

𝛼5 𝛼2,𝑒 Track 2, external rail 

𝛼6 𝛼2,𝑖𝑒 Track 2, both rails 

Table 5. Classes in the second detection phase (joint injection). 

c) Phase 3 

If there exists only one breakage in the cell under study, the detection algorithm proceeds with 

the third phase. Once the track and the broken rail are identified, this phase tries to locate the 

breakage along the cell. For that purpose, and according to the developed hardware simulator 

(see subsection 2.2), three different locations have been considered: close to the emitting node, 

close to the receiving one, or in the intermediate area. Twelve breakage classes can be then 

identified, and the relationship between a class 𝛼𝑗 and the associated breakage (see Fig. 3) is 

pointed out in Table 6. Note that, without loss of generality, more breakage locations might be 

considered, but the higher the number of classes the more complex the hardware simulator and, 

what is worst, the more difficult to get evidences in a real scenario. 
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Class 
𝛼𝑗 

Class description 
𝛼𝑡,𝑟,𝑧 

Breakage 
label (Fig. 3) 

Class description 

Track Rail Position of the breakage 

𝛼1 𝛼1,𝑒,𝑛𝑒 R1e 1/4 1 External Close to the emitting node, 1/4 [2km] 

𝛼2 𝛼1,𝑖,𝑛𝑒 R1i 1/4 1 Internal Close to the emitting node, 1/4 [2km] 

𝛼3 𝛼2,𝑒,𝑛𝑒 R2i 1/4 2 Internal Close to the emitting node, 1/4 [2km] 

𝛼4 𝛼2,𝑖,𝑛𝑒 R2e 1/4 2 External Close to the emitting node, 1/4 [2km] 

𝛼5 𝛼1,𝑒,𝑖𝑛 R1e 2/4 1 External In the intermediate area, 2/4 [4km] 

𝛼6 𝛼1,𝑖,𝑖𝑛 R1i 2/4 1 Internal In the intermediate area, 2/4 [4km] 

𝛼7 𝛼2,𝑒,𝑖𝑛 R2i 2/4 2 Internal In the intermediate area, 2/4 [4km] 

𝛼8 𝛼2,𝑖,𝑖𝑛 R2e 2/4 2 External In the intermediate area, 2/4 [4km] 

𝛼9 𝛼1,𝑒,𝑛𝑟 R1e 3/4 1 External Close to the receiving node, 3/4 [6km] 

𝛼10 𝛼1,𝑖,𝑛𝑟 R1i 3/4 1 Internal Close to the receiving node, 3/4 [6km] 

𝛼11 𝛼2,𝑒,𝑛𝑟 R2i 3/4 2 Internal Close to the receiving node, 3/4 [6km] 

𝛼12 𝛼2,𝑖,𝑛𝑟 R2e 3/4 2 External Close to the receiving node, 3/4 [6km] 

Table 6. Class description with regard to the third phase of the classification process (joint injection). 

 

4.3. Separation of classes 

In order to check the feasibility of the proposed classification process, it is required to analyze if 

the classes are separable. For that, a previous study has been carried out working on the 

hardware simulator. Through the simulator, one hundred transmissions have been performed 

for each one of the twelve classes 𝛼𝑗 of the last phase, providing the corresponding 

measurements in the sensors. The main variations are due to the signal source noise, 

measurement noise and correlation process. Fig. 8 shows the 2D representation of the twelve 

classes 𝛼𝑗 according to the auto-correlation value from two currents in the feature vector, 

namely: 𝐼2𝑖
(𝑟

and 𝐼1𝑖
(𝑟

. Table 7 shows the statistical parameters related to the autocorrelation 

values of such currents (standard deviation, 𝜎𝑥; mean, 𝜇𝑥; and the index of dispersion, 𝐷𝑥 =

𝜎𝑥
2/𝜇𝑥), being 𝑥 and 𝑦 the autocorrelations of  𝐼2𝑖

(𝑟
 and  𝐼1𝑖

(𝑟
 respectively. The index of dispersion 

shows that the set of data per class is under-dispersed, confirming that the considered classes 

are separable. 

