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Algorithms for the Multi-Objective Vehicle Routing Problem with Hard Time 

Windows and Stochastic Travel Time and Service Time 

ABSTRACT 

This paper introduces a multi-objective vehicle routing problem with hard time windows and 

stochastic travel and service times. This problem has two practical objectives: minimizing the operational 

costs, and maximizing the service level. These objectives are usually conflicting. Thus, we follow a multi-

objective approach, aiming to compute a set of Pareto-optimal alternatives with different trade-offs for a 

decision maker to choose from. We propose two algorithms (a Multi-Objective Memetic Algorithm and a 

Multi-Objective Iterated Local Search) and compare them to an evolutionary multi-objective optimizer from 

the literature. We also propose a modified statistical method for the service level calculation. Experiments 

based on an adapted version of the 56 Solomon instances demonstrate the effectiveness of the proposed 

algorithms. 

Keywords: vehicle routing with time windows; stochastic travel times; evolutionary and memetic 

algorithms; iterated local search; multiobjective optimization. 

1. Introduction 

The classic vehicle routing problem with time windows (VRPTW) assumes the travel times between 

customers and the service times at the customers are known and deterministic. However, in real life 

applications, these two parameters are often stochastic, and models that takes into consideration this 

uncertainty can provide more accurate answers for the decision maker. Over the years, the customer 

expectations in the logistics sector have continuously increased and more customer-oriented business models 

have been demanded, for instance, ensuring a particular level of service at individual customers. 

In business terms, the minimization of the operational costs of delivering the goods to the customers 

is a common objective. Defining service level as the probability of a vehicle visiting a customer before the 

end of the time window, it is plausible to say that the higher the customer service level, the higher is the 

customer satisfaction, motivating the inclusion of the service level as one objective function of the model.  

Because operational costs and service level have very different dimensions, combining them into one 

single objective is not straightforward. Additionally, there seem to be a conflict between these objectives, 

motivating the modeling of the problem as multiobjective (MO-VRPTW). A MO-VRPTW can provide the 

decision maker with more comprehensive information about the problem, and once they acquire a knowledge 

from a set of non-dominated solutions, it is easier to define criteria to pick a single solution, by intuition or 

through the use of multi-criteria decision-making techniques (MCDM), e.g. Shi et al. (2009). 

In this context, this paper tackles a problem considering realistic features presented in real 

applications such as stochastic travel time and service time, a constraint with a lower bound for the customer 

service level, and the consideration of two objectives (maximizing service level and minimizing operational 

costs). 



 

 

 

The main contributions of this paper are: 

1. The introduction of the multiobjective vehicle routing problem with hard time windows and 

stochastic travel and service times. 

2. The design and implementation of two new algorithms (a Memetic Algorithm and Iterated 

Local Search) discussing specific components such as the design and utilization of the local 

searches, specific strategies for selection, cross-over, exit criteria and speed-up techniques. 

3. An improved version of the method to calculate service levels from Miranda and Conceição 

(2016) that better reflects the lower bound constraint on the distribution of travel and service 

times. 

The problem approached in this study has hard time windows which means the vehicle has to wait in 

case it arrives before the start of the time window. There is a single depot, the vehicles have the same capacity 

and they always visit and deliver the service at the customers. The service time and the travel time are both 

random variables with a nonnegative normal probability distribution. Common distributions used for the travel 

time are normal, lognormal and Gamma distributions (Tas et al. 2013). Many studies consider the travel time 

normally distributed including Kenion & Morton (2003), Jie et al. (2010), Hofleitner et al. (2012), and Chen 

et al. (2014). 

The paper is structured as follows. We give a literature review in Section 2, followed by a 

mathematical formulation of the problem in Section 3. Next, in Section 4, we present the developed method 

to calculate the service level of the customers. Section 5 explains the metaheuristics developed to solve the 

Multiobjective VRP with hard time windows and stochastic travel time and service time. Section 6 has 

experiments testing the performance of the proposed statistical method and heuristics. Finally, the main 

findings and conclusions are highlighted in Section 7.  

2. Literature Review 

Literature reviews of the Stochastic Vehicle Routing Problem (SVRP) have been provided for 

example by Gendreau et al. (1996, 2014) and Zeimpekis et al. (2007). Berhan et al. (2014) present a 

comprehensive survey on the SVRP and a classification of the papers. Most SVRP literature focuses on 

stochastic demand (Laporte et al., 2002 and Dror, 2016), customers’ presence (see, e.g. Gendreau et al., 1995) 

and both demand and presence (Balaprakash, 2015). 

In the context of the VRPTW and stochastic travel times and/or service times it is important to 

separate the formulations without waiting time from the formulations with waiting time for the vehicles. 

Models without waiting time benefit from the use of convolution properties while summing the random 

variables. The probability distribution of the sum of two or more independent random variables is the 

convolution of their individual distributions and many well-known distributions have simple convolutions 

when there is no waiting time. 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Independent_(probability)
https://en.wikipedia.org/wiki/Random_variable


 

 

 

For the VRPTW with stochastic travel/service time and no propagation of the waiting time, some 

relevant studies were conducted by Russell & Urban (2008), Tas et al. (2013), Tas et al. (2014) and Vareias 

et al. (2017). In the context of VRPTW with stochastic travel/service time and with waiting time (in which 

the present paper is situated), studies were conducted by Jula et al. (2006), Chang et al. (2009), Li et al. (2010), 

Miranda (2011), Errico et al. (2013 and 2016), Zhang et al. (2013), Ehmke et al. (2015), Binart et al. (2016), 

Miranda and Conceição (2016) and Gutierrez et al. (2016). These studies are discussed below in more detail. 

Jula et al. (2006) suggest methods of estimating the mean and variance of a vehicle’s arrival time at 

customers using first-order approximation of Taylor series. Chang et al. (2009) studied the relationship 

between arrival time and time window, and developed an approach to calculate the mean and variance of the 

arrival time with the assumption of normality. Li et al. (2010) use Monte Carlo simulation to calculate the 

service level. Errico (2013) and Errico et al. (2016) propose a formulation considering a symmetric triangular 

distribution with an exact solution. Zhang et al. (2013) adapt the method α-discrete from Miller-Hooks & 

Mahmassani (1998) to estimate the arrival time distribution at a customer. The method is applied to a normal 

distribution and log normal distribution for the travel time, and normal distribution for the service time.  

Ehmke et al. (2015) propose a method based on the application of extreme value theory that allows 

the computation of the distribution of the maximum of two normal variables. Even though the arrival time 

distribution is not normal, they assume so, and evaluate the error of this assumption in an experiment. Binart 

et al. (2016) solve a variant of the VRP where it’s assumed that service as well as travel times are stochastic, 

both with discrete triangular distributions. Miranda and Conceição (2016) introduce a method to compute the 

probability of the vehicle arriving before the end of a time window for the case where service time and travel 

time follow a Gaussian distribution. A single objective VRPTW is solved through Iterated Local Search. 

Finally, Gutierrez et al. (2016) develop a memetic algorithm to solve a single objective version of the VRPTW 

with stochastic travel and service times. The method used to compute the service level comes from Ehmke et 

al. (2015) and the only modification is that both travel time and service time are stochastic.  

Still regarding the variant with propagation of waiting times, papers mentioned previously use 

triangular distributions such as Binart et al. (2016), Errico (2013) and Errico et al. (2016), which is a poor 

representation for real applications. Li et al. (2010) use Monte Carlo simulation (too expensive to be used in 

an NP-hard problem). Jula et al. (2006) use first-order approximation of Taylor series which deliver poor 

results. Ehmke et al. (2015) use extreme value theory but also assuming the arrival time distribution is normal. 

Zhang et al. (2013) does not assume the arrival time is normal even with normal travel time and service time, 

and its method is used as a benchmark for the statistical method of our paper.  

All papers mentioned previously consider the service level as a constraint in the model and they use 

operational cost as single objective. Several papers propose additional objectives for the VRPTW, such as: 

the number of used vehicles, total traveled distance, traveling time of the longest route (makespan), total 

waiting time, and total delay time (Castro et al., 2011). To the best of our knowledge, no publication so far 

used service level.  



 

 

 

Our paper differs from and extends the existing work in the following ways: It is the first attempt to 

approach a bi-objective variant of the VRPTW with stochastic travel times and service times, where the 

service level is one of the objectives. It proposes a new approach to embed a local search into a multi-objective 

problem. In addition to that, our statistical method to calculate the service level (already validated in Miranda 

and Conceição, 2016) has been changed to consider a more realistic representation of real problems (discussed 

in Section 4). 

3. Background 

3.1 – Multi-objective Optimization (MOO) 

MOO is the process of simultaneously optimizing two or more conflicting objectives. In mathematical 

terms, a multiobjective optimization problem (MOP) cab be written, without loss of generality, as 

𝑚𝑖𝑛 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥) , … , 𝑓𝑝(𝑥)) subject to 𝑥 ∈ 𝑋 ⊆ ℜ𝑛 where 𝑋 is a constraint set in the multi-

dimensional space of the problem specified by 𝑋 = {𝑥 ∈ ℜ𝑛: 𝑔𝑖
(𝑥)

≤ 0, 𝑖 = 1, … , 𝑚; ℎ𝑗
(𝑥)

= 0, 𝑗 = 1, … , 𝑙}. 

Given two feasible solutions 𝑥 and 𝑦, we say that 𝑥 dominates 𝑦, if ∀𝑖: 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦) and ∃𝑗: 𝑓𝑗(𝑥) < 𝑓𝑗(𝑦). 

Moreover, 𝑥 is said to be Pareto optimal if and only if it is not dominated by any other feasible solution. The 

aim is to find the set of Pareto optimal solutions usually called Pareto set. This set maps to a number of non-

dominated points in the objective space, the so-called Pareto Front. 

Pareto ranking is often used to rank solutions: All non-dominated solutions are assigned rank 1, and 

inductively, all solutions non-dominated once ranks 1…i have been removed are assigned rank 𝑖 + 1.  

