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Parallel Swarm Intelligence Strategies for Large-scale
Clustering based on MapReduce with Application to

Epigenetics of Aging

Zakaria Benmounah1,2, Souham Meshoul1, Mohamed Batouche1, Pietro Lio’3

Abstract

The high-throughput sequencing technologies have produced a wealth of epi-

genetics data. These datasets require stand-alone techniques to extract useful

insights which can be used for further analysis. One tailored technique is data

clustering; it is a primary method to extract the first layer of information from

unlabeled data sets. However, epigenetics data sets are very large making con-

ventional data clustering techniques inappropriate. By another way, Swarm

Intelligence (SI) algorithms such as Ant Colony Optimization (ACO), Artifi-

cial Bee Colony (ABC) and Particle Swarm Optimization (PSO) have shown

promising results when applied to data of moderate size. They exhibit different

capabilities making their cooperation a promising alternative to achieve good

quality clustering. In this paper, a parallel and distributed generalized island

model (GIM) based on these SI algorithms is developed according to MapReduce

framework. The proposed framework (MRC-GIM) allows cooperation between

the three SI algorithms to achieve largely scalable data partitioning. MRC-GIM

has been validated on Amazon Elastic MapReduce service (EMR) deploying up

to 192 computer nodes and 30 gigabytes of data. The experiments show that

MRC-GIM competes and often outperforms existing methods. The developed

model has been applied to study the epigenetics impact on aging; experimen-
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tal results reveal that DNA-methylation changes slightly with aging, confirming

previous studies.
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1. Introduction

Over the last few decades, developed countries in Europe, Asia, and North

America have experienced a significant change in the age profile of their demo-

graphic structure, with a steady increase in the number of adults aged 65 years

or older. Although longer lifespan is a clear sign of progress and improved qual-5

ity of life, the considerable growth of the elderly population poses far-reaching

social and economic challenges regarding the fiscal sustainability of the welfare

state. As such, health-care system and related services have to be rethought

to treat aging as a manipulable long-term biological process whose detrimen-

tal effects can be limited or procrastinated rather than passively accepted as10

inevitable.

Key research challenges need to be effectively and efficiently addressed to

cope with the ever-growing amount of epigenetics data that is being exponen-

tially produced. Traditional techniques and tools for data analytics and au-

tonomous learning are no longer suitable and even unusable to extract human-15

interpretable knowledge and information from the enormous complex amount

of data. Therefore, new revolutionary approaches and tools are more than re-

quired, among these tools we highlight clustering.

Almost 60 years beyond have passed from the first proposed clustering al-

gorithm [1]. Cluster analysis aims at grouping data points into separate groups20

called clusters. It plays a versatile role in knowledge discovery, and it is used in

a myriad of fields to extract hidden relationships among data. An up-to-date

review of the application of clustering analysis can be found in [2]. A plethora

of clustering algorithms has been designed to deal with different types and dis-
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tributions of data. The exponential increase of data makes cluster analysis even25

more challenging than before. Two broad approaches have emerged to alle-

viate the issue, either by reducing the dimensionality of data (dimensionality

reduction)[3] or by reducing the number of samples within a dataset (sampling)

[4]. However both approaches have been proved to be ineffective when a sin-

gle machine is used as the prohibitively large amount of data cannot be kept30

on a single computer. Therefore, multiple machines are needed, and parallel

processing of data is undeniably necessary.

Hardware accelerators such as Field Programmable Gate Array (FPGA) and

Graphics Processing Unit (GPU) have emerged recently as promising technology

drivers [5]. On the other hand, Application Programming Interfaces (APIs) such35

as Message Passing Interface (MPI) and OpenMP have traditionally provided a

software-oriented approach. However while dealing with parallel programming

languages, additional concerns have to be considered, such as the load balancing,

the communication flow, the topology choice, the split of data, etc. This makes

designing a parallel algorithm a very tedious task. To deal with these concerns,40

a new open source framework called Apache Hadoop consisting of a storage part

namely Hadoop Distributed File System (HDFS) and a processing part namely

MapReduce (MR) has emerged lately. HDFS is a distributed file system that

provides high-performance access to data across Hadoop clusters by managing

pools of big data and handling big data analytics applications. MapReduce,45

designed by Google [6], provides a new methodology of thinking and developing a

parallel algorithm suitable for large scale systems without being concerned about

scalability as MapReduce is auto-scalable. The idea was inspired by the map

and reduce primitives characterizing the functional programming LISP. Hadoop

encapsulates the details of parallelization, fault-tolerance, data distribution and50

load balancing. It Demonstrates a great performance in big data scenarios,

especially for challenging tasks such as clustering.

Nevertheless, data Clustering is an NP-hard problem. If the number of

clusters exceeds three, the alternative ways to group the data is kn

k! , where k is

the number of groups, and n is the number of data points to be clustered.55
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However, data clustering can be easily cast as a global optimization problem

of finding the partition that maximizes/minimizes an objective function with

only partial search space than exhaustive one. This can be appropriately tack-

led using metaheuristics, such as Ant Colony Optimization (ACO), Artificial

Bee Colony (ABC), Particle Swarm Optimization (PSO) and so forth. These60

metaheuristics exhibit different dynamics leading to distinct strategies that can

be effectively combined to handle hard optimization problems such as Clustering

large datasets.

In this paper, first, we present and discuss a review of big data clustering

algorithms based upon MapReduce. Furthermore, we propose a MapReduce de-65

sign of the Ant Colony Optimization and an Artificial bee colony to cluster large

data sets. Additionally, we merge the proposed algorithms in a collaborative

way based on Generalized island model (MRC-GIM). MRC-GIM enables the

cooperation between three SI metaheuristics to explore the search space more

efficiently. We validate the proposed algorithms on many computers (192 com-70

puters) connected with each other and large real datasets (more than 30GB).

The comparative study reveals that MRC-GIM outperforms novel developed

clustering algorithms dedicated to big data clustering. Subsequently, we use

MRC-GIM to investigate the correlation between Epigenetics and Aging. As

a result of this application, we found that epigenetics changes slightly and not75

aberrantly with aging, this latter confirms previous evidence shown in [59, 60].

