
Accepted Manuscript

Predicting insertion positions in word-level machine translation quality
estimation

Miquel Esplà-Gomis, Felipe Sánchez-Martínez, Mikel L. Forcada

PII: S1568-4946(18)30668-9
DOI: https://doi.org/10.1016/j.asoc.2018.11.036
Reference: ASOC 5212

To appear in: Applied Soft Computing Journal

Received date : 19 January 2018
Revised date : 12 November 2018
Accepted date : 24 November 2018

Please cite this article as: M. Esplà-Gomis, F. Sánchez-Martínez and M.L. Forcada, Predicting
insertion positions in word-level machine translation quality estimation, Applied Soft Computing
Journal (2018), https://doi.org/10.1016/j.asoc.2018.11.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.asoc.2018.11.036

Highlights

• First approach in the literature tackling the problem of identifying insertion position in word-

level machine translation quality estimation.

• Results comparable to state-of-the-art systems when identifying deletion positions in word-

level machine translation quality estimation.

• Simple approach requiring less computational resources than best performing systems in the

state of the art.

• Evaluation carried out on publicly available data from evaluation campaigns, which allows a

fair comparison to state-of-the-art systems.

Highlights (for review)

Predicting insertion positions in word-level machine
translation quality estimation

Miquel Esplà-Gomis∗, Felipe Sánchez-Mart́ınez, Mikel L. Forcada

Dept. de Llenguatges i Sistemes Informàtics
Universitat d’Alacant

E-03690 St. Vicent del Raspeig (Spain)

Abstract

Word-level machine translation (MT) quality estimation (QE) is usually formu-

lated as the task of automatically identifying which words need to be edited

(either deleted or replaced) in a translation T produced by an MT system. The

advantage of estimating MT quality at the word level is that this information

can be used to guide post-editors since it enables the identification of the specific

words in T that need to be edited in order to ease their work. However, word-

level MT QE, as defined in the current literature, has an obvious limitation: it

does not identify the positions in T in which missing words need to be inserted.

To deal with this limitation, we propose a method which identifies both word

deletions and insertion positions in T . This is, to the best of our knowledge, the

first approach allowing the identification of insertion positions in word-level MT

QE. The method proposed can use any source of bilingual information —such

as MT, dictionaries, or phrase-level translation memories— to extract features

that are then used by a neural network to produce a prediction for both words

and insertion positions (gaps between words) in the translation T . In this paper,

several feature sets and neural network architectures are explored and evaluated

on publicly-available datasets used in previous evaluation campaigns for word-

level MT QE. The results confirm the feasibility of the proposed approach, as

∗Corresponding author
Email addresses: mespla@dlsi.ua.es (Miquel Esplà-Gomis), fsanchez@dlsi.ua.es

(Felipe Sánchez-Mart́ınez), mlf@dlsi.ua.es (Mikel L. Forcada)

Preprint submitted to Applied Soft Computing November 12, 2018

*Manuscript
Click here to view linked References

well as the usefulness of sharing information between the two prediction tasks

in order to obtain more reliable quality estimations.

Keywords: machine translation, quality estimation, word-level quality

estimation

1. Introduction

The use of machine translation (MT) systems to produce draft translations

that are then corrected (post-edited) to make them adequate for a specific pur-

pose has been shown to improve translation productivity [1, 2]. However, the

quality of the translations produced by an MT system may vary from one sen-5

tence to another. Some translations may be worth post-editing, while it would

be better to discard others and translate the source sentence from scratch or use

other translation technologies, such as translation memories [3, 4]. Identifying

the translations that are worth post-editing is, therefore, a key task as regards

obtaining actual gains in productivity and it is, consequently, necessary to be10

able to estimate the quality of the translations produced.

MT quality estimation (QE) was first defined by Specia et al. [5] who built

upon the closely-related task of MT confidence estimation [6]. MT QE is not

only relevant in that it tries to reduce the need to bother professional translators

or post-editors with useless translations, but also in that it may also be used to15

choose among several MT systems [7] for a given translation task, to estimate

the post-editing effort of a given MT output, and to budget a translation job.

Quality may be measured in terms of post-editing time, as the number of edit

operations needed to turn the MT output into an adequate translation, or by

using other related metrics, such as subjective effort metrics [8, 9]. In addition,20

when MT is used for assimilation, that is, for gisting, and the user of the trans-

lation has no knowledge of the source language (SL), quality labels may also be

used to provide information regarding the reliability of the translation into the

target language (TL).

Although most of the approaches for MT QE estimate the quality of the25

2

translations at the segment level, there are also approaches that estimate the

quality of individual words [6, 10]. The former provide a quality score for the

whole segment that can be used to decide whether or not it is worth post-editing

it. The latter detects the words in a given translation that need to be post-edited

in order to produce an adequate translation of the SL segment. This information30

may be used to guide post-editors in their job and help them focus on the parts

of the translation that need to be fixed. In addition, word-level MT QE may

facilitate the joint use of MT and translation memories since fuzzy match scores

[11] —which measure the similarity between the segment to be translated and

the source segment in a translation unit as the percentage of edit operations35

needed to transform one in the other— and percentages of words to post-edit

can be easily compared. Although fuzzy-match scores are computed on the

source language and the percentages of words to be post-edited are computed

on the target language, they are closely linked and they are, in computer-aided

translation, assumed to be so: the greater the difference between the source40

segments, the greater the number of edit operations it is necessary to perform

on the target segment.

Most of the approaches for word-level MT QE focus on identifying those

words in the machine-translated segment that need to be edited, that is, deleted

or replaced [12]. This information, although useful, is not enough to estimate45

the extent of post-editing needed. Being capable of identifying also insertion

positions would allow to predict more reliably the full sequence of edits. This

is specially relevant for professional translators because it allows the creation of

tools to better support the translation task. In this paper, we present a word-

based MT QE approach that is capable of both predicting the words that need50

to be deleted and the positions into which a sequence of one or more words

should be inserted. To deal with these two goals in a unified way, in this article

we model substitution as a deletion followed by an insertion. To the best of our

knowledge, this is the first approach which predicts insertion positions, that is,

gaps into which a word or sequence of words should be inserted.55

The approach presented here builds on previous work by the same authors

3

[13, 14] in which insertion positions were not detected and a slightly different

feature set was used. As in the original papers, here we use black-box bilingual

resources from the Internet. In particular, we combine online MT systems and

an online bilingual concordancer [15, 16] to spot sub-segment correspondences60

between the SL segment S and its machine translation T into the TL. This is

done by dividing both S and T into all possible (overlapping) sub-segments, or

n-grams, up to a certain maximum length. These sub-segments are then trans-

lated into the TL and the SL, respectively, by means of the bilingual resources

mentioned. These sub-segment correspondences are then used to extract several65

collections of features that are fed to a neural network (NN) in order to deter-

mine the words to be deleted and the word positions into which insertions are

required. One of the main advantages of this approach, when compared to the

other approaches described below, is that it uses simple string-level bilingual

information extracted from any available source. Obtaining this information70

directly from the Internet allows us to obtain quality estimations for the words

in T on the fly, without having to rely on more complex sources, such as prob-

abilistic lexicons, part-of-speech information or word nets.

We have experimented with three different NN architectures: In the first

one, the words to be deleted and the positions into which words need to be75

inserted are predicted by two independent NNs; the second architecture uses

the output of these two independent NNs for the words and insertion positions

in the vicinity of the word or insertion position about which a decision is made

as context; the third architecture uses a single NN to predict deletions and

insertion positions and the input features used are those related to the word80

or insertion position on which a decision is being made, along with those in its

vicinity.

The performance of this approach has been evaluated with two language

pairs, English–Spanish and English–German, using the publicly available datasets

4

for the shared task on word-level MT QE at WMT151 [17] and WMT162 [18].85

The experimental results confirm that our method, when compared to state-

of-the-art methods that only detect the words to be edited (either replaced or

removed) provides competitive results using considerably fewer features. In ad-

dition, our method is able to determine the insertion positions with an F1 score

of 39%, a precision of 44% and a recall of 36%.390

The remainder of the paper is organised as follows. The following section

provides an overview of related work on word-level MT QE and stresses the

main differences between these and our approach. Section 3 describes the fea-

tures used, whereas Section 4 describes the three NN architectures we have

evaluated. The experiments and results are then discussed in Section 5. Fi-95

nally, the paper ends with some concluding remarks and two appendices, one

showing the mathematical description of the NNs used, and another providing

an algorithmic description of the features used.

2. Related work

Some of the early work on word-level MT QE can be found in the context100

of interactive MT [19, 6, 20]. While in standard MT there is no interaction

between the user and the MT system during the translation process, in inter-

active MT the user drives the translation process by accepting or editing parts

of the translation, affecting in turn the way in which other parts of the seg-

ment are translated by the MT system. In addition, interactive MT systems105

may provide the user with different translation suggestions for the same SL seg-

1http://www.statmt.org/wmt15/quality-estimation-task.html
2http://www.statmt.org/wmt16/quality-estimation-task.html
3Word-level MT QE datasets are usually unbalanced, as there are more words that are

adequately translated than otherwise (See Table 1 for some examples). In most evaluation

scenarios, such as the shared tasks on MT QE at WMT15 and WMT16, word-level MT QE

is evaluated by focusing on the less frequent class (words to delete or, in our case, positions

into which insertions are required). This usually leads to relatively low scores; other metrics

would surely have less pessimistic interpretations.

5

ment. Gandrabur and Foster [19] obtain confidence scores for each TL word in

a given translation T of the SL segment S to help an interactive MT system to

choose among the translation suggestions to be presented to the user. Similarly,

Ueffing and Ney [20] obtain scores for each word in T , even though they are110

used to automatically decide which suggestions should be rejected. This second

approach incorporates the use of probabilistic lexicons as a source of bilingual

information.

Blatz et al. [6] introduced a more complex collection of features for word-

level MT QE, using semantic features based on WordNet [21], translation prob-115

abilities from IBM model 1 [22], word posterior probabilities, and alignment

templates [23] from statistical MT models. All the features employed are com-

bined to train a binary classifier which is then used to determine the confidence

scores.

Ueffing and Ney [10] evaluate several word-level confidence measures based120

on word posterior probabilities for word-level MT QE. They divide the features

used by their approach into two categories: those which are independent of the

MT system used for translation (black-box system-independent), as occurs with

the features used in this paper, and those which are obtained from the inner

workings of the statistical MT system used for translation (glass-box system-125

dependent). The latter features are obtained by comparing the output T of the

statistical MT system to the best n translation hypotheses it produces. Several

distance metrics are then used to check how often word tj , the word at position

j of T , is found in each translation hypothesis, and how far it is from position

j. These features rely on the assumption that if word tj appears in a similar130

position in a large number of translation hypotheses, then it is likely to be

correct and does not need to be post-edited. Biçici [24] proposes a strategy by

which to extend this kind of system-dependent features to what could be called

a system-independent scenario. His approach consists of employing feature-

decay algorithms [25] to choose parallel sentences from a parallel corpus, not135

necessarily the one on which the statistical MT system was trained, which are

close to the segment S to be translated. Once this parallel corpus has been

6

built, a new statistical MT system is trained and its internals are examined in

order to extract these features.

Most of the recent advances in MT QE have been made by participants in140

the shared tasks on QE at the different editions of the Workshop on Statistical

Machine Translation (WMT). Of the systems competing in WMT 2014 [9], it

is worth singling out the MULTILIZER approach for sentence-level MT QE

because it also uses other MT systems to translate S into the TL and T into the

SL.4 These translations are then used as a pseudo-reference and the similarity145

between them and the original SL and TL segments is computed and taken as

an indication of quality. This approach, and that of Biçici and Yuret [25], are

the most similar to the one we propose here because they also use other MT

systems for QE, although they translate whole segments, whereas we translate

sub-segments. Like the approach in this paper, MULTILIZER also combines150

several sources of bilingual information, while that of Biçici and Yuret [25] uses

only one MT system. In any case, neither MULTILIZER nor the approach by

Biçici and Yuret [25] work at the level of words and are able to predict insertion

positions.

