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Abstract

In this paper, we propose the Parallel Elite Biased framework (PEB frame-
work) for parallel trajectory-based metaheuristics. In the PEB framework,
multiple search processes are executed concurrently. During the search, each
process sends its best found solutions to its neighboring processes and uses
the received solutions to guide its search. Using the PEB framework, we
design a parallel variant of Guided Local Search (GLS) called PEBGLS.
Extensive experiments have been conducted on the Tianhe-2 supercomputer
to study the performance of PEBGLS on the Traveling Salesman Problem
(TSP). The experimental results show that PEBGLS is a competitive parallel
metaheuristic for the TSP, which confirms that the PEB framework is useful
for designing parallel trajectory-based metaheuristics.

Keywords: Combinatorial Optimization, Parallel Metaheuristics,
Algorithm Design, Guided Local Search

1. Introduction

Metaheuristics are often used to find nearly optimal solutions of hard
optimization problems within a reasonable amount of time. There are two
main categories of metaheuristics [1, 2]: trajectory-based metaheuristics
and population-based ones. A trajectory-based metaheuristic iteratively
improves a single solution and forms a search trajectory in the solution space.
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Figure 1: Following a parallel framework, one can design the parallel variants of different
sequential metaheuristics

Examples of trajectory-based metaheuristics include Simulated Annealing
(SA), Tabu Search (TS), Iterated Local Search (ILS) and Guided Local
Search (GLS) [3]. In population-based metaheuristics, a population of
solutions is processed by several operators at each iteration (generation).
The members of the population are replaced by new ones so that the
solution space can be explored. Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO) and Artificial Bee
Colony (ABC) [4] are some widely-used population-based metaheuristics.

With the increasing popularity of multi-processor and multi-core plat-
forms, parallelism has become ubiquitous in today’s computer technologies.
Hence, parallel metaheuristics have attracted a lot of research effort. Here
we argue that designing a parallel framework is more essential than designing
a parallel metaheuristic. A parallel framework is a universal model for
designing the parallel variants of a certain kind of metaheuristics. As
sketched in Figure 1, a parallel framework defines how multiple metaheuristic
processes cooperate with each other and one can apply different sequential
metaheuristics to this framework to design different parallel metaheuristics.
In this paper we propose a parallel framework which can be used to design
the parallel variants of trajectory-based metaheuristics including TS, GLS,
etc.

In [5], we have proposed a Parallel Elite Biased Tabu Search (PEBTS)
algorithm for the Unconstrained Binary Quadratic Programming (UBQP)
problem. We generalize the parallelism strategies of PEBTS and propose
the Parallel Elite Biased framework (PEB framework) in this paper. Using
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the PEB framework, we design a new parallel variant of GLS, called Parallel
Elite Based GLS (PEBGLS). Extensive experiments are conducted to study
the performance and behavior of PEBGLS using the symmetric Traveling
Salesman Problem (TSP) as the test suite. We hope that our study can
provide a new possible direction for designing parallel metaheuristics.

This paper is structured as follows. Section 2 reviews the related works.
In Section 3, the PEB framework is presented and discussed. In Section 4
we design a parallel variant of GLS following the PEB framework. Section 5
gives the experimental studies on the TSP. Section 6 concludes this paper.

2. Related Works

The existing parallelism strategies of trajectory-based metaheuristics fall
into the following two categories.

• Low-level parallelism or acceleration strategy. This strategy aims at
speeding up a sequential metaheuristic. It does not change the behavior
of the original sequential metaheuristic. The implementations of this
strategy usually use the master-slave topology. The master controls
the main procedure, dispatching tasks to the slaves. The tasks can be
evaluating moves, or evaluating partial solutions. After collecting and
integrating the results returned by the slaves, the master proceeds to
the subsequent procedure.

• High-level parallelism or multiple search strategy. In this strategy,
multiple search processes are executed simultaneously. Each process
makes a unique trajectory in the search space. The heuristic methods
and initial solutions of the search processes can be the same or different.
They may run independently and communicate at the end to identify
the best overall solution, or they may exchange useful information
during the search.

A number of high-level parallel trajectory-based metaheuristics have been
proposed for various problems. Table 1 summarizes the related works on
parallel trajectory-based metaheuristics.

As shown in Table 1, in most of the existing parallel trajectory-
based metaheuristics, the parallel processes exchange solutions with each
other. The solutions can be the best solutions found so far or some elite
solutions. In Table 1, the centralized communication method is used by
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Table 1: Literature Review
Related Work Algorithm Problem Information Type Information

Exchanging

Method

Information

Utilizing Method

Garcia-Lopez et al.
2002 [6]

Parallel VNS P-median
problem

Best found solutions Centralized Restart

Bortfeldt et al.
2003 [7]

Parallel TS Container
loading problem

Best found solutions Distributed Restart

Attanasio et al.
2004 [8]

Parallel TS Dynamic multi-vehicle
dial-a-ride problem

Best found solutions &
Visiting frequencies

Distributed Restart & Refer to the
frequencies

Banos et al. 2004 [9] Parallel SA-TS Graph
partitioning

Best found solutions Distributed Restart

Crainic et al. 2004 [10] Parallel VNS P-median
problem

Best found solutions Centralized Restart

Blazewicz et al.
2004 [11]

Parallel TS 2-dimensional
cutting

Best found solutions Centralized Restart

Le Bouthillier and
Crainic 2005 [12]

Parallel TS, EA &
Post-optimization

VRPTW Elite solutions Centralized Path-relinking

Le Bouthillier, et al.
2005 [13]

Parallel TS, EA,
Post-optimization &
Pattern identification

VRPTW Elite solutions &
Solution attributes

Centralized Restart & Fix or
prohibit the attributes

Talbi and Bachelet
2006 [14]

COSEARCH (GA, Kick
Operator & TS)