3.2 – Problem statement  

Let 𝐺 = (𝑉0, 𝐴) be a complete digraph, where 𝑉0 = {0, … , 𝑛} is a set of vertices and 𝐴 =

{(𝑖, 𝑗): 𝑖, 𝑗 ∈  𝑉0, 𝑖 ≠ 𝑗} is a set of arcs. Vertex 0 represents the depot where 𝑚0 vehicles with capacity 𝑄 are 

available. The set of customers is 𝑉 = 𝑉0\{0} = {1, … , 𝑛}. Each customer 𝑖 ∈ 𝑉 has a non-negative 

demand 𝑞𝑖, service time 𝑆𝑇𝑖, and a time window [𝑒𝑖, 𝑙𝑖], where 𝑒𝑖 is the start of the time window (earliest time) 

and 𝑙𝑖 is the end of the time window (latest time). If the vehicle arrives at customer 𝑖 before 𝑒𝑖, it is necessary 

to wait until 𝑒𝑖. A travel time 𝑇𝑇𝑖𝑗 is assigned to each arc (𝑖, 𝑗) ∈ 𝐴. Both 𝑇𝑇𝑖𝑗 and 𝑆𝑇𝑖 are random variables 

with known and independent probability density. 𝑆𝐿𝑖 = 𝑃(𝐴𝑇𝑖 ≤ 𝑙𝑖) is the service level at customer 𝑖. The 

vector 𝑆𝐿 = (𝑆𝐿1, … , 𝑆𝐿𝑛) summarizes the service level of each customer. Other delimitations are: 𝑄 ≥

𝑞𝑖, 𝑖 ∈ 𝑉 (i.e., each vehicle has enough capacity to serve at least one customer) and 𝑚0 ∗ 𝑄 ≥ ∑ 𝑞𝑖
𝑛
𝑖=1  (i.e. the 

fleet is big enough to serve all the customers). There is no time window for the depot, i.e. [𝑒0, 𝑙0] = [0, ∞]. 

Further notation includes:  

𝑓 Fixed cost for one vehicle 

𝑚 Number of vehicles in a feasible solution, 𝑚 ≤ 𝑚0 

𝑐 Fixed cost for each unit of the travel time 𝑇𝑇𝑖𝑗 



 

 

 

𝐾 Set of required vehicles in a feasible solution 𝐾 = {1, … , 𝑚}.  

𝑥𝑖𝑗𝑘 Boolean variable with value 1 if vehicle 𝑘 serves arc (𝑖, 𝑗) 

𝐴𝑇𝑖 Arrival time at customer 𝑖 

𝑆𝑆𝑖 Service start time at customer 𝑖 

𝛼𝑖 Required service level by customer 𝑖 where 𝛼𝑖 ∈ [0,1]  
 

The decision variables of the problem are 𝑥𝑖𝑗𝑘 and 𝑚.  The model for the problem can be described 

as follows:  

𝑀𝑖𝑛 𝑓 ∗ 𝑚 +  ∑ ∑ 𝐸(𝑇𝑇𝑖𝑗) ∗ 𝑐 ∗ 𝑥𝑖𝑗𝑘

𝑘∈𝐾(𝑖,𝑗)∈𝐴

 (1) 

𝑀𝑖𝑛 − 𝐸[𝑆𝐿]  (2) 

Subject to:  

∑ ∑ 𝑥𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝑉0

= 1, ∀𝑖 ∈ 𝑉 (3) 

∑ 𝑥0𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾

𝑗∈𝑉

 (4) 

∑ 𝑥𝑖0𝑘 = 1, ∀𝑘 ∈ 𝐾

𝑖∈𝑉

 (5) 

∑ 𝑥𝑖𝑗𝑘

𝑖∈𝑉0

− ∑ 𝑥𝑗𝑖𝑘 = 0,

𝑖∈𝑉0

 ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (6) 

∑ 𝑞𝑖 ∑ 𝑥𝑖𝑗𝑘 ≤ 𝑄, ∀𝑘 ∈ 𝐾

𝑗∈𝑉0𝑖∈𝑉

 (7) 

𝑃(𝐴𝑇𝑖 ≤ 𝑙𝑖) ≥ 𝛼𝑖, ∀𝑖 ∈ 𝑉 (8) 

𝑒𝑖 ≤ 𝑆𝑆𝑖, ∀𝑖 ∈ 𝑉   (9) 

 

The two objectives are given by Equations (1) and (2). Equation (1) is formed by two parts: the vehicle 

fixed cost (number of vehicles 𝑚 multiplied by the fixed cost 𝑓) and the variable cost (the sum of the mean of 

each activated arc multiplied by the cost  𝑐 per unit of travel time). Therefore, both terms are expressed by a 

financial unit. The second objective is given by Equation (2) and maximizes the service level of the solution, 

defined here as the mean of the service levels of all customers.  

Equation (3) ensures each customer is visited only once. Equations (4) and (5) ensure each vehicle 

starts the route in the depot and also returns to it.  Equation (6) ensures that each vehicle departs from a 

customer location after it visits the customer. Equation (7) is the capacity constraint. Equation (8) is the service 

level required by each customer. It reflects that the probability of a vehicle arriving at the customer before the 

end of the time window should be greater than a given threshold, for any customer. Equation (9) ensures the 



 

 

 

hard time windows, where the service will only start after the start of the time window, therefore, if the vehicle 

arrives before 𝑒𝑖, it must wait until 𝑒𝑖. The service start time is given by Equation 10: 

𝑆𝑆𝑖 = 𝑚𝑎𝑥{𝐴𝑇𝑖, 𝑒𝑖}, (10) 

where  𝐴𝑇𝑖 = 𝑆𝑆𝑖−1 + 𝑆𝑇𝑖−1 + 𝑇𝑇𝑖−1,𝑖. 

Note that the departure time from the depot is defined as zero and a departure time greater than zero 

does not improve any of the objectives. 

Regarding the service level objective, we use the mean service level rather than median or percentage 

of customers within service level because we assume there is also a value in over-achieving the desired service 

level 𝛼𝑖. 

4 – Computation of the service level  

This section presents the statistical method to calculate the probability of a vehicle arriving at a 

customer before the end of its time window (service level). It is based on the method introduced by Miranda 

and Conceição (2016) but uses a lower bound for the service and travel time that is more representative of 

real applications. 

4.1 – Statistical method to compute the service level 

For the sake of simplicity, we adopt a specific notation for the statistical problem where a random 

variable 𝑋𝑖 is the arrival time at the 𝑖-th customer, and after its truncation at the start of the time window, it 

becomes the truncated variable 𝑋𝑖
𝑡with function 𝑓𝑥 left-truncated at point 𝑡𝑖, where 𝑋𝑖

𝑡 = max(𝑥𝑖, 𝑡𝑖), not 

removing the early arrival. The variable 𝑌𝑖 is the sum of the service time (ST) and travel time (TT), assuming 

they are both normally distributed: 𝑆𝑇𝑖 + 𝑇𝑇𝑖,𝑖+1 = 𝑁(𝜇𝑆𝑇𝑖, 𝜎𝑆𝑇𝑖
2) +  𝑁(𝜇𝑇𝑇𝑖,𝑖+1, 𝜎𝑇𝑇𝑖,𝑖+1

2) = 𝑁(𝜇𝑆𝑇𝑖 +

𝜇𝑇𝑇𝑖,𝑖+1, 𝜎𝑆𝑇𝑖
2 + 𝜎𝑇𝑇𝑖,𝑖+1

2) = 𝑌𝑖. By doing this, the problem becomes solving 𝑋𝑖+1 =  𝑋𝑖
𝑡 + 𝑌𝑖 recursively 

from 𝑖 = 1 to 𝑖 = 𝑛, where 𝑛 is the number of customers of a given route. The service level for customer 𝑖 +

1 is 𝑃{𝑋𝑖+1 ≤ 𝑐} where 𝑐 is equivalent to the end of the time window 𝑙𝑖+1. Figure 1 illustrates the case and 

also highlights the fact that 𝑋𝑖
𝑡 = 𝑡 𝑖𝑓 𝑥 ≤ 𝑡 with a peak at the beginning of the service window. 

 

 

Figure. 1: Sum of random variables 

 

The cumulative distribution function of 𝑋𝑖+1 = 𝑋𝑖
𝑡 + 𝑌𝑖 is obtained as follows:  



 

 

 

𝐹𝑋𝑖
𝑡+𝑌𝑖

(𝑐) = ∫ 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦)

∞

−∞

  𝑓𝑌𝑖
(𝑦) 𝑑𝑦 (11) 

Equation (11) is known as the convolution of the marginal distributions. This equation is 

approximated by Equation (12), a discrete function with 𝐼 intervals, where 𝑦𝑓 and 𝑦0 are the upper and lower 

bounds of the integration, respectively: 

∫ 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦)

∞

−∞

  𝑓𝑌𝑖
(𝑦) 𝑑𝑦 ≅  

𝑦𝑓 − 𝑦0

𝐼
∗ ∑ (

𝑔(𝑦𝑘−1) + 𝑔(𝑦𝑘)

2
)

𝐼

𝑘=1

 

  

(12) 

where 𝑔(𝑦𝑘) = 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦𝑘)  𝑓𝑌𝑖

(𝑦𝑘), ∀𝑘 ∈ {1, … 𝐼 }. 

The lower bound is computed as: 𝑦0=max(𝜇𝑌𝑖
− S ∗ 𝜎𝑌𝑖

, 0) where 𝑆 is a parameter specifying the 

number of standard deviations used. Note that negative values are not allowed because both service time and 

travel time cannot have negative values. The upper bound is 𝑦𝑓=min (𝜇𝑌𝑖
+ S ∗ 𝜎𝑌𝑖

,  𝑐 − 𝑡𝑖). It is desired 

𝑃(𝑌𝑖 ≤ 𝜇𝑌𝑖
− S ∗ 𝜎𝑌𝑖

) ≅ 0 and 𝑃(𝑌𝑖 ≤ 𝜇𝑌𝑖
+ S ∗ 𝜎𝑌𝑖

) ≅ 1. Due to the truncation point 𝑡𝑖, we have  𝑐 − 𝑦𝑘 ≥

 𝑡𝑖, therefore 𝑦 ≤ 𝑐 − 𝑡𝑖. 