More recently, Blain et al. [26] proposed the use of bilexical embeddings [27]155

to model the strength of relationship between SL and TL words for their use for

sentence-level and word-level MT QE. Bilexical embeddings are learned from SL

and TL embeddings and word-aligned parallel corpora. The results obtained for

word-level MT are below the baseline results for the WMT17 shared task [28].

With regard to the use of NNs, one of the first approaches using NNs was pre-160

sented by Kreutzer et al. [29] to the word-level QE shared task at WMT15 [17].

Kreutzer et al. [29] use a deep feed-forward NN to encode SL and TL words

into feature vectors using a lookup table that is tuned during training. The

representation obtained from this network is then combined with the collection

of baseline features provided by the shared-task organisers through linear com-165

4To the best of our knowledge, there is no public description of the internal workings of

MULTILIZER.

7

bination. Recently, Liu et al. [30] have extended this work by building synthetic

training data through the use of MT and a parallel corpus: they translate the

source sentences in the parallel corpus by means on an MT system and then use

the target sentences to automatically label the words in the MT output.

A more sophisticated approach was proposed by Martins et al. [31], who170

achieved the best results in the word-level QE shared task at WMT 2016 [18].

They combined a feed-forward NN with two recurrent NNs and used the predic-

tions they provided as additional features for a linear sequential model [32]. This

architecture has been extended [33] by adding the output of an automatic-post-

editing tool to the input of the linear sequential model, resulting in a noticeable175

performance improvement.

At WMT17 [28], another NN approach was presented that obtained results

comparable to, and in some cases even better than, those obtained by Martins

et al. [33]: the Postech system [34, 35]. This system builds on a three-level

stacked architecture trained in a multi-task fashion: at the first level there is180

a neural word prediction model trained on large-scale parallel corpora, at the

second level, a word-level MT QE system, and at the third level, a sentence-level

MT QE system.

Apart from the features used —Martins et al. [31] and Martins et al. [33]

use lexical and syntactic features, computed on both individual words and word185

bi-grams, whereas Kim et al. [34, 35] do not extract any features at all— our ap-

proach differs as regards the NN architecture. We do not use any recurrent unit;

instead, we define, in two of the NN architectures we have evaluated, a fixed-

length context window around the word or insertion position on which a decision

is being made. This architecture is easier to train (it requires less computational190

effort), it is easier to parallelise, and behaves similarly to a sliding-window or

convolutional architecture.

8

3. Features based on black-box sources of bilingual information

The method described in this paper is based on previous approaches by the

same authors [14, 13], which are in turn based on the work by Esplà-Gomis195

et al. [36], in which several online MT systems were used for word-level QE

in translation-memory-based computer-aided translation tasks. The objective

is for the method to be system-independent and able to use available online

bilingual resources for word-level MT QE. These resources are used on-the-fly

to detect relations between the original SL segment S and a given translation200

T in the TL as follows: first, all the (overlapping) sub-segments σ of S with

lengths in [1, L] are obtained and translated into the TL using the sources of

bilingual information (SBI) available; the same process is carried out for all the

overlapping sub-segments τ of T , which are translated into the SL. The result-

ing sets of sub-segment translations, MS→T = {(σ, τ)} and MT→S = {(σ, τ)},205

are then used to spot sub-segment correspondences between T and S. Note

that some SBI, such as phrase tables or bilingual concordancers, may provide

additional data such as the number of occurrences (frequency of translation) or

a probability; we can therefore also use the collections Mocc
S→T = {(σ, τ, φ)} and

Mocc
T→S = {(σ, τ, φ)} of sub-segment pairs and their scores φ (number of occur-210

rences or probabilities, depending on the resources available). In this section we

describe a collection of features designed to represent these relations for their

exploitation for word-level MT QE. We define two different sets of features: one

whose objective is to detect the words in a translation T to be deleted (Section

3.1), and another whose objective is to detect the insertion positions in T into215

which a word, or sequence of words, needs to be inserted (Section 3.2). Ap-

pendix B provides pseudo-code for the different feature sets described in this

section.

3.1. Features for word deletions

We define three collections of features to detect the words to be deleted: one220

taking advantage of the sub-segments τ that appear in T , Keepn(·), another that

9

uses the translation frequency with which a sub-segment σ in S is translated

as the sub-segment τ in T , Freqkeep
n (·), and a third that uses the alignment

information between T and τ and which does not require τ to appear as a

contiguous sub-segment in T , Alignkeep
n (·).225

3.1.1. Features for word deletions based on sub-segment pair occurrences (Keep)

Given a set of sub-segment translations M = {(σ, τ)}, that is, the union

of MS→T and MT→S , with |τ | ≤ L, obtained either when translating from SL

into TL or vice versa, the first collection of features, Keepn(·), is obtained by

computing the amount of sub-segment translations (σ, τ) ∈M with |τ | = n that230

confirm that word tj in T should be kept in the translation of S. We consider

that a sub-segment translation (σ, τ) confirms tj if σ is a sub-segment of S,

and τ is an n-word sub-segment of T that covers position j. This collection of

features is defined as follows:

Keepn(j, S, T,M) =
|{τ : (σ, τ) ∈ confkeepn (j, S, T,M)}|
|{τ : τ ∈ segn(T) ∧ j ∈ span(τ, T)}|

where segn(X) represents the set of all possible n-word sub-segments of segment235

X, and function span(τ, T) returns the set of word positions spanned by the sub-

segment τ in the segment T ; if τ is found more than once in T , it returns all the

possible positions spanned. Function confkeepn (j, S, T,M) returns the collection

of sub-segment pairs (σ, τ) that confirm a given word tj , and is defined as:

confkeepn (j, S, T,M) = {(σ, τ) ∈M ∩ (seg∗(S)× segn(T)) : j ∈ span(τ, T)}

where seg∗(X) is similar to segn(X) but without length constraints.5240

We shall illustrate this collection of features with an example. Let us consider

the Catalan segment S =ens van demanar que baixàrem el volum, an English

translation hypothesis T =they asked to make the volume go down, and the

reference translation R=they asked us to turn the volume down. According to

5Esplà-Gomis et al. [13] conclude that constraining only the length of τ leads to better

results than constraining both σ and τ .

10

the reference, the words make and go in the translation hypothesis should be245

deleted: go should simply be removed, whereas make should be removed and

the word turn should be inserted afterwards. In addition, the word us should

be inserted between the words asked and to. Finally, let us suppose that the

collection M of sub-segment pairs (σ, τ) is obtained by applying the available

sources of bilingual information in order to translate the sub-segments in S up250

to length 3 into English:

M ={(ens, us), (van, did), (demanar, ask), (que, that), (baixàrem, lower),

(el, the), (volum, volume), (ens van, they going us),

(van demanar, they asked), (demanar que, ask that), (que baixàrem, to

lower), (baixàrem el, lower the), (el volum, the volume),255

(ens van demanar, they asked us), (van demanar que, they asked to),

(demanar que baixàrem, ask to lower), (que baixàrem el, to lower the),

(baixàrem el volum, to turn the volume down)}

Note that the sub-segment pairs (σ, τ) in bold type are those that fully match

(thus confirming) the translation T ,6 while the rest may contradict some parts260

of T . The word asked (which corresponds to word position 2) is confirmed by

two sub-segment pairs: (van demanar, they asked), with length 2, and (van

demanar que, they asked to), with length 3. We therefore have that:

confkeep1 (2, S, T,M) = ∅

confkeep2 (2, S, T,M) = {(van demanar, they asked)}
265

confkeep3 (2, S, T,M) = {(van demanar que, they asked to)}

In addition, we have that the sub-segments τ in seg∗(T) covering the word asked

for lengths in [1, 3] are:

{τ : τ ∈ seg1(T) ∧ 2 ∈ span(τ, T)} = {asked}

6These sub-segment pairs are those defined as M ∩ (seg∗(S) × segn(T)) in function

confkeepn (·).

11

{τ : τ ∈ seg2(T) ∧ 2 ∈ span(τ, T)} =

{they asked , asked to}

{τ : τ ∈ seg3(T) ∧ 2 ∈ span(τ, T)} =

{they asked to, asked to make}

The resulting Keepn(·) features for the word volume are, therefore:270

Keep1(2, S, T,M) =
|{τ : (σ, τ) ∈ confkeep1 (2, S, T,M)}|
|{τ : τ ∈ seg1(T) ∧ 2 ∈ span(τ, T)}| =

0

1

Keep2(2, S, T,M) =
|{τ : (σ, τ) ∈ confkeep2 (2, S, T,M)}|
|{τ : τ ∈ seg2(T) ∧ 2 ∈ span(τ, T)}| =

1

2

Keep3(2, S, T,M) =
|{τ : (σ, τ) ∈ confkeep3 (2, S, T,M)}|
|{τ : τ ∈ seg3(T) ∧ 2 ∈ span(τ, T)}| =

1

2

3.1.2. Features for word deletions based on sub-segment pair occurrences using

translation frequency (Freqkeep
n)

The second collection of features uses the number of occurrences of the sub-275

segment pairs in Mocc = {(σ, τ, φ)}. This information is not available for MT,

but it is available for the bilingual concordancer we have used for the experi-

ments (see Section 5.2). The number of occurrences of sub-segment pair (σ, τ)

can be used to determine how often σ is translated as τ and, therefore, how

reliable this translation is. We define Freqkeep
n (·) as:280

Freqkeep
n (j, S, T,Mocc) =

∑

∀(σ,τ,φ)∈confkeepn (j,S,T,Mocc)

occ(σ, τ,Mocc)∑

∀(σ,τ ′)∈Mocc

occ(σ, τ ′,Mocc)

where function occ(σ, τ,Mocc) returns the number of occurrences φ in Mocc for

the sub-segment pair (σ, τ). Note that each term in Freqkeep
n (·) is equivalent to

the probability p(τ |σ) used in phrase-based statistical MT where Mocc would

act as a phrase table.

To continue with the running example, and assuming that we have a sub-285

segmental translation memory which contains 99 occurrences of the sub-segment

van demanar translated as they asked, 11 occurrences in which it is translated

12

as they demanded, and 10 in which it is translated as they inquired, the feature

using these counts for sub-segments of length 2 would be:

Freqkeep
2 (2, S, T,M) =

99

99 + 11 + 10
=

33

40

3.1.3. Features for word deletions based on word alignments of partial matches290

(Alignkeep
n)

The third collection of features takes advantage of partial matches, that is,

of sub-segment pairs (σ, τ) in which τ does not appear as is in T . Given this

condition, only resources MS→T translating from SL into TL can be used, since

those translating from TL into SL would always contain any τ sub-segment295

appearing in T . This collection of features is defined as:

Alignkeep
n (j, S, T,M, e) =

∑

∀τ∈segs edopn(j,S,T,M,e)

|LCS(τ, T)|
|τ | (1)

where LCS(X,Y) returns the word-based longest common sub-sequence between

segments X and Y , and segs edopn(j, S, T,M, e) returns the set of sub-segments

τ of length n from M that are a translation of a sub-segment σ from S and in

which, after computing the LCS with T , the j-th word tj is assigned the edit300

operation e:7

segs edopn(j, S, T,M, e) =

{(τ : (σ, τ) ∈M ∧ σ ∈ seg∗(S) ∧ |τ | = n ∧ editop1(tj , T, τ) = e}
(2)

where editop1(tj , T, τ) returns the edit operation assigned to tj and e is either

delete or match. If e = match the resulting set of features provides evidence in

favour of keeping the word tj unedited, whereas when e = delete it provides

evidence in favour of removing it.305

In the running example, there are three sub-segment pairs (σ, τ) for which the

word asked has editop1(tj , T, τ) = match with T =they asked to make the volume

7Note that the sequence of edit operations needed to transform X in Y is obtained as

a by-product of the computation of LCS(X,Y); these operations are insertions, deletions or

matches (when the corresponding word does not need to be edited).