QAP Elite solutions &
Global frequencies

Centralized Restart & Refer to the
frequencies

Fischer and Merz
2005 [15] 2007 [16]

Parallel Chained
Lin-Kernighan

TSP Best found solutions Distributed Restart

Lukasik et al. 2007 [17] Parallel SA Graph coloring
problem

Best found solutions Centralized Restart

Ribeiro and Rosseti
2007 [18]

Parallel GRASP 2-path network
design problem

Elite solutions Centralized Path-relinking

Araujo et al. 2007 [19] Parallel
GRASP-ILS

Mirrored traveling
tournament problem

Elite solutions Centralized Restart

Aydin and Sevkli
2008 [20]

Parallel VNS Job shop
scheduling

Best found solutions Distributed Restart

Polacek et al. 2008 [21] Parallel VNS MDVRPTW Best found solutions Centralized Restart
Dos Santos et al.
2009 [22]

Parallel GRASP, GA &
Q-learning

TSP Best found solutions Centralized Restart & Update
Q-values table

Luque et al. 2010 [23]
2011 [24]

Parallel SA DNA fragment
assembly, MAXSAT &
RND

Best found solutions Distributed Combination operation

Subramanian et al.
2010 [25]

ILS-RVND VRPSPD Best parameter values Centralized Set the parameters

Hung and Chen
2011 [26]

Parallel
Branch-and-Bound
method & TS

TSP Best found solutions Centralized Restart

Cordeau and
Maischberger 2012 [27]

Parallel ILS-TS VRP Best found solutions Distributed Restart with a
probability

Lee et al. 2012 [28] Harmony search Task scheduling
problem

Elite solutions Centralized Restart

Jin et al. 2014 [29] Parallel TS Capacitated
VRP

Best found solutions Centralized Restart

Hemmelmayr 2015 [30] Parallel Large
Neighborhood Search

Periodic Location
Routing Problem

Best found solutions Centralized Restart

Iturriaga et al.
2015 [31]

Parallel stochastic
LS

Heterogeneous
Computing Scheduling

Neighboring solutions Centralized Evaluate & report

Lahrichi et al.
2015 [32]

Integrative
Cooperative Search

MDPVRP Solutions & partial
solutions

Centralized Restart or integrate

Luque and Alba
2015 [33]

Parallel SA DNA fragment
assembly & QAP

Best found solutions Distributed Path-relinking

Tosun 2015 [34] Parallel GA & TS QAP Elite solutions Centralized Crossover & restart
Wang et al. 2015 [35] Parallel SA VRPSPDTW Best found solutions Centralized Restart
Sousa Filho et al.
2016 [36]

GRASP-VNS Bicluster editing
problem

Best found solutions Centralized Restart

Guzman et al 2016 [37] Parallel TS & SA TSP Best found solutions Centralized Restart
Quan & Wu 2017 [38] Parallel ILS Disjunctively

Constrained Knapsack
Problem

Elite solutions Centralized Restart

Tu et al. 2017 [39] Parallel ILS VRP Subproblems &
solutions

Centralized run ILS on subproblem
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most of the metaheuristics, while some metaheuristics apply the distributed
communication method, in which each process only shares information with
a limited number of processes. Compared to the centralized communication
method, the distributed communication method is more flexible and can be
used in massive parallel processing platforms.

In Table 1, the information utilizing methods in many existing parallel
trajectory-based metaheuristics are denoted as “restart”. In this method,
when a process receives a new solution, it abandons the current solution and
restarts from the received one. As a consequence, the information in the
current solution is lost. Some works try to overcome this drawback by using
path-relinking methods or other combination operators. In their methods,
a new solution is generated based on the received solution and the current
solution.

3. Parallel Elite Biased Framework

In this section, we propose the Parallel Elite Biased framework (PEB
framework) for the designing of parallel trajectory-based metaheuristics with
multiple search processes. To design a parallel trajectory-based metaheuristic
with multiple search processes, three issues must be addressed:

• What information should be exchanged among different processes?
(information type)

• How should information be exchanged? (communication method)

• How should the received information be utilized? (information utilizing
method)

For the first issue, in the PEB framework, different processes exchange
their best found solutions with each other. For the second issue, the
PEB framework follows a distributed topology in which each process only
sends solutions to their predefined neighbors. For the third issue, the PEB
framework applies a novel information utilizing method. In the related works,
when a process receives a new solution, it either restarts from the received
solution or executes path-relinking to generate a new solution. In the PEB
framework, the process continues searching from its current solution, but its
search will have bias toward the received solutions.
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Figure 2: Different parallel topologies

3.1. Communication Method

The proposed PEB framework is based on a distributed topology. To
reduce the communication load, each process only communicates with a
number of neighboring processes. In this paper, we consider two distributed
topologies: the bidirectional ring topology and the torus topology. They are
two of the most natural distributed topologies and widely used in the area
of parallel metaheuristics [40, 41]. Both topologies support flexible process
number. Figure 2 illustrates the examples of these parallel topologies. In the
bidirectional ring topology, each process has two neighbors. For example, in
Figure 2(a), the neighbors of process 1 are process 2 and process 8. In the
torus topology, each process has four neighbors. For example, in Figure 2(b)
the neighbors of process 1 are process 2, process 5, process 4 and process 13.

A well-designed parallel metaheuristic must control the communication
load of the processes. A rigidly synchronous communication strategy may
cause heavy communication load and reduce the efficiency of the parallel
metaheuristic. The PEB framework follows an asynchronous communication
pattern. For each search process in the PEB framework, we denote shb as the
historical best solution found by itself and Sr as the set of solutions received
from its neighboring processes. After a given period of time, each process
checks whether shb has changed since the previous sending. If so, it sends
the new shb to its neighbors. Meanwhile each process keeps receiving new
solutions from its neighboring processes. Note that, although a process may
receive better solutions from its neighbors, it always sends the best solution
found by itself to its neighbors. This maintains the diversity of the parallel
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metaheuristic. This strategy is helpful to reduce the communication load
among processes.

