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Abstract

When performing a line scan using optical coherence tomography (OCT), the distance be-
tween the successive scan lines is often large compared to the resolution along each scan
line. If two sets of such line scans are acquired orthogonal to each other, intensity values are
known along the lines of a square grid, but are unknown inside each square. To view these
values as an image, intensities need to be interpolated at regularly spaced pixel positions.
In this paper we evaluate three methods for interpolation from grid lines: linear, transfinite
and weighted. The linear method does not preserve the known values along the grid lines.
The transfinite method, known from mesh generation, preserves the known values but might
cause artifacts further away from the grid lines. The weighted method, which we propose,
is designed to combine the desired properties of the transfinite method close to grid lines
and the stability of the linear method further away. An important parameter influencing the
performance of the interpolation methods is the upsampling rate. We perform an extensive
evaluation of the three interpolation methods across a range of upsampling rates. Our statis-
tical analysis shows significant difference in the performance of the three methods. We find
that the transfinite interpolation works well for small upsampling rates and the proposed
weighted interpolation method performs very well for all upsampling rates typically used in
practice. On the basis of these findings we propose an approach for combining two OCT
scans, acquired such that the lines of the second scan are orthogonal to the first.
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Scanning along a set of parallel lines is a common setting in optical coherence tomography
(OCT) [8], well established in ophthalmology for obtaining volumetric images of the retina.
Using OCT, the retina is scanned in depth (z) and along a line (x) with a high depth and
transversal resolution, resulting in a single xz cross-section of the retina (a so-called B-
scan). Collecting a number of images by scanning along parallel lines results in a volumetric
xyz data set. Since scanning speed of the OCT systems employed in clinic is limited, and
prolonged scanning is unpleasant for the patient, the distance between the recorded B-scans
is often large compared to the transverse resolution of the B-scans. Therefore, if an xy
cross-section (a so-called en face image) is of interest, the resolution is much coarser in the
y-direction and pixels are non-square. Elongated pixels appear as stripes and influence the
visual appearance of the image. The stripes can disturb the interpretation of the image
and make it difficult to distinguish the anatomical structures. Furthermore, anatomical
structures running in parallel to scan lines, e.g. blood vessels, are not visible.

To reveal additional anatomical structures, another OCT scan may be performed along the
lines orthogonal to the first scan. Nevertheless, this leaves us with two volumes which are not
straightforwardly combined, as pixels are sparsely sampled along the y-direction in the first
image, while the second volume has pixels sparsely sampled along the x-direction. It is our
goal to compute a volume which combines the information from those two volumetric scans.
Several problems emerge in connection to this. The eye might move during scanning, and
this needs to be accounted for. Furthermore, the intensity might vary significantly between
the scans and images. And most importantly, the question is how to combine two volumetric
scans covering the same area, one with high resolution cross-sections in the xz-planes, and
the other in the yz-planes.

In this paper we re-visit the interpolation problem when combining two line scans which
we previously addressed in [9]. In this extension of our prior work, we apply the developed
methods for merging two OCT volumes. As we have a high resolution in the z-direction,
we practically sample at any height and our problem reduces to a 2D case. Furthermore,
given high resolution along the scan lines we ignore the discrete sampling in this direction.
Therefore, our problem is image interpolation from grid lines.

The problem is illustrated in Fig. 1 (a). The information is available along the two sets
of parallel lines, and it needs to be sampled at regularly spaced pixel positions.

To the best of our knowledge, the problem of interpolating information from grid lines
while preserving boundary values, has not been addressed in the context of image interpo-
lation. In the context of mesh generation for finite element modeling a related problem is

2
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(a) Problem set-up

(0, 0) (1, 0)

(0, 1) (1, 1)

(x, y)

(x, 0)

(x, 1)

(0, y) (1, y)

(b) One square (c) Test set-up

Figure 1: Interpolation from the grid lines. (a) two sets of scan lines with known intensities are shown in
black, this need to be sampled at regularly spaced pixel positions illustrated as white dots. (b) shows one
square region defined by four scan lines and its local coordinate system. (c) is a test set-up, black are the
known and white are the unknown pixels, here shown with an upsampling rate of 4.