Class  𝜎𝑥 
 
𝜇𝑥 

 
𝐷𝑥  𝜎𝑦 

 
𝜇𝑦 

 
𝐷𝑦  

R1e 1/4 50,92 19040 0,13 40,67 14065 0,12 

R1i 1/4 52,99 20191 0,14 35,56 11719 0,11 

R2i 1/4 64,46 21640 0,20 37,23 12874 0,11 

R2e 1/4 49,43 16327 0,15 28,01 9797 0,08 

R1e 2/4 54,83 19115 0,15 55,31 18131 0,17 

R1i 2/4 57,72 21076 0,16 29,05 11253 0,07 

R2i 2/4 74,14 24620 0,22 39,40 12930 0,12 

R2e 2/4 38,83 13902 0,11 28,67 8891 0,09 

R1e 3/4 57,45 20162 0,16 85,07 24668 0,30 

R1i 3/4 61,44 21409 0,17 18,19 6561 0,05 

R2i 3/4 71,81 29312 0,17 34,15 11606 0,10 

R2e 3/4 28,28 7505 0,11 28,27 8672 0,09 

Table 7. Statistical parameters of the autocorrelation values of  𝐼2𝑖
(𝑟

 and  𝐼1𝑖
(𝑟

. 
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4.4. Principal components 

According to the process depicted in Fig. 6, the feature vector �̇�𝑘𝑗 is composed of the measured 

currents. Then, the eigenvectors of the matrix 𝑼𝑗 have been computed for each class of the 

three detection stages. The selected m eigenvectors correspond to the m most significant 

eigenvalues 𝜆𝑖 of the covariance matrix 𝑺𝑗. The value of m is determined according to the 

criterion of getting a normalized residual root mean square error (RMSE) lower than 10% [30], 

defining RMSE as (11): 

   𝑅𝑀𝑆𝐸(𝑚) =
∑ 𝜆𝑖

𝑛
𝑖=𝑚+1

∑ 𝜆𝑖
𝑛
𝑖=1

 
(11) 

where n is the number of the original eigenvectors of the covariance matrix 𝑺𝑗.  

The third classification stage is the most complex situation as the number of breakage classes is 

twelve. The PCA classifier has been trained by software, using the electrical railway model of the 

hardware simulator (dry track [42]) and different SNRs. To evaluate the effect of SNR, the  

double-track section has been simulated adding Gaussian white noise to the measurement of 

currents. The following SNR values have been considered: -10dB, -3dB, 0dB, +3dB and +10dB), 

this way 100 measurements have been obtained, thus providing K=500 training vectors �̇�𝑘𝑗 per 

class 𝛼𝑗. For all the analyzed situations the criterion of RMSE is fulfilled for m=4. 

 

Fig. 8. 2D representation of the twelve classes j related to the third phase, according to the feature 

vector components  𝐼1𝑖
(𝑟

 and 𝐼2𝑖
(𝑟

 . 

 As an example, Fig. 9 depicts the evolution of RMSE depending on m for the situation of “no 

broken rails” in track no. 1 (see Table 4: 𝛼1 ≡ 𝛼1,𝑂𝐾 ).  The m principal eigenvectors correspond 

to the measurements provided by the sensors in the receiving node, [𝐼1𝑒
(𝑟

  𝐼1𝑖
(𝑟

  𝐼2𝑖
(𝑟

  𝐼2𝑒
(𝑟

], as Table 

8 shows. 
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Current/sensor Eigenvalue 

𝐼1𝑒
(𝑒  10962,00 

𝐼1𝑖
(𝑒 13377,12 

𝐼2𝑖
(𝑒 15264,30 

𝐼2𝑒
(𝑒  28151,90 

𝐼1𝑒
(𝑟  96724,82 

𝐼1𝑖
(𝑟 125065,94 

𝐼2𝑖
(𝑟 433733,11 

𝐼2𝑒
(𝑟  593724,04 

Table 8. Eigenvalues i of the covariance matrix Sj. 

 

Fig. 9. Evolution of RMSE for class 𝛼1,𝑂𝐾  (no broken rail) for different SNRs and dry track. 

5. Experimental results 

As has been previously stated, it is very difficult to check the algorithm in a real environment. 