The remainder of the paper is organized as follows: in Sec. 2 a brief descrip-

tion of the background material is given. In Sec, 3. a review of clustering large

data sets algorithms is provided. Section 4 is devoted to the presentation of the

proposed frameworks. In Sec. 5, the performance of MRC-GIM is evaluated80

using large datasets and parallel metrics. In Sec. 6 we study the correlation

between epigenetics and aging and finally in Sec. 7 conclusions are drawn.
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2. Background and materials

2.1. Clustering Analysis

Clustering analysis is a central topic in computer science and statistics,85

whose purpose is to find groups in a given data set, according to a notion

of similarity or homogeneity that is maximized/minimized for elements in the

same group (or cluster). Formally, given a set V , a clustering is a partition

τ(V ) = {c1, . . . , cK} of V into non-empty and pairwise disjoint subsets ci,

i = 1, . . . ,K, whose union is V .90

As a major field of research in exploratory data analysis, over the years, a

large number of clustering algorithms have been proposed to find “good” par-

titioning that can uncover latent structures in the data. Clustering approaches

can be divided into two major classes: partitional clustering and hierarchical

clustering.95

Partitional clustering algorithms split the dataset into groups based on a

two-step iterative process. Given an initial set of cluster representatives cen-

troid locations as in k-means [7] or centroid data points as in k-medoids [8]

the procedure alternates an assignment step where each data point is assigned

to the cluster with the closest representative and an update step where cluster100

representatives are recomputed.

Hierarchical clustering algorithms build a hierarchy of clusters by either

merging smaller clusters into larger clusters (agglomerative clustering) or by

splitting larger clusters into smaller clusters (divisive clustering). As a result, a

hierarchical clustering algorithm produces a tree of clusters, called dendrogram,105

which shows how clusters and data points are related.

2.2. MapReduce Model

A MapReduce program takes place generally in three successive jobs, the

Map, the Auxiliary and the Reduce jobs as depicted in figure 1.
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V

<Key, Value>Map task

  Sorting
Partitioning
Combining

<Key, [Value]>Reduce task

<k1,v1> <k2,v2>

<k1,v3> <k3,v4>

<k1,[v1,v3]>

<k2,v2>

<k3,v4>

Auxilary phase
Whole datasets

Figure 1: MapReduce framework, generally composed of the map job followed by the reducer

job

The map job is a preprocessing of the split data where each split part is110

considered as a value and attributed a key, all values with the same key are

submitted to the same reducer. More formally let’s denote V as the whole

data, after splitting the data we get V = v1 ∪ v2 ∪ . . . ∪ vp where p is the

number of split elements. The mapper creates a function V → key where

key = key1, key2, . . . keyr and r denotes the number of keys (r << p). A key115

keyi can be attributed to more than one value. The Auxiliary is an optional

function that takes place between the mappers and the reducers when some ad-

ditional preprocessing tasks are required. The reducer receives a set of pairs in

the form of < key, value > the values with the same key are grouped together

in the same reducer thus it results in one key per each reducer.120

3. Related works

Since the inception of MapReduce (MR), several MR based clustering algo-

rithms have been proposed. Most of these methods are based on different MR

schemes of k-means. Among them, Pk-means [12] which follows the classical

k-means procedure and runs in one iterative MR job. In the map phase, cen-125

troids are computed as the weighted average of all points within a cluster, then

in the reducer phase, the algorithm updates the new centers. An additional

auxiliary phase is set up to combine the intermediate data of the same map

task. Further, k-means++ has been designed to optimize the selection of initial

centers, starting by choosing them uniformly at random, then adding potential130

6



centers one by one in a controlled way until reaching k centers. k-means‖ [18]

has come as an improvement of k-means++, rather of sampling a single point

in each pass like kmeans++, k-means‖ samples O(k) points in each round and

repeats the process for approximately O(log n) rounds to get better accuracy.

Unlike the aforementioned proposed k-means based methods which perform a135

series of k-means tasks serially, Mux-Kmeans [24] performs a multiple k-means

tasks concurrently by taking various centroids together. The algorithm starts

by evaluating the clusters, selecting the best task and finally integrating the

new tasks. Efficient k-means++ [25] is another improvement of k-means++

which uses only one MR job to obtain the k centers. The map task consists140

in the k-means++ initialization, followed by the weighted k-means++ which is

performed in the reducer phase. The algorithm integrates a pruning strategy

that computes the distances without redundant time as advantage selection of

k (the number of the clusters) is automatic.

By using k-means with sampling, X. Cui et al. [27] proposed an algorithm145

that takes place in three MR jobs. Data summarization has been used as a

baseline for BigK-Clustering [21]. The key idea behind the algorithm is to

divide the data into sub-data and group them separately which results in micro-

clusters, then merge the closest micro-clusters using the equivalence relation,

and finally, calculate the centers of the final groups. DBCURE-MR [26] and150

MR-DBSCAN [15] are two density based algorithms that identify clusters with

highly dense areas separated by sparsely dense areas. Both methods employed

a sampling approach to reducing the size of the large data and carry out the

processing of the reduced data to obtain centers, which will be used to cluster

the original data. Abhinandan Das et al. redesign the MinHach algorithm [10]155

in a more scalable way using map-reduce. This algorithm can capture multiple

interests of user shared within a cluster. DisCo [11] is based on co-clustering

which unlike clustering attempts to cluster both samples and items at once.
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Table 1: Summary of clustering algorithms based on MapReduce (sz: data size, nd: number

of computer node, pt: data point, dim: dimension and syn: Synthetic)

Algorithm Based on Data platform

Abhinandan Das et al. [10] Probabilistics based (MinHash) Real (943, 5000, 500000) users non

Spiros Papadimitriou et al. (DisCo) [11] Co-Clustering
Raw dataset, Sz(100-135GB)

Graph dataset, sz(170MB-4.3GB)

39 nd with 2 IntelXeon (2.7-3GHz),

8GB of ram.

Weizhong Zhao et al. (PKMeans) [12] K-means sz (1GB- 8GB).
(1-4) -nd with 2 cores (2.8GHz),

4GB of ram.

Robson L. F. Cordeiro et al. (BOW) [13] Subspace Clustering

-Real:(62millions-1.4 billion)pt,

sz: (0.014-0.2)TB.

-syn (100000-100 million)

pt*15 dim

-Yahoo Cluster M45: 400 nd,

3.5 TB ram.

-DISC:(64 machines=512 cores

+1TB of ram)

Hai-Guang Li et al. [14] Bagging, Kmeans Small datasets
-1 nd IntelCore Duo,

(2.10GHZ), 2.00GB ram.