13

go down: one sub-segment pair with length 2, (van demanar, they asked), and

two sub-segment pairs with length 3, (van demanar que, they asked to) and

(ens van demanar, they asked us). With the exception of the last one, all these310

sub-segments are fully matched in T ; the last one has two matching words, they

and asked. Consequently, the values of features Alignkeep
n (j, S, T,M, match) for

the word asked are:

Alignkeep
1 (2, S, T,M, match) =

|∅|
|asked | = 0

Alignkeep
2 (2, S, T,M, match) =

|they asked |
|they asked | =

2

2

Alignkeep
3 (2, S, T,M, match) =

|they asked |
|they asked us| +

|they asked to|
|they asked to| =

5

3

In addition, there are two sub-segment pairs (σ, τ) for which the word asked

has editop1(tj , T, τ) = delete: (ens van, they going us) and (demanar que315

baixàrem, ask to lower), both with length 3. Therefore, the value of features

Alignkeep
n (j, S, T,M, delete) for the word asked with n ∈ [1, 2] is 0, while for

n = 3 its value is:

Alignkeep
3 (2, S, T,M, delete) =

|they |
|they going us| +

|to|
|ask to lower | =

2

3

Note that feature Alignkeep
n (·) is the only one to provide evidence that a word

should be deleted. For instance, in the running example, the word go needs to320

be deleted; in the case of this word, all features but Alignkeep
n (·) take the value 0.

For edit operation delete there is one sub-segment pair that provides evidence

that the word go should be deleted: (baixàrem el volum, to turn the volume

down).

The three collections of features described so far, Keepn(·), Freqkeep
n (·), and325

Alignkeep
n (·), are computed for tj for all the values of sub-segment length n ∈

[1, L]. Features Keepn(·) and Freqkeep
n (·) are computed for the collection of sub-

segment pairs M obtained by translating from SL into TL (MS→T), and the

collection of sub-segment pairs obtained by translating in the reverse manner

14

(MT→S). As a result, 2L features are computed for Keepn(·) and 2L more for330

Freqkeep
n (·). Alignkeep

n (·) uses only MS→T ; it is, however, computed twice: once

for the edit operation match, and once for the edit operation delete. This

brings the total to 6L features per word tj .

3.2. Features for insertion positions

In this section, we describe three collections of features, which are based on335

those described in Section 3.1 for word deletions, and are designed to detect

insertion positions. The main difference between them is that the former apply

to words, while the latter apply to gaps; we shall refer to the gap after word tj

as γj .
8

3.2.1. Features for insertion positions based on sub-segment pair occurrences340

(NoInsert)

The first collection of features, NoInsertn(·), based on the Keepn(·) features

defined in Section 3.1.1 for word deletions, is defined as follows:

NoInsertn(j, S, T,M) =

|{τ : (σ, τ) ∈ confnoinsn (j, S, T,M)}|
|{τ : τ ∈ segn(T) ∧ j ∈ span(τ, T) ∧ j + 1 ∈ span(τ, T)}|

where function confnoinsn (j, S, T,M) returns the collection of sub-segment pairs

(σ, τ) that confirm a given insertion position γj , and is defined as:345

confnoinsn (j, S, T,M) =

{(σ, τ) ∈M ∩ (seg∗(S)× segn(T)) : [j, j + 1] ⊂ span(τ, T)}

NoInsertn(·) accounts for the number of times that the translation of sub-

segment σ from S makes it possible to obtain a sub-segment τ that covers

the gap γj , that is, a τ that covers both tj and tj+1. If a word is missing in

position γj , one would expect to find fewer sub-segments τ that cover this gap,

therefore obtaining low values for NoInsertn(·), while if there is no word missing350

8Note that the index of the first word in T is 1, and gap γ0 corresponds to the space before

the first word in T .

15

in this position of T , one would expect more sub-segments τ to cover the gap,

therefore obtaining values of NoInsertn(·) closer to 1. In order to be able to

identify insertion positions before the first word or after the last word, we use

imaginary sentence boundary words t0 and t|T |+1, which can also be matched,9

thus allowing us to obtain evidence for gaps γ0 and γ|T |.355

In the running example, gap γ1 between the words they and asked is covered

by two sub-segment pairs: (van demanar, they asked) and (van demanar que,

they asked to). The values of feature NoInsertn(1, S, T,M) for n ∈ [2, 3] are,

therefore:10

NoInsert2(1, S, T,M) =
|{they asked}|
|{they asked}| =

1

1

NoInsert3(1, S, T,M) =
|{they asked to}|
|{they asked to}| =

1

1

3.2.2. Features for insertion positions based on sub-segment pair occurrences360

using translation frequency (Freqnoins
n)

The same adaptation can be carried out with the Freqkeep
n (·) feature col-

lection defined in Section 3.1.2 to obtain the equivalent feature collection for

insertion positions:

Freqnoins
n (j, S, T,Mocc) =

∑

∀(σ,τ)∈confnoinsn (j,S,T,Mocc)

occ(σ, τ,Mocc)∑
∀(σ,τ ′)∈Mocc occ(σ, τ ′,Mocc)

As previously described in the example for feature Freqkeep
n (·), the running365

example assumes a source of bilingual information which contains 99 occurrences

of sub-segment van demanar translated as they asked, 11 occurrences in which it

is translated as they demanded, and 10 in which it is translated as they inquired ;

the feature that uses these frequencies for gap γ1 is:

Freqnoins
2 (1, S, T,M) =

99

99 + 11 + 10
=

33

40

9These boundary words are annotated in M when this resource is built.
10Note that sub-segments shorter than 2 words cannot be used to identify insertion positions.

16

3.2.3. Features for insertion positions based on word alignments of partial matches370

(Alignnoins
n)

Finally, the collection of features Alignkeep
n (·) defined in Section 3.1.3 for

word deletions can be easily repurposed to detect insertion positions by setting

the edit operation e in Eq. (1) to match and insert and redefining Eq. (2) as

segs edopn(j, S, T,M, e) = {(τ : (σ, τ) ∈M ∧ |τ | = n ∧ editop2(tj , τ, T) = e}

where function editop2(tj , τ, T) is analogous to editop1(tj , τ, T) except for the375

fact that it computes the LCS between τ and T , rather than the other way

round.11 We shall refer to this last collection of features for insertion positions

as Alignnoins
n (·).

In the running example, the values for features Alignnoins
n (j, S, T,M, match)

are:380

Alignnoins
2 (1, S, T,M, match) =

|they asked |
|they asked | =

2

2

Alignkeep
3 (1, S, T,M, match) =

|they asked |
|they asked us| +

|they asked to|
|they asked to| =

5

3

In this case, there is no sub-segment τ for which editop2(t1, T, τ) = insert.

However, there is one sub-segment pair that indicates that the word turn should

be added after the word make: (σ, τ)=(baixàrem el volum, to turn the volume

down):

Alignnoins
5 (4, S, T,M, insert) =

|to the volume down|
|to turn the volume down| =

4

5

The collections of features for insertion positions, NoInsertn(·), Freqnoins
n (·)385

and Alignnoins
n (·), are computed for gap γj for all the values of sub-segment

length n ∈ [2, L]. As in the case of the feature collections employed to de-

tect deletions, the first two collections can be computed by using both MS→T

and MT→S , while the latter can only be computed using MS→T for the edit

operations insert and match. This yields 6(L− 1) features in total per gap γj .390

11It is worth noting that LCS(X,Y) = LCS(Y,X), but the sequences of edit operations

obtained as a by-product are different in each case.

17

4. Neural network architecture for word-level MT QE

The features described above are used to predict the words to be deleted and

the insertion positions into which insertions are required using NNs. We use NNs

instead of other machine learning approached because NNs are suitable for non-

linear classification problems [37, Chapter 6] and a NN with a single hidden layer395

and a finite number of neurons can approximate any continuous function [38].

In addition, NNs allow us to combine information about words and insertion

positions through more complex architectures, as shown in Sections 4.2 and 4.3,

and train them together. In any case, we have tried with alternative machine-

learning approaches; in particular, with extremely randomised trees [39] and400

non-linear support vector machines [40]. For extremely randomised trees we

used as many trees as twice the number of features, and for non-linear support

vector machines we used a radial basis function kernel with a kernel coefficient

of 1 divided by the number of features. In both cases the results obtained where

significantly lower than those obtained with NNs.405

We have tried three different predictor architectures, which are explained

below. All the NNs proposed have the objective of using relatively simple ar-

chitectures for usability. In all cases, a special token is introduced to mark

the beginning of the machine translation output, so that insertion positions are

always found after a token.410

4.1. Two independent neural networks

The simplest NN architecture consists of having two independent feed-forward

networks, one for predicting whether the word tk at position k needs to be

deleted, and another to predict whether insertions are required at the gap γk

after tk. Figure 1 depicts the architectures of these two NNs in which features415

for word deletions (fk) and for insertion positions (gk) are used to feed each

network.

Each network has a single hidden layer consisting of M and N units, respec-

tively. This results in FM +GN + 2M + 2N + 2 parameters between the two

18

f1k

f2k

f3k

fFk

... ...

yk

(a) Network employed to predict whether

the k-th word needs to be deleted.

g1k

g2k

g3k

gGk

... ...

zk

(b) Network employed to predict whether

insertions are required after the k-th

word.

Figure 1: Two independent neural networks, one used to predict the words to be deleted

and another used to predict the gaps into which insertions are required. Inputs fk and gk

represent the features employed for word deletions and insertion positions, while yk and zk

are the output (decision) nodes for each network.

networks, where F and G are the number of features that inform the network420

used to predict deletions and the number of features used as input to the net-

work that predicts insertions, respectively. Both F and G include an additional

binary input feature that will be used by the architecture described in sections

4.2 and 4.3.12 Note that k takes values in [1, |T |] for word deletions while it

takes values in [0, |T |] for insertion positions in order to make it possible to425

identify insertions before the first word of T .

4.2. Cascaded revision of prediction using context

The two networks described above do not take the predictions for neigh-

bouring words and insertion positions into account. We therefore propose two

additional feed-forward networks which revise these isolated predictions by tak-430

12In the experiments with the architecture defined in Section 4.1 the value of these additional

input features is set to zero.

19

ing into account the predictions made for the surrounding words and insertion

positions. These additional networks, henceforth cascaded-revision NNs, take

as input the outputs of the two independent networks shown in Figure 1. In

particular, they use the outputs for the k-th word and insertion position, yk and

zk respectively, along with those in the vicinity, to produce revised predictions435

y′k and z′k.

To handle the situation in which revising the prediction for words and in-

sertion positions at the beginning or the end of a sentence would require as a

context predictions for non-existing words and insertion positions, we introduce

additional binary input features. These input features are set to zero when440

the associated input neuron for yk or zk refers to an existing word or insertion

position, and to one otherwise.

Figure 2 depicts the architecture of these two additional networks using a

single hidden layer with P and Q units, respectively, and C context positions on

the left and on the right.Notice that the binary input features mentioned above445

are not shown in the figure for the sake of clarity; there is one such feature per

input context neuron.

The addition of the cascaded-revision NNs signifies that the number of pa-

rameters to estimate calculated in Section 4.1 (FM + GN + 2M + 2N + 2) is

increased by 4P + 4Q+ 4CP + 4CQ+ 2.450

We have tried two different ways of training the NN that results from using

the output neurons of the independent NNs depicted in Figure 1 as input to the

NNs shown in Figure 2: one that trains the independent and cascaded-revision

NNs in two steps and another that trains them together in a single step.

Two-step training. This training strategy first trains the independent NNs de-455

scribed in Section 4.1 and then uses their outputs as the input to the cascaded-

revision NNs to produce the revised predictions. This training process is fairly

simple and only has to train four feed-forward NNs in isolation: two independent

NNs and two cascaded-revision NNs.

In the case of the words and insertion positions at the beginning or the end460

20

of a sentence, the right or left context may not exist and we set these predictions

to 0.5.

One-step training. This second training procedure trains all the NNs simul-

taneously and is aimed at improving the results by allowing the independent

NNs to benefit from the feedback provided by the cascaded-revision NNs. For465

a fair comparison, two preventive decisions were made. First, parameter ty-

ing was used between the different instances of the independent NNs in order

to have the same number of parameters as in the two-step training procedure

explained above. Secondly, we followed a multi-task approach, in which the

independent NNs were trained to predict the actual estimation of each position470

in [k − C, k + C] and the cascaded-revision NNs were trained to predict the

actual predictions for position k; the same weight was given to each loss func-

tion. Both training strategies were, therefore, provided with exactly the same

information during training. As in the case of two-step training, context may

not exist for word and insertion positions at the beginning or the end of the475

sentence; in those cases we use feature vectors ~fi and ~gi with all their values

set to 0.0, except for the binary input feature introduced in Section 4.1, whose

value is set to one. These binary features are used to flag non-existing word or

insertion positions in the range [k − C, k + C], otherwise they are set to zero.