3.2. Information Utilizing Method

In the PEB framework, each process maintains an elite solution se, which
is the best solution in the set Sr ∪ {shb}. The PEB framework applies a
novel method to utilize the information in se. Instead of restarting from the
se, each process continues searching from the current solution and its search
procedure has bias toward se. In other words, each process is “attracted”
by se. In such way, each process can utilize the information in se without
abandoning the information in its current solution. In practise, the way to
realize the attraction of se is decided by users.

To illustrate the information utilizing method of the PEB framework,
we give an example in Figure 3. In Figure 3(a), process A and process
B start from different solutions and perform different trajectories. There
is no communication between A and B in Figure 3(a). We compare the
information utilizing method of the PEB framework with two widely-used
methods: the restart method and the path-relinking method. In the restart
method, as shown in Figure 3(b), process B receives a solution from process
A and restarts from the received solution. The original solution of process
B is abandoned. In the path-relinking method (Figure 3(c)), process B
generates a new solution using the path-relinking operator based on the
received solution and its current solution. Then it proceeds with the search
from the resulting solution. The original solution of process B is abandoned
too. In the PEB framework (Figure 3(d)), process B continues searching
from its original solution, but the search direction of process B is attracted
by the solution received from process A. The original solution of process B
is not abandoned in the PEB framework. This can maintain the diversity of
the processes.

3.3. Pseudocode

The procedure of each process in the PEB framework is shown in
Algorithm 1. In Algorithm 1, the TryToReceive procedure always prepares
to update the set Sr if it receives new solutions from some neighbors.
At the pre-defined time points (e.g. a given number of iterations), the
SelectBestSolution procedure selects the best one of the set Sr ∪ {shb} as
se, and the SendToNeighbors procedure sends shb to all neighbors if shb
has changed since the previous sending. The EliteBiasedSearch procedure
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Figure 3: Different information utilizing methods
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denotes the combination of the elite biased concept and the original search
procedure of a given trajectory-based metaheuristic. The details of the
EliteBiasedSearch procedure are decided by users and depend on the
mechanism of the metaheuristic users want to parallelize. For example,
in PEBTS [5], the EliteBiasedSearch procedure is a TS procedure which
is influenced by the recorded elite solution se. In this paper, we propose
PEBGLS and its EliteBiasedSearch procedure is a GLS procedure which is
presented in Section 4.

Algorithm 1 Parallel Elite Biased Framework

1: initialize: s, shb
2: while !StoppingCriterion do

3: Sr ← TryToReceive()
4: if at the pre-defined time points then
5: se ← SelectBestSolution(Sr ∪ {shb})
6: if shb has been updated since the previous sending then

7: SendToNeighbors(shb)
8: end if

9: end if

10: {s, shb} ← EliteBiasedSearch(s, shb, se)
11: end while

12: return shb

4. Designing Parallel Guided Local Search

To show the utility of the proposed PEB framework, in this section, we
design a parallel variant of Guided Local Search (GLS) following the PEB
framework.

4.1. Guided Local Search

GLS is an efficient trajectory-based metaheuristics for combinatorial
optimization problems. It iteratively helps a LS procedure to escape from
local optima by dynamically adjusting its guide function. We assume that
there is a combinatorial optimization problem with solution space S and
objective function g : S → R to minimize. To apply GLS on this problem,
one first needs to define features for candidate solutions in S. Each feature
has a fixed cost and a penalty. The cost is related to the objective function
g(·). The penalty is set to 0 at the beginning and changes during the search.
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GLS does not use g(·), but the augmented objective function h(·) as the guide
function of LS:

h(s) = g(s) + λ
∑

i∈M

piIi(s), (1)

where s is a candidate solution, λ is a pre-defined parameter that controls
the penalizing strength, M is the set of all features in the problem, pi is the
current penalty value of feature i and function Ii(s) is an indicator function
of whether solution s has feature i:

Ii(s) =

{

1 if feature i is in s,
0 otherwise.

(2)

In each iteration, GLS executes a LS using h(·) as the guide function.
Once the LS stops at a local optimum s∗, GLS adjusts h(·) by increasing the
penalties of one or more selected features in s∗. To do so, GLS defines the
penalizing utility of each feature i, utili, as

utili(s∗) = Ii(s∗) ·
ci

1 + pi
, (3)

where ci is the cost of feature i. GLS selects the features with the highest
utility value and increases their penalties by 1. Then a new iteration starts
from s∗. In (3), the numerator is the cost of feature, which means that
features with higher costs are more likely to be penalized and thus low
cost features are exploited. The denominator is the accumulated penalty of
feature plus 1, which means that the features that has been rarely penalized
before have a good chance to be penalized. In such a way, the search explores
new regions of the search space.

The pseudocode of GLS is shown in Algorithm 2. The inputs are the
objective function g, the GLS parameter λ, the feature set M and the cost
of each feature {ci|i ∈M}.

In Algorithm 2, the LS procedure is based on h(·), so GLS needs to track
the historical best solution shb with regard to the original objective function g.
After each move of LS, GLS checks whether the g value of the new solution
is better than that of the recorded best solution, if so, the historical best
solution shb will be updated.