Nevertheless, thanks to the 8km long track hardware simulator different breakages can be 

generated. We would like to recall that when the state of the tracks is similar to one of the 

trained classes it is expected a low reconstruction error (as stated in Section 4.1).  Depending on 

the detection phase, the number and type of classes is different: from Track OK (phase 1) to a 

breakage in a particular position of one rail (phase 3) (see Figure 5). If the detection algorithm 

proceeds with the third phase it means that there is only one breakage. Then the classifier 

provides the most likely position of such breakage according to the data used in the training 

phase. This section shows a variety of cases that validate the proposed algorithm, by using the 

principal components indicated in Section 4.4 (see Table 8).  

5.1. Examples of classification with one breakage 

In this case a breakage of the external rail of track no. 1 close to the receiving node (R1e3/4 

according to Fig. 3) has been generated. The results obtained at every detection phase are the 

following: 

a) First phase. It is carried out with individual injection for each track t (see Fig. 2a). Table 9 

shows the reconstruction errors ℰ𝑗 provided by the PCA classifier. 
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Class 𝛼𝑗 Class description 𝛼𝑡,𝑟  Error ℰ𝑗 

𝛼1 𝛼1,𝑂𝐾  9920,45 

𝛼2 𝛼1,𝐵𝑅  35,82 

𝛼3 𝛼2,𝑂𝐾  1,44 

𝛼4 𝛼2,𝐵𝑅  31673,52 

Table 9. Reconstruction errors ℰ𝑗 for classes in the first detection phase. 

According to the obtained reconstruction errors, only track no. 1 is broken (𝛼1,𝐵𝑅  𝛼2,𝑂𝐾). 

b) Second phase. If there is only one breakage, using joint injection (see Fig. 2b), it can be 

concluded on which rail is the breakage. Table 10 shows the reconstruction errors ℰ𝑗, 

concluding that the most likely situation is that the external rail is broken. 

c) Third phase. Now the objective is to locate the breakage in one of the three trained 

positions. According to the results shown in Table 11, the most likely class is  

𝛼9, which means that the broken rail is the external one in track no. 1, close to the receiving 

node (R1e3/4, see Fig. 3). 

Tables 12 and 13 show other situations of broken rail when the third phase is reached. In Table 

12 the broken rail is the external one in track no. 1, close to the emitting node; in Table 13, the 

broken rail is the internal one in track no. 2, close to the receiving node. 

Class 𝛼𝑗 Class description 𝛼𝑡,𝑟 Error  ℰ𝑗 

𝛼1 𝛼1,𝑖  10336,22 

𝛼2 𝛼1,𝑒 38,62 

𝛼3 𝛼1,𝑖𝑒 6839,42 

𝛼4 𝛼2,𝑖  5615,59  

𝛼5 𝛼2,𝑒 62785,48 

𝛼6 𝛼2,𝑖𝑒 59650,45 

Table 10. Reconstruction errors ℰ𝑗 for classes in the second detection phase.  

 

Table 11. Classification results when there is a breakage in track no. 1, external rail, close to the 

receiving node. 

  

Class 𝛼𝑗 Identification Label Error ℰ𝑗 

𝛼1 R1e 1/4 15420,17 

𝛼2 R1i 1/4 44587,84 

𝛼3 R2i 1/4 30467,62 

𝛼4 R2e 1/4 54025,33 

𝛼5 R1e 2/4 9266,05 

𝛼6 R1i 2/4 35769,79 

𝛼7 R2i 2/4 23893,04 

𝛼8 R2e 2/4 77888,31 

𝛼9 R1e 3/4 0,16 

𝛼10 R1i 3/4 20532,88 

𝛼11 R2i 3/4 40110,36 

𝛼12 R2e 3/4 12486,60 ACCEPTED M
ANUSCRIP

T



 

 

 

 

 

 

 

 

 

Table 12. Classification results when there is a breakage in track no. 1, external rail, close to the emitting 
node. 

 

 

 

 

 

 

 

 

 

Table 13. Classification results when there is a breakage in track no. 2, internal rail, close to the receiving 

node. 

5.2. Examples of classification with more than one breakage 

In this second scenario, a case with several broken rails is analyzed. As was explained in Section 

3, if the state of tracks is OK, or a breakage is detected in both tracks, the classification process 

finishes at the first phase. If the breakage belongs to one track but in both rails, the process 

finishes at the second phase. So, hereinafter, a case with a double breakage in track no. 1 is 

described, placed at both rails in the intermediate area (R1i2/4 and R1e2/4). 

 

a) First phase. Table 14 shows the reconstruction error ℰ𝑗 for every track. 

