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Abstract

Fuzzy rule-based systems are e�ective tools for acquiring knowledge from
data and represent it in a linguistically interpretable form. To achieve in-
terpretability, input features are granulated in fuzzy partitions. A critical
design decision is the selection of the granularity level for each input fea-
ture. This paper presents an approach, called DC* (Double Clustering with
A*), for automatically designing interpretable fuzzy partitions with optimal
granularity. DC* is speci�c for classi�cation problems and is mainly based
on a two-stage process: the �rst stage identi�es clusters of multidimensional
samples in order to derive class-labeled prototypes; in the second stage the
one-dimensional projections of such prototypes are further clustered along
each dimension simultaneously, thus minimizing the number of clusters for
each feature. Moreover, the resulting one-dimensional clusters provide in-
formation to de�ne fuzzy partitions that satisfy a number of interpretability
constraints and exhibit variable granularity levels. The fuzzy sets in each
partition can be labeled by meaningful linguistic terms and used to represent
knowledge in a natural language form. Experimental results on both synt-
hetic and real data show that the derived fuzzy partitions can be exploited
to de�ne very compact fuzzy rule-based systems that exhibit high linguistic
interpretability and good classi�cation accuracy.

Keywords: Clustering, A*, Interpretability, Fuzzy Partitions, Information
Granulation

∗Corresponding author.
Email addresses: ciro.castiello@uniba.it (Ciro Castiello),

annamaria.fanelli@uniba.it (Anna Maria Fanelli), marco.lucarelli@sitael.com
(Marco Lucarelli), corrado.mencar@uniba.it (Corrado Mencar)

Preprint submitted to Applied Soft Computing October 24, 2018

corrado
Typewriter
https://doi.org/10.1016/j.asoc.2018.10.040



1. Introduction

Information granulation is the process of forming meaningful entities,
called information granules, that exhibit functional and descriptive repre-
sentations of observational data, adhering to some level of abstraction [1].
Information granules are generally de�ned as agglomerates of data, arranged
together due to their similarity, functional adjacency, indistinguishability, co-
herence or alike. They are the building blocks for information abstraction,
since information granules highlight high-level properties and relationships
about an universe of discourse, whereas they hide useless low-level details
pertinent to single data. Once formed, information granules help to under-
stand hidden relationships among data.

Granular computing is a paradigm oriented towards representing and pro-
cessing information granules; it embraces a number of modeling frameworks
based on di�erent forms of representation, depending on the nature of data
as well as on the applicative domain [2, 3, 4, 5]. Fuzzy set theory is a con-
venient modeling framework for granular computing, leading to the so-called
Theory of Fuzzy Information Granulation (TFIG) [1]. The use of TFIG for
granulating data produces information granules that are de�ned as compo-
sitions of fuzzy sets. Fuzzy sets capture the perceptive character of concepts
as conceived by human beings; as a consequence, fuzzy information granules
can describe hidden relationships in a way close to mental representation of
concepts. This feature helps users to understand data through information
granules, especially if these are described in natural language.

Deriving fuzzy information granules from data and describing them in
natural language are not easy tasks. Fuzzy information granules are often
de�ned in terms of one-dimensional fuzzy sets de�ned on each input feature.
This involves the granulation of each feature into a fuzzy partition. The fuzzy
sets composing each fuzzy partition should accurately represent data in an
interpretable way, i.e. they should be shaped so as to be easily tagged with
linguistic terms. Also, the number of derived fuzzy sets should be as small
as possible since humans have limited ability to remember and to deal with
descriptions [6]. Interpretability and accuracy are con�icting requirements
(a trade-o� is often demanded) because the need to preserve interpretabi-
lity constrains the parameters of a model. This introduces a bias that in
most cases prevents the model from reaching the accuracy level which often
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characterizes unconstrained, not interpretable alternatives.
To reduce the bias, techniques for interpretability preservation should not

introduce constraints other than those strictly necessary for their own pur-
pose. One way to tackle this problem is to enable variable granularity in
fuzzy partitions, dealing with the shape and the number of the fuzzy sets in
every partition. Many techniques impose a �xed granularity level (e.g., by
using prede�ned fuzzy sets); on the other hand, interpretability can be also
preserved whenever information granules with variable granularity are allo-
wed. If the fuzzy sets conform to data, while preserving interpretability, then
the resulting information granules are more representative of the underlying
data thus enabling the realization of fuzzy models that are more accurate
but still readable.

In this paper we present DC* (Double Clustering with A*), a method
for generating interpretable fuzzy partitions with variable granularity. Each
fuzzy set of the partition is de�ned so as to conform to available data and,
at the same time, to satisfy a number of interpretability constraints. The
number of fuzzy sets for each partition is also optimized according to available
data, i.e. a minimal number of fuzzy sets is de�ned for each input feature,
thus enhancing readability. As an interesting e�ect, some features could be
granulated with a single fuzzy set: this enables their safe removal from the
linguistic description of the derived information granules. DC* requires only
one hyper-parameter to be imposed by the user, that is the upper bound for
the number of information granules to be derived from data.

DC* is an instance of DCf (Double Clustering f ramework), a framework
for generating interpretable information granules [7]. DCf is an abstract
framework that can be implemented in a number of ways to achieve di�e-
rent techniques for interpretable information granulation. DC* is speci�cally
designed for pre-classi�ed data and performs a two-step clustering process
to generate fuzzy partitions. First, DC* identi�es cluster prototypes in the
multidimensional data space via the LVQ1 algorithm, so as to exploit class
information and to �nd class-aware clusters. Then, it clusters the projections
of these prototypes along each dimension by a properly de�ned search proce-
dure based on A* [8]. The objective is to derive the minimal number of fuzzy
sets per feature, so that a compact and interpretable description of data can
be provided. The optimization process involves all the features simultane-
ously, thus con�guring a combinatorial search problem: A* is endowed with a
heuristic function to tackle this problem while attenuating the computational
burden. Also, di�erently from alternative techniques, the simultaneous gene-
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ration of fuzzy partitions allows to preserve the multi-dimensional relations
in the original data.

The fuzzy sets of each partition generated by DC* can be combined
to form fuzzy information granules, which can be directly translated into
human-comprehensible fuzzy rules to be used for classi�cation tasks. Expe-
rimental results highlight how the resulting classi�ers require very few rules
to perform accurate classi�cations which compare to alternative methods.
On the overall, DC* can be intended as a method for linguistic fuzzy mo-
deling, where interpretability is a primary requirement and class information
is exploited to generate fuzzy partitions with optimal granularity.

Some early works on DC* appear in literature [9, 10, 11], mainly pre-
senting some technical advances. In this paper we give a comprehensive
description of the method, including all the formal details and the most re-
cent advancements. Additionally, a complete experimentation of the method
is performed with a comparison with di�erent approaches.

The paper is organized as follows. In Section 2 we present some related
works concerning interpretable fuzzy information granulation. In Section 3
we introduce the Double Clustering framework and we describe DC* in detail.
In Section 4 we portray some experimental results to illustrate the e�ective-
ness of the proposed method. Conclusive remarks are drawn in Section 5.

2. Related work

The concept of interpretability in the context of knowledge-based systems
can be roughly intended as the similarity between a somehow compiled kno-
wledge base (usually resulting from an inductive learning process) and the
description provided by a human while observing the same entities analy-
zed during the automatic learning process [12]. In essence, interpretability
is a quality that puts humans at the center of intelligent processing. As
human observation mainly relies on perceptions instead of measurements,
fuzzy logic has been widely recognized as a suitable mathematical tool for
human-centric information processing [13, 14]. In this context, information
granulation plays a crucial role as it corresponds to a basic cognitive task
along with causation and organization of perceptions [1]. Nevertheless, in-
terpretability of information granules is not granted by the mere use of fuzzy
logic: information granulation processes must be endowed with the capabi-
lity of preserving interpretability while building up the information granules.
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This requires two modeling decisions: i) a computable de�nition of interpre-
tability, and ii) a suitable technique for interpretable information granulation.

De�ning interpretability is not a trivial task because it involves the iden-
ti�cation of properties pertaining to the human mind [15, 16]. Nevertheless,
several speculative works and psychological studies have been carried out,
which enable to partially de�ne interpretability along two main axes [17]. On
the structural axis, interpretability is mainly de�ned in terms of complexity
of the description of fuzzy information granules; on the semantic axis, inter-
pretability is seen as a degree of co-intension between the explicit semantics
of an information granule and the implicit semantics that takes form in the
human mind when the linguistic description of the information granule is
communicated to the user [18, 19]. In order to put things in operation, se-
veral aspects of interpretability are formally de�ned in terms of constraints
and criteria (either hard or soft) which can be included in learning processes
to preserve interpretability in both axes [17, 20, 21, 22].

Information granulation is usually a preliminary step for de�ning rule ba-
ses that describe some complex relationships among data. Many methods
for interpretable information granulation are essentially based on the struc-
tural facet of interpretability: they are aimed at generating fuzzy information
granules that accurately describe the underlying data and are characterized
by a simple description. This requires a trade-o� because the structural in-
terpretability constraints introduce a bias in the granulation process that
could a�ect its capability to derive an accurate description of data. For this
reason, many information granulation methods are based on evolutionary
computation with single or multiple objectives [23, 24, 25].