To compute 𝑔(𝑦𝑘) we need to calculate 𝐹𝑋𝑖
𝑡(𝑐 − 𝑦𝑘)  and  𝑓𝑌𝑖

(𝑦𝑘). Because 𝑌𝑖 is assumed to be 

a Gaussian distribution, we have  𝑓𝑌𝑖
(𝑦) =

1

𝜎𝑌𝑖√2𝜋
 𝑒𝑥𝑝 (−0.5

(𝑦−𝜇𝑌𝑖
)2

𝜎𝑌𝑖
2

). The cumulative function 𝐹𝑋𝑖
𝑡(𝑐 −

𝑦𝑘) is assumed to have been calculated in the previous iteration of the recursion and its discrete function is 

stored in a matrix 𝑚𝑝𝑟𝑜𝑏𝑖 comprised of 𝑛𝑖𝑛𝑡 points, as follows: 

𝑚𝑝𝑟𝑜𝑏𝑖 = [
𝑐1

𝑖 … 𝑐𝑞
𝑖

𝐹𝑋𝑖
𝑡(𝑐1

𝑖 ) … 𝐹𝑋𝑖
𝑡(𝑐𝑞

𝑖 )
    

… 𝑐𝑛𝑖𝑛𝑡
𝑖

… 𝐹𝑋𝑖
𝑡(𝑐𝑛𝑖𝑛𝑡

𝑖 )
] 

where 𝑞 ∈ {1, . . , 𝑛𝑖𝑛𝑡}, 𝐹𝑋𝑖
𝑡(𝑐1

𝑖 ) ≅ 0 and 𝐹𝑋𝑖
𝑡(𝑐𝑛𝑖𝑛𝑡

𝑖 ) ≅ 1.  

Because 𝑚𝑝𝑟𝑜𝑏𝑖 stores discretized values of the cumulative function, any value of the continuous 

function 𝐹𝑋𝑖
𝑡 is calculated by a linear interpolation of the adjacent points. Therefore, 𝐹𝑋𝑖

𝑡(𝑐 − 𝑦𝑘) is 

computed through a linear interpolation of 𝐹𝑋𝑖
𝑡(𝑐𝑞

𝑖 ) and 𝐹𝑋𝑖
𝑡(𝑐𝑞+1

𝑖 ) where  𝑐𝑞
𝑖 ≤ 𝑐 − 𝑦𝑘 ≤  𝑐𝑞+1

𝑖 . As 

mentioned before, if 𝑐 is equivalent to the end of the time window 𝑙𝑖, then calculating 𝑃{𝑋𝑖+1 ≤ 𝑐}  is the 

same of calculating the service level at customer 𝑖 + 1. 

In order to allow the computation of the next iteration, it is necessary to generate the matrix 

𝑚𝑝𝑟𝑜𝑏𝑖+1 by calculating the discrete cumulative function 𝐹𝑋𝑖
𝑡(𝑐𝑞

𝑖+1) for each 𝑞 = {1, … 𝑛𝑖𝑛𝑡 }. The bounds 

are computed as: 𝑐1
𝑖+1 = max (𝐹

𝑋𝑖
𝑡

−1(≅ 0), 𝑡𝑖) + max(𝜇𝑌𝑖
− S ∗ 𝜎𝑌𝑖

, 0) and 𝑐𝑛𝑖𝑛𝑡
𝑖+1 = max (𝐹

𝑋𝑖
𝑡

−1(≅ 1), 𝑡𝑖) +

(𝜇𝑌𝑖
+ S ∗ 𝜎𝑌𝑖

). Note that 𝐹
𝑋𝑖

𝑡
−1(≅ 0) and 𝐹

𝑋𝑖
𝑡

−1(≅ 1) were computed in the previous iteration.  



 

 

 

So far, this allows to calculate 𝑃{𝑋𝑡 + 𝑌 ≤ 𝑐} where Y is assumed to be a Gaussian distribution. Next, 

we describe some considerations for the service time and travel time that differentiates this approach from 

Miranda and Conceição (2016). 

Let 𝑋 be a normal random variable that can represent 𝑆𝑇 or 𝑇𝑇 with probability density function 𝑓(𝑥). 

Because the travel time and service time are normal distributions where negative values cannot be censored, 

the resulting distributions are left-truncated normal distributions (random variables represented by 𝑆𝑇𝑡 and 

𝑇𝑇𝑡) with probability density function given by Equation 13:   

𝑓𝑡(𝑥) = {

0,                   𝑥 < 0

𝑓
𝑥
(𝑥)  

∫ 𝑓
𝑥
(𝑥)𝑑𝑥

∞

0

, 𝑥 ≥ 0 (13) 

Function 𝑔(𝑦𝑘) has 𝑓𝑌𝑖
(𝑦) =

1

𝜎𝑌𝑖√2𝜋
 𝑒𝑥𝑝 (−0.5

(𝑦−𝜇𝑌𝑖
)2

𝜎𝑌𝑖
2

) where 𝜇𝑌𝑖
= 𝐸[𝑆𝑇𝑡] + 𝐸[𝑇𝑇𝑡] and 𝜎𝑌𝑖

2 =

𝑉𝑎𝑟[𝑆𝑇𝑡] + 𝑉𝑎𝑟[𝑇𝑇𝑡]. The components 𝐸[𝑆𝑇𝑡], 𝐸[𝑇𝑇𝑡], 𝑉𝑎𝑟[𝑆𝑇𝑡] and 𝑉𝑎𝑟[𝑆𝑇𝑡] are calculated by 

Equations 14 and 15, where 𝑋 represents a truncated normal variable with mean 𝜇, standard deviation 𝜎, left 

truncation point 𝑡, 𝛼 = (𝑡 − 𝜇) 𝜎⁄ , probability density function 𝜙(∗) and cumulative distribution function. 

Φ(∗).  

𝐸[𝑋|𝑋 > 𝑡] = 𝜇 + 𝜎 
𝜙(𝛼)

1 − Φ(𝛼)
 (14) 

𝑉𝑎𝑟[𝑋|𝑋 > 𝑡] = 𝜎2  [(1 +
𝛼𝜙(𝛼)

1 − Φ(𝛼)
) − (

𝜙(𝛼)

1 − Φ(𝛼)
)

2

] (15) 

 

To calculate 𝑃{𝑋𝑖
𝑡 + 𝑌𝑖 ≤ 𝑐}, we have 𝑌𝑖 = 𝑆𝑇𝑖

𝑡 + 𝑇𝑇𝑖
𝑡. The utilization of Equations 14 and 15gives 

the correct values for the mean and variance of 𝑌𝑖 but using a Gaussian equation for  𝑓𝑌𝑖
(𝑦) is an 

approximation. Because probabilities 𝑃(𝑆𝑇𝑖
𝑡 < 0) and 𝑃(𝑇𝑇𝑖

𝑡 < 0) are very small, the impact of truncation 

in the distribution of 𝑌𝑖 is small. The accuracy of the method is discussed in Section 6.2.  

4.2 – Handling non-negative values of the service time  

This paper handles the non-negative values of service time and travel time differently from Miranda 

and Conceição (2016), where the distribution function for travel time and service time with non-negative 

values are given by Equation 16 and not 13. This change is made because we believe Equation 13 is more 

representative of real world scenarios than Equation 16, as illustrated by Figures 2 and 3. Observe these two 

representations solve different problems therefore a direct comparison is not sensible. 

𝑓𝑡(𝑥) = {
0,         𝑥 < 0

𝑓
𝑥
(𝑥), 𝑥 ≥ 0 (16) 

 



 

 

 

  

Figure 2: function for equation 13 Figure 3: function for equation 16 

 

Figures 2 and 3 show exemplary probability distributions based on Equations 13 and 16, respectively. 

As Figure 3 shows, because the negative values are simply accumulated at zero, there is a concentration of 

probability at zero which does not seem to be very realistic. This is different from Figure 2 where the subject 

is the truncation at the start of the time window. 

This change in the formulation of the problem induced a change while computing  𝑓𝑌𝑖
(𝑦). For 

Miranda and Conceição (2016), 𝜇𝑦 = 𝐸[𝑆𝑇] + 𝐸[𝑇𝑇] and 𝜎𝑦
2 = 𝑉𝑎𝑟[𝑆𝑇] + 𝑉𝑎𝑟[𝑇𝑇], not using Equations 

14 and 15, while for the present paper, we have  𝜇𝑦 = 𝐸[𝑆𝑇𝑡] + 𝐸[𝑇𝑇𝑡] and 𝜎𝑦
2 = 𝑉𝑎𝑟[𝑆𝑇𝑡] + 𝑉𝑎𝑟[𝑇𝑇𝑡].  

5 –Algorithms to solve the Multiobjective Stochastic VRPTW 

In this paper, we devise two metaheuristics successfully applied in variants of VRP in the literature: 

a Multiobjective Memetic Algorithm (MMA) and a Multiobjective Iterated Local Search (MILS). In order to 

better evaluate the results, we also implement two versions of the Multiobjective Evolutionary Algorithm 

(MOEA) proposed by Garcia-Najera and Bullinaria (2011), totaling four algorithms. This section presents the 

algorithms in which the statistical method of the previous section is embedded. Any heuristic can be adapted 

to use the proposed method for service level calculation. 

5.1 – Multiobjective Memetic Algorithm (MMA) 

A Memetic Algorithm (see concepts in Moscato, 1999) is an approach combining an evolutionary 

algorithm with a local improvement procedure. The pseudo-code of the main loop can be found in Algorithm 

1, where 𝐻𝑉 stands for hypervolume, classic metric for multi-objective problems detailed in Emmerich et al. 

(2005). 