4.3. Single neural network for joint prediction of deletions and insertions480

The NN proposed in Section 4.2 takes context into account by reviewing a

sequence of predictions made by the independent NNs defined in Section 4.1.

This is done by using these predictions as the input of an NN with a hidden layer

and an output layer that retrieves the reviewed predictions. Here, we propose

a slightly different NN in which, rather than obtaining predictions with the485

independent NNs and then reviewing them, the hidden layers of the independent

NNs are directly connected to the hidden layer of the revision NN. Figure 3

depicts this architecture; as will be noted, each feature vector ~fk and ~gk is

used as the input for the hidden layer of the corresponding independent NN

21

yk−C

zk−C

yk−1

...

zk−1

yk

zk

yk+1

zk+1

yk+C

...

zk+C

...

y′k

(a) Network for cascaded revision of pre-

diction made for the k-th word.

yk−C

zk−C

yk−1

...

zk−1

yk

zk

yk+1

zk+1

yk+C

...

zk+C

...

z′k

(b) Network for cascaded revision of pre-

diction made for the word position after

the k-th word.

Figure 2: Two neural networks for cascaded revision of the predictions made by the isolated

NNs shown in Figure 1 by using the context of 2C words and word positions around the word,

or word position, on which a decision is being made. In this case, input values yk and zk

correspond to the outputs of the NN in Figure 1 and y′k and z′k are the cascaded-reviewed

output values.

22

in Section 4.1, and the neurons in each of these hidden layers are connected490

to a second hidden layer. Finally, a single output layer is added with two

neurons, one that predicts deletions and another that predicts insertions. It is

worth mentioning that the parameters of the hidden layers of the independent

NNs are shared, thus reducing the number of parameters to be learned. As in

Section 4.2, for the words and insertion positions to the left of the beginning495

or to the right of the end of a sentence, we use feature vectors ~fi and ~gi with

all their values set to 0.0, except for the binary input feature introduced in

Section 4.1, whose value is set to one.

The number of parameters of this NN is 2MCH + 2NCH +MH +NH +

FM+GN+3H+M+N+2, where F and G are, respectively, the total number500

of input features for each word and for each insertion position (including the

additional binary input neurons), M and N are the number of hidden layers in

the NN that predict word deletions and insertion positions, respectively, H is

the number of units in the second hidden layer and C is the amount of context

to be used on each side of the word and insertion position for which quality is505

estimated.

5. Experiments and results

We have evaluated the method for word-level MT QE described in the pre-

vious sections using the datasets provided for the shared tasks on MT QE at

the 2015 (WMT15; [17]) and 2016 (WMT16; [18]) editions of the Workshop on510

Statistical Machine Translation. In what follows we describe these two datasets

and how they were used to identify the words to be deleted and the word posi-

tions into which insertions are required (see Section 5.1), the sources of bilingual

information used (see Section 5.2), how the training of the different neural net-

works described in Section 4 was performed (see Section 5.5) and the results515

obtained (see Section 5.6).

23

f1k−C
f2k−C

fFk−C

...

g1k−C
g2k−C

gGk−C

...
f1k
f2k

fFk

...

g1k
g2k

gGk

...

f1k+C
f2k+C

fFk+C

...

g1k+C
g2k+C

gGk+C

...
...

...

...
...

...
...

...
...

...

yk

zk

Figure 3: A single neural network that predicts the words to be deleted and the word positions

into which insertions are required by using the context of a fixed number of tokens determined

by C around the word and the word position for which a decision is being made. Inputs fk

and gk represent the features for word deletions and insertion positions, while yk and zk are

the output (decision) nodes.

24

5.1. Datasets

The WMT15 and WMT16 datasets consist of a collection of segments S in

English, their corresponding machine translations T into Spanish in the case of

WMT15 and into German in the case of WMT16, obtained through MT, and520

their post-edited versions R.

The original datasets label each word in every translation T as GOOD

(match), when it is properly translated, or as BAD (delete in our experiments),

when post-editing is required (the word must either be removed or replaced);

however, no information is provided as regards the insertion positions. In or-525

der to evaluate our method for predicting insertion positions, we computed the

sequence of edit operations required to convert T into R using the LCS algo-

rithm [41] and subsequently used it to determine the word positions into which

insertions were required.

Table 1 describes the amount of segments and words in each of the three530

portions of the two datasets (training, development and test), along with the

amount of words to be deleted and the word positions into which insertions

are required. As can be seen, the amount of insertions is slightly lower than

the number of word deletions for all datasets: in general, about 19% of the

words need to be deleted, and about 16% of them require an insertion after535

them. With regard to the number of insertion positions, Table 2 provides more

detailed information by dividing them into two classes: those that are the result

of a replacement (one deletion plus an insertion) and those that are independent

(one or more words are inserted). The results shown in this table indicate that

about 30% of the insertion positions in the datasets are independent while the540

rest are the result of a replacement. This accounts for the relevance of the

problem tackled in this work, since these independent insertions would never

have been detected by any of the approaches in the literature.

Sequence of edits. The sequence of edits from which the insertion positions

are derived is obtained as a by-product of the computation of the word-level545

LCS between T , the MT output, and its post-edited translation R. The edit

25

Total number

Dataset segments words deletions insertions

WMT’15

training 11,272 257,879 49,321 (19%) 38,246 (16%)

dev. 1,000 23,098 4,455 (19%) 3,405 (16%)

test 1,817 40,883 7,720 (19%) 6,010 (16%)

WMT’16

training 12,000 210,958 45,162 (21%) 36,217 (19%)

dev. 1,000 19,487 3,809 (20%) 3,069 (17%)

test 2,000 34,531 6,668 (19%) 6,010 (15%)

Table 1: Number of segments, number of words, number of word deletions and number of

insertions in each portion of the two datasets used in the experiment.

Dataset independent insertions insertions tied to deletions

WMT’15

training 10,212 (27%) 28,034 (73%)

dev. 884 (21%) 3,405 (79%)

test 1,606 (32%) 2,521 (68%)

WMT’16

training 12,062 (33%) 24,155 (67%)

dev. 1,062 (34%) 2,007 (66%)

test 1,948 (24%) 6,010 (76%)

Table 2: Number of insertions that are independent vs. number of insertions that are the

result of a replacement (a deletion plus an insertion).

26

operations that can be obtained with this algorithm are deletions and insertions,

unlike with the edit distance algorithm [42] in which substitutions are also taken

into account. The edition sequences obtained may, in some cases, be ambiguous,

given that the substitution of one word for another may be modelled as an550

insertion followed by a deletion or as a deletion followed by an insertion (in

our experiments, we chose the second option); however, as all segments in the

datasets are processed in the same manner, this will have no effect on the results.

With regard to the detection of insertion positions, and given that the ob-

jective of our method is only to detect the positions in T into which words need555

to be inserted, and not the exact number of words to be inserted, a sequence

of insertions is simplified to just one insertion. For example, for T =The Euro-

pean Association for the Automatic Translation is noncommercial organisation

and R =The European Association for Machine Translation is a nonprofit or-

ganisation, the sequence of editions would be (match, match, match, match,560

delete, delete, insert, match, match, delete, insert, match), in which the

last insert refers to the insertion of two words, a and nonprofit.

5.2. Sources of bilingual information

We have used two different kinds of sources of bilingual information: MT, a

less informative bilingual resource (M), and a bilingual concordancer, a more in-565

formative resource that provides the number of occurrences of each sub-segment

translation (Mocc). We used three MT systems that are freely available on the

Internet: Apertium [43], Lucy,13 and Google Translate.14 While Google Trans-

late was used for both datasets, Lucy was used only for WMT16 and Apertium

for WMT15. Two MT systems (of different types) were, therefore, used for each570

dataset.

The bilingual concordancer used is Reverso Context;15 which provides, for

a given SL sub-segment, the collection of TL translation alternatives, together

13http://www.lucysoftware.com/english/machine-translation/
14http://translate.google.com
15http://context.reverso.net/

27

with the number of occurrences of the sub-segment pair in the translation mem-

ory. The sub-segment translations obtained from this source of information are575

more reliable than those obtained from MT, since they are extracted from man-

ually translated texts (although some sub-segments may be wrong owing to

alignment errors). Its main weakness is, however, its lack of source coverage:

although Reverso Context uses a large translation memory, no translation can be

obtained for those SL sub-segments not found in it. Moreover, the sub-sentential580

translation memory contains only those sub-segment translations with a mini-

mum number of occurrences. On the contrary, MT systems will always produce

a translation, but it may be wrong or contain untranslated out-of-vocabulary

words. We have combined these complementary sources of bilingual information

to improve the performance of the approaches for word-level MT QE proposed.585

It is worth noting that other resources, such as phrase tables from phrase-based

statistical MT systems, could be used as alternative bilingual resources.

In our experiments, we computed the features described in Section 3 sepa-

rately for both sources of information. It is worth mentioning again that the

features based on translation occurrences cannot be obtained for MT. The value590

of the maximum sub-segment length L used was set to 5 for both languages.

This value was chosen after a set of preliminary experiments in which the value

of L was initialised to 1 and incremented until the performance of the indepen-

dent NNs described in Section 4.1 on the WMT15 dataset converged. In fact

the difference between the results with L = 4 and L = 5 were not statistically595

significant, even though those with L = 5 were slightly higher.

5.3. Evaluation

The evaluation was carried out by following the guidelines provided for each

shared task to ease the comparison with the state of the art. In both WMT15

and WMT16, word-level MT QE is tackled as a binary-classification problem,600

signifying that standard precision, recall, and F1-score metrics are used for

evaluation. In WMT15, the main evaluation metric was the F1 score for the

least frequent class in the dataset, that is the F1 measure for the BAD class

28

(or delete class, as it is denominated in this paper). Conversely, in WMT16,

the main evaluation metric was the product of the F1 score of the two classes:605

GOOD and BAD (match and delete in our case). Although in Section 5.6 we

provide all the metrics mentioned above, we used these two main metrics to

tune the corresponding binary classifiers (see Section 5.5 for a description of the

method used), thus enabling the results obtained for word deletions to be easily

compared with those obtained by the approaches participating in these shared610

tasks.

To compare our approach with other state-of-the-art methods, we took the

best performing systems in the word-level MT QE shared tasks in WMT15

and WMT16 as a reference; these are the works by Esplà-Gomis et al. [13]

and Martins et al. [31], respectively, and focus solely on the task of identifying615

the words to be deleted or replaced (words tagged as BAD). Given the absence

of previous approaches concerning the identification of insertion positions, we

defined a dumb baseline implementing the null hypothesis. This is a classifier

that assigns a label to each word and insertion position in a weighted-random

fashion, using the a priori probability of each class in the dataset.620

5.4. Baseline features

The organisers of the shared tasks on word-level MT QE at WMT15 [17]

and WMT16 [18] provided the participants with a collection of baseline features

obtained with the QuEst++ tool [44]. Some of these features were included

in the experiments to evaluate whether any improvement could be obtained625

when combining them with the features described in Section 3.16 The baseline

features included in the evaluation are the following:

• Syntactic features:

16Some features, such as the immediate neighbour words to that for which predictions are

produced, require a large amount of features to be represented, such as one-hot representations

or word embedding. These features were discarded for the sake of the simplicity of the models

built.

29

– Is the token a stop word?

– Is the token a punctuation sign?630

– Is the token a proper noun?

– Is the token a digit?

