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Predicting insertion positions in word-le- .. mac..'ne
translation quality estimatic 1

Miquel Espla-Gomis*, Felipe Sanchez-Martiner Mike' © Forcada

Dept. de Llenguatges i Sistemes Infor 4t
Universitat d’Alacant
E-03690 St. Vicent del Raspeig (5, ™)

Abstract

Word-level machine translation (MT) | %*v estimation (QE) is usually formu-
lated as the task of automatically ide1 f mg which words need to be edited
(either deleted or replaced) in a t1. . ~tion 7 produced by an MT system. The
advantage of estimating MT quality . “ the word level is that this information
can be used to guide post-editor.. “nce 1v enables the identification of the specific
words in T that need to be edited in order to ease their work. However, word-
level MT QE, as defins « in the ~urrent literature, has an obvious limitation: it
does not identify the . -itions i» 7" in which missing words need to be inserted.
To deal with this mitation, e propose a method which identifies both word
deletions and in. rtic . posi’.ons in T'. This is, to the best of our knowledge, the
first approacl allowing * :identification of insertion positions in word-level MT
QE. The r ctho. nroposed can use any source of bilingual information —such
as MT, 7 ‘onaries, or phrase-level translation memories— to extract features
that e ¢ the used by a neural network to produce a prediction for both words
and ‘nsertic  nositions (gaps between words) in the translation 7'. In this paper,
s veral eature sets and neural network architectures are explored and evaluated
on . ~licly available datasets used in previous evaluation campaigns for word-

level MT QE. The results confirm the feasibility of the proposed approach, as
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well as the usefulness of sharing information between the t- . predictic . tasks
in order to obtain more reliable quality estimations.
Keywords: machine translation, quality estimation, werd-lev.™ = Lty

estimation

1. Introduction

The use of machine translation (MT) sys*ems v. ~re ace draft translations
that are then corrected (post-edited) to make ther. ~dequate for a specific pur-
pose has been shown to improve translati. ~ productivity [1, 2]. However, the
quality of the translations produced ' -~ an MT sy stem may vary from one sen-
tence to another. Some translations me - I . worth post-editing, while it would
be better to discard others and trc .. "~te th source sentence from scratch or use
other translation technologies, such « * trauslation memories [3, 4]. Identifying
the translations that are worti. ~ost-cu..ing is, therefore, a key task as regards
obtaining actual gains in productivity and it is, consequently, necessary to be
able to estimate the qu .aty ¢ *he translations produced.

MT quality estim. ‘on (QE) was first defined by Specia et al. [5] who built
upon the closely-r iated tas.. £ MT confidence estimation [6]. MT QE is not
only relevant in  1at i cries o reduce the need to bother professional translators
or post-editor with w. 'e s translations, but also in that it may also be used to
choose amc 1g . eral MT systems [7] for a given translation task, to estimate
the post-~'iting efforv of a given MT output, and to budget a translation job.
Qualit may oe measured in terms of post-editing time, as the number of edit
operation. ~eeded to turn the MT output into an adequate translation, or by
ur ng o .er related metrics, such as subjective effort metrics [8, 9]. In addition,
whe MT i used for assimilation, that is, for gisting, and the user of the trans-
latior has no knowledge of the source language (SL), quality labels may also be
used t provide information regarding the reliability of the translation into the
vee oot language (TL).

Although most of the approaches for MT QE estimate the quality of the
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translations at the segment level, there are also approacher ...at estin. .te the
quality of individual words [6, 10]. The former provide a ‘uality sct e for the
whole segment that can be used to decide whether or not. it is \. ~*» _ost-editing
it. The latter detects the words in a given translation * 1at n- _u . » be post-edited
in order to produce an adequate translation of the ST segment. " his information
may be used to guide post-editors in their job and help “em focus on the parts
of the translation that need to be fixed. In au. *ion, wo d-level MT QE may
facilitate the joint use of MT and translation n.. ~ories since fuzzy match scores
[11] —which measure the similarity betv " ___ient to be translated and
the source segment in a translation unit as .. ~ percentage of edit operations
needed to transform one in the other — au. | centages of words to post-edit
can be easily compared. Althov~h fuz. -match scores are computed on the
source language and the percentag. = . words to be post-edited are computed
on the target language, they ~lagely linked and they are, in computer-aided
translation, assumed to be so: ti. oreater the difference between the source
segments, the greater the »nmber of edit operations it is necessary to perform
on the target segment

Most of the apnroac. = for word-level MT QE focus on identifying those
words in the mac’ mme-t- anslated segment that need to be edited, that is, deleted

]

or replaced [12]. .75 infc mation, although useful, is not enough to estimate
the extent ¢ vost-editiug needed. Being capable of identifying also insertion
positions would a.. v to predict more reliably the full sequence of edits. This
is speci .1y 1 'evant for professional translators because it allows the creation of
tools v. het er support the translation task. In this paper, we present a word-
bas :d MT (i pproach that is capable of both predicting the words that need
+ be .elete . and the positions into which a sequence of one or more words
~houla ~ nserted. To deal with these two goals in a unified way, in this article
we mu lel substitution as a deletion followed by an insertion. To the best of our
know' .dge, this is the first approach which predicts insertion positions, that is,
~aps into which a word or sequence of words should be inserted.