Class 𝛼𝑗 Class description 𝛼𝑡,𝑟 Error  ℰ𝑗 

𝛼1 𝛼1,𝑂𝐾  9529,88 

𝛼2 𝛼1,𝐵𝑅  97,016 

𝛼3 𝛼2,𝑂𝐾  426,14 

𝛼4 𝛼2,𝐵𝑅  13569,02 

Table 14. Classification results with a double breakage in track no. 1. 

Class 𝛼𝑗 Identification Label Error ℰ𝑗 

𝛼1 R1e 1/4 2,17 

𝛼2 R1i 1/4 5273,75 

𝛼3 R2i 1/4 2885,13 

𝛼4 R2e 1/4 5292,65 

𝛼5 R1e 2/4 2657,95 

𝛼6 R1i 2/4 4908,01 

𝛼7 R2i 2/4 1715,28 

𝛼8 R2e 2/4 15632,48 

𝛼9 R1e 3/4 34183,80 

𝛼10 R1i 3/4 42068,59 

𝛼11 R2i 3/4 8189,46 

𝛼12 R2e 3/4 59228,44 

Class 𝛼𝑗 Identification Label Error ℰ𝑗 

𝛼1 R1e 1/4 22084,76 

𝛼2 R1i 1/4 7734,30 

𝛼3 R2i 1/4 5904,91 

𝛼4 R2e 1/4 20240,75 

𝛼5 R1e 2/4 15555,27 

𝛼6 R1i 2/4 10731,98 

𝛼7 R2i 2/4 4145,56 

𝛼8 R2e 2/4 41044,40 

𝛼9 R1e 3/4 94499,30 

𝛼10 R1i 3/4 23973,33 

𝛼11 R2i 3/4 0,40 

𝛼12 R2e 3/4 17285,23 

𝛼13 R1e 1/4 22084,76 
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b) Second phase. Table 15 shows the classification results for track no. 1, discarding the 

results from track no. 2 since this is not broken. The most likely class is the one for a 

simultaneous breakage in both rails. The classification process finishes in this phase 

because there is more than one breakage, and the system is not able to locate them. 

Class 𝛼𝑗 Class description 𝛼𝑡,𝑟 Error  ℰ𝑗 

𝛼1 𝛼1,𝑖  27686,90 

𝛼2 𝛼1,𝑒 66724,82 

𝛼3 𝛼1,𝑖𝑒 512,15 

𝛼4 𝛼2,𝑖  33218,59  

𝛼5 𝛼2,𝑒 17219,67 

𝛼6 𝛼2,𝑖𝑒 43219,21 

Table 15. Detection of a double breakage in track no. 1.  

6. Discussion 

Due to the difficulty of collecting a significant number of rail breakages for each class in a real 

double track railway, the authors’ proposal has been validated on a hardware simulator, 

specifically designed for a dry railway and an 800 Hz working frequency.  

Although our railway prototype does not include all the conditions that can affect the track 

impedance (e.g. geological properties, environmental conditions), its behavior is very similar to 

modern high-speed railway lines, currently built on a ballast platform and sleepers in such a way 

that the rail-ground conductivity and permeability are minimized. In our opinion, the main 

constraint of this study is to cope with high-moisture conditions, due to it reduces the electrical 

insulation among rails. 

To estimate the effect of water content in soil on the characteristic impedance of the tracks [41] 

[42], and therefore on the capability to detect breakages, a software has been developed. 

Furthermore, this software facilitates the simulation of different levels of noise on the signals 

measured in the emitting and receiving nodes, thus evaluating the effect of different signal-to-

noise ratios (see Section 4.4). Two situations of water content have been checked: dry double-

track (water content 0.1%) and wet double-track (water content=1%) for the 8km long section. 

The characteristic impedance of the tracks, R-L-C-G values, has been modelled according to [42],   

considering in this way two different models in the classification process. For real situations, it 

should be obtained a batch of models according to different water content ranges and, once the 

current ballast water content is measured, the suitable model should be used for the 

classification process. A similar solution is proposed in [43]. 

Moreover, the SNR effect in Fig. 9, Fig. 10 confirms that the criterion of RMSE for the mentioned 

water content is fulfilled with  m=4 (RMSE<10%).  
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Fig. 10. Evolution of RMSE for class 𝛼1,𝑂𝐾 (no broken rail) for different SNRs and wet track. 