4.2. Parallel Elite Biased Guided Local Search

Tairan and Zhang [42] proposed a parallel GLS algorithm called P-GLS-II.
However, they first transformed GLS into a population-based metaheuristic,
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Algorithm 2 Guided Local Search

1: input: g, λ,M, c
2: j ← 0
3: s0 ← random or heuristically generated solution.
4: shb ← s0
5: for i = 1→ |M | do
6: pi ← 0
7: end for

8: while !StoppingCriterion do

9: h← g + λ
∑

piIi
10: {sj+1, shb} ← LocalSearch(sj , shb, h)
11: for i = 1→ |M | do
12: utili ← Ii(sj+1) · ci/(1 + pi)
13: end for

14: for each i such that utili is maximum do

15: pi ← pi + 1
16: end for

17: j ← j + 1
18: end while

19: return shb
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then ran it in a parallel way. To our best knowledge, there is no parallel
trajectory-based variant of GLS. Following the proposed PEB framework,
we designed a parallel variant of GLS, which is called Parallel Elite Biased
GLS (PEBGLS).

4.2.1. The Attraction of se
In the PEB framework, for each process, an elite solution se is selected

from the set formed by the received solutions and the current historical best
solution. Then the search process is attracted by se. GLS executes LS
based on the function h(·) which is augmented by the penalties. Hence
the descending nature of the LS will guide GLS to the solutions with less
penalties. The proposed parallel variant of GLS aims to reduce the number
of penalties imposed on the features that belong to se and increase more
penalties on the features not belonging to se. As a result, the search process
will be orientated to the search regions near to se. To achieve this aim, we
modified the formula of util, i.e. Equation (3). The new formula is:

utili(s∗) =

{

Ii(s∗) · ci/(1 + pi), if feature i is in se;
Ii(s∗) · w · ci/(1 + pi), otherwise,

(4)

where w > 1 is a predefined parameter. In Equation (4), if a feature is
not in se, its penalizing utility will be multiplied by an extra coefficient w.
Since w > 1, features not in se will have relatively large util values, so they
are more likely to be penalized compared to the features in se. Hence the
penalties imposed on se will become relatively small. Due to the descending
nature of LS, the search direction of GLS will be attracted by se.

4.2.2. The Procedure of PEBGLS

The procedure of each PEBGLS process is shown in Algorithm 3. In
PEBGLS, there is a predefined parameter U ∈ N

+. Every U iterations, the
PEBGLS process updates se to the best one of the set Sr ∪ {shb} and sends
its shb to all neighbors if shb has changed since the previous sending. Here U
can be used to control the communication load. The inputs of PEBGLS are:
objective function g, the feature set M , the cost of each feature {ci|i ∈ M}
and the user-defined parameters {λ, w, U}.

This section shows how we apply the PEB framework to GLS, including
how to realize the attraction of se in GLS. An example of applying the PEB
framework to Tabu Search can be found in [5]. When applying the PEB
framework to other kinds of trajectory-based metaheuristics, users need to

12



Algorithm 3 Parallel Elite Biased Guided Local Search

1: input:g,M, c, λ, w, U
2: j ← 0
3: s0 ← random or heuristically generated solution
4: shb ← s0
5: Sr ← ∅
6: for i = 1→ |M | do
7: pi ← 0
8: end for

9: while !StoppingCriterion do

10: Sr ← TryToReceive()
11: if j%U == 0 then

12: se ← SelectBestSolution(Sr ∪ {shb})
13: if shb has updated since the previous sending then

14: SendToNeighbors(shb)
15: end if

16: end if

17: h← g + λ
∑

piIi
18: {sj+1, shb} ← LocalSearch(sj , shb, h)
19: for i = 1→ |M | do
20: if feature i is in se then
21: utili ← Ii(sk+1) · ci/(1 + pi)
22: else

23: utili ← Ii(sk+1) · w · ci/(1 + pi)
24: end if

25: end for

26: for each i such that utili is maximum do

27: pi ← pi + 1
28: end for

29: j ← j + 1
30: end while

31: return shb
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design unique attraction strategies. Our suggestion is to give priorities to
the candidate solutions that are more similar/closer to se in each move step
of a trajectory-based metaheuristic.

5. Experimental Studies

In the experimental studies, we tested the performance of PEBGLS on
the Traveling Salesman Problem. The TSP is one of the most widely-used
benchmarks in the area of combinatorial optimization and it is also one of
the most well-known applications of GLS [3].

5.1. Applying Guided Local Search to the Traveling Salesman Problem

In the TSP, G = (V,E) is a fully connected graph where V is its node
set and E the edge set, ce > 0 is the cost of edge e ∈ E. A solution tour s
in G is a cycle passing through every node in V exactly once and its cost is
defined as:

g(s) =
∑

e∈s

ce. (5)

Here g(·) is the objective function of the TSP and the goal of the TSP is to
find a tour with the smallest g value. This paper considers the symmetric
TSP, where the cost from node A to node B is the same as that from B to
A. We denote the set of all the feasible tours in G as S, which is the solution
space of the TSP.

To apply GLS to the TSP, we define that the features are edges in G
(i.e. feature set M = edge set E) and the features’ costs are the costs of the
corresponding edges. If a solution tour s contains the edge ei (i.e. the feature
i), then Ii(s) = 1, otherwise Ii(s) = 0. In this paper, we apply 2-Opt move
in GLS, because according to [3] GLS performs better with 2-Opt, especially
when it is combined with the Fast Local Search (FLS) strategy [43].

5.2. Speedup

The main purpose of applying parallel metaheuristics is to accelerate the
sequential metaheuristics; hence speedup is an important metric to measure
the performance of parallel metaheuristics. In this section, we measured the
speedup of the proposed PEBGLS with different process number on different
TSP instances, to study the accelerating ability and scalability of PEBGLS.

The speedup metric compares the runtime of parallel algorithms against
the runtime of sequential algorithms. We denote T1 as the runtime of a
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PEBGLS with only one process and TK as the runtime of a K-process
PEBGLS. Note that the runtime measured in parallel algorithms is wall-
clock time. Then the speedup SK is calculated by:

SK =
E[T1]

E[TK ]
. (6)

where E[·] is the expectation function. If SK < K, we call it a sublinear

speedup; if SK = K, we call it a linear speedup; if SK > K, we call it a
superlinear speedup. The other widely used metric is efficiency eK , which
equals SK/K. Obviously eK ≥ 1 is desirable.