A simple yet common approach to generate interpretable fuzzy informa-
tion granules is to �x the fuzzy partition for each input feature. In this
way the problem of information granulation is simpli�ed into the selection
of the most suitable combination of fuzzy sets (one for each feature) that
de�ne each information granule [26]. The rigidness of this approach can be
attenuated �rst by learning fuzzy information granules that are well adapted
to data, then by modifying them in order to satisfy a number of interpre-
tability constraints (usually merging similar fuzzy sets on the same feature)
[27, 28, 29, 30]. As an alternative approach, interpretable fuzzy partitions
are generated �rst, then they are �ne-tuned so as to better represent the
underlying data [31, 32, 33]. This approach, however, often leads to fuzzy
partitions that do not satisfy many interpretability constraints.

In most cases, the number of fuzzy sets, as well as their initial granularity,
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is �xed for each input feature. This is a simplifying design hypothesis which,
however, may fail to capture the essence of data: features can be more or less
relevant when inducing knowledge from data; this requires di�erent levels of
granulation which, in the extreme case, could reduce a feature to a single
information granule (which implies the uselessness of that feature). In view
of maximizing the interpretability of the �nal model, the coarsest possible
granularity is desirable because this leads to a simpler representation of kno-
wledge. It is important, therefore, to �nd a granularity level for each input
feature that optimally balances simplicity with accuracy in describing the
underlying data.

Di�erent approaches have been applied to de�ne an appropriate granu-
lation level for each input feature. In some cases, fuzzy sets are de�ned by
a preliminary discretization of continuous attributes followed by a fuzzi�ca-
tion of the resulting partition [34]. An alternative is to cluster the values of
a single feature into a number of clusters that is determined by some vali-
dity index [35]. Also, features can be granulated in sequence by trying to
maximize accuracy [36].

All these approaches generate fuzzy partitions by taking into account one
feature at a time. This makes impossible to exploit multi-dimensional rela-
tionships among data in order to generate a fuzzy partition. A common
approach to capture multi-dimensional relationships is to cluster data in the
whole input space [37, 38, 39]. However, the resulting fuzzy sets are hard to
be described in linguistic terms because they usually violate several interpre-
tability constraints. To preserve interpretability without managing features
sequentially, genetic algorithms can be used to evolve fuzzy partitions si-
multaneously [40, 41, 42, 43]. However, genetic algorithms require several
hyper-parameters that must be set through several trial-and-error processes;
they involve also randomness of the search process that could be hard to
control, especially when the search space is very large.

As an alternative approach, a multi-objective, incremental, approach can
be applied to generate a family of interpretable fuzzy partitions, which are
o�ered to the user for a �nal choice that represents the best trade-o� between
interpretability and accuracy [44]. This approach, named Hierarchical Fuzzy
Partitioning (HFP), has been implemented in tools that are currently used
for designing interpretable fuzzy systems, like FisPro [45] or GUAJE [46, 47].

The method presented in this paper is di�erent from these approaches be-
cause it is capable of granulating all features simultaneously and, at the same
time, is based on an optimal procedure involving the A* search algorithm.
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3. Double Clustering with A* (DC*)

The proposed method for designing interpretable fuzzy partitions is an
instance of a general framework, the Double Clustering framework (DCf )
[7], which is de�ned by three main stages that operate sequentially on multi-
dimensional numerical data:

� Data compression. Multi-dimensional data are compressed in a re-
duced number of prototypes whose dimensions are the same as those
pertaining to the original data. The objective of this stage is to �nd
hidden relationships among data that can be expressed in terms of data
aggregations (see Section 3.1).

� One-dimensional clustering. The prototypes obtained in the �rst stage
are projected onto each dimension. Then, the prototype projections
are clustered along each dimension with the objective of de�ning the
structure and the granularity of the fuzzy partitions (see Section 3.2).

� Fuzzy granulation. Information coming from the previous stage is ex-
ploited to de�ne fuzzy partitions along each dimension. Eventually, the
fuzzy sets de�ned on each partition are combined to de�ne fuzzy infor-
mation granules that represent data abstractions denoted in a linguistic
form (see Section 3.3).

DC* is characterized by the ability of exploiting data class information for
automatically deriving the number of one-dimensional clusters along each
dimension. To this pursuit, data compression is performed by the LVQ1
algorithm [48], one-dimensional clustering is performed by a speci�c imple-
mentation of the A* algorithm [8] and fuzzy granulation is obtained by a
procedure aimed at compiling trapezoidal fuzzy sets that de�ne strong fuzzy
partitions. In the following subsections the three stages are described in
detail.

3.1. Data compression

Let

X = [m1,M1]× ...× [mn,Mn] ⊆ Rn (1)

be a n-dimensional Universe of Discourse,

C =
{
c1, c2, . . . , cnC

}
7



feature A

feature B

(a) Data samples.
feature A

feature B

(b) Derived prototypes.

Figure 1: The data compression stage applied on a dataset characterized by two features
and three di�erent classes. The �nal aggregation is expressed in terms of ten prototypes.

a �nite set of classes, D ⊂ X a �nite set of nD available data samples, and
cl : D 7→ C a classi�cation function that assigns a class label to each available
data sample.1

The data compression stage is aimed at de�ning a collection P ⊂ X of
nP � nD multidimensional prototypes � representing aggregate information
of the available samples � along with a classi�cation function cl : P 7→ C, so
that the class of most data samples surrounding a prototype is the same as
the prototype class. An illustration of such a compression of data is depicted
in Fig. 1.

A straightforward approach to produce the collection of prototypes comes
from the application of Learning Vector Quantization (LVQ) [48] because it
does not require the storage of a partition matrix (as required by many clus-
tering algorithms such as Fuzzy C-Means) and it exploits class information
to derive classi�ed prototypes to represent classi�ed data in a compressed
form.

In this work we use the simplest version of LVQ (LVQ1), which is the
core of the data compression stage, as described in Algorithm 1. (Euclidean
distance has been used; however any distance function can be applied.)

LVQ1 requires the speci�cation of the number nP of prototypes: this is

1In this work, crisp classi�cation has been adopted. However, soft classi�cation with
con�dence degrees [49] is possible in principle and matter of future developments.
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Algorithm 1 Data compression
Input: dataset D
Input: classi�cation function cl : D 7→ C
Input: the number of prototypes nP
Input: learning rate α
Input: tolerance ε
Input: max. iterations maxi

Output: the collection of prototypes P with classi�cation cl : P 7→ C
(* Step 1: prototype initialization. Prototypes are randomly initialized with data sam-
ples. The class distribution of prototypes re�ects the class distribution in data. *)
P← ∅
for i← 1 to nC do

Di ← {x ∈ D| cl(x) = ci}
niP ← round((|Di| / |D|) * nP ) (* num. of prototypes of class i *)
for j ← 1 to niP do

x← random_selection(Di)
p← x
P← P ∪ {p}
cl(p)← cl(x)

end for
end for
(* Step 2: Vector quantization *)
i← 1
do
E ← 0
for each x ∈ D do

p← arg minp′∈P ||p′ − x|| (* In case of ties a random choice is applied *)
pold ← p
if cl(x) = cl(p) then

p← p + α(x− p)
else

p← p− α(x− p)
end if
E ← E + ‖p− pold‖

end for
i← i+ 1
α← α− α/maxi

while E > ε and i < maxi
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the single hyper-parameter requested from the user (it just su�ces for the
rest of the parameters in the algorithm to be set to default values). We
use this hyper-parameter to regulate the compression ratio of the samples in
order to set the granularity level of the fuzzy information granules de�ned in
the third stage of DCf.

3.2. One-dimensional clustering

In this stage the prototype collection P is projected onto each dimension
d = 1, 2, . . . , n. Also, we require that the elements inside each projection
are sorted in ascending order. To this aim, we need to de�ne a projection
operator to be applied on each dimension d:

Πd (x) = Πd (x1, x2, . . . , xn) = xd ∀x ∈ X

i.e., Πd returns the d-th coordinate of a vector, and a sorting function that,
given a set A ⊂ R of elements, carries out a sorted sequence:

sortA =
(
xi|xi ∈ A

)
such that xi ≤ xi+1.

Given the prototype collection P, a projection of its elements over every
dimension can be conceived. For each dimension, the projection of the di�e-
rent prototypes is sorted:

Pd = sort {Πd (p) |p ∈ P} =
(
pid
)
i=1,2,...,nP

being d = 1, 2, . . . , n. Each projection retains class information by inheriting,
for each element inside the projection, the class label of the multidimensional
prototypes. Formally speaking, for each d = 1, 2, . . . , n a function cld : Pd 7→
C is derived by de�ning cld (p) = cl (p) whenever p = Πd (p). In Fig. 2
the projections on a bi-dimensional space of a collection of prototypes are
illustrated.