often solved using transfinite interpolation [6, 7], a method for constructing a smooth func-
tion over a planar domain given the values on the boundary. Transfinite interpolation has
been used for solving problems where information on boundaries should be preserved. It has
been used in more recent studies e.g. [14] for solving time-dependent changes of volumetric
material properties in heterogeneous volumes and in [12] for solving elliptic boundary value
Poisson problems in arbitrary shaped 2D domains. In this work we employ the transfinite
interpolation for image interpolation from grid lines, and we compare it against an approach
based on linear upscaling. Furthermore, we propose a novel weighted interpolation which
preserves the desirable properties of the transfinite and the linear method.

The three interpolation methods presented here only use the known intensity information
along the grid lines. We would expect the performance to improve significantly if prior
knowledge about the appearance of the images is incorporated in the method. A significant
work in this line has been conducted for single-image super resolution [4] or image inpainting
[1], for example using image patches [17] and sparse representation [15]. We believe that
those methods might be adapted to solve the problem of interpolation from the grid lines.

Another alternative to the methods presented here involves adopting an interpolation
scheme for scattered data, for example radial basis function [2]. By doing so we would not
utilize the regularity of the grid lines. Furthermore, methods for interpolation from scattered
points require setting a parameter which roughly corresponds to the average distance between
data points. The approach is therefore sensitive to parameter tuning, when applied to
regularly placed data points as in our problem.

3
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A quality measure for merging two OCT scans should relate to the ease of distinguishing
the anatomical structures present in the volume, their sharpness and precision. While sharp-
ness may be quantified, it is difficult to assess the precision of the interpolation. Central to
our problem is that we need to determine information where it is lacking. This aspect is
similar to image upscaling and single-image super-resolution approaches. Therefore, when it
comes to evaluating the performance of interpolation algorithms we turn to the conventional
approach [18, 13] which tests each method on a set of downsampled images and uses the
peak signal-to-noise ratio (PSNR) metric.

During testing, we change the upsampling rates and statistically evaluate the results from
the three interpolation methods. This allows us to evaluate the performance of the methods
and to provide guidelines for different upsampling rates.

Based on our findings, we return to the OCT problem and develop a method for merging
two OCT scans. There is a number of considerations before applying our interpolation to
acquired OCT data. We need to assess the orthogonality of the two scans, ensure consistent
intensity level, and correct for eye movement orthogonal to scanning plane. These adjust-
ments are preformed as preprocessing of the OCT data. The complete method, including
preprocessing steps, is presented as a case study in Sec. 5.

To summarize, the contribution of this paper is threefold. First, we suggest three methods
for interpolation from grid lines, where we developed the novel weighted method such that
it combines the desired properties from the two other methods. Second, we perform a
rigorous statistical evaluation of the three methods for different data sets and upsampling
rates, providing guidelines for the choice of method. Third, we apply the three interpolation
methods on OCT images in a small case study.

2. Methods for Interpolation from Grid Lines

Fig. 1 (b) illustrates our interpolation problem focused on a single square region defined
by two pairs of neighboring scan lines. This is a local coordinate system which we use when
defining the three interpolation methods. The approach is then repeated for all squares in
the image.

For a better explanation of the interpolation methods and their features, we bring an
example in Fig. 2 (a). The values to be interpolated are here shown as a height above a
squared domain, where we know the values at the boundary.

4



Page 5 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

(a) Input (b) Lx (c) Ly (d) L

(e) Lxy (f) T (g) ω (h) W

Figure 2: Interpolation over one squared domain. (a) know values from one direction in red and from the
other direction in blue , (b) linear interpolation from one pair (blue) of rectangle sides, (c) linear interpolation
from other pair (red) of sides, (d) mean of two linear contributions, (e) bilinear interpolation from corners,
(f) transfinite interpolation, (g) weighting scheme (h) weighted interpolation.
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2.1. Linear Interpolation Method

A naive approach of combining the two scans involves linearly upsampling each scan
independently and averaging the results. Over one square domain we have

Lx(x, y) = (1 − y)S(x, 0) + yS(x, 1) ,

Ly(x, y) = (1 − x)S(0, y) + xS(1, y) ,

L =
1

2
(Lx + Ly) ,

where S are the known values along the boundary of the square domain, Lx and Ly are
linearly upsampled boundaries in x and y direction, and L is the interpolant which we in
this context denote linear. Construction of linear interpolation is demonstrated on Fig. 2
(a)-(d).