– Part of speech of the current token

– Part of speech of the SL token aligned with the current token

• Semantic features:635

– Number of alternative meanings of the current token (only available

for WMT15 datasets)

– Number of alternative meanings of the SL token aligned with the

current token (only available for WMT15 datasets)

• Language model (LM) features:640

– Longest n-gram seen by the TL LM with the current token as the

last word

– Longest n-gram seen by the TL LM with the current token as the

first word

– Backoff probability for the shortest n-gram not seen by the TL LM645

with the current token as the last word

– Backoff probability for the shortest n-gram not seen by the TL LM

with the current token as the first word

– Backoff probability for the shortest n-gram not seen by the TL LM

with the current token as the middle word650

– Longest n-gram seen by the SL LM with the SL token aligned to the

current TL token as the last word

– Longest n-gram seen by the SL LM with the SL token aligned to the

current TL token as the first word

30

• Other features:655

– Number of tokens in the SL segment

– Number of tokens in the TL segment

– Ratio between the number of tokens in the SL and TL segments

– Does the token appear in a given pseudo-reference? (only available

for WMT15 datasets)660

Note that all the features included in this list are either binary or numeric,

with the exception of the part of speech of the SL and TL tokens, which are

categorical. We dealt with these features by converting them into one-hot rep-

resentations. The length of these one-hot representations was 50 and 57 for

English–German, and 59 and 67 for English–Spanish. The difference in the665

number of features needed to encode part-of-speech tags together with the fact

that the organisers of WMT provided some features in WMT15 that were not

available for WMT16 (see the list above) lead to different amounts of baseline

features for each language pair: 121 for English–German and 143 for English–

Spanish.670

5.5. Neural network parameters

Different configurations were tried using different numbers of neurons and

hidden layers, optimisation algorithms, loss and activation functions and dropout

values. Those producing the best results with the minimum number of param-

eters to be learned are described in this section.675

The NNs described in Section 4 were implemented by using the Keras li-

brary [45].17 Every NN contained in its hidden layer as many rectified linear

units (ReLU; Nair and Hinton [46]) as the number of nodes in the input layer. A

sigmoid activation function was chosen for the output node. The Adam [47] al-

gorithm was used to optimise the binary cross-entropy cost function. A dropout680

17http://www.keras.io

31

of 20% was similarly set in order to minimise the risk of overfitting. The devel-

opment set of each dataset was used to compute the error after each training

epoch; the training process was stopped after 10 epochs without any improve-

ment on the development set. The training was repeated 10 times for each NN

with random uniform initialisations using the method defined by He et al. [48];685

the model used was the one which provided the lowest error on the development

set. After training, a thresholding strategy [49] was used to choose the threshold

applied to the output node of each NN that provided the best results for the

main evaluation metric: the F1 score of the least frequent class in WMT15, and

the product of the F1 scores for both classes in WMT16. This tuning was also690

carried out on the development set by means of a line search.

5.6. Results and discussion

The following section contains the results obtained for each of the architec-

tures proposed in Section 4 and compares the impact of taking context into

account when predicting word deletions and insertions positions.695

5.6.1. Predicting word deletions and insertion positions independently

Tables 3 and 4 show the results obtained when using two independent neural

networks (see Section 4.1) to identify word deletions and insertion positions,

respectively, both for English–Spanish and English–German. Table 3 includes

the results of the approach described in Section 4.1, both when using only700

the baseline features described in Section 5.4 (baseline), the combination of

features based on sources of bilingual information described in Section 3 (SBI),

and when combining both types of features (SBI+baseline). The same NNs

were used only with the baseline features in order to confirm the improvement

of the combination of both feature sets. In addition to this, the results obtained705

with the different combinations of features are compared to both the results

obtained by the best performing systems in both editions of the shared task

and the null hypothesis described in Section 5.3 (the approach that uses only

the a priori probabilities for each class). Note that the results in bold type are

32

Approach Class Precision Recall F1-score F1-product

English–Spanish

Null hypothesis
keep 81.1% 50.0% 61.9%

14,8%
delete 18.9% 50.1% 23.9%

baseline
keep 88.2% 45.5% 60.0%

21.8%
delete 24.0% 73.9% 36.2%

SBI
keep 88.0% 70.8% 78.5%

33.2%
delete 32.8% 59.5% 42.3%

SBI+baseline
keep 88.1% 76.9% 82.1%

35.6%
delete 35.7% 55.2% 43.4%

WMT15 best
keep 89.1% 69.5% 78.1%

33.6%
delete 32.6% 63.6% 43.1%

English–German

Null hypothesis
keep 61.8% 80.6% 49.9%

delete 27.8% 19.3% 50.1%
25,0%

baseline
keep 87.2% 81.0% 84.0%

delete 38.8% 50.4% 43.9%
36.8%

SBI
keep 89.5% 64.2% 74.8%

delete 30.6% 67.8% 42.1%
31.5%

SBI+baseline
keep 87.6% 87.6% 87.6%

delete 48.2% 48.4% 48.3%
42.3%

WMT16 best
keep 90.1% 86.8% 88.5%

delete 52.3% 60.3% 56.0%
49.6%

Table 3: Results obtained for the task of identifying word deletions for English–Spanish

and English–German. The table includes the results obtained when using an independent

NN focused only on this task (see Section 4.1) and fed with the SBI features described in

Section 3, the same NN using only the baseline features provided by the organisers of the

MTQE shared task at WMT, the combination of both feature sets, the best performing

systems at WMT15 [17] and WMT16 [18], and the null-hypothesis baseline.

33

Approach Class Precision Recall F1-score F1-product

English–Spanish

Null hypothesis
no insert 86.0% 50.0% 63.2%

insert 14.1% 50.2% 22.0%
13.9%

SBI
no insert 90.5% 68.5% 78.0%

insert 22.5% 55.8% 32.1%
25.0%

English–German

Null hypothesis
no insert 75.5% 50.5% 60.2%

insert 24.6% 50.2% 33.1%
19.9%

SBI
no insert 79.4% 78.2% 78.8%

insert 36.0% 37.6% 36.8%
29.0%

Table 4: Results obtained for the task of identifying insertion positions for English–Spanish

and English–German datasets. The table includes the results obtained when using an inde-

pendent NN focused only on this task (see Section 4.1) and the null-hypothesis baseline.

34

those that outperform those obtained by the rest of approaches with statistical710

significance of p ≤ 0.05. Statistical significance was evaluated by using the

approximate randomisation strategy described by Yeh [50].

As will be noted, our approach outperforms the null hypothesis in the case

of both datasets and, in both cases, the approach that combines the SBI and the

baseline features is better than that which uses only the SBI and the baseline715

features separately (in the case of word deletions, for which baseline features are

available). In general, the results obtained by the SBI feature set is quite similar

for English–Spanish and English–German. However, the baseline features lead

to much better results in the case of English–German; this explains why the

SBI+baseline combination for English–German leads to slightly better results720

than the same combination for English–Spanish. Focusing on the latter language

combination, the results obtained for English–Spanish are comparable to those

obtained by the best performing system in WMT15, a result which is reasonable

given that both systems use a very similar approach, even though the approach

presented in this paper uses less features (see Table 8) because it does not use725

the negative features originally proposed by Esplà-Gomis et al. [14]. In the case

of English–German, the approach presented in this paper does not attain the

performance of the best system in WMT16 and would rank third among the

fourteen systems submitted to the shared task.

Table 4 shows the results of the approach with which to identify insertion po-730

sitions described in Section 4.1. Given that this is the first work in the literature

to tackle this problem, it was only possible to compare it to the null hypothesis.

For the same reason, no baseline features are available for this approach, and

only the SBI-based features described in Section 3.2 could be used. In the case

of both English–Spanish and English–German the proposed approach clearly735

outperforms the null hypothesis with a statistical significance of p ≤ 0.05. It

is worth noting that the results obtained when identifying insertion positions

are worse than those obtained when identifying word deletions. This may indi-

cate that the former problem is more difficult than the latter. We additionally

evaluated the performance of this approach as regards both insertions that are740

35

related to a word deletion, that is, those that are the result of a replacement,

and independent insertions; the recall obtained for both types of editions is

almost the same, signifying that both tasks have a similar degree of difficulty.

5.6.2. Predicting word deletions and insertion positions taking context into ac-

count745

Tables 5 and 6 show the results obtained following the cascaded-revision (see

Section 4.2) and single-NN (see Section 4.3) strategies that use context. With

regard to the cascaded-revision method, the two training approaches described

in Section 4.2 were evaluated: the two-step training that first trains the indepen-

dent networks and then builds on their predictions to train the cascaded-revision750

NNs, and the one which trains all the NNs simultaneously. For both approaches,

the features used for word deletions were the same as in the SBI+baseline ap-

proach, while for insertion positions, the features employed by the SBI approach

were used.

All the methods were evaluated using different values of context C and the755

experiments showed that values of C greater than 1 did not lead to better

results. In general, for different values of C, the F1-score and F1-product metrics

vary by about 0.5 percent and their differences are not statistically significant.

This may be interpreted as an indication that only the immediately preceding

and following edit operations are relevant to predict the current edit operation;760

operations that are more distant do not have a sufficient influence to make such

decisions. All the results in Tables 5 and 6 use, therefore, this level of context

in order to reduce the complexity of the networks.

As can be seen, the methods using context outperform those focusing on a

single word or insertion position. With regard to the results in Table 5, all the765

results provided outperform those obtained by the SBI+baseline approach with

a statistical significance of p ≤ 0.05. Namely, the approach that performed best

was the one that used a single NN to predict both word deletions and insertion

positions, which, for both datasets, obtained better results than a cascaded-

revision with a statistically significant difference (p ≤ 0.05). It is worth noting770

36

Approach Class Precision Recall F1-score F1-product

English–Spanish

keep 89.1% 69.5% 78.1%
WMT15 best

delete 32.6% 63.6% 43.1%
33.6%

keep 88.1% 76.9% 82.1%
SBI+baseline

delete 35.7% 55.2% 43.4%
35.6%

Cascaded rev. keep 89.8% 73.0% 80.5%
35.2%

2-step training delete 33.7% 62.3% 43.7%

Cascaded rev. keep 89.2% 71.8% 79.5%
35.1%

1-step training delete 34.0% 62.6% 44.1%

Single NN
keep 90.1% 69.4% 78.5%

35.3%
delete 33.8% 67.2% 45.0%

English–German

keep 87.6% 87.6% 87.6%
SBI+baseline

delete 48.2% 48.4% 48.3%
42.3%

Cascaded rev. keep 89.7% 84.3% 86.9%

2-step train delete 44.7% 56.7% 50.0%
43.4%

Cascaded rev. keep 88.9% 84.5% 86.6%

1-step train delete 46.3% 52.9% 50.6%
43.8%

Single NN
keep 89.4% 84.7% 87.0%

delete 47.6% 58.2% 52.4%
45.5%

keep 90.1% 86.8% 88.5%
WMT16 best

delete 52.3% 60.3% 56.0%
49.6%

Table 5: Results obtained for the task of identifying word deletions for English–Spanish and

English–German. The table includes the results obtained when using the cascaded-revision

approach described in Section 4.2, both when training the networks in two steps and when

doing so in a single step, and the single-NN approach described in Section 4.3. The shaded

rows contain the results obtained by the best performing systems in Table 3 and have the

objective of easing the comparison between the new results and the previous ones.

37

that in the case of the WMT16 dataset, none of the approaches suggested out-

performs the best performing system in the shared task. However, the results

obtained by the single NN approach do not show statistically significant differ-

ences with the method ranking second in the task (UNBABEL/linear), which

attained an F1-product of 46.3 [18, Table 21].775

In the case of Table 6, which contains the results obtained for insertion

positions, the conclusions are mostly the same. In this case, the results obtained

with the two training strategies for the cascaded-revision approach are even

closer, but are both outperformed by the single NN approach with a statistically

significant difference of p ≤ 0.05.780

In general, it would appear obvious that using NNs that take into account the

previous and following words and insertion positions to those being evaluated

lead to substantially better results. In our evaluation we also considered the

possibility of using a context containing only word deletions and only insertion

positions. However, providing this context independently led to significantly785

worse results than those shown in tables 5 and 6. It therefore seems obvious

that the combination of the information obtained for both types of editions

helps to mutually improve their results.

The results obtained also indicate that the use of context is especially useful

in the task of identifying insertion positions. This would appear to be rea-790

sonable, given that, according to the results obtained, the models trained to

identify word deletions are more reliable than those trained to identify insertion

positions and, therefore, the former help the latter more than in the opposite

case.