 

 

 

 

 

 

 

 

 



 

 

 

Algorithm 1 : Main loop of the Multiobjective Memetic Algorithm 

1 Initialize parameters for the VRPTW instance         
2 While HV improvement in the last 3 generations > minHV 

3  if (𝑔𝑒𝑛 = 1) then                  
4   Generate nIniSol initial solutions and return Offspring 

5  else                     
6   Apply selection by SUS in Pop   
7   for 𝑖 = 1: 𝑛𝐶ℎ𝑖                
8    Apply crossover and add child to Offspring  
9   end                    

10  end                     
11  Offspring ←Pre_Intensification_VND(Offspring)         
12  Rank Offspring and return Offspring Rank1    
13  Offspring' ← Intensification_VND(Offspring Rank1)        
14  Compute rank and HV contribution in Pop         
15  Cut-off of the population Pop       
16  Add Offspring' to Pop             
17  Compute HV contribution in Pop, update BestPop and HV improvement 

18 end                      
19 BestPop ← Post_Intensification_LocalSearch(BestPop)         

 

Line 1 initializes the parameters of the VRPTW instance to be solved. Loop 2-18 are executed while 

there is a significant improvement (> minHV) of the hypervolume of the Pareto front BestPop. Line 4 is 

executed only in the first iteration, and creates 𝑛𝐼𝑛𝑖𝑆𝑜𝑙 initial solutions to form a population called Offspring 

that is used to initialize the main population Pop. Otherwise there is already a population Pop and then 𝑛𝐶ℎ𝑖 

solutions are selected in line 6 using Stochastic Universal Sampling (SUS) and 𝑛𝐶ℎ𝑖 new solutions are 

generated by the crossover operator in line 8. These new solutions form the population Offspring . Line 11 

improves the Offspring through the application of a specific set of local searches identified as “Pre-

Intensification”. Line 12 computes the rank of the solutions in Offspring and only those solutions with rank 1 

(non-dominated solutions) form the population Offspring Rank 1 that is processed by another set of local 

searches called “Intensification” and returns Offspring'. In line 14, the rank is updated and the individual 

contribution of each solution in Pop is calculated. Line 15 checks whether the current population Pop exceeds 

a specified maximum number of solutions. If yes, the solutions with smaller rank and hypervolume 

contribution are eliminated. In line 16, all solutions of the population Offspring' are added to the main 

population Pop. Finally, line 17 updates the rank and hypervolume contribution for each solution from Pop 

(to be further used in line 6 during selection), updates BestPop (Pareto front with the best set of non-dominated 

solutions obtained by the algorithm up until the current iteration) and calculates the hypervolume of BestPop 

to update the accumulated hypervolume improvement in the last 3 generations (exit criterion in line 2). After 

the main loop, in line 19, the current BestPop is processed by a set of local searches called “Post-

Intensification” aiming at an additional increase of the hypervolume. 

The individual hypervolume contribution used in line 14 and the hypervolume calculation used in line 

17 were implemented according to Fleischer (2003) and Emmerich et al. (2005), respectively. The initial 



 

 

 

solution (line 4) is based on the well-known 𝐼1 heuristic from Solomon (1987), a sequential insertion heuristic 

that considers the insertion cost of an unrouted customer 𝑢 between two adjacent customers 𝑖𝑝−1 and 𝑖𝑝 in a 

partially finished route (𝑖0, 𝑖1, … , 𝑖0) in which 𝑖0 represents the depot. The insertion cost is a weighting of the 

travel time to the adjacent customers and the new service start time for 𝑖𝑝. When it is not possible to insert a 

new customer in the route, a new route is started with a customer that comes from a list of unrouted customers 

(seed list) sorted by a score given by a weighting between the distance to the depot and the end of the time 

window. Different weighting parameters for the insertion cost and seed list are used to generate a number of 

solutions. In order to avoid additional computation of the service level in this initial solution phase, the time 

windows feasibility is tested firstly according to the classic deterministic approach, assuming mean values all 

travel and service times. If feasible by this test, the stochastic test is performed, computing the service levels 

of all customers of the route and checking if they are higher than a specified threshold 𝛼. It is possible to 

generate initial solutions that violate the required service level, and in this case, a penalty proportional to the 

violation is added to both objectives. 

5.2– Multiobjective Iterated Local Search (MILS) 

The metaheuristic “Iterated Local Search” (ILS) has been used successfully for a variety of single-

objective combinatorial problems and it has been also applied for multiobjective routing problems such as 

Assis et al. (2012), Aquino et al., (2014), and de Souza Lima (2017). The main loop of the MILS proposed 

here is described in Algorithm 2. We have a working set of solutions (𝑆𝑊), a local set of non-dominated 

solutions (𝑆𝐿) and the non-dominated set of solutions (𝑆∗) that is the best Pareto-front obtained by the 

algorithm. 

In the first iteration (𝑖𝑡), a set of initial solutions are created in line 4 initializing 𝑆𝑊. In line 5, 𝑆∗ is 

initialized with 𝑆𝑊.  For other iterations, 2 solutions (𝑠1 and 𝑠2) are selected from 𝑆𝑊 using SUS (line 7). A 

new solution 𝑠 is generated via crossover (line 8). Note that from the context of Iterated Local Search, we are 

using the crossover operator as a perturbation operator. After that, in line 10, a set of local searches based on 

Variable Neighborhood Descent (VND) is applied to 𝑠 returning the local set of non-dominated solutions 𝑆𝐿. 

The VND works as described in Algorithm 4. Lines 11 and 12 update the hyper volume contribution for each 

solution in 𝑆𝑊 and perform the cut-off to adjust the size of the working population 𝑆𝑊. This is done before 

adding 𝑆𝐿 to 𝑆𝑊 (line 13) so the solutions from 𝑆𝐿 still have some chance to be selected by SUS at the 

beginning of the next iteration. Note that even if a solution from 𝑆𝐿 is dominated, because they come from a 

local set of non-dominated solutions, they still have a chance to contribute. In line 11, 𝑆𝑊 and 𝑆∗ are updated. 

If there is improvement in the 𝑆∗ hypervolume then the counter for the number of perturbations (𝑛𝑃𝑒𝑟𝑡) resets 

to zero, otherwise it is incremented.  The process continues while the maximum number of perturbations 

(𝑚𝑎𝑥𝑃𝑒𝑟𝑡) or iterations (𝑚𝑎𝑥𝐼𝑡) is not exceeded. 

 



 

 

 

Algorithm 2: MILS          

1 Initialize parameters for the VRPTW instance          
2 While (nPert ≤  maxPert) And (it < maxIt)       
3  if (it = 1) then               
4   Generate nIniSol initial solutions and return SW     
5   Add SWto S*, update HV.     

6  else                 
7   Select 2 solutions (s1 and s2) from SW using SUS  
8   s ← Crossover (s1,s2).       
9  end                   

10  SL ← VND(s).    
11  Compute rank and HV contribution in SW 

12  Cut-off SW            
13  Add SL to SW          
14  Compute HV contribution in SW, update S* and HV improvement   
15  if (HV improvement = true) then   

16         nPert = 0;    

17  else   

18         nPert = nPert + 1;   

19  end   

20  it = it + 1;   

21 end                    

 

5.3– Operators 

In this section, we discuss operators such a local searches and crossover used in the metaheuristics. 

Usually, for single objective and even multi-objective problems, local searches receive one solution as input 

and return one solution as output. Differently, all the local searches implemented in this work receive one 

solution and return a set of non-dominated solutions.  

Algorithm 3 shows the general structure of the local searches. A local population 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙 is 

initialized with the solution 𝑠. The loop 3-17 keeps exploring new moves while a new non-dominated solution 

is found. Loop 5-16 performs the moves. In line 5, because the service level computation impacts the running 

time, not all moves have the objective function evaluated, avoiding service level calculations. The considered 

moves are said “eligible” and explained in more detail in Algorithm 5 (lines 6, 8 and 9). Line 9 replaces 𝑠 by 

𝑠’ if function 𝐵𝑒𝑡𝑡𝑒𝑟 returns true, i.e., 𝑠’ dominates 𝑠 or if the percentage improvement in one objective is 

higher than the percentage deterioration in the other objective compared with the objective evaluations of 𝑠. 

Lines 11-15 add the new solution s’ to the local population in case it is not dominated by any solution, delete 

the dominated solutions, and update the boolean variable. In line 18, the local population popLocal and the 

index of the current solution 𝑠 in the local population are returned by the function. Note that line 9 is only a 

strategy to guide the local search by exploring a good solution. Even if the new solution 𝑠′ does not replace 

𝑠, if 𝑠’ is not dominated it will still be added to the population. 

 

 



 

 

 

Algorithm 3: Basic structure of the local search 

1 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙(1) ← 𝑠             
2 improve ← true              
3 while improve = true do           
4  improve ←false            
5  for each eligible and feasible move of the solution s 

6   Evaluate objectives of the new solution 𝑠′   
7   Check if s' is better than 𝑠        
8   if 𝐵𝑒𝑡𝑡𝑒𝑟(𝑠′, 𝑠)          
9    𝑠 ← 𝑠′             

10   end               
11   if 𝑠′ is not dominated by any solution of 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙 
12    Add 𝑠′ to 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙        
13   

 Delete any solution in popLocal dominated by 𝑠′ 
14    improve ← true           
15   end               
16  end                
17 end                 
18 Return 𝑝𝑜𝑝𝐿𝑜𝑐𝑎𝑙 and index of 𝑠   

 

For the MMA algorithm, there are three different sets of local searches: “Pre-Intensification”, 

“Intensification” and “Post-Intensification”, and for the MILS algorithm there is only one named “VND-

MILS”. These searches are based on the Variable Neighborhood Descent (VND), see Hansen & Mladenovic 

(2003). Many frequently applied neighborhood operators in VRP were implemented and those successfully 

tested were kept in the algorithms. Six local searches are used by these three VND functions: 2-opt (Lin, 

1965), Reallocation (Osman, 1993), Interchange (Osman, 1993), 2opt* (Potvin & Rousseau, 1995) , “Intra 

Exchange” and “Reallocation Chain”. The local search “Intra Exchange” is analog to “Reallocation” but all 

movements are performed in the same route. The operator Cross-exchange (Taillard et al. 1997) was also 

tested but identified as not helpful and it is not included. 