Let us point out two properties of linear interpolation. First, every value L(x, y) is a
convex combination of four values from S. As a result, L does not produce undesirable
overshoot. Secondly, for a point on the boundary, the underlying known data contributes
only with a half of its value, the other half coming from the values at two corners. As a
result, L does not agree with the known data along the boundaries of the domain. Those
two properties combined lead to smeared-out appearance when linear interpolation is used
on images.

2.2. Transfinite Interpolation Method

Transfinite interpolation is used for functions given on the boundary of a domain which
can be parameterized as a square. For our purposes this reduces to

T = Lx + Ly − Lxy ,

where

Lxy(x, y) = (1 − x)(1 − y)S(0, 0) + (1 − x)yS(0, 1) + x(1 − y)S(1, 0) + xyS(1, 1) .

Here Lxy is the bilinear interpolant from the values at the corners of the domain, and T is
the final transfinite interpolant. Those are shown in Fig. 2 (e) and (f).

The most important property of the transfinite interpolation is that it preserves the known
values at the boundary of the domain. To perceive how this property is achieved by the
construction of T , note in Fig. 2 that at the boundary of the domain, Lxy differs from the
known values exactly twice as much as L does.

Second important property is that T may overshoot. This is due to the negative term
in the expression. All inside points receive eight weighted contributions, and especially
points close to the middle of the domain are prone to interpolation overshoot, also visible in
Fig. 2 (f).

6
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2.3. Weighted Interpolation Method

Transfinite interpolation has the desired properties (preservation of the known data) at
the boundary of the square domain while the undesired properties (overshoot) are inside
the domain. Linear interpolation does not overshoot, but has issues at the boundary. To
combine the good properties of both methods we propose smoothly blending the linear and
the transfinite interpolation. We construct a blending function which is 0 at the boundary
of the square domain

ω(x, y) = 16x(1 − x)y(1 − y) .

The constant 16 is chosen such that ω(0.5, 0.5) = 1.
We define our novel interpolation, which we denote weighted, as

W = ωL+ (1 − ω)T .

This also evaluates to

W = (2 − ω)L− (1 − ω)Lxy .

The blending function and the weighted interpolation are shown on Fig. 2 (g) and (h). The
illustrated example confirms desirable properties of the weighted interpolation. Like trans-
finite, the weighted interpolant matches the exact values at the boundaries of the domain.
However, thanks to blending with the linear interpolant, the overshoot from inside of the
domain is reduced. Finally, the smooth blending function maintains a smooth appearance
of the interpolant.

3. Quantitative Measures Used for Evaluation of Interpolation Methods

Both objective and subjective tests are used [5] for evaluating the interpolation methods.
Subjective tests measure a perceived image quality, while objective tests use a defined metrics
for quantifying image quality or interpolation error. The choice of the tests and the quality
measures depends on the intended use.

When used on OCT images, interpolation from grid lines is a step towards merging two
OCT line scans. We plan to use the merged volume for automatic detection of anatomical
structures and quantification of abnormalities in the eye. In this setting, the three interpola-
tion methods will be be evaluated in terms of the quality of the detection and quantification
results.

In the work presented here, we bring a more meticulous and general evaluation of the in-
terpolation methods based on measuring interpolation error for a specific upsampling rates.
The ground truth is constructed by downsampling an image, which is then upsampled using

7
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the three methods, and the results are compared against the original image. For down-
sampling, we keep image columns and rows at a certain distance, which corresponds to an
upsampling rate s. See Fig. 1 (c) for our test set-up.

For a certain upsampling rate, the fraction of the unknown pixel is

u =
(s− 1)2

s2

For example, when s = 2 we keep every second row and every second column, and the
fraction of unknown pixels is only 0.25.

To demonstrate the properties of the interpolation methods, we conduct tests for upsam-
pling rates from 2 to 30. However, the high upsampling rates (above 10) are of limited
practical value due to a high degeneration of image quality.