Yaobin He et al.(MR-DBSCAN) [15] Density based

Real(GPS location records):

0.32 billion-1.92 billion pt,

sz( (8.4GB-50.4GB).

-13 nd Intel Core i7 950

(3.0GHz), 8GB DRAM

Alina Ene et al. (Parallel Lloyds) [16] K-center, K-median
syn (Zipf distribution):

10,000-10,000,000 pt.

-1 nd IntelCore i7 (2.93GHz) with,

8GB ram (100nd simulation).

Ibrahim Aljarah et al.( MR-CPSO) [17] Particle swarm optimization
Real and syn: (2, 000-32, 000, 000)pt

(2-54) dim, sz(0.14- 1320.8)MB

-Longhorn Hadoop cluster: 48 nd,

8 Intel Nehalem cores (2.5GHz),

48GB ram.

-NDSU Hadoop cluster: 18 nd 4

Intel cores (2.67GHz each),

6GB of ram.

Bahman Bahmani et al.(k-means ‖) [18] K-means
-syn: GaussMixture 10;000 points

-real(4601-4.8)M pt*(42-58) D.

1968 nd, 2 quad-core (2.5GHz),

16GB ram.

Fei Gao et al. [19] Approximate Spectral Clustering

-syn: 1024 to 4 million

pt*64 dim

-Real (wikipedia): sz (1M-2G)

Local Cluster: 5 Core2 Duo E6550,

(2.33 GHz) with 1 GB DRAM.

Trilce Estrada et al. [20] Tree-based
real (molecular geometries),

sz (48MB-1TBytes).

16 nd Gordon ION (192 cores),

(2.7 GHz) with 3GB of ram.

Yuqing Miao et al.(BigKClustering) [21] K-means, micro-cluster structure syn:(normal dist), Sz(1GB-3GB)
3 nd with 2 IntelCore (3.1GHz),

4GB of ram.

Chen Jin et al. (DiSC) [22]
Single-Linkage,

MST (Hierarchical)
syn: 500,000 data pt * 10 dim. JESUP hadoop cluster

Pelle Jakovits et al. (CLARA) [23] K-medoid
real(handwritten digits),

25 000- 10 000 000 pt.

17 nd with CPU (2.2GHz),

500MB RAM.

Chen Li et al. (Mux-Kmeans) [24] K-means
real (17770-359330) pt*

(40-1000) dim.

EC2: 16nd, 2 ECUs and 1 CPU,

3.7 GiB ram

Yujie Xu et al. (Efficient K-means++) [25] K-means

-real sz (5.67 GB).

-Syn: 20 million pt * 128 dim,

sz(15GB).

12 nd with 2 AMD Opteron 2212,

(2.00GHz) and 8GB of ram.

Younghoon Kim et al. (DBCURE-MR) [26] Density-based

-Real: (164,860-164,860*50)pt*

3 dim sz(21mb-1.05GB).

-Syn:(5,000,000-25,000,000)pt*

(2 to 8 dim), sz(1.7GB).

20 nd with 2 Duo (2.66GHz),

2GB of ram.

Xiaoli Cui et al. [27] K-means and Sampling

-syn(Gauss Distribution)

10,000 pt* 3 dim.

-Real 2,351,710,420

pt* 3 dim

-Real 4,296,075,259

pt * 9 dim.

16 nd 2 Core AMD,

Opteron (2.00GHz),

2GB of ram.

Fei Gao et al. designed an approximate spectral clustering which enables

kernel-based machine learning algorithms to efficiently process very large-scale160
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datasets [19] with the objective to optimize the computation and memory over-

head required to compute the kernel matrix without affecting the accuracy of

the result. The approach is independent of the employed kernel-based machine

learning and was tested on Amazon Elastic MapReduce. Trilce Estrada et al.

[20] presented a scalable method dedicated to the molecular conformation such165

as ligand and peptides to identify conformations that are an accurate repre-

sentative of the native conformations. The algorithm starts by reducing the

conformation space and then combines the geometrical knowledge of conforma-

tion similarities based on a tree clustering, a considerable decrease of parallel

runtime has been reported, from 5 hours to 20 minutes while tweaking the pro-170

cessing nodes from 12 to 196. Hierarchical clustering based has also witnessed

the scaling up using MapReduce. As an example, DiSC is a hierarchical cluster-

ing algorithm [22] designed according to MapReduce framework which runs on

a fairly small number of MR rounds, while reducing the hierarchical clustering

single-linkage problem to the minimum spanning tree (MST). The CLARA is a175

medoid-based clustering algorithm [23] which unlike centroid-based chooses real

data points as centers. The algorithm has been defined regarding MapReduce

jobs, showing a way of how to adapt a non-embarrassingly parallel algorithm to

a platform that is dedicated to embarrassingly parallel methods. In contrast,

the efficiency and scalability have been barely affected. Finally, MR-CPSO [17]180

is based on particle swarm optimization (PSO) algorithm originally developed

by taking inspiration from the flocking behavior of birds. The algorithm is im-

plemented in three MR stages each of which consists in a PSO operation. In

the first stage the centroids of individual particle are updated using the classical

equation of PSO that updates the velocity and the position, afterwards, an eval-185

uation of the fitness generated in the first level is computed, then, the last stage

is devoted for merging results of the previous stages and identify the personal

best and global best centroids. In table 1, a summary of all these algorithms

is provided including the basic clustering features used as described above with

extra information related to the type and volume of data sets and the platform190

employed per each algorithm.
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From this brief review, one can notice that attempts to develop MapRe-

duce methods of clustering are at their debut and in particular, swarm-based

algorithms which still need to be rethought in this context despite their success

to solve NP-hard problems and particularly data clustering. By another side,195

cooperating among metaheuristics has been shown to be a very promising way

to solve efficiently complex problems. Therefore, in our work we investigate the

potential of such cooperation to handle clustering of large data sets.