Given a projected prototype sequence Pd, clustering is performed by ope-
rating on the related sequence of cuts. Roughly speaking, a cut is a boundary
of an information granule and is formally de�ned by the midpoint between
two elements inside a projection labeled with di�erent classes. More precisely,
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Figure 2: Projections of the prototype collection depicted in Fig. 1b

(a) All cuts (b) A selection of cuts

Figure 3: The collection of all cuts and an example of selection identi�ed for the dataset
reported in Fig. 2.

the sequence of all midpoints is de�ned as

Qd =

(
pid + pi+1

d

2

)
i=1,2,...,nP−1

The sequence of cuts is the sub-sequence Td ⊆ Qd where cld (pid) 6= cld
(
pi+1
d

)
.

The cardinality of Td is denoted by nTd . Any sub-sequence Sd ⊆ Td of car-
dinality nSd determines a clustering of the projection Pd, where each cluster
is de�ned by all the elements inside Pd that are not separated by any cut in
Sd. Figure 3 illustrates the sequences Td and a subsequence Sd of cuts (with
d = 1, 2) related to the projections depicted in Fig. 2.
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The objective of one-dimensional clustering is to provide for the coarsest
granulation of the feature space, subject to separating prototypes of di�erent
classes into di�erent granules. To obtain such a result, an optimal con�gura-
tion of sub-sequences Sd, spanning the entire set of feature dimensions, has
to be identi�ed. In order to de�ne optimality, the concept of hyper-box must
be introduced �rst. To this pursuit, given a sub-sequence of cuts

Sd = (sid)i=1,...,nSd
(2)

we de�ne an extended sequence that adds the boundary points (1) in dimen-
sion d to the set of cuts:

S̄d =
(
md, s

1
d, s

2
d, . . . , s

nSd
d ,Md

)
A hyper-box is simply de�ned as the Cartesian product of intervals, one

for each dimension d = 1, . . . , n, delimited by cuts in S̄d:

Bk1,k2,...,kn =
[
sk1−11 , sk11

]
× · · · ×

[
skn−1n , sknn

]
(3)

where kd = 1, . . . , nsd + 1, with the convention of denoting s0d = md, and
s
nSd+1

d = Md.
A hyper-box contains zero or more multi-dimensional prototypes in P. A

hyper-box is said pure if it does not contain prototypes or all prototypes it
contains belong to the same class; otherwise it is said impure.

Figure 4 depicts the previously illustrated bi-dimensional space with a
con�guration of cuts producing one impure and three pure hyper-boxes (HBs).

A pure and non-empty hyper-box is a surrogate of an information gra-
nule: if prototypes contained in a hyper-box are surrounded by data samples,
then most of those samples are also inside the hyper-box. In this sense, a
con�guration of cuts spanning the entire set of feature dimensions is optimal
if it produces only pure hyper-boxes in such a way that the number of cuts
is minimized. The objective of one-dimensional clustering is therefore to �nd
such an optimal con�guration of cuts (see an example in Fig. 5).

The clustering problem has exponential complexity since the number of
candidate solutions is

∏
d 2nTd ∼ O (2n·nP ). To tackle the problem, we adopt

a strategy based on the A* algorithm. A* is a well-known general informed
search algorithm that can be applied to any discrete problem provided that
it is fully speci�ed by a suitable structure. In DC*, we specialize A* so as
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Pure HB Impure HB

Pure HBPure HB

Figure 4: A bi-dimensional Universe of Discourse partitioned into pure and impure hyper-
boxes.

Figure 5: An optimal con�guration of cuts.
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to operate an informed search on the space de�ned by the set of all possible
clustering con�gurations. Although the computational complexity of A* is
still exponential in the worst case, a careful design of all its components can
carry out a fast search of the optimal solution in most cases.

The adopted implementation of A* explores a search space Σ, i.e. a set of
con�gurations of cuts�called nodes�that represent candidate solutions. In
our problem a candidate solution is a partition of the Universe of Discourse
into hyper-boxes which are completely characterized by cuts. Therefore, a
convenient way to represent a node is through a tuple:

σ = (S1, S2, . . . , Sn)

being Sd a sub-sequence of cuts standing on dimension d as in eq. (2). The
initial node from which A* starts the search is:

σ0 =

∅, ∅, . . . , ∅︸ ︷︷ ︸
n


which corresponds to a single hyper-box that coincides with the entire Uni-
verse of Discourse.

The structure of A* used in this work2 is reported in Algorithm 2.
A* requires the speci�cation of a goal test, the successor operator, the

cost function and a heuristic function. The goal test simply veri�es if the
cuts de�ning a node provide for pure hyper-boxes only. In such a case, the
search algorithm is allowed to terminate: because of the operating mode of
A*, the �rst goal node met during the process is optimal for sure, being
characterized by the minimum number of cuts.

3.2.1. Successor operator

The successor operator O : Σ 7→ 2Σ generates a set of nodes given an
input node. Each node is distinguished from the previous one by the presence
of one additional cut in one dimension only. Formally, given two nodes
σ = (S1, S2, . . . , Sn) and σ′ = (S ′1, S

′
2, . . . , S

′
n), then σ′ ∈ O (σ) if and only if

these two conditions are satis�ed:

2We adopt a simpli�ed version of A* because we do not need to track the path from
the initial node to the goal node.
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Algorithm 2 The A* algorithm used for one-dimensional clustering
Input: the initial node σ0
Input: the goal test G : Σ 7→ {true, false}
Input: the successor operator O : Σ 7→ 2Σ

Input: the path-cost function g : Σ 7→ N
Input: the heuristic function h : Σ 7→ N
Output: the optimal solution σ∗

closed ← ∅ (* the set of all visited nodes *)
open ← σ0 (* the queue of nodes to be visited *)
while open 6= ∅ do
σ ← dequeue(open) (* pick the most promising node *)
closed ← closed ∪{σ} (* mark the node as visited *)
if G(σ) = true then (* node is optimal: return it *)
σ∗ ← σ
return σ∗

else
Σ← O(σ) (* node is not optimal: generate successors *)
for each σ′ ∈ Σ do

cost ← g(σ′) + h(σ′) (* estimate cost of the node *)
queue(open, σ′, cost) (* add node to priority queue *)

end for
end if

end while
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Figure 6: An example of application of the successor operator.

1. The nodes σ and σ′ are distinguished by one dimension d only, i.e. Sd 6=
S ′d and Sd′ = S ′d′ for each d

′ 6= d;
2. The sequences Sd and S ′d are distinguished by one cut t only, i.e. S ′d \
Sd = {t}.

Therefore, starting from a node σ with nσ =
∑

d nSd cuts, the successor
operator produces nT − nσ nodes with nσ + 1 cuts, being nT =

∑
d nTd . In

Fig. 6 an example of successors generation is depicted.
The additive property of the successor operator enables the generation of

the terminal node:
σT = (T1, T2, . . . , Tn) (4)

i.e. the node where all cuts are used. By construction, the cuts of the termi-
nal node generate only pure hyper-boxes (although possibly not in minimal
number): this guarantees that A* will eventually terminate on a goal node.
The overall structure of the search space is schematized in Fig. 7.

3.2.2. Cost Function

The cost function f : Σ 7→ N evaluates a node σ in the A* search phase:
the lower the cost, the more promising the node in view of reaching a solution
for the problem. The cost function is de�ned as the sum of the path-cost

function and the heuristic function:

f (σ) = g(σ) + h(σ) (5)

The path-cost function g : Σ 7→ N simply counts the number of cuts that
are used in a node, i.e.

g (σ) =
∑
d

nSd = nσ

16



3rd depth level - states composed by 3 cuts

initial state 
(no cuts)

𝞼0

… … ……

………

terminal state 
(all cuts)

𝞼T

final state 
(non-optimal)

…

… …
optimal solution

… …

Figure 7: A synopsis of the search space, structured according to the successor operator.

while the heuristic function is more complex because it must estimate the
minimum number of cuts required to reach a goal node from the current
node.

The heuristic function covers a fundamental role in the A* search process
since it is useful to estimate the cost of an optimal solution starting from
a given node. To ensure optimality of A*, the heuristic function must be
admissible, i.e. it must never overestimate the true cost; however, an esti-
mation closer to the true cost translates into a more e�cient search process
performed by A*.

The heuristic function of DC* exploits class information to compute an
estimate of the cost function. In this paper we propose a heuristic function
that exploits the number of classes to estimate the cost, thus resulting more
informative as the number of class labels increases. To de�ne the heuristic
function, we consider an impure hyper-box3 B generated by a node4 σ. Since
B is impure, it includes at least two prototypes belonging to di�erent clas-
ses. We denote by nB

c the number of distinct class labels attached to the
prototypes in B. (Obviously, nB

c ≥ 2.) To make B pure, it must be split into
at least nB

c hyper-boxes by a number of cuts. The objective, therefore, is to
�nd the minimum number of cuts splitting B into nB

c hyper-boxes.

3We will use the symbol B instead of Bk1,k2,...,kn
when there is no risk of confusion.