The local search “Reallocation Chain” was specifically designed to focus on route elimination. Given 

a solution, starting with the route 𝑟1 with the least customers, the local search “Reallocation” is applied to 

move the customers from route 𝑟1 to the other routes. When this is not possible anymore and there are still 

remaining customers in 𝑟1, the local search “Interchange” replaces one customer from 𝑟1 by another from the 

other routes and after that, the “Reallocation” is applied again.   

The ‘Pre-Intensification VND’ used in line 11 of Algorithm 1 is described in Algorithm 4, and for the 

sake of brevity, also used to explain the other types of VND. The function receives a population “pop” that in 

the case of the ‘Pre-Intensification VND’ is the Offspring (from lines 4 and 8, Algorthm 1). Lines 1 and 2 

initialize an auxiliary population 𝑝𝑜𝑝’ and a local population 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝. Loop 3-17 is applied to each solution 

𝑠 in 𝑝𝑜𝑝 in which the local population is initialized with solution 𝑠. Loop 7-14 applies 𝐾 local searches while 

a non-dominated solution is found. In line 8, the first local search (𝑘 = 1) initially performs the moves in the 

original solution 𝑠 = 𝑝𝑜𝑝(i). The local search accepts the move according to the function 𝐵𝑒𝑡𝑡𝑒𝑟 (line 8, 



 

 

 

Algorithm 3), where 𝑠 receives the new solution 𝑠’. The local population 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 is updated according to 

the loop lines 11-15, Algorithm 3. It means that the local search 𝑘 updates 𝑠 and 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 passed as input to 

the next local search 𝑘 + 1. In line 15, the solutions from 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 are included in 𝑝𝑜𝑝’ (only non-repeated 

solutions), and in the next line the local population is reset. By doing so, each solution 𝑝𝑜𝑝(i) generates its 

own set of non-dominated solutions that are all included in 𝑝𝑜𝑝’. This is done to have more diversity on the 

search, still working with high quality solutions (a non-dominated set of solutions). 

 

Algorithm 4: Pre-IntensificationVND(pop) 

1 𝑝𝑜𝑝′ ← ∅;  
2 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 ← ∅;  

3 for i = 1 to 𝑛𝑝𝑜𝑝        
4  s ← 𝑝𝑜𝑝(i);       
5  𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝(1) ← 𝑠;     

6  k ← 1;         
7  while k ≤  K do        
8        Local_Search (s, 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝, k); 

9   if non-dominated solution found then 

10         k ← 1;         
11   else           
12    k ← k + 1;        
13   end           
14  end            
15      Add 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 to 𝑝𝑜𝑝’ 
16      𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 ← ∅; 
17 end 

18 Return 𝑝𝑜𝑝′; 
 

The ‘Intensification VND’ used in line 13 of Algorithm 1 works similarly to Algorithm 4, with the 

following differences: 𝑝𝑜𝑝 passed as input is Offspring Rank1 (from line 12, Algorthm 1); there are no lines 

1 and 5; in line 2 we have 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝 ← 𝑝𝑜𝑝; we do not have lines 15 and 16, meaning there is no reset of the 

local population, aiming to increase the intensification; and the function returns 𝑙𝑜𝑐𝑎𝑙𝑃𝑜𝑝. The ‘Post-

Intensification VND’ used in line 19 of Algorithm 1 is the same of ‘Intensification VND’ with differences 

described in Table 1. The VND-MILS used in line 10, Algorithm 2, works according to Algorithm 4 but with 

𝑛𝑝𝑜𝑝 = 1, because it receives a single solution and still returns a local set of non-dominated solutions. Other 

differences among the four VND strategies are summarized in Table 1, showing the input of the VND and its 

sequence of local searches.  

 

 

 

 



 

 

 

Table 1: VND functions 

VND Type Input Local Searches 

Pre-Intensification Offspring population (Offspring) 
2-opt, Reallocation Chain, Interchange, 

Reallocation 

Intensification 
Non-dominated solutions of the 

Offspring (Offspring Rank 1) 

2-opt, Intra Exchange, Interchange, 

Reallocation, 2-opt* 

Post-Intensification Pareto-front (Best Pop) 2-opt, Reallocation, 2-opt* 

VND-MILS Single solution 
2-opt, Reallocation Chain, Intra Exchange, 

Interchange, Reallocation, 2-opt* 

 

Algorithm 5 presents the pseudo-code for the main structure of the local search “Interchange” in the 

context of the multiobjective and stochastic VRPTW.  The general idea is to interchange customers from two 

different routes in order to find new non-dominated solutions. In this algorithm, “𝑆𝐿” stands for the service 

level of the customers. 

Algorithm 5: Main structure of the local search "Interchange" 

1 for each route r1                    
2  for each route r2 (r2 different from r1)           
3   if r1 and r2 are not tabu               
4    for each customer in r1               
5     for each customer in r2             
6      if within circular zone              
7       if capacity constraint holds           
8        if move is not tabu           
9         if deterministic time windows holds      

10          Compute SL for the customers in the modified r1 

11          if penalty for the SL has not increased    
12           Compute SL for the customers in the modified r2 

13           if penalty for the SL has not increased   
14            Evaluate Objectives        
15            if Better = true          
16             bestSol←newSol        
17            end             
18            Update local population       
19           end              
20         … end(s)              
21 end                        

 

The loops starting in lines 1- 2 and 4 - 5 explore different customers and different routes to perform 

the moves. In line 3, only pairs of routes classified as “not tabu” are explored. In this context, the word “tabu” 

means “forbidden”, and that pair of routes is not considered eligible. The first time in the whole algorithm a 

pair of routes is explored by the local search, if it does not lead to non-dominated solutions, the pair of routes 

is classified as “tabu”. In line 6, only moves involving customers within a given circular zone are eligible. 

Line 8, the idea of “tabu moves” is analog to the idea of “tabu routes”, in which if an interchange move is 

tested and it does not lead to a non-dominated solution, this move is declared “tabu”. Line 9 performs the time 

windows feasibility test using a deterministic approach. Lines 10 and 12 compute the service level of the 



 

 

 

customers in the new routes. Lines 14-18 work according to Algorithm 3. The conditional clauses in lines 3, 

6,7,8,9 and 11 aim to prevent additional computation of the service level of the customers for the new routes. 

Note that while in principle it may be possible that the deterministic time windows feasibility test performed 

in line 9 could reject a feasible solution, preliminary experiments showed this happens rarely and only for 

small values of the required service level (≤ 50%) which is not the case for the experiments described in the 

next sections. This is supported by the fact that the mean of the service start time is greater than the 

deterministic start time because in the stochastic formulation, the truncation point at the start of the time 

windows shifts the mean to right, which doesn’t happen in the deterministic formulation 

In order to quickly check whether a route is tabu or not, we created an indexation mechanism to give 

a unique number to pairs of routes (in the case of local searches in which the moves involves two routes) 

according to equation (17). Let 𝑏𝑖  be an array with the deterministic service start time of the customer 𝑖 for 

𝑖 = 1, … , 𝑁 customers. Let 𝑟1 be an array with a sequence of 𝑛𝑐1 customers visited by the vehicle where 𝑘 =

1, … , 𝑛𝑐1; and another array for the route 𝑟2 with 𝑛𝑐2 customers with 𝑘 = 1, … , 𝑛𝑐2. 𝑆𝐿 is an array of length 

𝑁 with the service level of the customers. The indexation is used in a boolean array 𝑇𝑅 𝑖𝑑𝑥𝑅. If 𝑇𝑅 𝑖𝑑𝑥𝑅 =

𝑡𝑟𝑢𝑒, the pair of routes is considered tabu.  

 

𝑖𝑑𝑥𝑅 = ‖(∑ 𝑏𝑟1𝑘

𝑛𝑐1

𝑘=1

+ ∑ 𝑏𝑟2𝑘

𝑛𝑐2

𝑘=1

) ∗ 1000‖ + ‖∑ 𝑆𝐿𝑟2𝑘

𝑛𝑐2

𝑘=1

‖ + 𝑟11 (17) 

 

In a similar way, in order to index also the moves, we used Equation (18) where Δ1 is the variation of 

the total travel time for the route 𝑟1 when the customer 𝑢2 from route 𝑟1 is inserted in 𝑟2 replacing 

customer 𝑢1.  Δ2 is analog for route 𝑟2.  

 

𝑖𝑑𝑥𝑀𝑜𝑣 = 𝑖𝑑𝑥𝑅 + ‖(Δ1 + Δ2) ∗ 100‖ + ‖(b𝑢1 + b𝑢2) ∗ 100‖ (18) 

 

This index is used in a boolean array 𝑇𝑀 𝑖𝑑𝑥𝑀𝑜𝑣 . If 𝑇𝑀 𝑖𝑑𝑥𝑀𝑜𝑣 = 𝑡𝑟𝑢𝑒, the move is tabu.  This 

indexation equations were created through preliminary experiments in order to minimize the probability of 

declaring tabu a pair of routes/moves that was never explored previously. The effectiveness of such strategy 

is shown in the experiments of the next section. 

The circular zone used in line 6 of Algorithm 5 defines a maximum mean travel time (𝑇𝑇𝑚𝑎𝑥) to 

evaluate moves. The insertion of customer 𝑖 between customers 𝑖 − 1 and 𝑖 + 1 is only considered eligible if 

𝑇𝑇𝑖−1,𝑖 ≤ 𝑇𝑇𝑚𝑎𝑥 and 𝑇𝑇𝑖,𝑖+1 ≤ 𝑇𝑇𝑚𝑎𝑥. The utilization of the circular zone, tabu route/moves and the 

deterministic time windows test aims to reduce computational time and the effectiveness of these strategies is 

discussed in the next subsection. 

The selection strategy used in the algorithms 1 and 2 is the Stochastic Universal Sampling (SUS), 

introduced by Baker (1987). It exhibits no bias and minimal spread, and it as an alternative for the well-known 



 

 

 

roulette wheel selection. The crossover operator developed in this work (used in both MMA and MILS) 

receives an array with the index of the solutions in the population selected by SUS. The function picks two 

solutions (𝑠1 and 𝑠2) and combines them to generate a new solution (𝑠’).  It is common in the literature having 

crossover operators that copy routes from both parents, but our operator has a step to reduce the number of 

conflicts (common customers) while selecting the routes from both parents. 