The test instances were att532, pr1002 and rl1304 from the TSPLIB [44].
In TSPLIB, the number in the name of an instance is the node number
n of this instance. For PEBGLS, the torus topology (PEBGLS-t) and the
bidirectional ring topology (PEBGLS-br) were tested. The experiment was
conducted on the Tianhe-2 supercomputer. Tianhe-2 is one of the world’s
top-ranked supercomputers. It is equipped with 17,920 computer nodes,
each comprising two Intel Xeon E5-2692 12C (2.200 GHz) processors. So
each node has 24 cores and the system supports elastic parallel computing
across nodes. We also used the FLS strategy and Bentley’s improvement [43]
to enhance the efficiency of the 2-Opt heuristic in PEBGLS. Based on [3],
the coefficient λ is calculated by:

λ = 0.3 ·
g(first local optimum)

n
, (7)

where g(first local optimum) is the function value of the first local optimum
visited by GLS and n is the number of cities of the TSP instance. Our pilot
experiments showed that PEBGLS is not very sensitive to w. So here we
set w = 2. U was set to be 100. Our PEBGLS program was implemented
in GNU C++ with O2 optimizing compilation. The OpenMPI library was
used as the message passing tool. To calculate E[T1], 100 runs of single-
process PEBGLS were executed. The runs started from randomly generated
solutions. Because the global optimally costs of the test instances are known,
all runs terminated only when the globally optimal cost was achieved. The
wall-clock time of each run was recorded. To calculate E[TK ], 100 runs of
K-process PEBGLS were executed on K cores. Each process occupied a
core. For PEBGLS-br, K separately took the values {8, 16, 24, 32, 40, 48}.
For PEBGLS-t, K separately took the values {9, 16, 24, 32, 40, 48} and the
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Table 2: Speedup and efficiency of PEBGLS-t and PEBGLS-br
PEBGLS-br

K = 1 K = 8 K = 16 K = 24 K = 32 K = 40 K = 48

att532
T̄K 4.9130s 0.6854s 0.3827s 0.3247s 0.2591s 0.2682s 0.2821s
SK - 7.1681 12.8377 15.1309 18.9618 18.3184 17.4158
eK - 0.8960 0.8024 0.6305 0.5926 0.4580 0.3628

pr1002
T̄K 22.5781s 2.5219s 1.9939s 1.8329s 1.6991s 1.6943s 1.6857s
SK - 8.9528 11.3236 12.3182 13.2883 13.3259 13.3939
eK - 1.1191 0.7077 0.5133 0.4153 0.3331 0.2790

rl1304
T̄K 19.7827s 2.7610s 2.1300s 2.0523s 1.8586s 1.8647s 1.7307s
SK - 7.1650 9.2877 9.6393 10.6439 10.6091 11.4305
eK - 0.8956 0.5805 0.4016 0.3326 0.2652 0.2381

PEBGLS-t
K = 1 K = 8 K = 16 K = 24 K = 32 K = 40 K = 48

att532
T̄K 4.9130s 0.7623s 0.3818s 0.2778s 0.1842s 0.1445s 0.1611s
SK - 6.4450 12.8680 17.6854 26.6721 34.0000 30.4966
eK - 0.7161 0.8042 0.7369 0.8335 0.8500 0.6353

pr1002
T̄K 22.5781s 1.9496s 1.3762s 1.1720s 0.9076s 0.8648s 0.7761s
SK - 11.5809 16.4061 19.2646 24.8767 26.1079 29.0917
eK - 1.2868 1.0254 0.8027 0.7774 0.6527 0.6061

rl1304
T̄K 19.7827s 2.1997s 1.9255s 1.6398s 1.5846s 1.4923s 1.4689s
SK - 8.9934 10.2741 12.0641 12.4843 13.2565 13.4677
eK - 0.9993 0.6421 0.5027 0.3901 0.3314 0.2806

shape of the torus topology were {(3×3), (4×4), (4×6), (4×8), (5×8), (6×8)}
respectively. The resulting speedup SK values and efficiency eK values are
shown in Table 2 and Figure 4. Table 2 also lists the average runtime T̄K for
each K value.

From Table 2 and Figure 4 we can see that, overall PEBGLS-t achieved
higher speedup values than PEBGLS-br, which means the torus topology
is better than the bidirectional ring topology on these instances. However,
on the largest instance rl1304, the speedup difference between PEBGLS-br
and PEBGLS-t was not significant. As the process number K increased,
the efficiency values of PEBGLS-br and PEBGLS-t decreased, except for
the PEBGLS-t running on att532. On att532, PEBGLS-t attained the
highest efficiency value when K = 40. When K was relatively large, the
efficiency values of PEBGLS-br and PEBGLS-t decreased when the problem
size increased. For example, when K = 40, PEBGLS-br attained the highest
efficiency value on att532 and the lowest on rl1304, so did PEBGLS-t. On
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Figure 4: The speedup SK and efficiency eK of PEBGLS-t and PEBGLS-br
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the other hand, when K was relatively small, the efficiency value seems to
be unrelated to the problem size. For example, when K = 9, on pr1002 the
efficient value attained by PEBGLS-t was 1.2868 (superlinear), meanwhile
on att532 the value was 0.7161 (sublinear).

5.3. Influence of Communication Frequency

The performance of a parallel metaheuristic is influenced by the communi-
cation load among processes. In PEBGLS, every U iterations, each process
sends shb to all neighbors if shb has changed since the previous sending.
Hence the communication frequency of PEBGLS has a negative relation to
the parameter U . In this section, we conducted an experiment to investigate
the influence of communication frequency in PEBGLS by setting different U
values.