4By de�nition, a node that is not a solution induces at least one impure hyper-box.
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Let TB
d ⊆ Td be the subset of cuts standing on dimension d that intersect

B according to its de�nition (3), i.e.

TB
d =

{
t ∈ Td|skdd < t < skd+1

d

}
and let SB

d be a selection of such cuts, i.e. SB
d ⊆ TB

d . For each d = 1, 2, . . . , n,
we can use the cuts in SB

d to split B in a number nB of hyper-boxes which
can be evaluated as:

nB =
n∏
d=1

(
|SB
d |+ 1

)
=

n∏
d=1

(sd + 1)

being sd the cardinality of SB
d . Thus, a necessary (yet not su�cient) condition

for selecting the cuts to split B into pure hyper-boxes is: nB ≥ nB
c .

In order to guarantee admissibility, the number of selected cuts in each
dimension must be minimal. Furthermore, we are interested in the number
of cuts for each dimension, but not in their e�ective positioning (because we
do not consider the location of the prototypes in the hyper-box). Thus, the
following minimization problem must be solved:

minimize :
∑
d

sd

subject to :
n∏
d=1

(sd + 1) ≥ nB
c (6)

0 ≤ sd ≤
∣∣TB
d

∣∣
An e�cient way to solve (6) is through Algorithm 3. The result of the
minimization problem is denoted by hB.

The value hB is an optimistic estimate of the number of cuts required
to split the hyper-box B into pure hyper-boxes. To de�ne the heuristic
function for a node σ (possibly including more than one impure hyper-box)
we must take into account that a single cut may intersect more than one
hyper-box. In order to estimate the number of cuts, impure hyper-boxes are
grouped together if they share at least one interval. More formally, given
two (impure) hyper-boxes Bk1,k2,...,kn and B′k′1,k′2,...,k′n , they are connected if
there exists a dimension d such that kd = k′d. Such hyper-boxes share the
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Algorithm 3 Minimization of cuts for a single hyper-box
Input: the number of classes nB

c

Input: the max. number of cuts for each dimension td =
∣∣TB

d

∣∣ , d = 1, 2, . . . , n
Output: the minimal number of cuts sd, d = 1, 2, . . . , n
sd ← 0 for each d = 1, 2, . . . , n
i← 0
while

∏n
d=1 (sd + 1) < nB

c do
i← (i mod n) + 1
if si < ti then
si := (si + 1)

end if
end while

B

Figure 8: An example of connected hyper-boxes.

same interval
[
skd−1d , skdd

]
and both of them could be split by a single cut5.

We will denote by conn B the set of all impure hyper-boxes connected to B
(see �gure 8 for a schematic example).

Let B be the set of all impure hyper-boxes generated by a node σ. The
procedure for computing the heuristic function for σ is reported in Algorithm
4. In essence, the procedure iterates over the impure hyper-boxes starting
from one hyper-box with maximum number of di�erent class labels. Once
a hyper-box is selected, the heuristic value is summed to an accumulator
and all connected hyper-boxes are removed. The procedure stops when the

5It is easy to show that, if two impure hyper-boxes are connected, then there must be

a cut t belonging to Td that lays in the interval
[
skd−1
d , skd

d

]
.
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Algorithm 4 The heuristic function
Input: a node σ
Output: the heuristic value h(σ)
B ← the set of impure hyper-boxes generated by σ
h(σ)← 0
while B 6= ∅ do

Bmax ← arg maxB∈B n
B
c

h(σ)← h(σ) + hBmax

B ← B \ connBmax

end while

collection of hyper-boxes to scan is empty and the value of the accumulator
is returned.

3.2.3. Priority queue

A* requires a priority queue to temporarily store the nodes that need to
be evaluated. With reference to Algorithm 2, the queue is updated at each
iteration by adding all the nodes yielded by the successor operator applied to
the node under consideration. The nodes in the queue are sorted according
to a priority level, so that any node extracted from the queue has the highest
priority. The priority level is determined by its potentiality of being a goal
node or the parent of an optimal node. The priority is inversely proportional
to the cost function applied to a node: the smaller the cost, the higher the
priority.

Several nodes may have the same priority in the queue. In fact, this is a
common condition that is veri�ed in the earliest stages of DC*, when there
is not enough information to discriminate among di�erent nodes in terms of
their potentiality of being parents of an optimal solution. To avoid a random
selection of such nodes, some additional information can be used to guide the
selection of a node among the nodes with the highest priority. To this aim,
the queue is endowed with a multiple-level priority. An array of priorities
[π1 (σ) , π2 (σ) , . . . , πnπ (σ)] is attached to each node in the queue: nodes are
then sorted according to the �rst priority level; nodes with the same priority
at the �rst level are sorted according to the priority at the second level, and
so on. The priority at the �rst level is de�ned by the cost function in order
to preserve the correctness of A*, i.e.

π1 (σ) = f (σ)
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being f the cost function de�ned in eq. (5), while the remaining priority
levels could be used to promote nodes with some desirable qualities.

In DC*, the second priority level is de�ned to promote nodes that corre-
spond to coarse-grained information granules. Coarse information granules
embrace a wide fraction of the Universe of Discourse; therefore they could
describe properties that apply to a great number of samples. In other words,
promoting coarse-grained information granules could favor the generality of
the granulation provided by a solution. To achieve this feature, the second
priority level is de�ned as follows: given a node σ generated by a parent node
by adding a cut tk on dimension d (as described in Section 3.2.1), then

π2 (σ) = min {tk − tk−1, tk+1 − tk}

being tk−1 and tk+1 the cuts belonging to S ′d, respectively preceding and
following tk. If the cut tk is very close to an existing cut, then the node
σ generates hyper-boxes that are too thin in dimension d. This, in turn,
translates into information granules that are too �ne-grained. The node σ is
therefore penalized, by assigning a second-level priority equal to the distance
(so that the smaller the distance, the lower the priority).

A third priority level is also de�ned in DC*, in order to promote nodes
that require few input features for representing information granules. This
is achieved by simply counting the input features where at least one cut is
de�ned:

π3 (σ) = −
n∑
d=1

(χ 6= (Sd, ∅))

being χ6= (A,B) = 1 if A 6= B, 0 otherwise. The less input features are
required by the node, the higher is this priority value. It is worth observing
that feature selection comes as a by-side e�ect of the optimal search procedure
performed by A*; therefore this priority level is used just as a guide when
more than one node have the highest priorities at both the �rst and second
level. In practice, this third level is used quite rarely, therefore there is no
need to de�ne further priority levels in the queue: in case of nodes with the
same highest priority at all levels, a random choice is performed.

3.3. Fuzzy granulation

Once an optimal solution has been found by A*, it is translated into a
granulation of the Universe of Discourse. This requires the following steps:
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1. Fuzzy partition of the selected input features;
2. Generation of the multi-dimensional information granules;
3. Linguistic representation of the information granules in terms of fuzzy

classi�cation rules.

The �rst step is accomplished by taking into account the sets of cuts selected
for each feature. If no cuts are selected for a speci�c feature, that feature is
discarded. Since DC* is a cut-based granulation method, we resort to tra-
pezoidal fuzzy sets in order to de�ne fuzzy partitions. This kind of sets, in
fact, enable the de�nition of Strong Fuzzy Partitions (SFPs) � thus preser-
ving a number of interpretability requirements � and are more �exible than
triangular fuzzy sets [50]. Trapezoidal fuzzy sets are de�ned as follows:

T [a, b, c, d] (x) =


x−a
b−a , x ∈ [a, b[

1, x ∈ [b, c]
x−d
c−d , x ∈ ]c, d]

0, x < a ∨ x > d

with the convention that T [a, a, c, d] (a) = 1 and T [a, b, c, c] (c) = 1.
Formally, let σ∗ = (S∗1 , S

∗
2 , . . . , S

∗
n) be the optimal solution found by A*

and let d be such that
S∗d =

(
s∗id
)nS∗

d
i=1 6= ∅

The sequence S∗d divides the d-th input feature into nS∗d+1 intervals
[
s∗i−1d , s∗id

]
for i = 1, 2, . . . , nSd + 1, with the convention of denoting s∗0d = md and
s
∗nSd+1

d = Md.
The �nal fuzzy partition is de�ned by the collection of trapezoidal fuzzy

sets T [aid, b
i
d, c

i
d, d

i
d] for i = 1, 2, . . . , nS∗d + 1. In this way, the Universe of

Discourse is partitioned like in Fig. 9. Among several alternatives to de�ne
the parameters of a Trapezoidal SFP (TSFP) we adopt the Variable Fuz-
ziness technique, which gives more fuzziness to information granules with
coarser granularity [50]. The Variable Fuzziness technique can be formalized
as follows.

For each i = 1, . . . , nS∗d , let ∆i = s∗id − s∗i−1d . If ∆i ≤ ∆i+1 then

cid =
s∗i−1d + s∗id

2
, did = 2s∗id − cid.