4. Highly scalable clustering based on MapReduce

A generalized island model is a parallel distributed scheme which is amenable200

to large-scale clustering. To perform clustering of large data sets using a GIM we

need first to redesign each of the used metaheuristics according to the MapRe-

duce model. In the proposed GIM, the three swarm-based algorithms PSO,

ACO and ABC cooperate to find the best partition that optimizes a given clus-

ter quality measure. In our study, we consider the total within variance or205

cohesion measure as the objective function. This later describes how close the

data points within each cluster are to each other. It is defined as follows:

1

n

k∑
j=1

∑
xi∈zj

‖xi − zj‖2 (1)

Where n is the number of items or data points in the datasets, k the number

of clusters, xi, {i = 1, . . . , n} the location of the ith item to be clustered and

zi the center of cluster ci. Therefore, clustering is cast as an optimization task210

that aims to minimize the cohesion total within variance.

Our algorithms can run even if:

1. The data is huge and cannot be stored on a single computer,

2. The clustering solution could be distributed among different computers,

3. The clustering solution is constructed gradually.215

In the rest of this section, we consider the following notations:
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1. v = {item1, item2, ..., itemn}, the set of n items or data points to be

grouped into clusters,

2. m: The number of artificial ants or bees.

3. k: The number of clusters.220

4. pi = {(itemj , cl)} , where {i = 1, . . . ,m}, {j = 1, . . . , n} and {l = 1, . . . , k},

the clustering partition is encoded as a set of pairs, each is composed of

an item and the assigned cluster.

5. fi is the cohesion value of the clustering solution pi.

6. c = {z1, z2, . . . , zk},the set of centroids.225

In the following, we describe the proposed ACO and ABC based MapRe-

duce. Afterward, we describe the overall architecture through which cooperation

between ACO, ABC and PSO introduced in [17] is done.

4.1. Ant colony optimization based MapReduce

ACO is a swarm based metaheuristics developed by Dorigo et al. [28] to230

solve NP-hard optimization problems. It is inspired by the foraging behavior of

a colony of ants. A detailed description of this metaheuristic and its biological

metaphor can be found in [29]. Given an optimization problem to be solved,

a typical dynamics of an ACO algorithm can be defined as follows. A set of

cooperating artificial ants is used to construct solutions incrementally. Each ant235

constructs a solution and deposits an amount of pheromone on each solution

component according to the overall quality of the solution found. During solu-

tion construction step, an ant selects the next solution component according to

a probabilistic rule which depends on the corresponding amount of pheromone

and the value of a problem-specific heuristic. Many variants of ACO algorithms240

exist depending on the policies used to update pheromone trails and to select

solutions components.

In our work, we adopted ACO algorithm for data clustering inspired from

ant k-means described in [30]. The algorithm aims to find the partitions that

minimize the cohesion measure defined above. A solution component is viewed245

as an assignment of a data point to a cluster. Let’s adopt the following notations:
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1. τ , the threshold value.

2. φ(i, j), where {i = 1, . . . , n}, {j = 1, . . . , k}, is n by k matrix represents

the pheromone value of each item in each cluster.

The proposed ACO algorithm MapReduce (MRC-ACO) composed of three250

stages, both the first and second are parallel and based upon MapReduce; the

last stage is sequential as shown in figure 2.

Update Pheromon 
        Matrix 

assigne clusters  
split 1 

split 2 

split 3 

...

...
split n 

-Compute the center 
split 1 

split 2 

split 3 
...

split n 

Compute 
cohesion mean

loop 

HDFS HDFS HDFS (S*M) Mappers <id, sub-vector>  
(K*M) Reducers <r, [item_i, c_i ]>  

(M) Mappers <i, Ant_i > 

Stage 1 Stage 2 

Stage 3 

stratifying assigne clusters  

assigne clusters  

assigne clusters  

Do in Parallel

-Compute the cohesion 

-Compute the center 

-Compute the center 

-Compute the cohesion 

-Compute the cohesion 

Compute 
cohesion mean

Compute 
cohesion mean

Compute 
cohesion mean

Figure 2: MRC-ACO: Ant Colony Optimization for clustering large datasets based on MapRe-

duce framework

The ACO algorithm for data clustering can be outlined as follows:

1. During an initialization phase, each ant builds a solution by assigning

items to clusters randomly. The same amount of pheromone is assigned255

to each of all possible pairs (item, cluster).

2. During an iterative phase each ant updates the amount of pheromone

to each of its solution components namely a pair (item, cluster) and con-

structs another solution by assigning items to clusters according to a prob-

ability that depends on the amount of pheromone and heuristic value re-260

lated to the cohesion measure value. During iterations, the best partition

i.e. with the smallest value of cohesion measure found so far is kept.

3. At the end of the iterative process, the best partition is returned.

To handle the big data, we split each pi vector to s sub-vectors where s

is an integer tweaked with regards to the size of data points and the memory265
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capacity available. The sub-vectors are loaded on the mappers, at this end,

the mappers assign in parallel for each itemi the cluster number ci following a

guided probabilistic research described in algorithm 1. Afterward, the mappers

attribute the same key to all sub-vector pairs (itemi, ci) that satisfy the following

two conditions:270

1. The pairs should belong to the same pi parent vector.

2. Second the ci of each pair has been assigned to the same cluster.

This latter is done through the use of MD5 [34] function which is a crypto-

graphic hash function that provides the digital fingerprint. Subsequently, the

mappers transmit the pairs with their keys to the reducers, where the same275

key is transmitted to the same reducer. Increasing s leads to the decrease of

the granularity (the size of the parallel task) per each mapper, giving rise to

a shorter processing time. The number of the parallel task at this stage is m

multiplied by s.

At the reducers job the transmitted pairs merged to form one cluster of a pi280

vector which is the purpose of applying both above conditions. In parallel, each

reducer computes the center and evaluates the clustering quality by computing

the cohesion as described in equation 1.

The granularity of the system increases compared to the first stage as the

number of parallel tasks equals to k multiplied by m. The purpose of splitting285

the data per cluster is to contribute to the decrease of the granularity that yields

to more tasks in parallel thus a rapid system.

In the second stage, another MapReduce round is launched to evaluate the

quality of each pi vector and to update the pheromone matrix. Firstly, a light

map stage receives per each mapper the cohesion values of a pi vector and com-290

putes for them the mean. The mean describes how good the overall clustering

solution is. In this round, the number of tasks in parallel is m.

At this end, all pi possess a complete clustering solution with its quality

calculated. An auxiliary phase is employed to stratify in an ascending way

the pi vectors with regards to their cohesion values preparing them for the295
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pheromone update stage.