The approach presented here builds on previous work by the same authors
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[13, 14] in which insertion positions were not detected and . ..ghtly . Terent
feature set was used. As in the original papers, here we us black-bo. bilingual
resources from the Internet. In particular, we combine online ~ "™ stems and
an online bilingual concordancer [15, 16] to spot sul segmr . orrespondences
between the SL segment S and its machine translatiou [ intc c¢he TL. This is
done by dividing both S and T into all possible (overls, ~ing) sub-segments, or
n-grams, up to a certain maximum length. The. sub-seg ients are then trans-
lated into the TL and the SL, respectively, by . =ans or the bilingual resources
mentioned. These sub-segment correspor _ __.en used to extract several
collections of features that are fed to a neura. “etwork (NN) in order to deter-
mine the words to be deleted and the woiw . "“ions into which insertions are
required. One of the main advantages o1 ais approach, when compared to the
other approaches described below, ‘s . ~t 1¢ uses simple string-level bilingual
information extracted from ° - ~vaila ‘le source. Obtaining this information
directly from the Internet allows u. *o obtain quality estimations for the words
in T on the fly, without h~ving to rely on more complex sources, such as prob-
abilistic lexicons, part of-speect. ‘nformation or word nets.

We have experimem. ' wit! three different NN architectures: In the first
one, the words t be cleted and the positions into which words need to be
inserted are prea.. -+ by wo independent NNs; the second architecture uses
the output ¢ these two radependent NNs for the words and insertion positions
in the viciuity of v. word or insertion position about which a decision is made
as cont «t; "e third architecture uses a single NN to predict deletions and
insert.. ~ pr sitions and the input features used are those related to the word
or "asertion . ‘ition on which a decision is being made, along with those in its
* cinit .

Tue » cformance of this approach has been evaluated with two language

pairs, “nglish—Spanish and English—-German, using the publicly available datasets
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for the shared task on word-level MT QE at WMT15! [17] .. WM'1. 2 [18].
The experimental results confirm that our method, wher comparec to state-
of-the-art methods that only detect the words to be edited \ """~ .eplaced or
removed) provides competitive results using consider ply fr .c: “eatures. In ad-
dition, our method is able to determine the insertinn positions /ith an Fj score
of 39%, a precision of 44% and a recall of 36%.%

The remainder of the paper is organised as ™llows. ' he following section
provides an overview of related work on word. '=vel mi[' QE and stresses the
main differences between these and our - " __ction 3 describes the fea-
tures used, whereas Section 4 describes the "“ree NN architectures we have
evaluated. The experiments and res. 'ts a» ~ °n discussed in Section 5. Fi-
nally, the paper ends with some ~oncluc g remarks and two appendices, one
showing the mathematical descript. m . “ the NNs used, and another providing

an algorithmic description of ' -~ featu. »s used.

2. Related work

Some of the early ~ork on v rrd-level MT QE can be found in the context
of interactive MT (19, 6, z., While in standard MT there is no interaction
between the use and che M T system during the translation process, in inter-
active MT th wuser a. = the translation process by accepting or editing parts
of the trar .av. ~. affecting in turn the way in which other parts of the seg-
ment are *“anslated vy the MT system. In addition, interactive MT systems

may p ovide he user with different translation suggestions for the same SL seg-

http ‘/www.statmt.org/wmti5/quality-estimation-task.html
2htt ://uw .statmt.org/wmt16/quality-estimation-task.html
vd-les 1 MT QE datasets are usually unbalanced, as there are more words that are

adequately cranslated than otherwise (See Table 1 for some examples). In most evaluation
scenarl 1, such as the shared tasks on MT QE at WMT15 and WMT16, word-level MT QE
is eval- ated by focusing on the less frequent class (words to delete or, in our case, positions
into which insertions are required). This usually leads to relatively low scores; other metrics

buld surely have less pessimistic interpretations.
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ment. Gandrabur and Foster [19] obtain confidence scores § . cach TL  ord in
a given translation 7" of the SL segment S to help an inter ctive MT ;ystem to
choose among the translation suggestions to be presented to t.. <~ . Similarly,
Ueffing and Ney [20] obtain scores for each word ir I', e* .. Mough they are
used to automatically decide which suggestions should ve rejec” :d. This second
approach incorporates the use of probabilistic lexicons - a source of bilingual
information.

Blatz et al. [6] introduced a more complex nllecuon of features for word-

level MT QE, using semantic features bac 7T Vet [21], translation prob-
abilities from IBM model 1 [22], word poste. ~r probabilities, and alignment
templates [23] from statistical MT m. tews. -~ "he features employed are com-
bined to train a binary classifier which is en used to determine the confidence
scores.