This ensures that the descending part of the i-th fuzzy set starts from the
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Figure 9: The �nal fuzzy partition of the bi-dimensional space performed in terms of
trapezoidal fuzzy sets.
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midpoint of the i-th interval and intersects the i-th cut at 0.5. The ascending
part of the (i+ 1)-th fuzzy set is de�ned accordingly to ensure that the fuzzy
partition is strong:

ai+1
d = cid, b

i+1
d = did.

If ∆i > ∆i+1 the ascending part of the (i+ 1)-th fuzzy set intersects the
i-th cut at 0.5 and ends at the midpoint of the (i+ 1)-th interval. Formally:

bi+1
d =

s∗id + s∗i+1
d

2
, ai+1

d = 2s∗id − bi+1
d .

Consequently,
cid = ai+1

d , did = bi+1
d .

Finally, the de�nition of the leftmost and rightmost fuzzy sets is comple-

ted by setting a1d = b1d = md and c
nS∗
d
+1

d = d
nS∗
d
+1

d = Md.
Multi-dimensional information granules are de�ned by combining the

fuzzy sets belonging to the selected features. However, only those combi-
nations that describe the underlying data are retained, while all the others
are discarded. This is achieved by de�ning fuzzy information granules from
the non-empty hyper-boxes of the optimal solution as the Cartesian product
of trapezoidal fuzzy sets6:

B̃k1,k2,...,kn (x) =
n∧
d=1

T
[
akdd , b

kd
d , c

kd
d , d

kd
d

]
(xd) , (7)

being ∧ a t-norm. By de�nition, all such hyper-boxes are pure, therefore
they can be tagged with the class label of the multi-dimensional prototypes
falling in them. As a consequence, each fuzzy information granule can be
linguistically represented as a classi�cation rule. To achieve this, a linguistic
variable is de�ned for each selected feature. The linguistic variable assigns a
linguistic term to each fuzzy set of the fuzzy partition. If Lid designates the
linguistic term assigned to fuzzy set T [aid, b

i
d, c

i
d, d

i
d], then the classi�cation

rule of the fuzzy information granule (7) follows the schema

IFx1 isLk11 AND · · · ANDxn isLknn THEN c,

6If a feature d′ is discarded, a dummy fuzzy set T [ad′ , bd′ , cd′ , dd′ ] = 1 is used.
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being c the class of the corresponding hyper-box. In the schema, the discar-
ded features are not included to improve readability. An optimal solution
has a set of non-empty (pure) hyper-boxes, therefore a collection of fuzzy
classi�cation rules can be derived. This gives rise to a fuzzy rule-based clas-
si�er: given an input x, the membership degrees of all information granules
are computed according to eq. (7); then the class of the information granule
with the highest membership degree is assigned to the input. Inputs not
belonging to any information granule are not classi�ed7.

4. Experimental Results

The objective of the experimentation is to evaluate DC* in terms of both
accuracy and interpretability. To this end we arranged three experimental
sessions. The �rst session is aimed at verifying the ability of the heuristic
function, which plays a key role in the A* search procedure, in accelerating
the search process towards a goal state. Then we test DC* on a number
of benchmark datasets: in this case the focus is pointed on evaluating the
interpretability and the accuracy exhibited by the derived predictive models.
Comparative experimental sessions are reported to assess the capabilities of
DC* with respect to a number of other classi�cation techniques. Among
them, a speci�c method known in literature, namely the Hierarchical Fuzzy
Partitioning algorithm (HFP) is specially considered for a thorough compa-
rative analysis.

4.1. Evaluation of the heuristic function

The goal of this preliminary experimental stage is to test the e�ectiveness
of the heuristic function adopted to drive the A* search. To this aim, we
referred to a speci�cally built synthetic problem named �k-chessboard� which
allows to investigate the heuristic function behavior as the complexity of the
problem at hand is growing.

As depicted in �gure 10, the k-chessboard is a particular bi-dimensional
dataset with 2 classes, shaped to form a regular grid, where points of the same
class must not be adjacent (with respect to the orthogonal directions). The
value of k refers to the number of samples over each grid side: higher values
for k correspond to problems of increasing complexity, requiring more infor-
mation granules to provide proper partitioning. Since we are only interested

7This is counted as a classi�cation error.
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Figure 10: The k-chessboard dataset with k = 5. On the left side the dataset distribution
is depicted. On the right side, the resolutive con�guration of cuts.

in the performances of the heuristic function, we skip the data compression
stage, thereby the points of the chessboard coincide with the prototypes used
in the second stage of DC*. The k-chessboard problem consists in separating
points of di�erent classes by cutting the plane horizontally or vertically. The
problem admits one solution only, coinciding with the terminal state (4),
where all the possible cuts are included. As such, this kind of solution stands
as the worst scenario for the searching process carried out by DC*. In fact,
it requires to penetrate through the whole search graph, heavily stressing the
A* search procedure. This is the main reason why this particular problem
has been chosen for the preliminary experimental stage. Moreover, given an
intermediate con�guration of cuts, it is possible to calculate the exact num-
ber of cuts required to reach the �nal state. Thus, in order to evaluate the
e�ectiveness of the heuristic function, two baselines have been identi�ed:

� a constant-valued heuristic function (which is ultimately uninformative
for the search process);

� the optimal heuristic function (which is predictable for the chessboard
problem).

Both of them have been adopted in the experimentation illustrated in the
following; such a parallel evaluation aims at comparing the behavior of the
heuristic function implemented in DC* with respect to the utmost adverse
and favorable conditions. Particularly, the optimal heuristic function directly
drives the search process toward the exploratory path involving the minimum
number of nodes, that is the depth-�rst search dictated by the consecutive
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Figure 11: Heuristic functions evaluation on the k-chessboard problem. The number of
tested nodes is reported during the application of the constant, the optimal, and the DC*
heuristic functions, as problem complexity increases.

addition of a new cut at each step (until all the possible cuts are considered).
The constant heuristic, on the other hand, simply collapses the evaluation
of each node to the constant value 1: this disables any discriminating po-
wer, thus failing to prevent the search process from stagnating in ine�cient
breadth-�rst directions.

Experiments have been conducted over nine progressive k-chessboard da-
tasets, with k ranging from 2 to 10, recording the number of tested nodes
while passing through the adoption of the three di�erent heuristic functions.
It can be noted that, for the optimal heuristic case, the number of tested
nodes is linearly determined by the value of k (being the total number of all
possible cuts equal to 2k − 2).

Figure 11 summarizes the experiment results highlighting the dependence
between the complexity of the problem and the number of tested nodes. In
particular, if the problem complexity increases, then the number of tested
nodes: (a) linearly grows when the optimal heuristic function is applied (best
scenario); (b) exponentially grows when the uninformative heuristic function
is applied (worst scenario); (c) exponentially grows when the DC* heuris-
tic function is applied, but an appreciable reduction of the number of tested
nodes is registered. This demonstrates an increased supply of informative po-
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Table 1: Illustration of the datasets involved in the experimental sessions.

Dataset ID #samples #features #classes
Appendicitis Ap 106 7 21
Balance Bl 625 4 3
Banana Bn 5300 2 2

Beer Styles BS 400 3 8
Bupa Bu 345 6 2

Cardiotocography CTG 2126 21 3
Hayes-Roth Hy 160 4 3
Ionosphere Ion 351 33 2

Iris Ir 150 4 3
Monk-2 Mo 432 6 2

Newthyroid Nth 215 5 3
Page-Blocks PB 5472 10 5
Phoneme Ph 5404 5 2
Pima Pi 768 8 2
Saheart Sh 462 9 2
Sonar So 208 60 2
Thyroid Thy 7200 21 3

Vertebral 2 V2 310 6 2
Vertebral 3 V3 310 6 3

Wisconsin Breast Cancer WBC 683 9 2
Wine Wi 178 13 3

wer of the DC* heuristic function when compared with the constant heuristic
function.

4.2. Evaluation of DC* on benchmark datasets

We tested DC* by referring to a number of benchmark datasets widely
employed in literature. Particularly, we selected a collection of 21 datasets
concerning classi�cation problems, among those freely available on-line (we
referred to the UCI [51], KEEL [52], and Mendeley8 repositories). As il-
lustrated in Table 1, the selected datasets pertain to classi�cation problems
showing relevant di�erences in terms of complexity, number of samples, fea-
tures and classes involved. In this sense, they appear suitable to investigate
the DC* results in terms of both interpretability and accuracy in a variety
of scenarios.

We established to launch four runs for each dataset, starting from an

8doi:10.17632/n4b6734rfn.1
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initial number of prototypes which is equal to the number of classes and
then doubling such number at each successive run. Additionally, the test
sessions have been conducted on the basis of 10-fold cross validation for each
dataset.

Tables 2-3 summarize the obtained results, reported in terms of mean
values evaluated at the end of the 10-fold cross validation sessions. A number
of considerations spring from the analysis of the values reported in table. As
concerning interpretability, DC* shows the capability to produce predictive
models which describe data by a reduced number of rules. Such a property,
which is relevant to increase the readability of the derived base of knowledge,
is preserved even while increasing the number of prototypes. Furthermore,
the capability of DC* to operate a proper feature selection is manifest when
comparing the number of features involved in the �nal models with those
originally describing the problems at hand. Actually, the classi�cation models
seldom resort to the entire set of features (less than half of the total features
has been employed for almost every problem) and in some cases the reduction
ratio appears to be quite drastic. This contributes to simplify the structure
of the derived models. Finally, the reported values of standard deviation,
evaluated both for the number of rules and features, indicate that a good
description stability is also appreciable. On the other hand, the observed
values of standard deviation on classi�cation errors are motivated by the
high sensibility of LVQ to initialization settings.