Algorithm 1: Do in parallel for each mapperi
Input: < key : id, value : sub-vector>

extract φ; for each itemi in sub-vector do

generate random number r ;

if r ≤ q then

pMax = max(φ(itemi,∀)); // the highest pheromone value

ci = find(φ(itemi,∀), pMax); // where the highest

pheromone laid

else

pSom =
h=k∑
h=1

φ(itemi, h);// the sum of the pheromone

recorded

for each cl > 1 in k do

φ(itemi, cl) =
(φ(itemi,c(l−1))+φ(itemi,cl))

pSom ; // the shared

pheromone

end

generate random number rr ;

for each cl in k do

if rr ≤ φ(itemi, cl) then

ci = cl;

end

end

end

end

for each pair (itemi, ci) in sub-vector do

generate a keyi;

transmit (itemi, ci); // via the use of MD5

end

14



The last stage is sequential to update the pheromone matrix. For each

corresponding value of the assigned cluster, ci in the best solution found so far;

the pheromone value is updated φ as follows:300

φ(i, j) =
(1− ρ)φ(i, j) + 1

fbest
(2)

Where ρ is the evaporation rate and fbest is the best cohesion value found

so far.

4.2. Artificial bee colony clustering based MapReduce

We designed an artificial bee colony clustering based on MapReduce (MRC-

ABC), MRC-ABC is composed of 4 stages described in figure 3.305
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Figure 3: MRC-ABC: an Artificial Bee Colony Clustering for large datasets based on MapRe-

duce Framework

The following assumptions are considered [31]:

1. Three groups of bees: employed bees, onlookers, and scouts artificial bees.

The employed bees produce a food source (solutions) and share it with the

onlookers in the dance area. The onlookers choose one food source with

a probability related to its nectar amount and produce for it the distinct310

new solutions. The job of the scout is to check whether a solution is not

chosen by the onlookers for many cycles if so the abandoned solution is

replaced with a newly generated one.

2. nectari refers to the nectar amount of the food source, it evaluates how

much a solution is good and calculated as follows:315
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nectari =
cohesion(Foodi)∑M
s=1 cohesion(fs)

(3)

3. pbi refers to the probability of a pi solution to be chosen by the onlookers,

it is computed as follows.

pbi =
nectari∑M
s=1 nectars

(4)

4. To avoid getting stuck in the local minimum, ABC employs the variable

cyclei for each pi, that will be incremented when a food source is not

chosen by any onlooker bee. When a cyclei reaches the maximum cycle320

number mcn, the scouts eliminate the food and replace it with a new food

source.

5. To produce a new potential food position from an old source food, the

artificial bees employ the following expression:

pfoodi = pi + ϕ(pi − ps) (5)

In the MRC-ABC, we exploit the same technique used in MRC-ACO, all325

pi are split to sub-vectors, and the same stage one and two of MRC-ACO are

adopted in MRC-ABC, however, to imitate the dynamics of ABC the first as-

signment of clusters is done randomly. After the accomplishment of stage one

and two, all vectors possess a cohesion value of the clusters assignment.

The stage three is devoted to computing nectari and pbi for each food source.330

To compute the nectari each mapper receives all the computed cohesion values;

then they transmit the results to the reducers as shown in algorithm 2.

Afterward, each single reducer receives all the nectari computed in the map-

pers step and calculate for each pi the value pbi, as stated in algorithm 3. The

number of mappers/reducers required in this round equals to m. By loading335

only the cohesion values in each mapper/the nectar amounts in each reducer,

we drastically reduce the size of the loaded values into the mapper’s/reducer’s

memory compared to the first and the second stage.
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Algorithm 2: MRC-ABC: stage three

Mapper: Do in parallel for each mapperi

Input: < key : cohesioni, Listvalues : [cohesions] >

compute nectari for the pi using eq. 3;

emit(i, nectarti) to all reducers;

Reducer: Do in parallel for each reduceri

Input: < key : nectari, Listvalues : [nectars] >

compute pbi for the pi using eq. 4;

After achieving stage three, all pi have a completed clustering solution with

its nectari and pbi assessed in the memory. In the last round, the onlooker340

bees choose one solution according to its pi value and send only the chosen

nectar to the reducers, if pi is not chosen, the variable cyclei is incremented, see

algorithm 3.

Algorithm 3: MRC-ABC: stage four

Mapper: Do in parallel for each mapperi

Input: < key : i, value : (pbi, cyclei) >

if pbi is chosen then

emit(i,pbi);

else

cyclei = cyclei + 1;

end

Reducer: Do in parallel for each reduceri

Input: < key : i, value : 0 >

if pbi is chosen then
produce new solution Pfoodi using expression 5;

else

if cyclei equals to mcn then
produce a random solution and replace pi ;

end

end
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The reducers of the last stage imitate the scouts, they receive all the chosen345

pbi and produce for them new clustering solution pfoodi using equation 5. The

reducers also check if any cyclei has reached the maximum cycle number mcn. If

so, the solution is considered abandoned and replaced by a randomly generated

one, see algorithm 3.

4.3. The Generalized island model, based MapReduce350

GIM (Generalized Island Model) is a parallel model which can be applied

to a large class of optimization problems. Based on metaheuristics cooperation,

it allows an effective parallel execution of multiple algorithms across multiple

islands. This cooperation is maintained by the exchange of solutions between

these islands. The exchange operator (migration operator) aims at improving355

the overall performance of the different algorithms used [8].

To let cooperation, we set up in parallel our proposed MRC-ACO and MRC-

ABC and from the literature MR-CPSO proposed in [17]. Then integrate an

exchange operator to enable solution migration from one algorithm to another.

Each algorithm act as an island and islands cooperate between them by select-360

ing a subset of solution (selection strategy S i.e. elitist), exchanging selected

solutions using the migrant operator and finally recombine them with local solu-

tions following a recombination strategy R (i.e. replacing worst solutions). We

conceive this model in Hadoop by managing the HDFS, which will be logically

divided using Centralized Cache Management (CCM). We create four logical365

memories. Three of them represent a distributed memory associated with each

algorithm. One shared memory between the algorithms serving as a migrant

solution deposit which acts as a buffer to exchange solutions in an asynchronous

way (figure 4).