Ueffing and Ney [10] eval: “~ cever 1 word-level confidence measures based
on word posterior probabilities for -ord-level MT QE. They divide the features
used by their approach irt~ two categories: those which are independent of the
MT system used for tr .slation black-box system-independent), as occurs with
the features used in this ~aper and those which are obtained from the inner
workings of the < atist’:al M1' system used for translation (glass-box system-
dependent). The .. ** or fea ares are obtained by comparing the output T" of the
statistical M * system to che best n translation hypotheses it produces. Several
distance metrics a.  *hen used to check how often word ¢;, the word at position
jof T, ', to. 1d in each translation hypothesis, and how far it is from position
j. The ~ fe tures rely on the assumption that if word ¢; appears in a similar
por tion in a “wrge number of translation hypotheses, then it is likely to be
« rrec’ and oes not need to be post-edited. Bigici [24] proposes a strategy by
~hich . < (tend this kind of system-dependent features to what could be called
a sys. m-independent scenario. His approach consists of employing feature-
decay algorithms [25] to choose parallel sentences from a parallel corpus, not
necessarily the one on which the statistical MT system was trained, which are

« ose to the segment S to be translated. Once this parallel corpus has been
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built, a new statistical MT system is trained and its intern- ., ure exau. ned in
order to extract these features.

Most of the recent advances in MT QE have been made . ~- .icipants in
the shared tasks on QE at the different editions of tf : Wor™ i » on Statistical
Machine Translation (WMT). Of the systems competiug in W MT 2014 [9], it
is worth singling out the MULTILIZER approach fo. ‘~ntence-level MT QE
because it also uses other MT systems to transi. ~ S into t 1e TL and T into the
SL.* These translations are then used as a psc Jo-reterence and the similarity
between them and the original SL and T" .3 computed and taken as
an indication of quality. This approach, and ." at of Bigici and Yuret [25], are
the most similar to the one we prop. "e uc =~ cause they also use other MT
systems for QE, although they tronslate hole segments, whereas we translate
sub-segments. Like the approach . .’ puper, MULTILIZER also combines
several sources of bilingual ir” —ation while that of Bigici and Yuret [25] uses
only one MT system. In any case, ~either MULTILIZER nor the approach by
Bigici and Yuret [25] work =t the level of words and are able to predict insertion
positions.

More recently, Rlain « al. [ J] proposed the use of bilezical embeddings [27]
to model the stre’ gth ¢ relationship between SL and TL words for their use for
sentence-level ana  ~ .d-ler .l MT QE. Bilexical embeddings are learned from SL
and TL emb 1dings and word-aligned parallel corpora. The results obtained for
word-level MT arc ~ =low the baseline results for the WMT17 shared task [28].

Wit" reg. ~d to the use of NNs, one of the first approaches using NNs was pre-
sentea 7 K _eutzer et al. [29] to the word-level QE shared task at WMT15 [17].
Kr atzer et « [29] use a deep feed-forward NN to encode SL and TL words
i +to fr iture vectors using a lookup table that is tuned during training. The
~apresc. ‘< 1on obtained from this network is then combined with the collection

of bas line features provided by the shared-task organisers through linear com-

4To the best of our knowledge, there is no public description of the internal workings of

1 ULTILIZER.
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bination. Recently, Liu et al. [30] have extended this work br uiding s, sthetic
training data through the use of MT and a parallel corpu - they tre islate the
source sentences in the parallel corpus by means on an MT sy, = .d then use
the target sentences to automatically label the words in tb w7 output.

A more sophisticated approach was proposed by .uarting ot al. [31], who
achieved the best results in the word-level QE shared . ~k at WMT 2016 [18].
They combined a feed-forward NN with two rec. “ent NN¢ and used the predic-
tions they provided as additional features for a .. ~ar sequential model [32]. This
architecture has been extended [33] by ac ' _ " ___put of an automatic-post-
editing tool to the input of the linear sequenti.” model, resulting in a noticeable
performance improvement.

At WMT17 [28], another NN avproac  was presented that obtained results
comparable to, and in some cases ¢ en  otter than, those obtained by Martins
et al. [33]: the Postech syst 4. 5.7, This system builds on a three-level
stacked architecture trained in a . “lti-task fashion: at the first level there is
a neural word prediction ™ndel trained on large-scale parallel corpora, at the
second level, a word-le el MT (. " system, and at the third level, a sentence-level
MT QE system.

Apart from t' 2 fea ares used —Martins et al. [31] and Martins et al. [33]
use lexical and sy.. ~ cic fe cures, computed on both individual words and word
bi-grams, wl reas Kim e. al. [34, 35] do not extract any features at all-— our ap-
proach dificrs as re, >rds the NN architecture. We do not use any recurrent unit;
instead we =fine, in two of the NN architectures we have evaluated, a fixed-
lengtl, ~nt' «t window around the word or insertion position on which a decision
is t sing made. This architecture is easier to train (it requires less computational
« ‘ort) it is .asier to parallelise, and behaves similarly to a sliding-window or

~onvoi. ‘< ial architecture.
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3. Features based on black-box sources of bilingual * ..ormatic .