 

 Parent 1 (𝑠1)  Child (𝑠’)  Parent 2 (𝑠2) 
Route 1 1 14 9 4  10 11 12 13  10 11 12 13 
Route 2 5 6 7 8  5 6 7 8  14 15 7 8 
Route 3 10 11 12 13  1 2 9   3 4 5 6 
Route 4 3 2 15   3     1 2 9  

Figure 4: Crossover Operator 

 

The following steps describe the crossover and are applied to the example in Figure 4. 

1) For each route in 𝑠1, calculate the number of routes in 𝑠2 with any customer in common and generate 

a matrix (𝐿1)  sorted in ascending order, storing in one row the number of common customers and in 

another row the index of the route. Repeat the same for 𝑠2 in comparison with 𝑠1 generating 𝐿2. In 

the example of Figure 4:  

L1 

# 1 2 3 3 

route 𝑟3 𝑟2 𝑟1 𝑟4 
 

L2 

# 1 2 3 3 

route 𝑟1 𝑟4 𝑟2 𝑟3 
 

 

2) Initialize 𝑠’ with the first route in 𝐿2, In the example, it is 𝑟1. 

3) In 𝐿1, select the first route from 𝑠1 in which its first customer is not in 𝑠’. Copy the route to 𝑠’, from 

index 1 to index 𝑝, where 𝑝 + 1 is the index with the first customer already routed in 𝑠’. In the 

example, the preference is for 𝑟3 but its first customer is already in 𝑠’, then it is 𝑟2, the whole route 

in this case. 

4) In 𝐿2, select the first route from 𝑠2 in which its first customer is not in 𝑠’. Copy the route to 𝑠’, from 

index 1 to index 𝑝, where 𝑝 + 1 is the index with the first customer already routed in 𝑠’. In the 

example, it is 𝑟4, the whole route. 

5) Repeat steps 3 to 4 until one of them is depleted. In the example, repeating step 3 returns 𝑟4 until 

index 𝑝 = 1, because 𝑝 + 1 is a customer already inserted in 𝑠’. Then, 𝐿1 is depleted and step 5 is 

finished. 

6) If there are customers still not inserted in 𝑠’, apply a constructive heuristic to complete 𝑠’. We choose 

a modified version of the algorithm used to generate the initial solutions. In the example, the new 

solution 𝑠’ inherited 12 out of 15 customers, with information of sequence and direction. 

 



 

 

 

5.4– Notes on the features of the local search schemes 

In this section, we emphasize the main features that make the proposed algorithms unique when 

compared with others from the literature. One point is related to the way the local searches are guided. 

Evolutionary algorithms such as Castro et al. (2011) and Chiang and Hsu (2014) have neighborhood structures 

that are used as mutation operators not considering the objective function, usually moving to the first feasible 

solution found, receiving one solution and returning one modified solution. Assis et al. (2013) suggest the 

adoption of many distinct specialized neighborhoods for each addressed single objective, and the local 

searches accept the first solution that improves the single objective of the respective local search. In Baños et 

al. (2013), if the new solution is not dominated by the parents, it is accepted, otherwise the solution is accepted 

or not according to the criterion of Metropolis in a simulated annealing context.  

Qi et al. (2015) force single-objective sub-problems, so the local search is guided as in any typical 

single-objective approach. Sivaramkumar et al. (2015) normalize the objectives and work with the averages 

to have single-objective problems, therefore there are no additional challenges while guiding the local search. 

In Lima et al. (2017), the incumbent frontier set is passed as an input to the local search phase so that the 

dominance checking can be done along the search inside the neighborhood structure and the local search is 

performed separately for each objective one at a time.  

Differently from those studies, in the current paper, the developed local searches receive one solution 

and return a local set of non-dominated solutions. In addition to that, the local search accepts the move if the 

new solution dominates the original solution or if the percentage improvement in one objective is higher than 

the percentage deterioration in the other objective. Note that this criterion works with the objectives 

simultaneously, prevents an undesirable zigzag phenomenon and ensures a certain level of quality for the 

current solution guiding the local search. 

Another point is related to the way the local searches are embedded in the framework of the meta-

heuristic. Assis et al. (2013) and Lima et al. (2017) count on one VND in their algorithms, but differently, in 

our proposed MMA we have two sets, working in two phases: pre-intensification and intensification 

(Algorithm 4). In the first, each solution in ‘Offspring’ is explored by local searches in a way that each solution 

generates its own local set of non-dominated solutions, that are then merged to form a new ‘Offspring’ 

comprised of a diverse set of high quality solutions. After that, in preparation for the second VND, these 

solutions are ranked and the non-dominated solutions form the ‘Offspring rank 1’ that is passed as input for 

the second VND. Each solution in ‘Offspring rank 1’ is explored by a set of local searches, but differently 

from the first VND, the local population is initialized with ‘Offspring rank 1’ and it is not reinitialized while 

interacting over each solution of ‘Offspring rank 1’. This strategy favors diversification in the first VND and 

intensification in the second VND.  

 

 



 

 

 

5.5– Multiobjective Evolutionary Algorithm (MOEA) 

For comparison purposes, we also implement the Multiobjective Evolutionary Algorithm (MOEA) 

proposed by Garcia-Najera and Bullinaria (2011) to solve a multi-objective VRPTW. The algorithm 

comprises a typical evolutionary framework enhanced by a diversification mechanism based on a similarity 

measure that has outperformed the popular NSGAII. The main loop is presented in Algorithm 6. 

 

Algorithm 6: MOEA  

1 Initialize parameters for the VRPTW instance         
2 While 𝑔𝑒𝑛 ≤ 𝑛𝑢𝑚𝐺𝑒𝑛  

3  if (𝑔𝑒𝑛 = 1) then                  
4   Generate popSize initial solutions and return Offspring 

5  else                     
6   Apply selection using modified tournament   
7   for 𝑖 = 1: 𝑛𝐶ℎ𝑖                
8    Apply crossover and add child to Offspring  
9   end                    

10  end                     
11  Offspring' ← Mutation(Offspring)        
12  Combine Offspring and  Pop         
13  Cut-off of the population Pop       
14  Compute rank and similarity 

15       𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1               
16 end         

 

In Algorithm 6, line 4, the MOEA starts with a set of popSize solutions, each being a randomly 

generated feasible route. The parent selection (line 6) consists in a modified 2-tournament method, where the 

first of two parents is chosen on the basis of rank, and the second on the basis of a similarity measure based 

on Jaccard’s similarity coefficient, aiming to maintain population diversity. Regarding the crossover operator 

(line 8), a random number of routes are chosen from the first parent and copied into the offspring, then all 

those routes from the second parent which are not in conflict with customers already copied from the first, are 

copied into the offspring.  There are three mutation operators: ‘Reallocation’ which takes a number of 

customers from a given route and allocates them to another, ‘Exchange’ which swaps sequences of customers 

between two routes, and ‘Reposition’ which selects one customer from a specific route to reinsert it into the 

same route. In line 12 both populations are combined, and in line 13, when the population size is exceeded in 

the last selected front, similarity is computed for the solutions in that front, and the least similar are chosen. 

Finally, line 13 updates the rank and similarity, and line 14 increments the generation counter. 

We implement two versions, both using the same operators from Garcia-Najera and Bullinaria (2011) 

adapted to our problem formulation. The first version (MOEA) works exactly as described in Algorithm 6 

(original form), and in the second version (MOEA-VND) we add a VND loop between lines 11 and 12, using 

the configuration “Pre-Intensification” in Table 1, Section 5.3. The purpose of the second version is to evaluate 



 

 

 

whether the inclusion of local searches is able to boost the algorithm’s performance, which we believe is a 

relevant discussion in terms of algorithm design. 

6 – Experiments and Results 

This section is divided into four sub-sections with different experiments. Section 6.1 shows the 

influence of different parameters of the statistical method used to compute the service level. Section 6.2 aims 

to validate the statistical method by comparing it with a benchmark (method proposed by Zhang et al., 2013). 

Section 6.3 presents results for some specific features of the optimization algorithms (MMA and MILS), and 

finally, in section 6.4 we have the application of the algorithms to all Solomon instances.   

Regarding the instances for Sections 6.1 and 6.2, all 56 well known Solomon’s benchmark problems 

with 100 customers were adapted to generate instances with different probabilities of waiting time (from 0 to 

100%). Approximately 160 routes were generated for each instance, using the construction heuristic I1 from 

Solomon (1987), resulting in a database formed by 9037 routes with 3 to 55 customers. For each of the total 

number of 101701 customers, we calculated  𝑃(𝐴𝑇𝑖 ≤ 𝑙𝑖) and 𝑃(𝐴𝑇𝑖 ≤ 𝑒𝑖), i.e., the service level and the 

waiting time probability, respectively. We then compute the error of the 203402 calculations as the absolute 

difference between the computed value and the true value approximated by simulation (Li et al., 2010), using 

100000 iterations.  

All instances used in the experiments (from Section 6.1 to 6.4) have the same features of the original 

instances of Solomon, such as vehicle capacity, customer location, time windows and service time. Only a 

standard deviation for the travel time and service time is added, as explained next.  