Table 8 compares our best performing system for predicting word deletions795

(single NN) to the best approaches in the literature that, in spite of not having

participated in the WMT15 an WMT16 shared tasks, have used these datasets

for word-level MT QE. The results in this table confirm that the single NN ap-

proach clearly outperform the most basic approaches using deep NNs, such as

those by Kreutzer et al. [29] and Liu et al. [30]. When compared to approaches800

based on much more complex neural architectures, such as the one by Martins

38

Context size Class Precision Recall F1-score F1-product

English–Spanish

no insert 90.5% 68.5% 78.0%
SBI

insert 22.5% 55.8% 32.1%
25.0%

Cascaded rev. no insert 91.8% 72.1% 80.7%
29.5%

2-step training insert 26.2% 60.6% 36.6%

Cascaded rev. no insert 91.9% 71.4% 80.4%
29.5%

1-step training insert 26.1% 61.6% 36.6%

Single NN
no insert 91.3% 78.2% 84.3%

31.9%
insert 29.1% 54.5% 37.9%

English–German

no insert 79.4% 78.2% 78.8%
SBI

insert 36.0% 37.6% 36.8%
29.0%

Cascaded rev. no insert 89.8% 82.9% 86.2%

2-step training insert 33.8% 48.1% 39.7%
34.2%

Cascaded rev. no insert 90.2% 80.9% 85.3%

1-step training insert 32.9% 51.5% 40.2%
34.3%

Single NN
no insert 91.0% 83.3% 87.0%

insert 37.3% 54.5% 44.3%
38.5%

Table 6: Results obtained for the task of identifying insertion positions for English–Spanish

and English–German. The table includes the results obtained when using the cascaded-

revision approach described in Section 4.2, both when training the networks in two steps and

when doing so in a single step, and the single-NN approach described in Section 4.3. The

shaded rows contain the results obtained by the best performing system (SBI) in Table 4 and

have the objective of easing the comparison between the new results and the previous ones.

39

WMT15 WMT16

Approach (F1-scoredelete) (F1-product)

Kreutzer et al. [29] 43.1 —

Liu et al. [30] 38.0 —

Single NN (SBI) 45.0 45.5

Kim et al. [35] 42.7 50.1

Martins et al. [33] 47.1 57.5

Table 7: Results obtained for word deletion with our best-performing system (single NN

architecture) and the best performing approaches in the literature evaluated on the WMT15

and WMT16 datasets.

et al. [33], which is based on the best performing system at WMT16, or the

one by Kim et al. [35], the winner of WMT17, results are not that clear. On

the WMT15 dataset, our approach outperforms the system by Kim et al. [35]

and obtains results close to those by Martins et al. [33]. However, the distance805

to these two approaches becomes larger when we compare the results on the

WMT16 dataset. The fact that these two approaches lead to better results

(at least for some datasets) is quite reasonable if one takes into account the

extremely complex neural architectures described by their authors. It is worth

noting that the approaches proposed in this paper require much less compu-810

tational resources (see Section 5.6.3) and, still, they lead to results that are

competitive when compared to the state of the art and even better than some

much more complex and costly neural approaches.

5.6.3. Discussion regarding the performance of the approaches evaluated

For a more detailed analysis of the approaches compared in this section,815

Table 8 shows the total number of features used and the number of parameters

to be learned by each of them. This allows us to discuss the complexity and

computational cost of each approach compared to the results obtained. Please

recall that the SBI+baseline approach can be computed only for word deletions,

given that the baseline features are only available for this task. The same occurs820

40

Approach # feat. del. # feat. ins. # parameters

Null hypothesis 0 0 1

SBI 51 41 4,468

SBI+baseline 172/194 – 31,693/39,789

WMT15 best 213 – 45,796

WMT16 best not available

Cascaded rev. 518/584 125 31,935/40,031

Single NN 516/582 123 441,931/492,201

Table 8: Number of features and parameters to be learned for each of the approaches discussed

in Section 5.6. Note that two values are provided for the number of features and parameters

for the SBI+baseline, Cascaded and Single NN approaches, because the number of baseline

features available for the WMT15 and WMT16 is different.

with the best performing systems at WMT15 and WMT16, which were designed

only to predict word deletions. In the case of the null hypothesis, no features

are used and only the a priori probability of each class in the training data is

computed.

It is worth noting that the number of baseline features provided for the825

English–Spanish (WMT15) dataset is slightly higher than that provided for

the English–German (WMT16) dataset; as a result, two values are provided

for the features and parameters of those approaches that use them, that is

the SBI+baseline and the cascaded-revision and single NN approaches. Sixty

baseline features are available for English–German, while this amount increases830

to 91 for Spanish–English, as defined in Section 5.4.

According to the data provided, it would appear that the cascaded-revision

strategy (using the SBI and SBI+baseline collections of features) provides the

best compromise between computational cost and performance. This is partic-

ularly noticeable when comparing the results obtained by this approach to the835

best performing systems at WMT15 and WMT16. In the first case, it outper-

forms the WMT15 system using less parameters, even when this approach is

also learning to identify insertion positions, something that could not be done

41

by the best-performing WMT15 system. In the case of the second, the details

regarding the implementation of the best performing approach at WMT16 are840

not available. However, the description by Martins et al. [31] specifies that a

combination of five instances of: (a) a convolutional recurrent network, (b) a

bilingual recurrent language model, and (c) a feed-forward network, are used,

summing 15 NNs in a voting scheme, which leads us to believe that this archi-

tecture requires tens, if not hundreds of millions, of parameters to be learned.845

On the other hand, the single NN approach proved to be the best performing

of all the methods proposed in this paper, with the only exception of the win-

ner of the WMT16 shared task. However, even though it must learn hundreds

of thousands of parameters, the complexity of the NN proposed is still suffi-

ciently simple for it to be trained on a standard CPU in a reasonable amount850

of time (see Table 9), something that would not be possible with any of the

deep-learning approaches at WMT15 and WMT16.

Table 9 provides the actual time (per epoch and total amount) required to

train the different NN architectures described in Section 4, both on a CPU18

and on a GPU.19 These results were obtained for the WMT15 dataset, the one855

using most features: 194 to identify word deletions and 41 to identify insertion

positions. The training time shown for the independent NNs was only computed

for word deletions, which is the most time-consuming network to train as it

has almost five times more features than the independent NN used to identify

insertion positions.860

As expected, training on a GPU is appreciably faster (time is at least halved).

When training on the CPU, time grows with the complexity of the networks.

However, when training on a GPU, results vary slightly. In this last case, the

cascaded-revision NNs training is the most time-consuming process. In the case

of the two-step training, this is due to the fact that the independent NNs and the865

cascaded-revision NN have to be trained separately, which prevents the process

18An AMD Opteron(tm) Processor 6128, with 16 cores and 64 GB of RAM.
19A Geforce GTX 1080 Ti card with 11GB DDR5X.

42

training time on CPU training time on GPU

Approach per epoch total per epoch total

Independent NNs 9±1 s 6.5 min 4±1 s 4.0 min

Cascaded rev. 2-step 18±2 s 11.5 min 7±2 s 8.5 min

Cascaded rev. 1-step 45±2 s 17.0 min 23±1 s 10.5 min

Single NN 64±2 s 34.5 min 5±1 s 4.0 min

Table 9: Time per epoch and total time needed to train each NN architecture described in

Section 4 on a CPU and on a GPU. All times are computed for the WMT15 dataset. For

Independent NNs, we only include the time for word deletions, since it is the network that

takes more time to train as it has much more features (194 vs. 41) and both networks can be

trained in parallel.

to benefit from the high computational parallelisation provided by GPU. In

the case of the one-step training process, the injection of error signals at two

different levels of the neural network may be rendering the backpropagation

calculation harder to parallelize. Finally, in the case of the single NN, it may870

be the opposite: grouping of tensor calculations in blocks seems to bring about

a sharp speed-up.

In general, the results in Table 9 demonstrate that the approaches described

in this work not only lead to competitive results, but are also feasible even with

non-specialized computational resources.875

6. Concluding remarks

In this work, we have presented a new method for word-level MT QE that

partially builds on the approach by Esplà-Gomis et al. [13]. The results obtained

confirm that this method makes it possible not only to identify the words in the

output of an MT system that need to be deleted or replaced, as most word-level880

MT QE approaches do, but also to detect the positions into which one or more

words need to be inserted. The latter is particularly relevant, given that this is

the first work in the literature to tackle this problem.

43

This paper proposes a collection of features that builds on those defined

by Esplà-Gomis et al. [13] and can be obtained from any source of bilingual885

information: in our experiments, online MT systems and an online bilingual

concordancer were used. The results obtained on the datasets published for the

word-level MT QE shared tasks at WMT15 and WMT16 confirm the good per-

formance of the approach proposed, which is able to reproduce or even improve

on the results obtained by Esplà-Gomis et al. [13] and Esplà-Gomis et al. [51].890

The features used have, however, been redesigned to reduce their number, which

has led to methods that require a lower computational cost. In addition to the

features proposed, several NN architectures are explored for word-level MT QE:

one that uses two independent NNs to predict word deletions and insertion po-

sitions, one that revises each prediction by taking into account the predictions895

made for the words and insertion positions surrounding it, and another that

uses a single NN to predict both word deletions and insertion positions simul-

taneously. The experiments carried out confirm the relevance of the latter two

approaches, that is, those using context. These results have led us to the con-

clusion that the simultaneous identification of both word deletions and insertion900

positions may lead to better results than those in the state of the art, in which

only word deletions are identified.

The experiments carried out confirm the feasibility of the method proposed

to identify insertion positions in T . These results are especially relevant, given

that being capable of identifying both word deletions and insertion positions905

will allow the prediction of the full edit sequence required to post-edit a trans-

lation T , something that is not currently possible. This research paves the

way towards the creation of systems that may support the task of professional

translators by, for example, helping them to obtain reliable budgets based on

the predicted technical effort20 required for a given translation task. It would910

20Technical effort may be predicted as the number of edit operations required to produce

a post-edited translation. Other effort metrics could be explored, such as keystroke ratio or

even post-editing time, although they would not be as straightforward to predict from edit

44

also be possible to provide metrics similar to fuzzy-match scores [11], a very

popular and easy-to-interpret metric used by professional translators to mea-

sure the effort required to post-edit a suggestion from a translation memory in

a computer-aided translation environment. It would even be possible to go one

step further and build systems that could guide post-editors by indicating which915

parts of T require an action, as is done by Esplà-Gomis et al. [52] for translation

memories.

With regard to improving the results obtained, one natural step would be to

study other features used by other systems in the state of the art of word-level

MT QE and attempt to adapt them in order to identify insertion positions.920

Apart from this, one of the most obvious and promising next steps would be

to adapt the techniques described in this work to the problem of sentence-level

MT QE; that is, the task of predicting the total post-editing effort required for

a sentence. In most shared tasks [9, 17, 18] this effort is measured using the

human-targeted translation error rate (HTER) metric [53], which consists of925

identifying the number of deletions, insertions, substitutions and movements of

sub-sequences of words (block shifts). Given that three21 of these operations

can be identified by our approach, it would be natural to attempt to apply it

to this new task. It would even be possible to design new architectures and

features that would make it possible to predict the fourth operation type used930

in HTER, that is, movements of sub-sequences of words.

Acknowledgements

Work funded by the Spanish Government through the EFFORTUNE project

[project number TIN2015-69632-R]. We would particularly like to thank Reverso-

Softissimo and Prompsit Language Engineering for providing access to the Re-935

verso Context concordancer through their API, the University Research Pro-

operations.
21Actually two, but replacements can be straightforwardly obtained if we consider them as

deletions followed by replacements or vice-versa.

45

gram for Google Translate that granted us access to the Google Translate ser-

vice, and Anna Civil from Lucy Software for producing sub-segment translations

with the Lucy LT MT system. Felipe Sánchez-Mart́ınez gratefully acknowledges

the support of NVIDIA Corporation with the donation of the Titan X Pascal940

GPU used for this research.