DC* is designed to provide predictive models exhibiting a fair trade-o�
between accuracy and interpretability. In this sense, even if the experimen-
tal session was not oriented to provide optimal results in absolute terms of
classi�cation error, the accuracy values reported in table appear to be quite
satisfactory. Moreover, it should be emphasized that such results, di�erently
from what happens when dealing with a number of di�erent data mining
methods, have been obtained by setting one hyper-parameter only, i.e. the
number of prototypes to start the data compression stage (whose role in de-
termining the granularity of the �nal model is self-evident). In this way, the
application of DC* allows to automatically detect the suitable fuzzy informa-
tion granules that are identi�ed in terms of number, shape and amplitude.

For the majority of datasets, the best accuracy results (reported in bold
in Tables 2-3) have been obtained while setting for the data compression
stage a higher number of prototypes. This is consistent with the idea that
a greater number of prototypes shifts the balance of the trade-o� towards
accuracy (at the expense of interpretability). However, in limited cases the
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Table 2: Experimental results obtained by applying DC* on the datasets pertaining to 10
out of 21 benchmark problems.

Dataset #Prot. %Error(±stDev) #Rules(±stDev) #Features(±stDev)

Ap

2 18.18±13.48 2±0 1±0
4 15.45±12.89 2±0 1±0
8 22.73±10.95 2.2±0.4 1.2±0.4
16 20±15.10 3.8±1.8 1.9±0.83

Bl

3 43.17±9.57 3±0 2±0
6 45.71±6.76 3.9±0.3 2±0
12 31.75±3.95 9.2±1.17 3±0
24 27.46±8.84 12.6±3.32 3.4±0.49

Bn

2 49.64±3.04 2±0 1±0
4 47.98±4.66 2.5±0.67 1.3±0.46
8 39.74±7.84 4.6±1.2 1.9±0.3
16 30.64±5.86 8±1.26 2±0

BS

8 29±12.90 8±0 2.5±0.5
16 21±7 8.5±0.67 2.7±0.46
32 12.5±7.5 9.9±1.14 2.8±0.4
64 9.5±6.3 11.8±1.25 3±0

Bu

2 47.14±6.16 2±0 1±0
4 46.57±7.88 2.2±0.4 1.2±0.4
8 47.14±9.41 3.8±0.4 2±0
16 40.86±5.12 7±1.79 2.7±0.64

CTG

3 45.45±7.73 3±0 2±0
6 20.56±3.60 4±0 2±0
12 21.97±7.21 4±0 2±0
24 29.58±7.90 4.5±1.28 2.3±0.46

Hy

3 57.5±10.75 3±0 1.8±0.4
6 59.38±12.26 3.4±0.49 1.8±0.4
12 54.38±15.32 6.8±1.94 2.5±0.67
24 38.75±18.29 14.9±2.55 3.3±0.46

Ion

2 41.67±5.12 2±0 1±0
4 38.89±10.17 2±0 1±0
8 25±9.46 2.2±0.6 1.1±0.3
16 28.33±9.36 3.4±0.92 1.7±0.46

Ir

3 31.33±15.51 3±0 2±0
6 22.67±10.41 3.3±0.46 2±0
12 12±12.22 3.1±0.3 1.4±0.49
24 8±5.81 3.2±0.6 1.5±0.5

Mo

2 45.68±17.02 2±0 1±0
4 45.90±12.23 2.2±0.6 1.1±0.3
8 25.90±15.01 2.6±0.92 1.3±0.46
16 24.32±14.87 3.6±1.2 1.7±0.46
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Table 3: Experimental results obtained by applying DC* on the datasets pertaining to
the remaining 11 out of 21 benchmark problems.

Dataset #Prot. %Error(±stDev) #Rules(±stDev) #Features(±stDev)

Nth

3 26.36±12.82 3±0 2±0
6 23.18±6.88 3.1±0.3 1.3±0.46
12 16.36±8.67 3±0 1.2±0.4
24 14.09±10.26 3.2±0.6 1.3±0.64

PB

5 27.3±8.49 5±0 2.9±0.3
10 13.18±2.96 5.6±0.66 2.7±0.46
20 15.97±4.91 5.8±0.87 2.7±0.46
40 10.47±2.54 8±1.26 3.2±0.4

Ph

2 41.09±22.2 2±0 1±0
4 53.31±22.93 2.5±0.81 1.2±0.4
8 38.71±22.22 3.3±1.1 1.7±0.64
16 31.79±16.33 6.4±2.24 2.7±0.64

Pi

2 36.49±3.87 2±0 1±0
4 37.53±5.24 2±0 1±0
8 32.21±5.74 2.2±0.6 1.1±0.3
16 35.97±10.21 3.2±0.98 1.6±0.49

Sh

2 43.4±14.99 2±0 1±0
4 42.55±12.41 2±0 1±0
8 34.68±4.86 2.7±0 1.4±0.49
16 37.02±7.56 5.2±1.17 2.5±0.5

So

2 49.05±12.24 2±0 1±0
4 49.52±9.80 2±0 1±0
8 37.14±11.43 2±0 1±0
16 41.43±9.54 3.7±45.83 2±0

Thy

3 46.78±8.02 3±0 2±0
6 35.89±15.38 3.1±0.3 1.9±0.3
12 17.83±10.68 3.3±0.46 2±0
24 13.39±8.72 3.3±0.46 1.8±0.4

V2

2 34.19±8.19 2±0 1±0
4 30.65±8.69 2±0 1±0
8 27.42±10.02 2±0 1±0
16 31.61±9.66 3.6±1.11 1.9±0.54

V3

3 55.81±5.41 3±0 2±0
6 41.29±8.75 3.4±0.49 2±0
12 35.16±12.53 4.7±1.62 2.3±0.46
24 32.26±6.92 7.5±1.2 3±0.45

WBC

2 13.91±5.03 2±0 1±0
4 12.61±5.06 2±0 1±0
8 13.19±5.78 2±0 1±0
16 13.62±4.16 2±0 1±0

Wi

3 46.11±16.30 3±0 2±0
6 40±11.86 3.2±0.4 2±0
12 27.22±5.80 3.6±0.49 2±0
24 23.33±11.06 4.1±0.7 2.1±0.331



performance of the derived models gets worse: this can be explained in terms
of the over-�tting occurring during some experimentations, thus preventing
the �nal model to correctly classify new problem samples.

In order to qualitatively appreciate the interpretability of the FRBCs
derived by DC*, in �g. 12 an example of FRBC induced from BS data is
depicted. It can be observed that, for each feature, the number of fuzzy sets
is automatically determined and all fuzzy sets can be labeled by intelligi-
ble linguistic terms. Rules have an immediate readability and linguistically
explain each class of the dataset.

4.3. Comparative evaluation

In order to complete the assessment of DC*, we set up a twofold experi-
mental session devoted to a comparison evaluation. Our experiments involved
both a pool of heterogeneous classi�ers (standing as a general class of refe-
rence algorithms) and a di�erent granulation method (which is consistent
with the general principles underlying DC*).

As a preliminary evaluation, we compared the behavior of DC* with the
performance exhibited by a number of classi�cation methods popularized
in literature. Such a comparison has been performed on the basis of the
previously described datasets which were used to train �ve classi�ers: CN2
rule inducer (CN2), C4.5 classi�cation tree (C4.5), Naive Bayes classi�er
(NB), Support Vector Machine for Classi�cation (C-SVM), and k-Nearest
Neighbor (kNN). We used Orange9 to perform the experiments, with default
parameters for each method; in particular we used k = 5 for k-NN and
Gaussian kernel for C-SVM. We performed a 10-fold cross validation session
for each dataset: the average performance results are reported in Table 4,
together with the DC* classi�cation error results coming from Tables 2-3.
We are reporting here the performance results of all the parametrizations
previously adopted to launch DC*. In fact, the aim of this preliminary
evaluation is not the selection of the best DC* model to be tested against
the other methods; instead, we want to contextualize DC* in the panorama
of classical approaches which do not emphasise interpretability as a main
concern. To do that, we simply refer to the previously attained performance
results: in this way, each instance of DC* can be seen as an alternative
method to be compared with others. In Table 4 the labels DC*×n (with

9http://orange.biolab.si/
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Figure 12: An example of FRBC generated from the BS dataset.
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Table 4: Performance results (expressed in terms of the average error obtained at the end
of 10-fold cross validation sessions) of �ve standard classi�ers compared with DC*. The
four DC*-related columns correspond to the di�erent settings of the initial parameters
adopted to run the 10-fold cross validation session for each dataset (in the way they have
been described in Tables 2-3).