Without deploying a barrier operations, no processor will exhibit idle waiting370

for another one. Thus, this technique will increase the load balancing yielding to
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Figure 4: HDFS management for Generalized Island Model in Hadoop architecture (MRC-

GIM)

the speediest system. The dynamics of MRC-GIM is described in algorithm 4.

Algorithm 4: Do in parallel for MRC-ACO, MRC-ABC, and MR-CPSO

P :initial population;

S :selection strategy;

R :recombination policy;

Ai : MRC-ACO, MRC-ABC and MR-CPSO;

initalize P ; // initialize population

while non stop criteria do

P ′ = Ai(P ); // P’ is the new population

M = S(P ′); // select M solutions from P’

submit (M) in the Shared HDFS meomory; // Sharing the

results with others SI

load M ′ from the HDFS; // extract the shared solutions

P ′′ = R(P ′,M ′); // combine M’ with P’ to generate new

population

P = P ′′;

end

The recombination policy consists of combining the migrant populations

with the local ones to get more diversity for the next iteration which is the key375

task of cooperation.
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5. Experiments

In the experiment design, we analyze the efficiency of the proposed algo-

rithms. First, we study the amount of resource such as time, the number of

processing elements and iterations required to perform clustering. The algo-380

rithms are designed to be executed on different platforms with different size

of data. Therefore, we study the scalability, speedup, and the sizeup of the

algorithms. Finally, we compare the meta model MRC-GIM to different state-

of-the-art large scale clustering algorithms. The clustered data are two sets with

different size to test the ability of the algorithms to group both large and small385

sets of data. The following subsection explains briefly these sets of data.

5.1. Datasets

We validate the proposed algorithms by clustering available large datasets.

The data set used have been downloaded from the Stanford Network Analysis

Project (SNAP) [32]. To assess the quality of clustering both small and large390

data sets. We employed two sets of data Friendster and DBLP as shown in

table 2.

Table 2: The datasets used in our experiments

Dataset Records Cluster Size

Friendster 65,608,366 287,512 30.1 GB

DBLP 317,080 13,477 10 MB

Friendster is a gaming website, which was a social networking website that

enabled users to connect with their friends. The data was released at the end of

June 2011, which contains 65,608,366 users. Each line of the data files represents395

the friends list of one user, in the following format: (id of user: separated list

of user’s friends), for example, 1 : 2, 3 means that the user with id = 1 has a

connection with both the users two and three. We preprocessed the data to be

suitable for partitioning clustering by constructing for each player an ascending
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order of all players following their id and then, check weather a connection is400

found between this player and the ith player if so the number one is affected

elsewhere 0. A player is considered to have a connection with himself.

DBLP is a computer science bibliography that provides a comprehensive list

of research papers in computer science field. Two authors are connected if they

publish at least one paper together. We followed the same preprocessing to405

prepare the DBLP data for the partitioning clustering.

The number of potential clustering solutions within the search area for the

Friendster data is 287,51265,608,366

287,512! , which renders the clustering more challenging

task. We conduct our experiments on the EMR cluster of Amazon with 192

nodes where each node has 2.5 GHZ processor and 1.7 Go memory. The data410

was moved from local disk to Amazon using the Jets3t Java library. The size of

the memory limits the number of map jobs to be used per node. We split each

node memory to 20 blocks where each block is a 64 MB (HDFS block). Hadoop

uses HDFS data blocks and assigns a single HDFS block to each map task, for

the Friendster data the minimal configuration is to use 24 nodes with 20 map415

jobs per each node.

5.2. Evaluating each swarm intelligence algorithm individually

To evaluate the convergence of the proposed MRC-ABC, MRC-ACO, MRC-

GIM, we recorded the cohesion by tweaking the number of iterations from 100

to 1000 at each time (we stooped at 1000 iterations following a limitation of the420

platform used). A bar chart of the cohesion against the number of iterations is

shown in figure 5(a).

Regarding Friendster data, MRC-GIM returned the higher clustering quality.

As the number of iterations increases the gap between MRC-GIM and the rest

of algorithms increases as well (figure 5(a)). Increasing the number of iterations425

involves enhancing the chance of solution migration thus exploring the search

space more efficiently using three different swarm strategies at the same time.

Moreover, the cooperative scheme of MRC-GIM improves its quick convergence

while avoiding local minima, e.g., the results reached by MRC-GIM in 200
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iterations, can be achieved by MR-CPSO after around 800 iterations.430
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Figure 5: (a) A Bar chart showing the cohesion value against the number of iteration, (b)

Boxplots displays the distribution of results over 18 runs using both Friendster and DBLP

data, (c) The Parallel runtime recorded by seconds while increasing the processing elements

at each step.

Regarding DBLP data, the algorithms are more competitive as the search

space is restricted compared to Friendster data. MRC-ACO and MR-CPSO are

competitive; MRC-ABC achieved the highest (worst) cohesion value. Subse-
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quent, we set up MRC-GIM with only MR-CPSO and MRC-ACO to evaluate

whether MRC-GIM converges better with isolating MRC-ABC. The results for435

100, 200, and 400 iterations are 12.352, 12.110 and 11.461 respectively, indi-

cating that even MRC-ABC, which returned the worst result, improves the

convergence of the overall MRC-GIM alongside MR-CPSO and MRC-ACO.

Furthermore, a statistical analysis is conducted to test the randomness of the

algorithm outputs. The test illustrates the distributions of cohesion in terms440

of box-plots over 18 runs and 1000 iterations on 192 computers as shown in

figure 5(b). MRC-GIM boxes indicate that the returned results are symmetric

(roughly the same on each side when cutting down the middle) therefore, it

returns more robust and stable median value compared to other skewed boxes.

Afterwards, the parallel runtime is recorded in figure 5(c), it depends on445

both the input size of the data and the number of processing elements used.

The recorded parallel runtime is for 600 iterations. MRC-GIM requires slightly

more computational time compared to the rest of algorithms since it performs

additional tasks such as selection strategy, recombination policy, transmission

and integration of migrant solutions. However as the number of processing450

elements increases the gap between the plots shrinks, this difference becomes

very narrowed within the nodes 96 and 192. In DBLP data sets, the processing

elements surplus the requirement of data, therefore, a small gain in seconds has

been recorded.

In the rest of this section, we evaluate, the speed up, scaleup and sizeup. The455

speedup is defined as the ratio of time recorded to solve a parallel task to the

time required to solve the same problem on a double set of processing elements

with the same capacity of processing nodes [33], following the expression 6.