Appendix A. Mathematical description of the neural networks used

This appendix contains the equations that describe the NNs used proposed

in Section 4. Equations A.1 and A.2 describe how to obtain predictions yk

and zk for the word tk and the gap γk, respectively, using the NNs defined in945

Section 4.1.

yk = sigmoid

(
M∑

i=1

wypi (pk)i + wyp0

)
(A.1)

zk = sigmoid

(
N∑

i=1

wzqi (qk)i + wzq0

)
(A.2)

where sigmoid(·) is the activation function defined as:

sigmoid(x) =
exp(x)

exp(x) + 1
. (A.3)

M and N are the total number of neurons in the hidden layer, ~wyp and ~wzq

are the collection of weights learned in the output neuron for each of them, and950

(pk)i and (qk)i are defined as:

(pk)i = ReLU




F∑

j=1

wpfij (fk)j + wpfi0


 , i ∈ [1,M] (A.4)

(qk)i = ReLU




G∑

j=1

wqgij (gk)j + wqgi0


 , i ∈ [1, N] (A.5)

where ReLU(·) is an activation function [46] defined as:

ReLU(x) =





0 for x < 0

x for x ≥ 0
(A.6)

46

F and G are the total number of features for word deletions (fk) and insertion

positions (gk), respectively, and ~wpfi and ~wqgi are the weights learned by the i-th955

neuron in the hidden layer of each of the NNs defined.

Similarly, the predictions produced by the cascaded-revision architecture

NNs (see Section 4.2) would be defined as follows:

y′k = sigmoid

(
P∑

i=1

wy
′s
i (sk)i + wy

′s
0

)
(A.7)

z′k = sigmoid

(
Q∑

i=1

wz
′u
i (uk)i + wz

′u
0

)
(A.8)

where y′k and z′k are the reviewed predictions for the word tk and the gap γk,

respectively, P and Q are the number of neurons in each of the hidden layers,960

~wy
′s and ~wz

′u are the collection of weights learned in the output neuron for each

of them, and

(sk)i = ReLU

(
l=+C∑

l=−C
wsyil yk+l +

l=+C∑

l=−C
wszil zk+l + w

s(yz)
i0

)
, i ∈ [1, P] (A.9)

(uk)i = ReLU

(
l=+C∑

l=−C
wuyil yk+l +

l=+C∑

l=−C
wuzil zk+l + w

u(yz)
i0

)
, i ∈ [1, Q] (A.10)

In this case, (sk)i and (uk)i take the outputs of Equations A.1 and A.2 as inputs.

Here, C is the size of the context used. It is worth noting the dependency on k965

as a result of parameter sharing.

Finally, Equations A.7 and A.8 could be adapted for the single NN defined

in 4.3 as follows:

y′k = Sigmoid

(
H∑

i=1

wy
′v
i (vk)i + wy

′v
0

)
(A.11)

z′k = Sigmoid

(
H∑

i=1

wz
′v
i (vk)i + wz

′v
0

)
(A.12)

where H is the size of the common second-level hidden layer, and,

(vk)i = ReLU



l=+C∑

l=−C

M∑

j=1

wvpijl(pk+l)j +

l=+C∑

l=−C

N∑

j=1

wvqijl(qk+l)j + w
v(pq)
i0


 , i ∈ [1, H]

(A.13)

47

where (pk+l)j and (qk+l)j are defined in Equations A.4 and A.5.970

Appendix B. Pseudo-code for feature extraction

This appendix provides an algorithmic description of the six feature sets de-

fined in Section 3. It is worth noting that, for the sake of clarity, an independent

algorithm is provided for each feature set. The actual implementation is more

efficient and does not compute each feature independently to avoid iterating975

over the same sets more than once. The following auxiliary functions, which

were previously defined in Section 3, are used inside these algorithms:

• segn(X): returns the set of all possible n-word sub-segments of segment

X;

• seg∗(X): returns the set of all possible sub-segments of segment X, re-980

gardless of length;

• span(τ, T): returns the set of word positions spanned by sub-segment τ in

segment T ;

• LCS(X,Y): returns the word-based longest common sub-sequence be-

tween segments X and Y ;985

• occs(σ, τ,Mocc): returns the number of occurrences of sub-segment pair

(σ, τ) in Mocc;

• editop1(Xj , X, Y): returns the edit operation assigned to the word Xj ,

obtained as a by-product of the computation of the longest-common sub-

sequence of segments X and Y ; and990

• editop2(Yj , X, Y): returns the edit operation assigned to the word Yj ,

obtained as a by-product of the computation of the longest-common sub-

sequence of segments X and Y .

48

Algorithm 1 Algorithm for the Keepn feature set (Section 3.1.1)

1: procedure keep(j,S,T ,M ,n)

2: Input:

3: S: segment in SL;

4: T : segment in TL;

5: j: position of a word in T ;

6: M : collection of sub-segment pairs (σ, τ);

7: n: length of τ in words

8: Output:

9: value of Keepn(j, S, T,M)

10: confirm segs← 0

11: segss ← seg∗(σ)

12: segst ← segn(T)

13: for (σ, τ) ∈M do

14: if σ ∈ segss ∧ τ ∈ segst ∧ j ∈ span(τ, T) then

15: confirm segs← confirm segs + 1

16: total segs← 0

17: for τ ∈ segst do

18: if j ∈ span(τ, T) then

19: total segs← total segs + 1

20: return confirm segs/total segs

49

Algorithm 2 Algorithm for the Freqkeep
n feature set (Section (Section 3.1.2)

1: procedure freqkeep(j,S,T ,Mocc,n)

2: Input:

3: S: segment in SL;

4: T : segment in TL;

5: j: position of a word in T ;

6: Mocc: collection of sub-segment pairs

7: and their number of occurrences (σ, τ, φ);

8: n: length of target sub-segment in words

9: Output:

10: value of Freqkeep
n (j, S, T,Mocc)

11: total occs← 0

12: segss ← seg∗(S)

13: segst ← segn(T)

14: for (σ, τ) ∈Mocc do

15: if σ ∈ segss ∧ τ ∈ segst ∧ j ∈ span(τ, T) then

16: confirm occs← occs(σ, τ,Mocc)

17: all occs← 0

18: for τ ′ ∈ segst do

19: all occs← all occs + occs(σ, τ ′,Mocc)

20: total occs← total occs + confirm occs/all occs

21: return total occs

50

Algorithm 3 Algorithm for the Alignkeep
n feature set (Section 3.1.3)

1: procedure alignkeep(j,S,T ,M ,e,n)

2: Input:

3: S: segment in SL;

4: T : segment in TL;

5: j: position of a word in T ;

6: M : collection of sub-segment pairs (σ, τ);

7: n: length of target sub-segment in words;

8: e: edit operation (either delete or match)

9: Output:

10: value of Alignkeep
n (j, S, T,M, e)

11: total algs← 0

12: segss ← seg∗(S)

13: for (σ, τ) ∈M do

14: if σ ∈ segss ∧ |τ | = n ∧ editop(tj , T, τ) = e then

15: total algs← total algs + |LCS(τ, T)|/|τ |

16: return total algs

51

Algorithm 4 Algorithm for the NoInsertn feature set (Section 3.2.1)

1: procedure noinsert(j,S,T ,M ,n)

2: Input:

3: S: segment in SL;

4: T : segment in TL;

5: j: position of a word in T ;

6: M : collection of sub-segment pairs (σ, τ);

7: n: length of target sub-segment in words

8: Output:

9: value of NoInsertn(j, S, T,M)

10: confirm segs← 0

11: segss ← seg∗(S)

12: segst ← segn(T)

13: for (σ, τ) ∈M do

14: if σ ∈ segss ∧ τ ∈ segst ∧ j ∈ span(t, T) ∧ j + 1 ∈ span(t, T) then

15: confirm segs← confirm segs + 1

16: total segs← 0

17: for τ ∈ segst do

18: if j ∈ span(τ, T) ∧ j + 1 ∈ span(τ, T) then

19: total segs← total segs + 1

20: return confirm segs/total segs

52

Algorithm 5 Algorithm for the Freqnoins
n feature set (Section 3.2.2)

1: procedure Freqnoins(j,S,T ,Mocc,n)

2: Input:

3: S: segment in SL;

4: T : segment in TL;

5: j: position of a word in T ;

6: Mocc: collection of sub-segment pairs

7: and their number of occurrences (σ, τ, φ);

8: n: length of target sub-segment in words

9: Output:

10: value of Freqnoins
n (j, S, T,Mocc)

11: total occs← 0

12: segss ← seg∗(S)

13: segst ← segn(T)

14: for (σ, τ) ∈Mocc do

15: if σ ∈ segss ∧ τ ∈ segst ∧ j ∈ span(τ, T) ∧ j + 1 ∈ span(τ, T) then

16: confirm occs← occs(σ, τ,Mocc)

17: all occs← 0

18: for τ ′ ∈ segst do

19: all occs← all occs + occs(σ, τ ′,Mocc)

20: total occs← total occs + confirm occs/all occs

21: return total occs

53

Algorithm 6 Algorithm for the Alignnoins
n feature set (Section 3.2.3)

1: procedure alignnoins(j,S,T ,M ,e,n)

2: Input:

3: S: segment in SL;

4: T : segment in TL;

5: j: position of a word in T ;

6: M : collection of sub-segment pairs (σ, τ);

7: n: length of target sub-segment in words;

8: e: edit operation (either insert or match)

9: Output:

10: value of Alignnoins
n (j, S, T,M, e)

11: total algs← 0

12: segss ← seg∗(S)

13: for (σ, τ) ∈M do

14: if σ ∈ segss ∧ |τ | = n ∧ editop2(tj , τ, T) = e then

15: total algs← total algs + |LCS(τ, T)|/|τ |

16: return total algs

54

References

[1] M. Plitt, F. Masselot, A Productivity Test of Statistical Machine Transla-995

tion Post-Editing in a Typical Localisation Context, The Prague Bulletin

of Mathematical Linguistics 93 (2010) 7–16.

[2] A. Guerberof Arenas, Productivity and quality in the post-editing of out-

puts from translation memories and machine translation, The International

Journal of Localisation 7 (1) (2009) 11–21.1000

[3] L. Bowker, Computer-aided translation technology: a practical introduc-

tion, chap. Translation-memory systems, University of Ottawa Press, 92–

127, 2002.

[4] H. Somers, Computers and translation: a translator’s guide, chap. Trans-

lation memory systems, John Benjamins Publishing, Amsterdam, Nether-1005

lands, 31–48, 2003.

[5] L. Specia, M. Turchi, N. Cancedda, M. Dymetman, N. Cristianini, Es-

timating the Sentence-Level Quality of Machine Translation Systems, in:

13th Annual Conference of the European Association for Machine Trans-

lation, Barcelona, Spain, 28–37, URL http://www.mt-archive.info/1010

EAMT-2009-Specia.pdf, 2009.

[6] J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte, A. Kulesza,

A. Sanchis, N. Ueffing, Confidence Estimation for Machine Translation,

in: Proceedings of the 20th International Conference on Computational

Linguistics, COLING ’04, Geneva, Switzerland, 315–321, 2004.1015

[7] M. L. Forcada, F. Sánchez-Mart́ınez, A general framework for minimizing

translation effort: towards a principled combination of translation tech-

nologies in computer-aided translation, in: Proceedings of the 18th Annual

Conference of the European Association for Machine Translation, Antalya,

Turkey, 27–34, 2015.1020

55

[8] L. Specia, Exploiting objective annotations for measuring translation post-

editing effort, in: Proceedings of the 15th Conference of the European

Association for Machine Translation, Leuven, Belgium, 73–80, 2011.

[9] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,

C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia,1025

A. Tamchyna, Findings of the 2014 Workshop on Statistical Machine Trans-

lation, in: Proceedings of the Ninth Workshop on Statistical Machine

Translation, Baltimore, MD, USA, 12–58, 2014.

[10] N. Ueffing, H. Ney, Word-Level Confidence Estimation for Machine Trans-

lation, Computational Linguistics 33 (1) (2007) 9–40, ISSN 0891-2017, URL1030

http://dx.doi.org/10.1162/coli.2007.33.1.9.

[11] R. Sikes, Fuzzy Matching in Theory and Practice, Multilingual 18 (6)

(2007) 39–43.

[12] O. Bojar, C. Buck, C. Callison-Burch, C. Federmann, B. Haddow,

P. Koehn, C. Monz, M. Post, R. Soricut, L. Specia, Findings of the 20131035

Workshop on Statistical Machine Translation, in: Proceedings of the Eighth

Workshop on Statistical Machine Translation, Sofia, Bulgaria, 1–44, URL

http://www.aclweb.org/anthology/W13-2201, 2013.