As the results show, the different breakages are correctly classified assuming that the most likely 

class is the one with the minimum reconstruction error ℰ𝑗. We have empirically checked with 

the hardware simulator that the selected class has always a reconstruction error that is lower 

than 5% of any of the remaining reconstruction errors, providing a high robustness to the 

classification process. However, there can exist real situations with an unusual low 

reconstruction error that can provoke a wrong classification. In such a case, we should consider 

the T2 statistic to confirm the result provided by the classification stage [37]. If the value of the 

T2 statistic is lower than a threshold stablished for a confidence level [37][43], we can conclude 

that the sample under analysis has a low variation within the model. As an example, Figure 11 

shows the T2 statistic for three classes: a) there is no breakage; b) breakage at track 1, external 

rail close to the emitting node, 1/4 [2km] (Class R1e1/4); c) breakage at track 2, internal rail close 

to the receiving node, 3/4 [6km] (Class R2i3/4). For this example, we have used 100 test samples 

per each situation that were not used in the training stage. The dashed line in each plot shows 

a confidence interval of 95%, showing that there are a few outliers. 

 

Fig. 11. T2 statistic (threshold for a 95% confidence interval): a) Tracks are OK; b) Breakage at track 1, 

external rail close to the emitting node, 1/4 [2km] (Class R1e1/4); c) Breakage at track 2, internal rail 

close to the receiving node, 3/4 [6km] (Class R2i3/4). 

As can be derived from the analysis of Figure 11, the values of T2 show a low dispersion. The 

reason of these results is explained in [37][43]. The T2 statistic is associated to systematic errors 

of the process, and the data used in this work have a negligible systematic component. This is 

mainly due to the electronic system [38] that has been designed for avoiding this problem, and 
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we are using a double track hardware simulator, free of systematic errors as well. Note that the 

electronic equipment includes a self-diagnosis process which runs before each new breakage 

detection. In this way, any electronic subsystem, including the sensory one, is checked and any 

systematic variation is detected in advance. The self-diagnosis also includes a system calibration 

stage in order to determine the suitable level balance of the eight currents in no breakage 

conditions.  

As was previously indicated, it is required to obtain a set of models for each class at each real 

work condition in order to get a robust classifier. As the real environment is unknown, there can 

be extreme situations for which the established classes may not be separable. Then, the T2 

statistic should be calculated in any situation to guarantee that the data fit the used model. 

Nevertheless, the electronic system designed for every node [38] is able to detect them and 

report about such circumstances, thus generating the corresponding alarm (the classifier is not 

in operation).  

In the current work we have not considered the case of more than one breakage per rail 

although our hardware simulator is able to generate such situations. For a future work, a new 

improvement would consist in including more than one breakage per rail and per zone in the 

simulator and in analyzing how the designed classifier works. 

 

7. Conclusions 

A PCA-based strategy of rail breakage detection for a double-track railway line has been 

presented here for monitoring systems and maintenance of railway lines, which avoids the use 

of vehicles to carry out this task, and requires a reduced number of devices to be located in the 

infrastructure. The detection is performed through several phases. The proposal gradually 

discriminates the situations of broken rail, identifying the track and the damaged rail(s). If there 

is only one breakage, the system is able to report the most likely area where that breakage could 

be along the 8km long track section, thus distinguishing three possible locations: close to the 

emitting node, close to the receiving one, and in the intermediate area. 

The proposed classification algorithm uses four principal components from the feature vector 

corresponding to the measured currents at each rail in the emitting and receiving nodes. The 

algorithm has been previously trained by using a double-track railway line software simulator, 

including different SNR conditions and water content in soil. The experimental validation has 

been conducted on a double-track hardware simulator that allows twelve different breakages. 

Experimental results show a 100% success rate identifying the breakages. Furthermore, if the 

hardware simulator included more breakage switches, the number of breakage locations could 

be increased. 

The main constraint of the proposal for being implemented in a real railway infrastructure is to 

have enough breakage records for each one of the analyzed classes. Nevertheless, from the 

point of view of the monitoring and the maintenance of the railway line, the result provided by 

the first detection phase (whether there is a broken rail or not) is relevant enough to safety 

control the railway traffic. Note that for that purpose it is only necessary to get available records 

of the tracks without breakages.  
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