3.1. Data Sets Used for Quantification of Interpolation Methods

We evaluate the three interpolation methods on two data sets. The first contains 200
images from the Berkley Segmentation data set [11], which is widely used for evaluations of
image upscaling and super-resolution algorithms [3]. The images depict scenes from nature
such as landscapes, people and animals, covering a wide range of image patterns at all scales.
We converted rgb Berkley data set images into grayscale prior to processing.

The second data set is ophthalmologic data in form of 72 funduscopies. Fundoscopy
is an imaging technique for examination of fundus obtained using a light source and a
ophthalmoscope. This was chosen because the image content is similar to OCT scans, and
will allow us to assess the performance of the interpolation methods in a setting which
resembles to our application. Fig. 3 shows some examples of the funduscopies.

3.2. Performance Measurement Used for Method Assessment

The interpolation quality is assessed by the pixelwise difference between the ground truth
image and the interpolated image. The interpolation error can be evaluated as the root
mean square error (RMSE) which is defined as

RMSE =

√√√√ 1

N

N∑
i=1

(
Î(i) − I(i)

)2
,

where summation runs over all pixels i from the original image I and the interpolated image Î
[10].

8
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Figure 3: Three images from the fundoscopy data set. Images depict anatomical structures at the fundus of
the eye.

As a measure of interpolation quality, a closely related peak signal-to-noise ratio (PSNR)
is most often used [18]. The PSNR is measured in dB and is defined as [16]

PSNR = 20 log10

(
Imax

RMSE

)
,

where Imax is the maximum pixel intensity value, in our case 1.

4. Results of Quantitative Evaluation

First, we visually evaluate the results from the interpolations for upsampling rate 3 and 6
on a few images. Second, we compute the mean performance of each interpolation method
for upsampling rates varying between 2 and 30. Last, we present the results from a statistical
analysis based on the measured performance of the three methods.

4.1. Interpolated Results

The differences in performance of the three interpolation methods are subtle, and to
visualize the results we bring a small detail of an image from the Berkley segmentation data
set in Fig. 4 (a), and we also show the grid lines for upsampling rate 3 and 6 in Fig. 4
(b) and (c). The interpolated results for this image, the two sets of grid lines and the three
interpolation methods are shown on Fig. 5. We also bring the pixelwise error between the
interpolated images and the original image. It can be seen that the error is zero along the
grid lines for the transfinite and the weighted interpolation, while this is not the case for
the linear interpolation. Furthermore, for all methods, the interpolation quality in form of

9
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the PSNR decreases when the upsampling rate is increased. For this example, the weighted
interpolation outperforms the transfinite when using upsampling rate 6.

4.2. Performance Analysis

Fig. 6 shows the PSNR values for the three interpolation methods for 10 images from
the Berkley segmentation data set, interpolated with upsampling rate 6. The images were
chosen randomly using pseudorandom integers generated in our testing script. We see a big
variance in performance across the images, compared to relatively small variance between the
three interpolation methods. However, weighted interpolation obtains the best performance
for 8 out of 10 images, while the transfinite method is best for the other two images. The
linear method is not the best for any of the images, but is still superior to transfinite in 5
out of 10 images.

To evaluate an overall performance of the interpolation methods, we computed the mean
PSNR for the whole Berkley segmentation data set, for each interpolation method and for
a range of upsampling rates. We conducted a similar experiment for the fundoscopy data
set. Fig. 7 shows a plot of the obtained values with upsampling rates varying between 2
and 19. We notice the same performance pattern for both data sets. The transfinite method
has the largest mean PSNR for smallest upsampling rates, while the linear method has the
largest mean PSNR for highest upsampling rates. In the interval around the point where
the transfinite and the linear method cross, the weighted method achieves the highest mean
PSNR.

We conducted experiments for upsampling rate up to 30, and we confirm that the linear
method achieves best mean PSNR for high upsampling rates. We find this being of limited
practical value, as for upsampling rates higher than 18 we interpolate over 89 % of the pixels
in the image.