The method described in this paper is based on previou approac .es by the
same authors [14, 13], which are in turn based on t'.c work by Espla-Gomis
et al. [36], in which several online MT systems wer v .d for word-level QE
in translation-memory-based computer-aided trans. “ion {  _s. The objective
is for the method to be system-independent and able tc use available online
bilingual resources for word-level MT QE. These .. ~nr s are used on-the-fly
to detect relations between the original SL segme. © S and a given translation
T in the TL as follows: first, all the (ove '»pping) sub-segments o of S with
lengths in [1, L] are obtained and trs~<lated int. the TL using the sources of
bilingual information (SBI) available; t. ~ ¢ .me process is carried out for all the
overlapping sub-segments 7 of T, + ‘~h a1 translated into the SL. The result-
ing sets of sub-segment translations, Ms_,r = {(0,7)} and Mr_,s = {(0,7)},
are then used to spot sub-seg. ~ut cu..espondences between T and S. Note
that some SBI, such as phrase tables or bilingual concordancers, may provide
additional data such as .ne u. mber of occurrences (frequency of translation) or
a probability; we can “erefore ¢ so use the collections Mg%, = {(o,7,¢)} and
MRS s = {(0,7,¢, of sub->. nent pairs and their scores ¢ (number of occur-
rences or probal iities depe .ding on the resources available). In this section we
describe a co' ection « ” fr itures designed to represent these relations for their
exploitatior to. -ord-level MT QE. We define two different sets of features: one
whose obi~~tive is to detect the words in a translation T to be deleted (Section
3.1), a .d an’ cher whose objective is to detect the insertion positions in 7" into
whirh a v -d, or sequence of words, needs to be inserted (Section 3.2). Ap-
pr adix 3 provides pseudo-code for the different feature sets described in this

sec. L

3.1. t atures for word deletions

* e define three collections of features to detect the words to be deleted: one

1king advantage of the sub-segments 7 that appear in T', Keep,, (-), another that
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uses the translation frequency with which a sub-segment ¢ ... S is tr. .slated

keep

as the sub-segment 7 in T, Freq,

(), and a third thal uses the lignment
information between 7" and 7 and which does not recmire . *~ ppear as a
contiguous sub-segment in T, Align<®°P(.).
3.1.1. Features for word deletions based on sub-segme. * nan vccurrences (Keep)
Given a set of sub-segment translations }* = {(o,7) , that is, the union
of Mg_yr and Mr_,g, with |7| < L, obtaine. ~ither ' _n translating from SL
into TL or vice versa, the first collection of featnre  Keep, (+), is obtained by
computing the amount of sub-segment trans. *ions (o, 7) € M with |7| = n that
confirm that word ¢; in 7" should be ., * » the translation of S. We consider
that a sub-segment translation (o,7) ¢ » rms ¢; if o is a sub-segment of S,
and 7 is an n-word sub-segment ¢ . “hat \ yvers position j. This collection of
features is defined as follows:
o (0,7) € conf*P (4, S, T, M)}|
{7 : 7 €seg,(T) A j €span(r,T)}|

Keep,(j. S, T, M) =

where seg,, (X) represe s the sc of all possible n-word sub-segments of segment
X, and function span(7, ™ retw 1s the set of word positions spanned by the sub-
segment 7 in the < ;gme t T'; n 7 is found more than once in T, it returns all the
possible position. - aned Function conf**P(j, S, T, M) returns the collection

of sub-segme .t pairs (o, ) that confirm a given word ¢;, and is defined as:
conf P (i ST M, = {(0,7) € M N (seg,(S) x seg,,(T)) : j € span(r, T)}

where ~o,( () is similar to seg,,(X) but without length constraints.?

Ne shall 1. “strate this collection of features with an example. Let us consider
t e Cr alan egment S =ens van demanar que baixarem el volum, an English
transi. " hypothesis T =they asked to make the volume go down, and the

referc ce translation R=they asked us to turn the volume down. According to

°Espla-Gomis et al. [13] conclude that constraining only the length of 7 leads to better

1 sults than constraining both ¢ and 7.

10




s  the reference, the words make and go in the translation hv .J.nesis su. ald be
deleted: go should simply be removed, whereas make shc Ud be rer oved and
the word turn should be inserted afterwards. In addition, tn - . us should
be inserted between the words asked and to. Finall , let ~ , » ppose that the
collection M of sub-segment pairs (o, 7) is obtained by apply’ ig the available

0 sources of bilingual information in order to translate v.. sub-segments in S up

to length 3 into English:

M ={(ens, us), (van, did), (demanar, ask), (qu. that), (baizarem, lower),
(el, the), (volum, volume), -ns van, they going us),
(van demanar, they asked), (demanar que, .sk that), (que baizarem, to
255 lower), (baizarem el, lower ti. ), 2l volum, the volume),
(ens van demanar, they asked . ., (var. lemanar que, they asked to),
(demanar que baizarem, ask to . wer,, (que baizarem el, to lower the),