Dataset CN2 C4.5 NB C-SVM kNN DC*×1 DC*×2 DC*×4 DC*×8
Ap 16.0 17.9 17.0 13.2 13.2 18.2 15.5 22.7 20.0
Bl 20.8 21.1 8.3 14.7 29.3 43.2 45.7 31.8 27.5
Bn 16.4 12.2 33.9 38.1 11.3 49.6 48.0 39.7 30.6
BS 9.0 4.5 7.5 2.5 2.5 29.0 21.0 12.5 9.5
Bu 37.1 36.2 34.8 34.5 31.0 47.1 46.6 47.1 40.9
CTG 9.4 6.9 20.0 12.3 9.1 45.5 20.6 22.0 29.6
Hy 20.0 21.9 14.4 18.1 54.4 57.5 59.4 54.4 38.8
Ion 32.5 7.4 11.4 5.7 15.7 41.7 38.9 25.0 28.3
Ir 10.7 4.0 10.0 3.3 4.7 31.3 22.7 12.0 8.0
Mo 5.5 3.8 37.1 25.3 36.9 45.7 45.9 25.9 24.3
Nth 7.9 8.8 5.1 4.7 6.5 26.4 23.2 16.4 14.1
PB 4.3 4.8 15.6 4.9 4.2 27.3 13.2 16.0 10.5
Ph 16.0 13.2 25.2 61.5 12.2 41.1 53.3 38.7 31.8
Pi 33.2 28.3 26.0 27.5 25.8 36.5 37.5 32.2 36.0
Sh 35.1 43.1 32.3 33.0 33.4 43.4 42.6 34.7 37.0
So 27.5 20.3 22.7 15.0 19.8 49.1 49.5 37.1 41.4
Thy 1.4 N/A 7.3 5.6 6.0 46.8 35.9 17.8 13.4
V2 20.0 20.6 23.5 16.1 21.9 34.2 30.7 27.4 31.6
V3 17.1 23.2 21.0 16.8 24.2 55.8 41.3 35.2 32.3

WBC 6.3 5.6 2.5 2.8 3.8 13.9 12.6 13.2 13.6
Wi 12.9 3.9 1.1 1.7 31.5 46.1 40.0 27.2 23.3

n = 1, 2, 4, 8) refer to the choice of the number of prototypes per class settled
to launch DC* (in the way it has been described while introducing Tables 2-
3): starting from an initial number that is equal to the classes of the problem
at hand, the prototype number has been doubled at each subsequent run.

DC* is a method aimed at balancing accuracy and interpretability. Since
they are con�icting objectives, it comes with no surprise that DC* often
shows accuracy performances which do not match those produced by alter-
native classi�ers that have been speci�cally designed to maximize accuracy
only. Nevertheless, the table shows that in the majority of cases (related
to the Ap, Bl, Bn, Hy, Ion, Ir, Mo, PB, Ph, Pi, Sh, and Wi datasets) the
performance of DC* lies within the range determined by the accuracy values
registered when the alternative methods are applied. In the remaining cases,
a higher price is paid for generating interpretable models with DC*, which
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exhibits a rough loss of 5-10% in terms of accuracy.
Finally, we are interested in evaluating the interpretability/accuracy trade-

o� of the fuzzy models returned by DC*. To this aim, we need to compare
these models with those identi�ed by some speci�c alternative algorithm
sharing a common set of features with DC*. Due to the particular nature of
the proposed approach, such an inquiry is not straightforward. Among the
variety of methods proposed in literature, we selected the Hierarchical Fuzzy
Partitioning algorithm (HFP) [44], which appears to be one of the most suit-
able for our purpose. In fact, HFP is designed to derive fuzzy partitions from
data, based on a clustering process followed by an iterative sequence of fuzzy
partition merging, taking into account both accuracy and interpretability is-
sues. However, HFP di�ers from DC* for a number of key points, notably
because HFP provides a family of models (ranging from the simplest one
to those more complex and accurate), leaving to the user the commitment
for the �nal choice. Furthermore, HFP requires the set-up of a number of
hyper-parameters (which have been left to default values in our experiments)
and it requires the speci�cation of a �xed number of fuzzy sets per features
as well as a predetermined partitioning method.

HFP has been applied to the collection of datasets illustrated in Table 1,
performing a new set of 10-fold cross validation sessions10. In practice, we
exploited the HFP implementation provided by the FisPro tool [45]. The
obtained results are reported in Tables 5-6 (where the performance of DC*
is recalled for the sake of comparison).

Since HFP provides a family of models, it makes sense to select among
them some speci�c instances: the models providing respectively the best
accuracy results and the simplest structure (in terms of lower number of rules)
stand as appropriate candidates. However, the latter had to be discarded
being characterized by a very poor classi�cation performance. Therefore, we
referred to the number of rules exhibited by the best DC* model for each
dataset and, correspondingly, we considered the HFP model with an equal
(or next to) number of rules. In this way, our experiments helped to identify
a couple of HFP models for each dataset: HFP with best accuracy (HFP-BA)
and HFP with a predetermined (�xed) number of rules (HFP-FR)11.

10We used the same folds adopted for the experiments described in Section 4.2
11It should be observed that the de�nition of the HFP-BA and HFP-FR models is accom-

plished on the basis of the 10-fold sessions performed on training sets. When the models
are successively evaluated on test sets, the ��xed-rule� model may happen to outperform
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Table 5: Comparative evaluation of DC* and HFP (with reference to datasets pertaining
to 10 out of 21 benchmark problems). The lowest error values and the highest A/I indices
are highlighted in bold with the indication of the exact Wilcoxon signed rank test results:
(=) no statistically signi�cant di�erence; (†) statistically signi�cant di�erence for p = 10%;
(††) statistically signi�cant di�erence for p = 5%; († † †) statistically signi�cant di�erence
for p = 1%.

Dataset Method err(%) #features #rules A/I

Ap
DC*(nP = 4) 15.5±12.9= 1±0 2±0 42.3=

HFP-FR 17.3±14.4 1±0 2±0 41.4
HFP-BA 12.7±10.1 4.4±1.1 17.8±11.0 4.9

Bl
DC*(nP = 24) 27.5±8.8 3.4±0.5 12.6±3.3 6.0

HFP-FR 23.7±6.4= 3.2±0.4 12.8±1.6 6.1=

HFP-BA 13.5±4.1 4±0 140.4±10.8 0.6

Bn
DC*(nP = 16) 30.6±5.8††† 2±0 8±1.2 8.9

HFP-FR 48.2±1.8 2±0 8±0 6.5
HFP-BA 42.5±1.5 1±0 2±0 28.7†††

BS
DC*(nP = 64) 9.5±6.3††† 3.0±0 11.8±1.2 7.8† † †

HFP-FR 48.5±3.2 3.0±0 12.2±0.6 4.2
HFP-BA 48.5±3.2 3.0±0 11.8±0.6 4.4

Bu
DC*(nP = 16) 40.8±5.1= 2.7±0.6 7.0±1.7 9.0=

HFP-FR 42.8±5.5 3.3±0.4 7.0±0.8 8.3
HFP-BA 42.6±5.7 3.9±1.0 9.7±3.6 6.8

CTG
DC*(nP = 6) 20.6±3.6 2±0 4±0 19.9
HFP-FR 19.6±2.2= 2±0 4±0 20.1=

HFP-BA 17.4±2.5 7.9±1.9 120.8±95.2 0.7

Hy
DC*(nP = 24) 38.7±18.2= 3.3±0.4 14.9±2.5 4.1=

HFP-FR 46.2±14.3 2.5±0.5 14.1±2.3 4.0
HFP-BA 48.1±14.2 2.5±0.5 14.2±3.0 3.9

Ion
DC*(nP = 8) 25.0±9.5†† 1.1±0.3 2.2±0.6 35.4=

HFP-FR 30.0±11.2 1±0 2±0 35.0
HFP-BA 18.3±11.2 5.2±2.9 282.8±606.5 0.3

Ir
DC*(nP = 24) 8.0±5.8= 1.5±0.5 3.2±0.6 29.5† † †

HFP-FR 12.7±6.3 2±0 4±0 21.8
HFP-BA 5.3±7.2 3±0 8.5±0.8 11.1

Mo
DC*(nP = 16) 24.3±14.8= 1.7±0.4 3.6±1.2 23.2††

HFP-FR 28.1±10.5 2.0±0 4.0±0 18.0
HFP-BA 9.7±10.6 4.1±0.8 62.4±38.9 2.6
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Table 6: Comparative evaluation of DC* and HFP (with reference to datasets pertaining to
the remaining 11 out of 21 benchmark problems). The lowest error values and the highest
A/I indices are highlighted in bold with the indication of the exact Wilcoxon signed rank
test results: (=) no statistically signi�cant di�erence; (†) statistically signi�cant di�erence
for p = 10%; (††) statistically signi�cant di�erence for p = 5%; (†††) statistically signi�cant
di�erence for p = 1%.