10
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(a) Detail (b) Sampling 3 (c) Sampling 6

Figure 4: Testing example. (a) zoom on a detail in one of the images from the Berkley data set. (b) and (c)
are grid lines with an upsampling rate of 3 and 6.
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(a) Sampling 3 (b) Sampling 6

Figure 5: The interpolated results for the detail and the grid lines shown on Fig. 4. The interpolation methods
are presented with linear on top, weighted in the middle and transfinite in the bottom row. Columns (a)
and (b) bring the results for an upsampling rate of 3 and 6. The PSNR value for each interpolated image is
listed above it. Next to each interpolated image is the pixelwise difference between the interpolated image
and the original image, with red and blue color indicating positive and negative difference respectively, and
white indicating zero difference.
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Figure 6: A set of 10 randomly chosen images from the Berkley segmentation data set, and the resulting
PSNR for three interpolation methods, linear (L), transfinite (T) and weighted (W). Upsampling rate is 6.

As already shown in Fig. 6, the variance of performances is large between the images and
small between the methods. To confirm our findings presented in Fig. 7, we performed a
statistical test of the interpolation performance measured by the PSNR value. We set up a
regression model to investigate the correlation between the PSNR value and the categorical
variables for image and for method, for each sampling rate. F-values indicate that the
method is the main descriptor. Moreover, we found that a significant difference between
the three methods exists. Therefore, we tested the methods pairwise to check for difference
between them at each upsampling rate and moreover, to find out which method performs
best. The results are listed in Table 1(a) for the Berkley data set and in Table 1(b) for
the fundoscopy data set. The results show the same trend, and we use notation a/b when
referring to the two data sets. It is seen that the transfinite interpolation performs best
for upsampling rates below 3/4 and the weighted interpolation performs best for sampling
rates above 4/5 and below 15/20. The linear method performs best for upsampling rates
above 20/22.

12
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(a) Berkley data set (b) Fundoscopy data set

Figure 7: Comparison of the linear (L), transfinite (T) and weighted (W) interpolation. The mean PSNR
value for (a) Berkley and (b) fundoscopy data set at different upsampling rate. The horizontal axis above
the graphs indicates the fraction of unknown pixels.

Table 1: Results from statistical analysis of interpolation performance for three methods at different up-
sampling rates, for the Berkley data set (a) and the fundoscopy data set (b). The methods are linear (L),
weighted (W) and transfinite (T), and upsampling rates are shown in intervals between 2 and 30. Number
1 indicates the method that performs best for a given upsampling rate, while 3 indicates the method that
performs worst. The star indicates that no significant difference was found between the two methods for the
given upsampling rate.

(a) Berkley data set (b) Fundoscopy data set

2 3 4-5 6 7-14 15-20 21-30
L 3 3 3 2∗ 2 1∗ 1
W 2 1∗ 1 1 1 1∗ 2
T 1 1∗ 2 2∗ 3 3 3

2-3 4 5-6 7-8 9-19 20-22 23-30
L 3 3 3 2∗ 2 1∗ 1
W 2 1∗ 1 1 1 1∗ 2
T 1 1∗ 2 2∗ 3 3 3
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5. Case Study: Optical Coherence Tomography of the Optic Nerve Head

Our investigation in methods for interpolation from grid lines was motivated by optical
coherence tomography (OCT) images of the eye retina. We wanted to produce an en face
image of the optic nerve head (ONH), the point in the eye where the optic nerve fibers leave
the retina.

Based on the interpolation methods, we developed a general approach for creating en
face images from two OCT scans through volume merging. In this section we present our
approach with focus on ONH images as a case study. Note that the method can be applied
to retinal OCT images in general.

5.1. Data Acquisition

When using OCT, the retina of the eye is scanned in depth and along a set of lines.
Two sets of line scans are acquired. During acquisition, the operator manually initiates the
scanning so that the ONH is approximately at the center of the scan. The first scan is
acquired along the lines running from left to right, so each line gives a cross-section image
of the ONH in the anatomical transverse plane. The second scan is acquired along the lines
orthogonal to the first one, i.e. running from the top to the bottom, so acquired images
are in the anatomical sagittal plane. In our notation, the first scan is acquired along the
lines parallel with the x-axis, and results in a set of images in xz-plane. We will call this a
x-direction scan. Similarly, the second scan, resulting in a set of yz cross-section images, is
denoted a y-direction scan.