(baizarem el v.m, «. .rn the volume down)}

Note that the sub-segment pairs (o, 7) in bold type are those that fully match
20 (thus confirming) the .anslatic » 7,8 while the rest may contradict some parts
of T. The word asked \ “ich ¢ rresponds to word position 2) is confirmed by
two sub-segment pairs: (van demanar, they asked), with length 2, and (van

demanar que, the, 2 ced tr,, with length 3. We therefore have that:
confX*®P (2,5, T, M) = )
confs*®(2, S, T, M) = {(van demanar, they asked)}

)nfgeep(Q7 S, T, M) = {(van demanar que, they asked to)}

I addi .on, we have that the sub-segments 7 in seg, (T) covering the word asked

for . ‘eths n [1,3] are:

{r:7eseg (T) AN 2 €span(r,T)} = {asked}

6These sub-segment pairs are those defined as M N (seg,(S) x seg,(T)) in function

« mfeeP (),

11
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{r:7 €segy(T) A 2 €span(r,T)} =
{they asked, asked to}

{T:7 €segs(T) A 2€span(r,7)} =
{they asked to, asked t make}

The resulting Keep,, (+) features for the word volume are, “herefore:

{r:(o,7) € c*nflf“ 2SS M)} 0

Keep,(2,5,T,M) =

{7 :7 €seg(T) 1 > €span(r,T)}| 1

{7 : (0,7) « ~uf§P (2,8, T, M)} 1

Keepy (2,5, T, M) = _1!
eepa(2, 5,7, M) {7 :7 €sego(T) /. 2 €span(r,T)}| 2
{7 : (o, )€ ontg"P(2,8,T,M)}| 1

Keepy (2,5, T, M) = € .
eepy(2, 9, ) [{r -~ €sey T) A 2€span(r,T)}| 2

3.1.2. Features for word deletions b. ed «  sub-segment pair occurrences using

2

translation frequency (. “‘J‘n Ny

The second collection of features . .es the number of occurrences of the sub-
segment pairs in M°° - {\c ~.¢)}. This information is not available for MT,
but it is available fo: *he biling al concordancer we have used for the experi-
ments (see Sectior 0.2). 1. » amber of occurrences of sub-segment pair (o, 7)

can be used to eterr .une I sw often o is translated as 7 and, therefore, how

reliable this t mslav. ~ is We define Freq (- as:

n

occ(o, T, M°°°)

F\reqlr(Leep(‘” Sa T’ 4 'OCC) = Z

’ occ
” occ(o, 7', M
V(o‘,r,(f))econfﬁ' °P(5,8,T,Meocc) Z ( 1 )
Y(o,7’)eMeoce

where tu. ~ on occ(o, 7, M°) returns the number of occurrences ¢ in M for

th sub egment pair (o,7). Note that each term in Freq P

P (.) is equivalent to

tu ™ obab’ ity p(7]|o) used in phrase-based statistical MT where M°°® would
act as a parase table.

To -ontinue with the running example, and assuming that we have a sub-

= cntal translation memory which contains 99 occurrences of the sub-segment

an demanar translated as they asked, 11 occurrences in which it is translated

12
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as they demanded, and 10 in which it is translated as they i- ju.red, the “eature
using these counts for sub-segments of length 2 would be:

99 33
Freg®®(2, 8,7\ M) = ——— =2
redz (2,9 )= Sl

3.1.8. Features for word deletions based on word . “anments - partial matches
(Align)**P)

The third collection of features takes advanta, of pe cial matches, that is,
of sub-segment pairs (o, 7) in which 7 does not . ~near as is in 7. Given this
condition, only resources Mg_, translat. - irom SL mnto TL can be used, since
those translating from TL into SL would alwe, - contain any 7 sub-segment

appearing in 7. This collection of featr ves ', acuned as:

[LCS(7,T)|

Align}™®®(j, 8, T, M, e) = = (1)

Vi “segs_dop,, (4,5,T,M,e)
where LCS(X,Y) returns the wo. '-baseu longest common sub-sequence between
segments X and Y, and segs_edop,, (j, 5, T, M, €) returns the set of sub-segments
7 of length n from M " .at arc » translation of a sub-segment o from S and in
which, after computin, *he LCS with T', the j-th word ¢; is assigned the edit

operation e:7

segs_edop,, (7, S, T, M,e) = @)
{(r 7.7)e Mo eseg,(S)N|r| =nAeditop,(t;, T, 7) = e}
where editop, (¢, T, , returns the edit operation assigned to ¢; and e is either
deletr or me .ch. If e = match the resulting set of features provides evidence in
favour o1 eping the word ¢; unedited, whereas when e = delete it provides
ev denc in favour of removing it.
" ¢her aning example, there are three sub-segment pairs (o, 7) for which the

word asked has editop, (t;,T,7) = match with T' =they asked to make the volume

7™ te that the sequence of edit operations needed to transform X in Y is obtained as

> by-product of the computation of LCS(X,Y"); these operations are insertions, deletions or