Let 𝑑𝑖𝑠(𝑖, 𝑗) be the distance between two customers in the original instance, the travel time is a normal 

distribution left truncated at zero with average  𝐸[𝑇𝑇𝑖,𝑗] = 𝑑𝑖𝑠(𝑖, 𝑗) and standard deviation 𝑑𝑒𝑣[𝑇𝑇𝑖,𝑗] 

generated by 𝑈[0.1; 0.6] ∗ 𝑑𝑖𝑠(𝑖, 𝑗) where 𝑈 is a uniform distribution.  The service time is also a normal 

distribution left truncated at zero with average 𝐸[𝑆𝑇𝑖] = 𝑠𝑖 where  𝑠𝑖 is the deterministic service time of the 

original instance, and standard deviation 𝑑𝑒𝑣[𝑆𝑇𝑖]  = 𝑈[0.1; 0.6] ∗ 𝐸[𝑆𝑇𝑖]. As a reference, the 

range 𝑈[0.1; 0.6] is larger than used by Zhang et al. (2013) which was 𝑈[0.2; 0.6]. A second reference is Li 

et al. (2010) with a proportion that varies from 0.07 to 0.2 the value of the mean. In Ehmke et al. (2015), the 

variation of the travel time is randomly generated uniformly between 0.1 and 0.3. For practical applications, 

in case service and travel times are Gaussian, we believe it is very unlikely to find a variation outside the 

range used in this paper.  

All algorithms were coded in Matlab R2015a, and tested in a computer dual core Intel i7 2.6 GHz 

with 16GB RAM, running Windows 10 Pro. 

Sections 6.3 and 6.4 report the hypervolume indicator used in Emmerich et al. (2005). Preliminary 

tests executed Algorithm 1 a number of times in order to have reference points for the max and min values 

for each objective and for each instance. A normalization is performed on non-dominated solutions for each 

instance by using 𝑣𝑎𝑙𝑚
𝑛𝑒𝑤 = (𝑣𝑎𝑙𝑚 − 𝑚𝑖𝑛𝑚

𝑖 ) ∗ 100 (𝑚𝑎𝑥𝑚
𝑖 − 𝑚𝑖𝑛𝑚

𝑖 )⁄  where 𝑚 is the index for the objective 



 

 

 

and 𝑖 is the index for the instance. The reference point is set as (2000, 2000) and the hypervolume is divided 

by 400 just for better readability.  

6.1 – Parameters discussion for the method to compute the service level 

The method has three main parameters: 𝑛𝑖𝑛𝑡 (number of intervals in the discretized cumulative 

function), 𝐼 (number of intervals to solve the convolution) and 𝑆 (number of standard deviations), all 

mentioned in Section 4, where 𝐼 is used in equation 12, 𝑛𝑖𝑛𝑡 in the matrix 𝑚𝑝𝑟𝑜𝑏𝑖 and 𝑆 to calculate bounds 

over which we integrate in Equation 12.  For this experiment, values (10,15,20,25,30,40,50) were used for 

𝑛𝑖𝑛𝑡 and 𝐼, and values (2.0,2.5,3.0,3.5,4.0,4.5,5.0) for 𝑆, totaling 7 ∗ 7 ∗ 7 =  343 scenarios. 

 

Figure 5: Running time and error for the 49 scenarios 

 

Figure 5 shows the relation between the error (95% percentile of the mean absolute error in percentage 

points) and the running time, with the ID of the tested scenarios on the x-axis. It helps to choose a convenient 

value for the parameters. Naturally, the choice depends on the context of the application and in this case, it 

was selected the scenario 203 with error of 0.93% and running time of 28 seconds, parameters 𝑛𝑖𝑛𝑡 = 20, 

𝐼 = 20 and 𝑆 = 3.5 that presented a good trade-off. Note that the service level computation in a given 

customer is used when evaluating a move in the local searches. Therefore, the faster the service level 

calculation, the faster the local search and consequently the metaheuristic.  

6.2– Validation of the method to compute the service level 

For this experiment, we set 𝑛𝑖𝑛𝑡 = 20, 𝐼 = 20, and 𝑆 = 3.5 based on the previous section. Table 2 

displays the results. The first three metrics give descriptive information for the error (absolute error in 

percentage points) in 203402 calculations performed: the mean of the error, the standard deviation of the error 

and the 95th percentile for the error. Metric 4 gives the computational time in seconds (average of 5 runs). The 

running time is the elapsed time to compute the probabilities for all customers in all routes. The third column 
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of the table has the results for the proposed method, the last two columns refer to the benchmark using two 

configurations for the discrete parameter 𝐿 (the main parameter of the benchmark method). 

Table 2: Results for the experiment with benchmark 

 N Metric Proposed L=10 L=20 

1 Mean Error (p.p.) 0.198 0.571 0.245 

2 Std.  Dev. Error (p.p.) 0.337 0.998 0.427 

3 95th Percentile (p.p.) 0.930 2.804 1.168 

4 Time (seconds)  27.14 109.43 231.75 

 

Table 2 shows that the proposed method obtained better results in all four metrics when compared 

with the benchmark using 𝐿 = 10. The computational time of the proposed method was 4 times faster. When 

compared with 𝐿 = 20, the proposed method had slightly better results for the error (metrics 1 to 3) and it 

was almost 9 times faster. In order to better illustrate the behavior of the error, the error distribution is 

presented in figures 6 and 7. 

 
        Figure 6: Relative frequencyof the error 

:  

 
      Figure 7: Cumulative distribution of the error 

 

Figure 6 shows that the frequency distribution has a positive skew with a long tail on the right. Errors 

close to zero have high relative frequency evidencing the quality of the results. Figure 7 gives the percentiles.  

6.3 –Strategies effectiveness of the algorithms 

In order to save computational time, strategies using circular zones and routes/moves tabu are adopted 

(used in local searches, for instance Algorithm 5, lines 3, 6 and 8). The effectiveness of these strategies is 

tested in this section.  

The circular zones used in the local searches (for example line 6 of Algorithm 5) define a maximum 

value 𝑇𝑇𝑚𝑎𝑥 for the travel time of the customers participating of a move in a local search. Considering the 

travel times among all customers in the travel time matrix 𝑁𝑥𝑁 (where 𝑁 is the number of customers and 

each element is 𝐸[𝑇𝑇𝑖,𝑗]), we study the influence of different limit values using percentiles of 20, 30, 40, 50 
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and 60%, e.g. 𝑇𝑇𝑚𝑎𝑥 for 60th percentile means 60% of the arcs of the travel time matrix are smaller than 

𝑇𝑇𝑚𝑎𝑥.  

Figure 8 shows the influence of different percentiles used to obtain 𝑇𝑇𝑚𝑎𝑥 in the computational time 

and hypervolume of the Pareto front returned by the algorithm. The result from 60th percentile is used as a 

reference for the other values, dividing the hypervolume obtained with a certain percentile by the hypervolume 

obtained with 60th percentile. Analog for the running time. The results are expressed as the mean of the running 

time and hypervolume for five runs of six Solomon instances, the first of each one of the six classes: C101, 

C201, R101, R201, RC101 and RC201.  

 

 

Figure 8: Influence of the circular zone 

 

Figure 8 demonstrates that the lower the percentile, the lower the computational time and the lower 

the hypervolume. For instance, the computational time for the 20th percentile is 0.407 times (40.7%) the 

running time of 60th percentile, while the hypervolume for the 20th percentile is 0.993 (99.3%) the 

hypervolume of 60th percentile. It is relevant to observe that the reduction of the running time is much bigger 

than the reduction of the hypervolume. Therefore, depending on the context of the application, if a small 

deterioration of the hypervolume is admissible, then it is possible to reduce substantially the computational 

time with the utilization of the circular zone. 

The strategy involving the routes/moves tabu (for example lines 3 and 8 of Algorithm 5) is also tested. 

Regarding its influence in the hypervolume, hypothesis tests showed no statistical differences for the variance 

(Levene’s test) and for the mean (ANOVA), with 95% confidence level. Analog tests also showed no 

statistical difference for the average number of vehicles in the solutions. Figure 9 shows the influence of the 

routes/moves tabu in the computational time for the same six instances. There are two cases: one using the 

tabu strategy only for the routes (1𝑇) and another using the strategy for routes and also for moves (2𝑇). The 

result with no utilization of any tabu strategy is used as reference: 𝑡𝑖𝑚𝑒% = 

𝑡𝑖𝑚𝑒(𝑡𝑎𝑏𝑢 𝑐𝑎𝑠𝑒) 𝑡𝑖𝑚𝑒(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑎𝑏𝑢)⁄ . We also present the average number of vehicles in the solutions.  
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Figure 9 : Influence of the tabu strategy 

Figure 9 shows a significant reduction of the computational time for all instances. It can also be seen 

that the utilization of 2𝑇 outperforms 1𝑇.  For example, in the instance C101, there is a reduction of 

approximately 30% of the time by using 1𝑇, and with the utilization of 2𝑇, this reduction improved to 40%. 

The savings strongly depend on the problem instance. The lower the number of vehicles, the lower the savings 

with the tabu strategy. For instance, with few vehicles, the routes have more customers and consequently 

much more possible moves in the local search, therefore, the higher the odds of finding a move that will lead 

to a non-dominated solution and consequently it won’t be declared tabu, reducing the savings.  

6.4 – Results for the multi-objective algorithms 

Because there is no benchmark in the literature approaching the same problem studied here, we 

decided to implement the MOEA from Garcia-Najera and Bullinaria (2011) using their operators but adapted 

to our problem formulation described in section 3.2. In addition to that, we decided to run an extended 

experiment with very long runtime (that could be considered prohibitive in real applications) to have a better 

idea of results that could potentially be found. By doing this, we run experiments to evaluate the performance 

of the three developed algorithms: MMA, MILS and MOEA-VND. 

For this test, we used the 56 instances of Solomon (1987). As mentioned in the introduction of Section 

6, for the instances used in this experiment, the standard deviation (𝑑𝑒𝑣[𝑇𝑇𝑖,𝑗]) to travel from customer 𝑖 to 𝑗 

was generated by 𝑈[0.1; 0.6] ∗ 𝑑𝑖𝑠(𝑖, 𝑗) where 𝑈 is a uniform distribution and 𝑑𝑖𝑠(𝑖, 𝑗) is the original distance, 

here used as the mean of the travel time.  Analog for the service time. The instances can be downloaded from 

the journal website or requested from the corresponding author. 

A number of preliminary experiments were performed to find a suitable configuration for all 

algorithms, involving different configurations for the VND (for example using a random or deterministic 

sequence of neighborhoods), exit criteria, dynamic adjustments of parameters and others. In these 

experiments, the best configuration for the parameters was selected such that execution time is approximately 

the same. 