For our main example, each set of the data consists of 97 line scans (so-called B-scans)
and each line scan contains 768 depth-measurements (so-called A-scans). This means that
the x-direction scan represents a volume containing ONH by 768×97×496 voxels, while the
y-direction scan represents the same volume by 97×768×496 voxels. Likewise, the voxel
size for the x-direction scan is 5.7×30×3.9 µm and for the y-direction scan the voxel size is
30×5.7×3.9 µm.

5.2. Preprocessing

As mentioned earlier, interpolation from the grid lines is only one step in the OCT volume-
merging approach. To be brought in a format appropriate for interpolation, OCT volumes
need to undergo three preprocessing steps. While this is not a main focus of this paper, in
order to make the case study self-contained, we briefly cover the preprocessing steps.

The first preprocessing step is an alignment of the two volumes in the xy-plane. While
scanning, the operator will attempt to cover the same region of the ONH within the two
scans. However, since this is done manually, there might be a slight misalignment between
the scans. To obtain an exact alignment of the volumes in the xy-plane, we generate 2D

14
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images by summing all voxels in the z-direction, and resample the images so that pixels
are square. To these images we apply an intensity-based image registration with the mean
square difference as similarity measure. The result is a xy-plane translation of one image in
respect to the other, giving us a corrected relative placement of the x-direction and the y-
direction scan. Note that the registration also reveals a rotation between the x-direction and
y-direction scan, which is important to check for, since our approach assumes orthogonality.

The second preprocessing step involves defining a grid for interpolation. After alignment,
we know the exact placement of the two sets of line scans in the xy-plane. While the sampling
resolution along the scan lines is high, it is still finite, and we need to resample the images
into a format suitable for interpolation. This is illustrated in Fig. 8. We first identify the
crossing points between line scans. This defines a coarse square grid, with the outermost
points outlining the region of interest. Given a certain upsampling rate, we subdivide the
coarse grid into a fine grid. The two scan volumes are then resampled according to the points
in the fine grid. Here we use linear interpolation. Thanks to the high resolution along the
scan lines, we can resample the images with only a slight loss of information.

The number of crossing points varies depending on the overlap between the scans. For
the data used in this case study, all line scans overlap and the coarse grid is of size 97×97.
The size of the fine grid depends on the upsampling rate. For the examples shown in the
case study we use upsampling rate of 5, so the fine grid has 5(97 − 1) + 1 = 481 points in
each direction.

The third preprocessing step corrects for eye movement in the z-direction. During a
single scan, OCT scanner will track eye features and correct for eye movement in xy-plane.
However, eye movement in the z-direction is not corrected for, and it can be quite large,
especially between two scans. We estimate the displacement between two A-scans (depth-
measured signal in the z-direction) using cross-correlation. This is done only in the coarse
grid (crossing points), while displacement for the fine grid is obtained by interpolation. The
columns of the scans are then re-sampled and cropped if needed.

Finally, for our method to work, overall intensity levels need to be consistent across scans.
We assessed that the data used in this study required no additional adjustment of intensities.

5.3. Interpolation

The preprocessing provides two aligned volumes covering exactly the same part of the
ONH. The first volume, obtained from the x-direction scan, has 481×97×496 voxels, while
the second volume, obtained from the y-direction scan, has 97×481×496 voxels. We now
merge the volumes by processing one z-slice (i.e. xy-plane for a given z) at a time. Our
prototype implementation of volume merging produces results for all three interpolation
methods, so we can visually compare the outputs.
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(a) Original sampling (b) Points for resampling (c) Points for interpolation

Figure 8: Defining an interpolation grid. (a) Original sampling, blue indicating x-direction scan and red
indicating y-direction scan. (b) Crossing points defining the coarse square grid are green, and points for re-
sampling along the x-direction and the y-direction scan lines are blue and red respectively. (c) Orange points
are added, such that green, blue, red and orange points together yield the fine grid used for interpolation.

5.4. Case Study Results

We present the results of merging two OCT volumes on one xy-cross section image, en face
image, on Fig. 9. We show the x-direction scan, the y-direction scan and the interpolated
results for the three methods: linear, transfinite and weighted.