The platform of this experiment was the Tianhe-2 supercomputer. We
selected pr1002, pr2392, fnl4461, rl5915, pla7397 and rl11849 from the
TSPLIB as the test instances. For PEBGLS, the torus topology (PEBGLS-t)
and the bidirectional ring topology (PEBGLS-br) were tested. The maximum
runtime for different instances were different: {pr1002:21s, pr2392:48s,
fnl4461:90s, rl5915:119s, pla7397:237s, rl11849:371s}. For each TSP instance
and each U value, we executed 20 runs for each algorithm. In each run,
K = 48 processes started from different random solutions and the torus
topology shape in PEBGLS-t was 6 × 8. If an algorithm run attains the
globally optimal cost before the maximum runtime, it will stop immediately.
U separately took the values of {1, 500, 1000, 2000}. The other experimental
settings were the same as the settings in Section 5.2. The performance
metrics are excess and runtime, in which the excess is defined by:

excess =
solution cost− globally optimal cost

globally optimal cost
× 100%. (8)

Table 3 shows the average excess and average runtime attained by each
algorithm, in which the best metric values are in bold. We can see that,
on pr1002 and pr2392, most runs of the algorithms attained zero excess,
which means that the globally optimal cost was reached before the maximum
runtime. Hence in Figure 5(a) and Figure 5(b) we present the boxplot of
the real runtime of each algorithm on these two instances. On the rest
four instances, no algorithm reached the globally optimal cost, hence in
Figure 5(c), Figure 5(d), Figure 5(e) and Figure 5(f) we present the boxplot
of the best excess attained by each algorithm.
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Figure 5: Excesses and runtime of PEBGLS-br and PEBGLS-t, process number K = 48
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Table 3: Performance of PEBGLS-br and PEBGLS-t with different U values, process
number K = 48

PEBGLS-br PEBGLS-t
U=1 U=500 U=1000 U=2000 U=1 U=500 U=1000 U=2000

Instance Average Excess (%)
pr1002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
pr2392 0.0004 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

fnl4461 0.1368 0.0637 0.0656 0.0506 0.0266 0.0613 0.0475 0.0543
rl5915 0.0694 0.0591 0.0578 0.1595 0.0544 0.0432 0.0306 0.0693
pla7397 0.0720 0.0658 0.0567 0.1175 0.0534 0.0507 0.0445 0.0653
rl11849 0.4311 0.3853 0.3587 0.9066 0.4411 0.3366 0.3477 0.8391

Instance Average Runtime (s)
pr1002 1.51 1.33 1.07 0.85 0.90 0.65 0.59 0.54

pr2392 40.63 42.86 39.29 31.57 17.31 18.59 22.24 11.87

fnl4461 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
rl5915 119.00 119.00 119.00 119.00 119.00 119.00 119.00 119.00
pla7397 237.00 237.00 237.00 237.00 237.00 237.00 237.00 237.00
rl11849 371.00 371.00 371.00 371.00 371.00 371.00 371.00 371.00

From Table 3 and Figure 5 we can see that, in most cases, PEBGLS-
t attained lower excess values or lower runtime than PEBGLS-br, which
means that the torus topology is better than the bidirectional ring topology.
This conclusion is the same to the conclusion in Section 5.2. We also can
see that, there was a trade-off between the algorithm performance and
the communication frequency (parameter U). When the communication
frequency was very high (i.e. U was very small), PEBGLS did not perform
very well. For example, on rl5915 (Figure 5(d)) the average excess attained
by PEBGLS-t when U = 1 was worse than when U = 500 and 1000. This
is because when the communication frequency was very high, each PEBGLS
process spent a lot of additional time to communicate with other processes.
On the other hand, a relatively low communication frequency also reduced
the algorithm performance. For example, on rl11849 (Figure 5(f)) the average
excess attained by PEBGLS-t deteriorated when U = 2000. An interesting
phenomenon is that, on pr1002 and pr2392, the best U value for PEBGLS-t
was 2000, which was larger than the best U values on other instances. That
is because pr1002 and pr2392 are smaller than other instances, hence in one
second, PEBGLS-t executed more iterations on pr1002 and pr2392 than on
other instances.
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5.4. Internal Behavior of PEBGLS-t

The previous experiments show that for PEBGLS the torus topology
is better than the bidirectional ring topology, hence in the following
experiments we only apply the torus topology to PEBGLS. The pervious
experiments also show that the collaboration among different PEBGLS
processes improves the overall solution quality. In this section we investigate
how the collaboration benefits each process. To answer that question, we
recorded and studied the internal behavior of PEBGLS-t during the search.
For comparison, we also recorded the behavior of Independent PEBGLS
processes (P-I-EBGLS). The only different between PEBGLS-t and P-I-
EBGLS is that in P-I-EBGLS the processes do not communicate with each
other and se is only updated by shb every U iterations.

The experimental platform was Tianhe2 supercomputer. The test
instances were gr431, att532 and rat575 from the TSPLIB. On each instance,
we first randomly generated 16×1,000 different initial solutions. Then 1,000
runs of PEBGLS-t with 16 processes and 1,000 runs of P-I-EBGLS with 16
processes were started from the generated solution set. The torus topology
shape in PEBGLS-t was 4 × 4. Hence for each PEBGLS-t run, there was a
P-I-EBGLS run starting from the same initial solutions. All the runs ended
when the globally optimal cost was reached. In the first 1,000 iterations, the
PEBGLS-t processes did not communicate with each other, i.e. in the first
1,000 iterations the PEBGLS-t processes did not cooperate with each other.
The other experimental settings were the same as the settings in Section 5.2.
In this experiment, the entire history of each process was recorded.