1 atches (when the corresponding word does not need to be edited).
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go down: one sub-segment pair with length 2, (van demanc , wiey aske ), and
two sub-segment pairs with length 3, (van demanar que, they askc | to) and
(ens van demanar, they asked us). With the exception of the . -+ - .e, all these
sub-segments are fully matched in T the last one has ¢two r . ing words, they
and asked. Consequently, the values of features Align; <(j,S." , M,match) for

the word asked are:

|
Align¥*®(2, 5, T, M, match) = — o =0

laskow,

[they asked| 2
Align§*(2, S, T, M,match) = ———— ==
igny""(2, S, T, M, match) |u. y asked| 2

[the, asked| [they asked to| _ 5
le. 1 as.ed us| ' |they asked to| ~ 3

Aligngeep (2,8, T, M,match)

In addition, there are two ~—h-segn. nt pairs (o, 7) for which the word asked
has editop, (¢;,7,7) = delete: | ms van, they going us) and (demanar que
baizarem, ask to lower), hoth with length 3. Therefore, the value of features
Align*®°P (4, S, T, M, dr .ete) fo. the word asked with n € [1,2] is 0, while for
n = 3 its value is:

the t 2
Alignf™®(2 S, T I, de ete) = | ("y| + [to] ==
[they going us| ~ |ask to lower| 3

keep

n

Note tha’ feature Align,*°P(-) is the only one to provide evidence that a word

should be ueletea. ™r instance, in the running example, the word go needs to

be delef d; 1. the case of this word, all features but Alignk°*P(.) take the value 0.

For ew. op’ cation delete there is one sub-segment pair that provides evidence
ths . the woi go should be deleted: (baizdarem el volum, to turn the volume

wn)

Tu ** ee collections of features described so far, Keep,, (), Freq“°°P(-), and

Align, *P(-), are computed for ¢; for all the values of sub-segment length n €

keep

P (+) are computed for the collection of sub-

[1,L1 features Keep, (-) and Freq
segment pairs M obtained by translating from SL into TL (Ms_T), and the

« sllection of sub-segment pairs obtained by translating in the reverse manner

14
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(Mp_s). As a result, 2L features are computed for Keep,,/ , «ad 2L .. ore for

keep

keep (). Align**°P(.) uses only Mg_p; it is, however, ¢ mputed t ‘ice: once

Freq,
for the edit operation match, and once for the edit orerati. <~ _ete. This

brings the total to 6L features per word ¢;.

3.2. Features for insertion positions

In this section, we describe three collectior. of feature which are based on
those described in Section 3.1 for word dele.’~ms, a.. " are designed to detect
insertion positions. The main difference between th.is that the former apply
to words, while the latter apply to gaps; we . "all refer to the gap after word ¢;

as ;.8

3.2.1. Features for insertion pos . ms ba. 1 on sub-segment pair occurrences
(Nolnsert)
The first collection of featu. = N orty,(+), based on the Keep,, (-) features

defined in Section 3.1.1 for word delev.ons, is defined as follows:

Nolnsert,, (7,5, T, M) =
o (0,7 € conf™® (S, T, M)}

{r:7 seg, (2, * jespan(r,T) A j+1 € span(r,T)}|
(J,

where function nf} * ,T, M) returns the collection of sub-segment pairs

(0,7) that cc firm a g. - . insertion position 7;, and is defined as:

confp?™ (4, S, T, M) =
{ 7)€ M N (seg.(S) x seg, (T)) : [4,j + 1] C span(r, T')}

Nolnsery,,” + accounts for the number of times that the translation of sub-
se ment o from S makes it possible to obtain a sub-segment 7 that covers
tuc ™ p y; chat is, a 7 that covers both t; and t;4;. If a word is missing in
position - ;, one would expect to find fewer sub-segments 7 that cover this gap,

therefc e obtaining low values for Nolnsert,,(-), while if there is no word missing

8Note that the index of the first word in T is 1, and gap 7o corresponds to the space before

t e first word in T'.
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in this position of T', one would expect more sub-segments .o cover . e gap,
therefore obtaining values of Nolnsert,(-) closer to 1. In order to e able to
identify insertion positions before the first word or after the . -+ - _rd, we use
imaginary sentence boundary words tg and 7|11, wl «ch ¢# . a. 2 be matched,®
thus allowing us to obtain evidence for gaps vo and 7.

In the running example, gap 1 between the words « * and asked is covered
by two sub-segment pairs: (van demanar, they <ked) av . (van demanar que,
they asked to). The values of feature Nolnser. 1,5,1, M) for n € [2,3] are,

therefore:'0

. [{the, asked}| 1
Nolnserty (1, S, T, V> — L% -
olnsertz( o oasked}| 1

Nolnserts(1, S, T, b\ = ‘{M = 1
' |{chey asked to}| 1

3.2.2. Features for insertion pos. *ons based on sub-segment pair occurrences

noins

using translation frequency (Freq),

keep

The same adaptat on can « > carried out with the Freq,

() feature col-
lection defined in Sectic 3.1.2 ¢o obtain the equivalent feature collection for
insertion positior .

occ(o, T, M°°°)