Dataset Method err(%) #features #rules A/I

Nth
DC*(nP = 24) 14.1±10.3†† 1.3±0.6 3.2±0.6 27.9=

HFP-FR 22.7±8.4 2±0 3.2±0.4 24.6
HFP-BA 17.3±5.3 4±0 7.8±1.6 10.6

PB
DC*(nP = 40) 10.5±2.5 3.2±0.4 8±1.26 11.5=

HFP-FR 10.0±1.3= 3.8±0.9 9±1.41 10.2
HFP-BA 7.7±0.7 7±1 37.8±6.81 2.4

Ph
DC*(nP = 16) 31.7±16.3 2.7±0.6 6.4±2.2 11.7††

HFP-FR 30.4±3.4= 2.9±0.3 7.8±0.6 8.9
HFP-BA 26.1±8.4 4.0±1.0 51.6±40.6 2.8

Pi
DC*(nP = 8) 32.2±5.7= 1.1±0.3 2.2±0.6 32.1† † †

HFP-FR 34.2±4.6 2±0 4±0 16.5
HFP-BA 28.1±4.5 5.8±1.17 39±16.6 1.8

Sh
DC*(nP = 8) 34.6±4.8 1.4±0.4 2.7±0 26.2† † †

HFP-FR 33.1±3.0= 2.0±0 3.9±0.3 17.3
HFP-BA 31.2±4.7 6.7±0.6 47.3±12.0 1.6

So
DC*(nP = 8) 37.1±1.1 1.0±0 2.0±0 31.4
HFP-FR 35.7±0= 1.0±0 2.0±0 32.1=

HFP-BA 40.4±5.3 8.3±1.4 148.7±100 0.6

Thy
DC*(nP = 24) 13.4±8.7 1.8±0.4 3.3±0.46 26.8†

HFP-FR 7.4±1.0†† 2±0 4±0 23.2
HFP-BA 7.3±1.0 4.9±2.0 22.6±17.3 4.1

V2
DC*(nP = 8) 27.4±10.0†† 1±0 2±0 36.3†

HFP-FR 34.2±10.6 1±0 2±0 32.9
HFP-BA 26.8±7.9 2.3±0.6 5.5±3.61 13.3

V3
DC*(nP = 12) 32.3±6.9††† 3±0.5 7.5±1.2 9.4

HFP-FR 44.2±8.9 2±0 4±0 14.0† † †

HFP-BA 44.2±8.9 2.1±0.3 4.6±1.28 12.1

WBC
DC*(nP = 4) 12.6±5.1†† 1±0 2±0 43.7††

HFP-FR 16.2±6.6 1±0 2±0 41.9
HFP-BA 4.8±2.1 4.9±0.8 34.7±18.0 2.7

Wi
DC*(nP = 24) 23.3±11.1 2.1±0.3 4.1±0.7 19.1

HFP-FR 20.0±8.3= 2±0 4±0 20.0=

HFP-BA 7.2±6.6 5.4±1.1 39.6±20.3 2.3
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In order to provide a quantitative assessing of the interpretability/accu-
racy trade-o�, we introduced a simple trade-o� index, namely the �A/I-index�
reported in Tables 5-6. Such index is de�ned as the ratio between the accu-
racy (i.e. the complement of the error) of the model and the number of its
rules, multiplied by 100: higher values of the A/I index correspond to better
trade-o� balances. Moreover, for assessing the capability to operate a suit-
able feature selection, which is a common property both for DC* and HFP,
we also reported the total number of features involved in each derived model.

We integrated our investigation by computing, for each dataset, the exact
Wilcoxon signed-rank (eWs-r) test [53] over both the error percentages and
the A/I index values for each fold. This kind of test is useful to assess the
signi�cance of the di�erence emerging when DC* and HFP are compared.
More precisely, the eWs-r test allows to verify if it is possible to reject (with
a pre�xed con�dence value p) the hypothesis that the reported performance
measures are statistically equivalent: in that case, we are able to assert the
supremacy of a model with a reduced risk of mistaking. For each dataset
the signi�cance test compares the DC* model with the HFP version (-BA
or -FR) exhibiting the highest average A/I index. Three p-values have been
used to appreciate the statistical di�erences (see the caption of Tables 5-6
for further details).

HFP-BA models generally outperform DC* models in terms of accuracy,
but their employment is often impractical since the number of their rules
is prohibitively high in most cases. Anyway, the discrepancy between the
classi�cation error values sometimes is quite reduced and in the majority
of cases the number of features involved in the DC* models is lower than
the corresponding value reported for the HFP-BA models. When turning
to consider HFP-FR models, we focus on the comparison of models that
are similar in terms of their overall structure, and the reported numbers of
involved features are more consistent too (even if in some cases the feature
selection process performed by DC* is still preferable).

At a �rst glance, the results reported in Tables 5-6 indicate that the DC*
models exhibit mean values of the A/I index that are greater than those
produced by HFP for 15 out of 21 datasets. However, the statistical analysis
reported in Tables 5-6 is worthy of the following remarks:

the one tagged as �best-accuracy�. We register twice such an infrequent occurrence, while
investigating the Hy and So datasets.
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� For 4 out of the 5 cases where the HFP-FR models appear to show
a (slight) supremacy in terms of the A/I index value, the eWs-r test
established that no statistically signi�cant di�erence can be asserted
among the involved evaluated values. Moreover, in the single case where
the null di�erence hypothesis can be rejected (i.e., the one related to the
V3 dataset), the DC* model is still able to exhibit a better performance
in terms of classi�cation error.

� Among the 15 cases where the DC* models appear to show a supremacy
in terms of the A/I index value, the eWs-r test established the lack of
statistically signi�cant di�erence only in 6 experimental sessions (i.e.,
those related to the Ap, Bu, Hy, Ion, Nth, and PB datasets). For the
remaining cases the null di�erence hypothesis can be rejected with a
substantial level of con�dence: p is even less than 1% for the BS, Sh,
Ir, and Pi datasets.

� In a single case (related to the Bn dataset) the HFP-BA model proved
to be the best in terms of A/I index among all the models. However,
DC* was able to produce a much better accuracy performance for this
dataset (while relying on a restrained number of fuzzy rules).

� As concerning accuracy, the eWs-r test con�rms the primacy of DC*
over HFP in 7 cases. No signi�cant di�erences are observed when
considering all the other datasets, with the exception of the Thy case
where HFP shows higher accuracy than DC*. In this case, however,
DC* produces a better interpretability-accuracy tradeo�. (It should be
recalled that the statistical analysis focusing on accuracy involved DC*
and the HFP version exhibiting the highest average A/I index.)

The analysis of the extensive experiments we have conducted lets us conclude
that DC* outperforms HFP in terms of interpretability-accuracy tradeo� (as
measured by the A/I index). At the same time DC*, far from penalizing
accuracy, appears to be signi�cantly preferable even on this side in several
cases. All in all, we postulate that such a performance can be ascribed
to the peculiar process performed by DC*, which allows to build up fuzzy
information granules with variable granularity that are well-adapted to data,
yet preserving the required interpretability constraints.
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5. Concluding Remarks

DC* is a method to extract interpretable fuzzy information granules from
pre-classi�ed numerical data. As an instance of DCf, it is based on two clus-
tering stages: the �rst one is aimed at discovering multi-dimensional relati-
onships among data, which are represented as classi�ed prototypes that are
projected onto each axis and clustered simultaneously in the second clustering
stage. To perform the second task, which is intrinsically hard in complexity,
a procedure based on A* has been adopted. A relevant e�ort of this inves-
tigation has been devoted to the de�nition of a heuristic function for A*, as
well as to the convenient organization of data in a multi-dimensional priority
queue.

The simultaneous clustering process performed in the second stage ena-
bles the partition of each feature in a variable number of fuzzy sets, with
di�erent granularity. At the limit (which is often encountered in experi-
ments), a feature is partitioned in a single fuzzy set, i.e. the feature can be
safely removed during the subsequent description of the derived fuzzy infor-
mation granules. This involves an automatic feature selection process, which
is particularly appreciable in knowledge discovery tasks.

The results of the second clustering stage is a collection of cuts, i.e. points
in each axis that can be used to de�ne trapezoidal fuzzy sets satisfying a
number of interpretability constraints. This makes the linguistic tagging
of such fuzzy sets very easy. As a consequence, the resulting information
granules can be expressed in a simpli�ed natural language, thus enabling an
immediate understanding of the granulation process by non-technical users.
This paves the way for a successful application of DC* in some real-world
contexts like medical data analysis, educational data mining, etc.

The entire granulation process is controlled by a single hyper-parameter,
namely the number of multi-dimensional prototypes to be de�ned in the
�rst clustering process. This parameter directly translates into the desired
granulation level of the available data. A higher number of information gra-
nules usually corresponds to a greater accuracy, though balanced by possible
over-�tting. In general, however, a certain stability on the number of infor-
mation granules has been observed during experiments, thus �ne-tuning of
this hyper-parameter is not required.

On the overall, DC* proposes a new way for data granulation, which
exhibits some concrete advantages over alternative methods available in lite-
rature, and paves the way for further re�nements and extensions which are

40



matter of future investigations.
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