Speedup =
TN
T2N

(6)

Where TN is the running time using N nodes and T2N is the running time

using 2-fold of N . The speedup measures the acceleration of the parallel algo-460

rithms from small computational power to a larger one while maintaining the

same size of the dataset. We performed the speed up by doubling the number
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of nodes used at each step, starting from 24 nodes for Friendster and four nodes

in DBLP as the minimum required configurations.

While clustering DBLP data sets, all algorithms achieved a speedup larger465

than one (figure 6). Therefore, they are all scalable. In Friendster data, MRC-

GIM reached the best speedup imitating the diagonal (figure 6). The MapRe-

duce implementation has helped the algorithms to achieve a good speedup as

MapReduce paradigm is proved to be auto-scalable.
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Figure 6: Plots showing the speed up, size up and scale up metrics. The speed up is computed

for both data sets

Secondly, we computed the size up by fixing the number of nodes and in-470

creasing the size of datasets by 2-folds at each step [33].

Sizeup =
TS
T2S

(7)

Where TS is the parallel runtime for the dataset with size S using N nodes

and T2S is the parallel runtime using 2-fold of S and N nodes. MRC-GIM deals

well with the increase of data, whereas the rest of algorithms recorded very

close result compared to each other. Finally, We compute the scaleup which475

evaluates the ability of a parallel algorithm to solve a significant problem using

larger datasets and more processing elements at once [33].
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Scaleup =
TSN
T2SN

(8)

Where TSN is the parallel runtime for the dataset with the size S using

N nodes and T2SN is the parallel runtime using 2-fold of S and 2-folds of N

nodes. To carry out the experiment, we decreased the size of Friendster data.480

We first cluster the data using kmeans. Afterward, we balance between the

number of elements present in each group until reaching 0.94 GB of data (1/32

of the original size). Then adding a proportion of the deleted elements to reach

1.88GB (1/16), 3.76 GB (1/8), 7.52GB (1/4), 15.05 GB (1/2), and 30.1 GB

(1/1). This data is processed in 8, 16, 32, 64, 128, and 192 nodes respectively485

(since the limitation of the platform we used 192 nodes rather than 256 nodes).

MRC-ABC recorded the best values between the ratio (0.69-0.79), MRC-

GIM also shows a good scaleup between (0.65-0.80) as shown in figure 6.

5.3. Comparative study

We compare MRC-GIM to Lloyds algorithm with the partitioning based490

scheme proposed in [16], PKmeans [12], BigKclustering [21] and Kmeans ++

with the improved version proposed in [25]. We compare the clustering quality

by gathering the cohesion values and the recorded time after 50 runs for 100,

200, 400, 600, 800, and 1000 iterations. The results are shown in table 3. The

number of processing elements used in this section is 124.495

Table 3: Table shows the recorded cohesion/time required in second. All the cohesion values

are divided by 103.

Iterations MRC-GIM Lloyd BigKClustering Pkmeans Kmeans++

100 12,012/375s 12,376/398s 12,509/328s 12,835/287s 13,115/264s

200 11.235/789s 11,773/811s 12,287/720s 12,482/649s 12,788/631s

400 10,259/1665s 11,109/1793s 11,587/1603s 12,095/1587s 12,546/1466s

600 9,862/2783s 10,832/2833s 10, 865/2667s 11,311/2583s 11,840/409s

800 9,121/3597s 9,563/3786s 9, 745/3422s 9,976/ 3389s 10.248/3266s

1000 8,213/4357s 8,482/4610s 8,69/4531s 8,712/4387s 8,911/4198s
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Figure 7: Boxplots showing distribution of results over 50 runs and 1000 iterations and the

corresponding multi-comparison graph for MRC-GIM, BigKCLustering, PKmeans, Lloyd and

Kmeans++ based MapReduce

The same initial clustering is used (also the same number k of clusters). Re-

garding clustering quality, MRC-GIM outperforms the rest of algorithms reach-

ing good partition in a reasonable time. We were unable to run the algorithms

for more than 1000 iterations as a result of the platform limitation. Kmeans++

returned many outliers; the best solutions returned in 50 runs are selected in500

table 3. Kmeans ++ and PKmeans recorded the shortest time as they follow

the classical Kmeans algorithm and run in one iterative MapReduce job.

In figure 7, the distribution of results for 1000 iterations and 50 runs on 124

computers are recorded. Regarding median value, the proposed model outper-
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forms the four algorithms and shows more stability and robustness. To study505

how significant is the difference between the algorithms, a Friedman test followed

by a multi-comparison test were conducted. The p-values given by the Fried-

man indicates a significant difference between the proposed model and the other

algorithms at significance level. The multi-comparison graphs clearly show that

our algorithm is significantly different from the rest algorithms. This gain shows510

the advantage of using the cooperation and parallelism between metaheuristics

on a MapReduce platform.

5.4. MRC-GIM reveals slight changes in DNA-Methylation across age

In this section, we use MRC-GIM to cluster real epigenetics data to in-

vestigate the correlation between aging and epigenetics. Formally, aging is a515

time-dependent degenerative process characterized by cellular senescence that

leads to progressive functional decline, reduced stress response, homeostatic im-

balance, and increased susceptibility to disease [35]. In the last decade, a grow-

ing body of research has revealed a tight connection between epigenetic factors,

defined as the set of mitotically and meiotically heritable changes in gene expres-520

sion that do not depend on alteration in the DNA sequence [36, 37], and aging-

related phenotypes and diseases [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

For example DNA methylation, the most widely studied epigenetic mark con-

sisting in the addition of a methyl group to the fifth position of cytosine in CpG

dinucleotides shows a progressive drift with age in humans, characterized by525

global hypomethylation and site-specific hypermethylation in promoter regions

associated with tumor suppressor genes [51, 52, 53, 54, 55]. Nevertheless, the

causal relationship between epigenetic alterations in normal individuals and ag-

ing remains poorly understood, as changes are bidirectional, not uniform across

the genome and highly dependent on individual lifestyle and environment [56].530

In the effort to assess the dynamics of DNA methylation as a function of

age and underlying pathological events, we extended our cluster analysis to the

methylation profiles from CD34 primary cells assayed by bisulfite sequencing in

six normal individuals ranging in age from 27 to 50 years (Table 4).
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Table 4: DNA methylation data.