Freq™®™s(j, € I'M " =

n /
- ocec OCC(0, T/, MOCC
V(o,7)€confloms (5,5, T, Moce) ZV(U’T,)EM ( L )

keep

2 °P(+), the running

As previously described in the example for feature Freq,
examp’ : asst nes a source of bilingual information which contains 99 occurrences
of snb-sey,  ~nt van demanar translated as they asked, 11 occurrences in which it
is rans' .ted as they demanded, and 10 in which it is translated as they inquired;
the “ uture hat uses these frequencies for gap v is:

noins 99 33
Freqs (1’S’T’]M):799+11+10:E

9These boundary words are annotated in M when this resource is built.
10Note that sub-segments shorter than 2 words cannot be used to identify insertion positions.
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3.2.3. Features for insertion positions based on word alignme’ .. of partiu. matches

(Align™°™s)
Finally, the collection of features Align*P(.) defin~d in ™ ~".n 3.1.3 for

word deletions can be easily repurposed to detect ins rtior pos ‘ions by setting

the edit operation e in Eq. (1) to match and inse~t and redef .ing Eq. (2) as
segs_edop,, (4, S, T, M,e) = {(7 : (o0,7) € M Al7| =n Ac itopy(t;,7,T) = e}

where function editop,(t;,7,T) is analogous ~ ediw.___.;,7,T) except for the
fact that it computes the LCS between 7 and 7. ~ther than the other way
round.'’ We shall refer to this last collecti.. f features for insertion positions
as Align) "™ (+).
In the running example, the values 1 ~ eatures Align"*"*(j, S, T, M, match)
are:
_ |they asked| 2

Ali noins 1.6™ M pa ch) = —2 270 _ 2
igna” (1, > |they asked| 2

. they asked)| |they asked to| 5
Alignk®*P(1, 8, T,  +ch) = | ==
igny (1,9, ) |they asked us| ~ |they asked to] 3

In this case, therc - no sub-s ;gment 7 for which editop,(t1,T,7) = insert.
However, there is ¢ ie sub-se,  °nt pair that indicates that the word turn should
be added after * ¢ wr .d m e: (o,7)=(baizdrem el volum, to turn the volume
down):

to the vol d 4
Aligng®™ " S,T, M, insert) = [to the volume down| =
[to turn the volume down| 5

noins(.)

The colle tions of features for insertion positions, Nolnsert,,(-), Freq),

and Alyg. " "(-), are computed for gap 7; for all the values of sub-segment
le gth - € [2,L]. As in the case of the feature collections employed to de-
tec < :letio s, the first two collections can be computed by using both Mg_,p
and Mp_ g, while the latter can only be computed using Mg_,p for the edit

operat ons insert and match. This yields 6(L — 1) features in total per gap ~;.

11t is worth noting that LCS(X,Y) = LCS(Y, X), but the sequences of edit operations

« Htained as a by-product are different in each case.
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4. Neural network architecture for word-level MT C _

The features described above are used to predict the wor < to be ¢ leted and
the insertion positions into which insertions are require . using NNs. We use NNs
instead of other machine learning approached becausc NM | are ¢ iitable for non-
linear classification problems [37, Chapter 6] and a 1v. " with _.ngle hidden layer
and a finite number of neurons can approximate any con ‘nuous function [38].
In addition, NNs allow us to combine information. ~ho» , words and insertion
positions through more complex architectures, as . ~wn in Sections 4.2 and 4.3,
and train them together. In any case, we . ~ve tried with alternative machine-
learning approaches; in particular, vi*h extreme.y randomised trees [39] and
non-linear support vector machines [4."  or extremely randomised trees we
used as many trees as twice the 1. . her o1 "atures, and for non-linear support
vector machines we used a radial bas ~ fuw.tion kernel with a kernel coefficient
of 1 divided by the number ot 1. *ures. ..1 both cases the results obtained where
significantly lower than those obtainecw with NNs.

We have tried thre ditie. nt predictor architectures, which are explained
below. All the NNs , ~oosed h ve the objective of using relatively simple ar-
chitectures for us: oility. 1. .l cases, a special token is introduced to mark
the beginning of -he r achir . translation output, so that insertion positions are

1

always found .fter a . e .

4.1. Two wndepenac * neural networks

Thr simp st NN architecture consists of having two independent feed-forward
networks, ue for predicting whether the word ¢, at position k£ needs to be
de cted and another to predict whether insertions are required at the gap i
ai. = k. Fi are 1 depicts the architectures of these two NNs in which features
wr wora Lteletions (fi) and for insertion positions (gi) are used to feed each
netwos :.