In both the x-direction and y-direction scan the anatomical structures parallel to scan
lines are less pronounced. Furthermore, one can notice stripes in the scan direction, which
might potentially influence the interpretation of the images. The results for all three in-
terpolation methods show the benefit of combining two orthogonal set of line scans into a
higher resolution en face image with squared pixels. Anatomical structures such as blood
vessels become more distinct when two scans are combined. Furthermore, on the merged
images in Fig. 9 we notice the reduction of horizontal and vertical stripes.

Given our results from the performance analysis of the three interpolation methods, we
saw that the weighted method performed best for upsampling rate 5 used for our case study.
Therefore, we show on Fig. 10 the results for en face images from three different patients
obtained with the weighted interpolation method.

6. Discussion

Our experiments and the statistical evaluation of the three interpolation methods are in
alignment with the previously demonstrated properties of the methods. Prior to experiments,
we knew that the transfinite methods performs best close to the grid lines containing known
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(a) x-direction scan (b) y-direction scan

(c) Linear (d) Transfinite (e) Weighted

Figure 9: Results of merging two OCT scans of ONH, shown on one en face image. (a) x-direction scan, (b)
y-direction scan, (c) result produced using linear interpolation, (d) result of transfinite interpolation and (e)
result of weighted interpolation.
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(a) x-direction scan (b) y-direction scan (c) Weighted

Figure 10: Three different en face OCT images of ONH produced using weighted method for interpolation
from the grid lines. The upsampling rate is 5. Images in column (a) are from x-direction scans, column (b)
are from y-direction scans and column (c) are the interpolated results.
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information, while the linear method performs best in areas further away from the grid
lines. Therefore we expected the transfinite method to achieve superior results for small
upsampling rates where grid lines cover a large fraction of the image. Our results confirm
this hypothesis. Likewise, we show that linear method is superior at high upsampling rates.

We designed the weighted method to combine the good properties of the linear and trans-
finite method. Our results confirm that weighted method has superior performance for a
large interval of upsampling rates, and especially where the transfinite and linear method
perform equally badly. This happens around upsampling rate of 7 and the interval where
weighted method is superior extends from 4 to more than 15. The upsampling rate for our
case study application of merging OCT images is 5, and we expect the suggested weighted
interpolation method to be superior.

We measured image peak signal-to-noise ratio (PSNR) to quantify the interpolation qual-
ity. It is important to note that PSNR is only one indicator of the quality of interpolation.
Further investigation that measures image quality in terms of sharpness should be performed
for finding the most suitable method. Likewise, if the images are to be used for visual in-
spection, a perceived quality of the images should be measured.

Visually observed quality of the images is central in our case study, where we applied the
three interpolation methods on optical cohorence tomography (OCT) images of the optic
nerve head (ONH). All three interpolation methods successfully reduce the disturbing stripe
artifacts present in the row images, and improve visualization of anatomic structures e.g.
blood vessels. The difference in the performance of the three interpolation methods is subtle,
but based on our previous results we conclude that the weighted interpolation should be used
for OCT images.

In our approach of merging OCT scans the interpolation step relies on the assumption that
the scan lines are orthogonal, and the intensities of the two scans are consistent. Bringing the
input data into a format suitable for interpolation, and assessing the validity of assumptions
is therefore crucial for the performance of the method. For this reason it is difficult to
asses the quality of interpolation step on the acquired data, as it is highly dependent on the
preprocessing.

The true value of our interpolation will be evident when we include it in a targeted
application. We plan on developing a method for quantifying the volume of optic disc
drusen, which will be tested within a larger clinical study. We hope that our interpolation
method will improve the results of an automatic detection algorithm.

7. Conclusion

Our work on interpolation from grid lines has three main contributions. First, we introduce
the problem of interpolation from grid lines and suggest three possible solutions: a linear, a
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transfinite and a weighed interpolation. Second, we systematically test the three methods
and conclude that the transfinite method is superior for very small upsampling rates, while
the weighted method should be chosen for a broad range of upsampling rates. Lastly, through
a case study, we demonstrate the use of the proposed interpolation methods and the benefits
of merging two line scans.
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