Figure 6 shows how the average excess changed over time on the three
instances. We can see that in the first 1,000 iterations, the average excess
attained by PEBGLS-t was the same as that attained by P-I-EBGLS. This
is because in the first 1,000 iterations the PEBGLS-t processes did not
communicate with each other. After the 1,000th iteration, the PEBGLS-t
processes started to communicate with each other. Then the average excess
attained by PEBGLS-t became lower than that attained by P-I-EBGLS.
This means that the cooperation approach in the PEB framework can truly
improve the overall solution quality.

After the experiment, we analyzed all the returned solutions of the runs
of PEBGLS-t and P-I-EBGLS. After eliminating the duplicated solutions,
there were only two unique solutions left. This means that all the runs of
PEBGLS-t and P-I-EBGLS ended in two different globally optimal solutions.
By comparing the edges in these two globally optimal solutions, we found that
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Figure 6: The average best excess versus the time
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the first one only had two different edges to the second one. In other words,
there were totally 534 unique edges in the two globally optimal solutions of
att532. We denotes these 534 edges as the optimal edges of att532. Using the
same method, we found the numbers of optimal edges in gr431 and rat575
were 433 and 577 respectively. Since the optimal edges are the edges belongs
to the globally optimal solutions, it is undesirable for PEBGLS-t to penalize
the optimal edges.

For each search process, we define a metric called ratio of undesirable

penalties, denoted by r, which is the ratio between the total penalty imposed
on the optimal edges over the total penalty imposed on all the edges in a TSP
instance. We use E ′ to denote the set of optimal edges. Then r is defined as:

r =

∑

i∈E′

pi
∑

i∈E

pi
. (9)

where pi is the penalty on edge i, E is the set of all edges of the TSP instance.
Then we calculated the average ratio of undesirable penalties r̄ among all
processes in all runs. Obviously, everything being equal, a lower ratio value
means a more effective penalizing mechanism of PEBGLS-t. Figure 7 shows
how the average ratio of undesirable penalties changed with the time on these
three instances.

In Figure 7, after the PEBGLS-t processes started to cooperate with each
other, their average ratio value became smaller than that of the P-I-EBGLS
processes. This means that, sharing elite solutions among processes reduced
the probability of penalizing the edges in the globally optimal solutions.
Hence the search processes in PEBGLS-t became more targeted and the
probability of finding the global optima was increased. According to the “big
valley” structure [45] of the symmetric TSP, high-quality solutions are more
likely to have more common edges with the global optima. Hence by reducing
the penalties imposed on the edges of the global optima, the PEBGLS-t
processes had more chance to find high-quality solutions. However, in Figure
7 we can also see that the difference between the two curves became smaller
at the final stage of the search. This is because GLS only increases the
penalties imposed on the local optima it finds. As illustrated in Figure 6, the
PEBGLS-t processes found better local optima compared to the P-I-EBGLS
processes. According to the big valley structure, the local optima found by
PEBGLS-t have more common edges with the global optima than the local
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Figure 7: The average ratio of undesirable penalties versus the time
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Table 4: Average number of best-contributors, for PEBGLS-t and P-I-EBGLS

P-I-EBGLS PEBGLS-t
gr431 7.40 9.30
att532 7.27 9.45
rat575 8.48 11.28

optima found by P-I-EBGLS. So the difficulty of PEBGLS-t not penalizing
the edges of global optima increased. Hence the difference between the ratio
value of PEBGLS-t and the ratio value of P-I-EBGLS became smaller as
time went by.

In a parallel trajectory-based metaheuristic, different processes search
different regions of the solution space. If a process searches in a less-promising
region, this process will contribute little to the global search. We call a
process the best-contributor if it ever found a solution that was better than
the overall best solution among all processes in its search history, i.e., this
process once updated the overall best solution. In our experiment, each
run of PEBGLS-t/P-I-EBGLS had a certain number of best-contributors.
Obviously the number of best-contributors reflects the number of “useful”
search processes and the overall “activeness” of the search processes. Table 4
shows the average best-contributor number attained by P-I-EBGLS and
PEBGLS-t. Figure 8 shows the distribution of the best-contributor number
on the 1,000 runs of P-I-EBGLS and PEBGLS-t. From Table 4 and Figure 8
we can see that, PEBGLS-t had a higher best-contributor number than P-I-
EBGLS, which means that the cooperation method in PEBGLS-t increased
the overall activity of the processes.

Based on the above experimental studies we can state that the new
cooperation method in PEBGLS-t is effective. This means that the PEB
framework can further improve the performance of GLS compared to simply
running multiple processes in parallel.

5.5. Comparison with Other Parallel Metaheuristics

To test whether the proposed PEBGLS is a competitive TSP meta-
heuristic, in this section we compared the proposed PEBGLS-t with four
parallel metaheuristics for the TSP. The first two are two parallel variants
of GLS following the restart based framework. The last two are the parallel
variants of two widely-used TSP metaheuristics.
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Figure 8: The distribution of the best-contributor number attained by the 1,000 runs of
P-I-EBGLS and PEBGLS-t
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The first comparison algorithm is called Parallel Restart GLS with torus
topology (P-R-GLS-t). P-R-GLS-t follows a torus neighborhood topology
and executes K GLS processes simultaneously. Every U iterations, each P-
R-GLS-t process exchanges its historical best solution shb with its neighbors.
After that, the P-R-GLS-t process abandons its current solution and restarts
from the best solution of the set Sr ∪ {shb}, where Sr is the set of received
solutions. The second comparison algorithm combines the PEB framework
with the restart based framework, which is called Parallel Restart Elite
Biased GLS with torus topology (P-R-EBGLS-t). Every U iterations, each
P-R-EBGLS-t process exchanges shb with its neighbors and restarts from the
best solution of the set Sr ∪ {shb}. Meanwhile, each P-R-EBGLS-t process
selects the second best solution from the set Sr∪{shb} as the elite solution se.
Similar to PEBGLS-t, P-R-EBGLS-t uses the new formula (4) to calculate
util, so that the search direction is attracted by se.