[13] M. Esplà-Gomis, F. Sánchez-Mart́ınez, M. Forcada, UAlacant word-level

machine translation quality estimation system at WMT 2015, in: Proceed-1040

ings of the Tenth Workshop on Statistical Machine Translation, Lisbon,

Portugal, 309–315, URL http://aclweb.org/anthology/W15-3036, 2015.

[14] M. Esplà-Gomis, F. Sánchez-Mart́ınez, M. L. Forcada, Using on-line avail-

able sources of bilingual information for word-level machine translation

quality estimation, in: Proceedings of the 18th Annual Conference of the1045

European Association for Machine Translation, Antalya, Turkey, 19–26,

2015.

56

[15] M. Barlow, Parallel concordancing and translation, in: Proceedings of

ASLIB Translating and the Computer 26, London, UK, 2004.

[16] L. Bowker, M. Barlow, Bilingual concordancers and translation memo-1050

ries: a comparative evaluation, in: Proceedings of the Second Interna-

tional Workshop on Language Resources for Translation Work, Research

and Training at Coling 2004, Geneva, Switzerland, 70–79, 2004.

[17] O. Bojar, R. Chatterjee, C. Federmann, B. Haddow, M. Huck, C. Hokamp,

P. Koehn, V. Logacheva, C. Monz, M. Negri, M. Post, C. Scarton, L. Specia,1055

M. Turchi, Findings of the 2015 Workshop on Statistical Machine Transla-

tion, in: Proceedings of the Tenth Workshop on Statistical Machine Trans-

lation, Lisbon, Portugal, 1–46, 2015.

[18] O. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow, M. Huck,

A. Jimeno Yepes, P. Koehn, V. Logacheva, C. Monz, M. Negri, A. Neveol,1060

M. Neves, M. Popel, M. Post, R. Rubino, C. Scarton, L. Specia, M. Turchi,

K. Verspoor, M. Zampieri, Findings of the 2016 Conference on Ma-

chine Translation, in: Proceedings of the First Conference on Machine

Translation, Berlin, Germany, 131–198, URL http://www.aclweb.org/

anthology/W/W16/W16-2301, 2016.1065

[19] S. Gandrabur, G. Foster, Confidence Estimation for Translation Prediction,

in: Proceedings of the 7th Conference on Natural Language Learning at

HLT-NAACL 2003 - Volume 4, CONLL ’03, Edmonton, Canada, 95–102,

2003.

[20] N. Ueffing, H. Ney, Application of word-level confidence measures in inter-1070

active statistical machine translation, in: Proceedings of the 10th European

Association for Machine Translation Conference ”Practical applications of

machine translation”, Budapest, Hungary, 262–270, 2005.

[21] G. A. Miller, WordNet: A Lexical Database for English, Communications

of the ACM 38 (11) (1995) 39–41.1075

57

[22] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, R. L. Mercer, The Mathe-

matics of Statistical Machine Translation: Parameter Estimation, Compu-

tational Linguistics 19 (2) (1993) 263–311.

[23] F. J. Och, H. Ney, The Alignment Template Approach to Statistical Ma-

chine Translation, Computational Linguistics 30 (4) (2004) 417–449.1080

[24] E. Biçici, Referential Translation Machines for Quality Estimation, in: Pro-

ceedings of the 8th Workshop on Statistical Machine Translation, Sofia,

Bulgaria, 343–351, 2013.

[25] E. Biçici, D. Yuret, Instance selection for machine translation using fea-

ture decay algorithms, in: Proceedings of the 6th Workshop on Statistical1085

Machine Translation, Edinburgh, UK, 272–283, 2011.

[26] F. Blain, C. Scarton, L. Specia, Bilexical embeddings for quality estimation,

in: Proceedings of the Second Conference on Machine Translation, 545–550,

2017.

[27] P. S. Madhyastha, X. Carreras Pérez, A. Quattoni, Learning task-specific1090

bilexical embeddings, in: Proceedings of the 25th International Conference

on Computational Linguistics, 161–171, 2014.

[28] O. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow, S. Huang,

M. Huck, P. Koehn, Q. Liu, V. Logacheva, C. Monz, M. Negri, M. Post,

R. Rubino, L. Specia, M. Turchi, Findings of the 2017 Conference on1095

Machine Translation (WMT17), in: Proceedings of the Second Confer-

ence on Machine Translation, Volume 2: Shared Task Papers, Associa-

tion for Computational Linguistics, Copenhagen, Denmark, 169–214, URL

http://www.aclweb.org/anthology/W17-4717, 2017.

[29] J. Kreutzer, S. Schamoni, S. Riezler, QUality Estimation from ScraTCH1100

(QUETCH): Deep Learning for Word-level Translation Quality Estimation,

in: Proceedings of the Tenth Workshop on Statistical Machine Transla-

58

tion, Association for Computational Linguistics, Lisbon, Portugal, 316–322,

URL http://aclweb.org/anthology/W15-3037, 2015.

[30] L. Liu, A. Fujita, M. Utiyama, A. Finch, E. Sumita, L. Liu, A. Fujita,1105

M. Utiyama, A. Finch, E. Sumita, Translation quality estimation using

only bilingual corpora, IEEE/ACM Transactions on Audio, Speech and

Language Processing (TASLP) 25 (9) (2017) 1762–1772.

[31] A. F. T. Martins, R. Astudillo, C. Hokamp, F. Kepler, Unbabel’s Partici-

pation in the WMT16 Word-Level Translation Quality Estimation Shared1110

Task, in: Proceedings of the First Conference on Machine Translation,

Berlin, Germany, 806–811, URL http://www.aclweb.org/anthology/

W16-2387, 2016.

[32] D. Wang, N. S. Chaudhari, Binary neural network training algorithms

based on linear sequential learning, International journal of neural systems1115

13 (5) (2003) 333–351.

[33] A. F. Martins, M. Junczys-Dowmunt, F. N. Kepler, R. Astudillo,

C. Hokamp, R. Grundkiewicz, Pushing the limits of translation quality

estimation, Transactions of the Association for Computational Linguistics

5 (2017) 205–218.1120

[34] H. Kim, H.-Y. Jung, H. Kwon, J.-H. Lee, S.-H. Na, Predictor-Estimator:

Neural Quality Estimation Based on Target Word Prediction for Machine

Translation, ACM Transactions on Asian and Low-Resource Language In-

formation Processing (TALLIP) 17 (1) (2017) 3.

[35] H. Kim, J.-H. Lee, S.-H. Na, Predictor-estimator using multilevel task1125

learning with stack propagation for neural quality estimation, in: Pro-

ceedings of the Second Conference on Machine Translation, 562–568, 2017.

[36] M. Esplà-Gomis, F. Sánchez-Mart́ınez, M. L. Forcada, Using machine

translation in computer-aided translation to suggest the target-side words

59

to change, in: Proceedings of the Machine Translation Summit XIII, Xia-1130

men, China, 172–179, 2011.

[37] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, John Wiley

and Sons Inc., second edn., 2000.

[38] K. Hornik, M. Stinchcombe, H. White, Multilayer Feedforward Networks

Are Universal Approximators, Neural Networks 2 (5) (1989) 359–366.1135

[39] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees,

Machine Learning 63 (1) (2006) 3–42, ISSN 1573-0565, doi:

\bibinfo{doi}{10.1007/s10994-006-6226-1}, URL https://doi.org/

10.1007/s10994-006-6226-1.

[40] B. Scholkopf, K.-K. Sung, C. J. Burges, F. Girosi, P. Niyogi, T. Poggio,1140

V. Vapnik, Comparing support vector machines with Gaussian kernels to

radial basis function classifiers, IEEE transactions on Signal Processing

45 (11) (1997) 2758–2765.

[41] V. Chvátal, D. Sankoff, Longest common subsequences of two random se-

quences, Journal of Applied Probability 12 (2) (1975) 306–315.1145

[42] R. Wagner, M. Fischer, The String-to-String Correction Problem, Journal

of the ACM 21 (1) (1974) 168–173.

[43] M. L. Forcada, M. Ginest́ı-Rosell, J. Nordfalk, J. O’Regan, S. Ortiz-Rojas,

J. A. Pérez-Ortiz, F. Sánchez-Mart́ınez, G. Ramı́rez-Sánchez, F. M. Tyers,

Apertium: a free/open-source platform for rule-based machine translation,1150

Machine Translation 25 (2) (2011) 127–144.

[44] L. Specia, G. Paetzold, C. Scarton, Multi-level Translation Quality Pre-

diction with QuEst++, in: Proceedings of ACL-IJCNLP 2015 System

Demonstrations, Beijing, China, 115–120, URL http://www.aclweb.org/

anthology/P15-4020, 2015.1155

[45] F. Chollet, et al., Keras, https://github.com/fchollet/keras, 2015.

60

[46] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann

machines, in: Proceedings of the 27th international conference on machine

learning, Haifa, Israel, 807–814, 2010.

[47] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in:1160

Proceedings of the 3rd International Conference for Learning Representa-

tions, San Diego, 807–814, 2015.

[48] K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpass-

ing Human-Level Performance on ImageNet Classification, in: Proceedings

of the 2015 IEEE International Conference on Computer Vision (ICCV),1165

ICCV ’15, Washington, DC, USA, ISBN 978-1-4673-8391-2, 1026–1034,

URL http://dx.doi.org/10.1109/ICCV.2015.123, 2015.

[49] Z. C. Lipton, C. Elkan, B. Naryanaswamy, Optimal Thresholding of Clas-

sifiers to Maximize F1 Measure, Springer Berlin Heidelberg, Berlin, Hei-

delberg, 225–239, 2014.1170

[50] A. Yeh, More Accurate Tests for the Statistical Significance of Result Dif-

ferences, in: Proceedings of the 18th Conference on Computational Lin-

guistics - Volume 2, COLING ’00, Stroudsburg, PA, USA, 947–953, URL

https://doi.org/10.3115/992730.992783, 2000.

[51] M. Esplà-Gomis, M. Forcada, S. Ortiz Rojas, J. Ferrández-Tordera,1175

Bitextor’s participation in WMT’16: shared task on document align-

ment, in: Proceedings of the First Conference on Machine Translation,

Berlin, Germany, 685–691, URL http://www.aclweb.org/anthology/W/

W16/W16-2367, 2016.

[52] M. Esplà-Gomis, F. Sánchez-Mart́ınez, M. L. Forcada, Target-Language1180

Edit Hints in CAT Tools Based on TM by Means of MT, Journal of Arti-

ficial Intelligence Research 53 (2015) 169–222.

[53] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, J. Makhoul, A study of

translation edit rate with targeted human annotation, in: Proceedings of

61

Association for Machine Translation in the Americas, vol. 200, Cambridge,1185

MA, USA, 2006.

62

Vitae

Dr. Miquel Esplà-Gomis is associate lecturer and re-

search assistant at Universitat d’Alacant (Spain). He re-

ceived his Ph.D. in computer science in 2016. His main1190

fields of research are machine translation quality estima-

tion and automatic data collection for training machine

translation systems. He is one of the main developers and

maintainers of the tool Bitextor, a well-known free/open-

source tool to automatically crawl parallel data from the Internet.1195

Dr. Felipe Sánchez-Mart́ınez is associate professor at

Universitat d’Alacant (Spain) and member of the Euro-

pean Association for Machine Translation; he received his

Ph.D. in computer science in 2008. His main field of re-

search is machine translation, both corpus-based and rule-1200

based, and the integration of machine translation in other

translation technologies, such computer-aided translation

tools based on translation memories. He is part of the

team that is responsible for the design, development and maintenance of the

Apertium shallow-transfer machine translation platform. Most of his under-1205

graduate and graduate teaching involves translation and language technologies.

Dr. Mikel L. Forcada (Caracas, 1963) is professor

of Computer Languages and Systems at the Universitat

d’Alacant, president of the European Association for Ma-

chine Translation, founder and president of the project1210

management committee of the free/open-source machine

translation platform Apertium, and co-founder and chief

research officer of language technology company Prompsit

Language Engineering.

63

	Predicting insertion positions in word-level machine translation quality estimation