Sample Code Age Sex Ethnicity Methylated BPs Data Size (Mb)

GSM706858 27 female Caucasian 2,729,614 118.3

GSM772729 27 female Hispanic 2,464,116 106.7

GSM706859 36 male Hispanic 3,047,608 132.2

GSM772730 42 male Caucasian 2,690,026 116.6

GSM706839 43 male Caucasian 2,920,722 126.6

GSM772731 50 female na 2,726,708 118.1

In particular, since age-associated alterations of the epigenome are strictly535

related to inflammatory processes [44, 57, 58], we analyzed the methylation

behavior of 139 genes from chemokines, interleukins, tumor necrosis factor, and

tgf-β families, to assess how methylation levels in pro-inflammatory mediators

vary with age. Due to the high decomposability of a DNA methylation analysis

within each individual, we were able to parallelize the recognition of methylation540

features in CpG islands, gene promoters, and gene bodies for the entire dataset,

optimizing the computational burden across the nodes.

We first examined the average value of methylation4 in CpG islands, gene

body, and gene promoter for the 139 target genes in each individual (Figure 8,

a). We found a global low level of methylation in gene bodies and CpG islands545

and a nearly unmethylated state in promoters. Even though methylation in the

gene body increases with age, we did not identify any significant trend or change

related to aging, as values remain consistently near to zero. Therefore, we can

argue that pro-inflammatory mediators in normal individuals exhibit constant

low methylation, especially in promoter regions and CpG islands, confirming550

previous general evidence [59, 60].

4Methylation values range from 0 to 1.
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Figure 8: (a): DNA methylation levels in CpG islands, gene body, and promoter regions across

ages. (b): Cluster sizes as function of DNA methylation features and age.

We then performed cluster analysis for the 139 target genes in each individ-

ual to investigate how the formation of groups is guided by DNA methylation

features (corresponding to values in CpG islands, gene body, and gene pro-

moter) over time and whether epigenetic signatures emerge in specific clusters555

as a byproduct of aging. From the examination of the size of clusters (Fig-

ure 8,b), we noticed the emergence of a giant cluster (containing 65% to 74% of

all genes) for any individual, suggesting the presence of a general methylation

pattern at each age. In fact, elements in the largest cluster in each individual

correspond to nearly unmethylated genes in CpG islands, gene body, and gene560

promoter and surprisingly these genes remain in the largest cluster over time, as
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showed by measuring the Jaccard index5 between the largest clusters for each

pair of individuals (Table 5).

Table 5: Jaccard index for the largest clusters across ages.

F27 F27-1 M36 M42 M43 F50

F27 1.00 0.91 0.88 0.89 0.90 0.92

F27-1 0.91 1.00 0.92 0.96 0.95 0.91

M36 0.88 0.92 1.00 0.92 0.92 0.96

M42 0.89 0.96 0.92 1.00 0.93 0.93

M43 0.90 0.95 0.92 0.93 1.00 0.92

F50 0.92 0.91 0.96 0.93 0.92 1.00

Finally, we studied how methylation features (corresponding to values in

CpG islands, gene body, and gene promoter) vary across clusters and ages (Fig-565

ure 9). While the largest cluster in every individual shows nearly unmethylated

features, clusters tend to exhibit changes in methylation in CpG islands and

gene body as size decreases, with a significant peak in one of the two features.

In particular, we found two recurrent clusters of genes across ages: the first

cluster, characterized by an increased level of methylation in the gene body,570

is composed of three genes belonging to tnf family (TNFRSF14, TNFRSF6B,

TNFRSF25) and two genes in tgf-β family (AMH, PSPN), while the second

cluster, characterized by an increased level of methylation in CpG islands, is

composed of two genes in tnf family (TNFRSF4, TNFRSF11A) and four genes

in tgf-β family (INHBB, TGFB1, GDF7, GDF10). A gene enrichment analysis575

confirmed the strict relationships between genes in each of the two clusters in a

wide number of biological processes. Specifically, genes in the first cluster are

involved in tumor necrosis factor-mediated signaling pathway, urogenital sys-

5The Jaccard index measures the similarity between finite sets. Formally, given two sets

A and B, the Jaccard index is defined as: J (A,B) =
|A∩B|
|A∪B| .
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tem development, and more generally in the response to chemical, while genes

in the second cluster are involved, among others, in the regulation of protein580

phosphorylation and apoptotic process.
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Figure 9: DNA methylation levels in CpG islands, gene body, and promoter regions in different

clusters and different individuals.

6. Conclusions

The amount of data is growing further in size and complexity. The recent ad-

vances in collecting data have triggered an extreme need for novel data analysis

methods to decipher the complexity of these data. Undoubtedly, parallelization585

frameworks and distributed computation will play a primary role in the future

of interpreting big data in general and biological data in particular. For exam-

ple, the cloud computing will help to scale up the analysis of epigenetics profiles

to larger samples of individuals, providing a more detailed characterization of

epigenetic mechanisms in fast and cost-efficient ways.590

In this paper, we deal with the issue of clustering big sets of data. Data
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clustering itself is an NP-hard problem, and it becomes more challenging when

the clustered data is large. Moreover, we present MRC-GIM, which is a scal-

able, time-efficient, and robust clustering approach to group very large datasets

on a different commodity of computer architectures. The proposed method ag-595

gregates three swarm intelligence strategies, helping to avoid local convergence

issues and making the algorithm reaches an optimum solution in a shorter time.

MRC-GIM is designed and implemented with Hadoop MapReduce, which makes

MRC-GIM auto-scalability and fault-tolerance. The comparative study reveals

that MRC-GIM outperforms novel developed big-scale clustering in a reason-600

able time. Although Hadoop exists for a half decade, a noticeable shortage of

tools dealing with big data analysis has been witnessed.

We extended our parallelization strategy to the study of DNA methylation in

pro-inflammatory mediators from a population of normal individuals ranging in

age from 27 to 50 years. Exploiting the high decomposability of the dataset, we605

were able to analyze simultaneously millions of nucleotides, retrieve methylated

cytosines, and cluster genes according to methylation features in CpG islands,

gene body, and gene promoter. We found a global low level of methylation

in CpG islands and gene body, and a nearly unmethylated status in promoter

regions for each, suggesting that the epigenetic landscape in normal condition610

should not change aberrantly with aging.
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