The third comparison algorithm is a parallel variant of Ant Colony
Optimization (P-ACO). We used the ACOTSP software package available
at http://www.aco-metaheuristic.org/aco-code/. In P-ACO, K independent
ACO processes are executed simultaneously. P-ACO stops when the
maximum runtime is achieved or one of the processes finds the globally
optimal solution. The forth comparison algorithm is a parallel variant
of Iterated Lin-Kernighan algorithm (P-ILK). In our experiment, the ILK
implementation came from the Concorde software package available at
http://www.math.uwaterloo.ca/tsp/concorde/. The parallelization method
of P-ILK was the same to that of P-ACO: K independent ILK processes are
executed simultaneously and stop when the maximum runtime is reached or
the globally optimal solution is found.

In our experiment, the test TSPLIB instances and the corresponding max-
imum runtime were {rd400:8s, att532:11s, gr666:14s, u724:15s, pr1002:21s,
d1291:26s, u1432:29s, u1817:37s, pr2392:48s, fnl4461:90s}. On each instance,
the run number of each algorithm was 20 and the process number K was 9.
The torus topology shape was 3 × 3. Here we selected a relatively small
K value because we intend to show that our algorithm can perform well in
multi-core personal computers or small computer clusters. For PEBGLS-
t, P-R-GLS-t and P-R-EBGLS-t, we set U = 1000 and the other settings
were the same to the PEBGLS settings in Section 5.2. In P-ACO, different
ACO processes had different random seeds. For each P-ACO process, the
parameter settings were based on [46] and shown in Table 5. In P-ILK,
different ILK processes started from different randomly generated solutions.
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Table 5: Parameter settings of each process in P-ACO

Parameters Description Values
mACO Number of ants 25
α Influence of pheromone trails 1
β Influence of heuristic information 2
ρ Pheromone trail evaporation 0.2
LS Local search 3-Opt
MMAS MAX-MIN ant system Apply

Each ILK process followed the default settings of the Concorde software.
Table 6 shows the comparison results of the five algorithms, in which

the best metric values are in bold. From Table 6 we can see that, among
all the five parallel metaheuristics, PEBGLS-t performed the best on most
instances. For example, on the instances u724, PEBGLS-t achieved a zero
average excess value while the other algorithms did not, which means that all
the 20 runs of PEBGLS-t found the globally optimal solution. By comparing
PEBGLS-t with P-R-GLS-t and P-R-EBGLS-t we can see that, overall the
performance of PEBGLS-t was better than that of P-R-EBGLS-t and the
performance of P-R-EBGLS-t was better than that of P-R-GLS-t. This
means that compared to the restart based framework, the proposed PEB
framework can further improve the performance of parallel GLS on these
test instances. In summary, the experimental results show the effectiveness
of the proposed PEB framework.

6. Conclusion

Parallel metaheuristics can exploit the potential computation power of
multi-processor systems. This paper proposes the Parallel Elite Biased
framework (PEB framework) to design the parallel variants of trajectory-
based metaheuristics. The PEB framework applies a distributed topology
and an asynchronous communication strategy. More importantly, the PEB
framework employs a new cooperative method, which is different from the
widely-used cooperative methods including the restart-based method and the
path-relinking method. In the PEB framework, multiple search processes
start from different initial solutions. After a predefined period of time, each
process communicates with its neighbors to update the set formed by the
current historical best solutions found by itself and its neighbors. Then the
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Table 6: Performance of the five comparison parallel metaheuristics, process numberK = 9
PEBGLS-t P-R-GLS-t P-R-EBGLS-t P-ACO P-ILK

Instance Average Excess (%)
rd400 0.0000 0.0023 0.0007 0.0000 0.0000

att532 0.0000 0.0031 0.0031 0.0038 0.0000

gr666 0.0003 0.0173 0.0111 0.0157 0.0022
u724 0.0000 0.0562 0.0452 0.0094 0.0012
pr1002 0.0000 0.0000 0.0000 0.0096 0.0000

d1291 0.0073 0.0644 0.0775 0.0021 0.0120
u1432 0.0000 0.2236 0.0918 0.2104 0.0000

u1817 0.0301 0.2677 0.2753 0.1004 0.0877
pr2392 0.0011 0.2376 0.2197 0.1881 0.0020
fnl4461 0.0922 0.3818 0.1873 1.5910 0.0401

Instance Average Runtime (s)
rd400 0.10 2.89 0.95 1.27 0.13
att532 0.24 1.36 0.87 6.37 0.57
gr666 5.25 9.50 8.93 12.52 5.74
u724 1.29 15.00 10.87 9.44 6.76
pr1002 1.62 0.30 1.61 16.52 0.98

d1291 5.33 14.16 16.36 13.76 6.07
u1432 3.81 29.00 27.61 29.00 4.81
u1817 23.60 37.00 37.00 37.00 35.61
pr2392 39.22 48.00 48.00 48.00 19.90

fnl4461 90.00 90.00 90.00 90.00 90.00
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process selects the best solution in the set as the elite solution se and its
search direction will be attracted by se.

The PEB framework has successfully been used to design a parallel
Guided Local Search (GLS) metaheuristic called Parallel Elite Biased GLS
(PEBGLS) for the Traveling Salesman Problem (TSP). We conducted sys-
tematic experiments on the Tianhe-2 supercomputer to test the performance
of PEBGLS on the TSP. By analyzing the experimental results, we conclude
that PEBGLS is a competitive TSP metaheuristic. Hence the proposed
PEB framework is useful in designing efficient parallel trajectory-based
metaheuristics. Our work provides a new possible way to design parallel
trajectory-based metaheuristics.
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