Parameters used for the MMA algorithm: As exit criterion, the main loop of Algorithm 1 is executed 

while the sum of the hypervolume improvement percentage of the last three generations is greater than 0.5%; 
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the percentile used for the circular zone is 30%; the number of initial solutions is 15; the number of solutions 

generated in the crossover is 10;  both tabu strategies are used (for routes and moves); the cut-off of the 

population is made for each generation and solutions with rank 3 or above are eliminated;  

Parameters used for MILS (algorithm 2): 𝑚𝑎𝑥𝑃𝑒𝑟𝑡 = 10, 𝑚𝑎𝑥𝐼𝑡 = 200. The percentile for the 

circular zone is dynamically adjusted. After two consecutive perturbations with no improvement, the 

percentile used is increased in 10%, with maximum value of 60%. When there is an improvement, it is 

reinitialized with 30%. This dynamic adjustment allows the algorithm to test more possibilities when it is 

stuck in the current best solution. MILS use one type of VND (Table 1) and not three like MMA. The other 

parameters are the same as used for MMA. For each one of the 56 instances, we perform 10 runs. 

Parameters used for MOEA (Algorithm 6): 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 =  50 and 𝑛𝑢𝑚𝐺𝑒𝑛 =  500. For the MOEA-

VND: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 =  40 and 𝑛𝑢𝑚𝐺𝑒𝑛 =  400. For all algorithms, the fixed the cost of the vehicle in the 

objective function of equation (1) to 𝑓 = 1000; the variable cost for the travel time in the objective function 

of equation (1) is 𝑐 = 1 and the minimum required service level for each customer is  70%. 

In the extended experiments, we used a more aggressive configuration aiming for quality (higher 

hypervolumes) and not running time. For the MMA: Circular zone with 60th percentile and the main loop of 

algorithm 1 executed while the sum of the hypervolume improvement percentage of the last five generations 

is greater than 0% (exit criterion). For MILS: 𝑚𝑎𝑥𝑃𝑒𝑟𝑡 = 30, 𝑚𝑎𝑥𝐼𝑡 = 1000. For MOEA:  𝑝𝑜𝑝𝑆𝑖𝑧𝑒 =  50 

and 𝑛𝑢𝑚𝐺𝑒𝑛 =  2000. For the MOEA-VND: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 =  40 and 𝑛𝑢𝑚𝐺𝑒𝑛 =  1600. As a benchmark we 

considered the best result among 10 runs of the extended experiment of all algorithms (column “benchmark”, 

Table 3).   

Table 3 summarizes the results presenting the overall hypervolume gap among the 10 runs of the 56 

instances, where 𝑔𝑎𝑝(%) = (𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 − 𝑀𝑒𝑎𝑛) 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⁄ ) ∗ 100  and the mean of the 

computational time in seconds. Figure 10 presents the gaps for each one of the six classes of Solomon 

instances. We see in Table 3 that MMA presents the best gap among the four algorithms, followed MOEA-

VND, while MILS and MOEA have very similar gaps. When we split the results per class, in Figure 10, we 

see the same behavior from Table 3, with MOEA and MILS presenting very similar gaps. 

 

Table 3: summary of results 

Alg. MMA MILS MOEA MOEA-VND 

gap 0.396% 1.253% 1.249% 0.915% 

seconds 319.54 316.71 321.69 335.41 

 



 

 

 

 
Figure 10: Gaps for Solomon classes 

 

We complement this analysis checking whether there is statistical difference for the mean of the 

hypervolume among the four heuristics. Because normality tests rejected the hypothesis of normal distribution 

for the difference of some pairs of heuristics, we apply Wilcoxon signed rank test for a pairwise comparison, 

testing for no difference in the null hypothesis, with 95% confidence level (𝛼 = 0.05). The results for this 

analysis are shown in Table 4 and Figure 11. 

Table 4: Statistical Analysis- Wilcoxon pairwise comparison 
 

Mean 

difference (%) 

Median 

difference (%) 

p-

value 

MMA vs MILS 0.83% 0.86% 0.000 

MMA vs MOEA 0.84% 0.75% 0.000 

MMA vs MOEA-VND 0.50% 0.51% 0.000 

MILS vs MOEA 0.01% -0.11% 0.688 

MILS vs MOEA-VND -0.33% -0.35% 0.000 

MOEA vs MOEA-VND -0.34% -0.24% 0.000 

 

 

Figure 11: 95% Confidence Interval for the mean difference 

We see in Table 4 that there is enough evidence to reject the null hypothesis in all scenarios but MILS 

vs MOEA, a fact reinforced by Figure 11 with zero within the confidence interval. We also see that there is 

evidence supporting that MMA outperforms the other three algorithms, which indicates that the proposed 

strategy to guide the local searches worked properly. While there is no difference between MILS and MOEA, 
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they both are outperformed by MOEA-VND, therefore we can argue that the inclusion of the VND in the 

main loop of MOEA was successful, working as an intensification mechanism. We also see that MILS is 

outperformed by MMA. Considering the main difference between these two algorithms is the VND 

configuration, where MILS has one type and MMA has two types working together (pre-intensification and 

intensification), we believe it helps to find more diverse solutions and improve the hypervolume. 

For a multi comparison study (Derrac et al.,2011) we apply Friedman test. Table 5 shows the 

Friedman ranks and Table 6 the unadjusted and adjusted p-values. This study reinforces the results of the 

pairwise study. We see that MMA presented the best median for the hypervolume (the higher the hypervolume 

the better) and also the best rank (the lower the rank the better). In Table 6, MMA is the control algorithm, 

confirming that the proposed algorithm indeed outperforms the other 3 algorithms. We used Bonferroni-Dunn 

as a post-hoc method to adjust the p-value and although this method has less power than others, it was enough 

to detect difference among the algorithms. 

Table 5: Friedman test - Ranks 

Algorithm 

Median 

(Hypervolume) Average Rank 

MILS 10079 3.05 

MMA 10166 1.66 

MOEA 10075 2.91 

MOEA2 10102 2.38 

 

Table 6: P-values for the Friedman test (MMA is 

the control algorithm) 

Algorithm 
Unadjusted 

p-value 

Adjusted p-value 

(Bonferroni-Dunn) 

MILS 0.0000 0.0000 

MOEA 0.0000 0.0000 

MOEA2 0.0034 0.0102 

 

Figure 12 shows the mean of the computational time for the six classes of instances for MMA. It is 

seen that the classes R2, C2 and RC2 take much longer than the others. These classes have bigger capacity of 

the vehicles and a larger range for the time windows, consequently a higher number of eligible and feasible 

moves and a higher number of service level computations. 

One reason for generating a Pareto front is to give to the decision maker different solutions with a 

significant range of values for the objectives. Figure 13 shows the average range for each class, for each of 

the two objectives (service level and operational cost), using MMA. The class C1 obtained the largest range 

for both objectives, offering to the decision maker solutions with a range up to 5 percentage points for the 

service level and approximately 4000 units for the cost. The classes RC2 and R2 obtained tighter ranges for 

the service level and costs. 

 



 

 

 

 
 

             Figure 12: Computational time 

 

Figure 13: Objectives range 

:  

Figure 14 presents the Pareto front for 9 instances: C101 (a), C201 (b), C205 (c), R103 (d),  R202 (e), 

R206 (f), RC105 (g), RC205 (h) and RC208 (i). We selected Pareto fronts from instances with different 

features to give the reader an idea of the types of fronts obtained, in this case from the run with the closest 

hypervolume to the mean of the respective instance, using MMA. The horizontal axes is the operational cost 

(divided by 1000) and the vertical axes is the service level (multiplied by -1 so both objectives are minimized).  

Figure 14: Pareto front for 9 instances 

  

In Figure 14, the Pareto fronts have a discontinuity in the operational cost caused mainly by the 

number of vehicles. Solutions with the same number of vehicles have a smaller difference in the costs due to 

the travel time.  Generally speaking, it can be observed that the algorithm returns numerous and diverse non-

dominated solutions for the decision maker. Some Pareto fronts such as C101 (Figure 14a) have a bigger 

range for both objectives, offering solutions with significant differences for the operational cost and service 
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level. Other Pareto fronts such as R206 (Figure 14f) present a small range for both objectives. It happened 

mostly in the class of instances type 2 (C2, R2 and RC2) characterized by a larger range of the time windows 

when compared with other instances. For instances with large time windows, the service level does not 

represent a big challenge. 

7 – Concluding Remarks and Further Research 

We introduced a new practical variant of the VRP, the multiobjective vehicle routing problem with 

hard time windows and stochastic travel and service times, in which the objectives are the minimization of 

the transportation cost and the maximization of the service level at customers.  

We have interesting findings from the experiments. First, modelling the problem with multi-objective 

optimization provided indeed a significant range of solutions helping the decision maker to analyze trade-offs 

between costs and service levels. We also have found that the Pareto-fronts present a broader range of values 

for both objectives in classes of problems in which the presence of time windows is more significant, 

especially cases with a tight range for the time windows. Problems with a large range for the time windows 

tend to present higher service levels, therefore the range of options in the Pareto-front is reduced. 

In this paper, the travel time and the service time are modelled as truncated non-negative normal 

distributions. The results show that the method developed to calculate the service levels obtained small errors, 

dealing properly with the challenge of having waiting times propagating along the route, affecting the arrival 

time distribution.  Because service level computation is performed in the objective function evaluation, it it 

has a big impact on computational time. We studied suitable parameters for the statistical method in order to 

balance time and error. We also incorporated strategies such as circular zones and route/moves tabu to speed 

up optimization. We found these approaches useful, improving significantly the computation time with a tiny 

deterioration of the hypervolume.  

Finally, through a statistical analysis, we found that the proposed memetic algorithm (MMA) 

presented better results than the other algorithms. That is an evidence that the innovative features of our 

memetic algorithm design, such as different VND configurations and local searches returning a set of non-

dominated solutions are useful. Future research might focus on the utilization of other probability distributions 

for the travel time, resolution of time-dependent variants, and larger instances. 
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