" ach network has a single hidden layer consisting of M and N units, respec-

‘vely. This results in M + GN + 2M + 2N + 2 parameters between the two

18
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(a) Network employed to predict whether (b) Ne. ~rk employed to predict whether
the k-th word needs to be deleted. .. "~ms are required after the k-th

0 A,

Figure 1: Two independent neural netv w1.. one .sed to predict the words to be deleted
and another used to predict the gaps into hich insertions are required. Inputs f and gy
represent the features employed to. “oru «.” ons and insertion positions, while y; and zj

are the output (decision) nodes for each 1. -vork.

networks, where F' ar . G are v e number of features that inform the network
used to predict deletion. ~nd t! 2 number of features used as input to the net-
work that predict inse .ions, respectively. Both F' and G include an additional
binary input feav. ~ hat v .l be used by the architecture described in sections
4.2 and 4.3." Note tha. k takes values in [1,|T|] for word deletions while it
takes valucs in |u, TI] for insertion positions in order to make it possible to

identify use “ions before the first word of T

4.2 Cascuw "~ revision of prediction using context
Thr two 2etworks described above do not take the predictions for neigh-
bow. ~ w cds and insertion positions into account. We therefore propose two

addit 'nal feed-forward networks which revise these isolated predictions by tak-

1n the experiments with the architecture defined in Section 4.1 the value of these additional

put features is set to zero.
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ing into account the predictions made for the surrounding ~ _.us and 1. ertion
positions. These additional networks, henceforth cascade -revision INs, take
as input the outputs of the two independent networks show. = ".gure 1. In
particular, they use the outputs for the k-th word anc mser’ ou Hosition, yx and
2k respectively, along with those in the vicinity, te prouuce re- .sed predictions
y;, and z.

To handle the situation in which revising . oredict’ m for words and in-
sertion positions at the beginning or the end " a senvence would require as a
context predictions for non-existing word ' __n positions, we introduce
additional binary input features. These inp. features are set to zero when
the associated input neuron for y; o1 ¢ 1e. - '3 an existing word or insertion
position, and to one otherwise.

Figure 2 depicts the architectu. » ¢. “*hese two additional networks using a
single hidden layer with P ap = 7 »mits, -espectively, and C' context positions on
the left and on the right.Notice th. the binary input features mentioned above
are not shown in the figur~ for the sake of clarity; there is one such feature per
input context neuron.

The addition of the ¢ “~ade ~revision NNs signifies that the number of pa-
rameters to estir ute ¢ iculated in Section 4.1 (FM + GN + 2M + 2N + 2) is
increased by 4P+ 7 +4C P +4CQ + 2.

We have -ied two du.erent ways of training the NN that results from using
the output neuron. ~f the independent NNs depicted in Figure 1 as input to the
NNs sh' wn . Figure 2: one that trains the independent and cascaded-revision

NNs i “we steps and another that trains them together in a single step.

T vo-st p training. This training strategy first trains the independent NNs de-
scri. 1in € action 4.1 and then uses their outputs as the input to the cascaded-
revision NNs to produce the revised predictions. This training process is fairly
simple and only has to train four feed-forward NNs in isolation: two independent
1o and two cascaded-revision NNs.

In the case of the words and insertion positions at the beginning or the end
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of a sentence, the right or left context may not exist and we ¢ . v.ese pre. ictions

to 0.5.

One-step training. This second training procedure t ains all the NNs simul-
taneously and is aimed at improving the results by 1< ,ing t .e independent
NNs to benefit from the feedback provided by the ¢ ~cade. .evision NNs. For
a fair comparison, two preventive decisions were made. %irst, parameter ty-
ing was used between the different instance: of the - yendent NNs in order
to have the same number of parameters as in the ~o-step training procedure
explained above. Secondly, we followed « multi-task approach, in which the
independent NNs were trained to pre '+ the actual estimation of each position
in [k — C,k + C] and the cascaded-re.’si- 2 NNs were trained to predict the
actual predictions for position k; . <amc veight was given to each loss func-
tion. Both training strategies were, (ereiwre, provided with exactly the same
information during training. A in tue case of two-step training, context may
not exist for word and insertion posiions at the beginning or the end of the
sentence; in those case we u. ° feature vectors ﬁ and g; with all their values
set to 0.0, except for " = binary nput feature introduced in Section 4.1, whose
value is set to one These b .y features are used to flag non-existing word or

insertion positic s in ne re .ge [k — C, k + C], otherwise they are set to zero.

4.3. Single . ral network for joint prediction of deletions and insertions

The NN proposed. in Section 4.2 takes context into account by reviewing a
sequer ¢ of redictions made by the independent NNs defined in Section 4.1.
This is a. - by using these predictions as the input of an NN with a hidden layer
ar ( an utput layer that retrieves the reviewed predictions. Here, we propose
a .o tly @ derent NN in which, rather than obtaining predictions with the
mdepenacnt NNs and then reviewing them, the hidden layers of the independent
NNs a e directly connected to the hidden layer of the revision NN. Figure 3
_ _'_is this architecture; as will be noted, each feature vector ﬁ and gy is

sed as the input for the hidden layer of the corresponding independent NN
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Yk—C

Zk—C

Yk—1

Zk—1

Y8
Yot
DT

2k

Yk+1 v/

Zk+1

Yk+C

Zk4-C Zk+C

(a) Netw . for cascaded revision of pre- (b) Network for cascaded revision of pre-
diction .nade for -~ k-th word. diction made for the word position after

the k-th word.

Figure . Tw neural networks for cascaded revision of the predictions made by the isolated
NN- shown in . “~ure 1 by using the context of 2C' words and word positions around the word,
o word osition, on which a decision is being made. In this case, input values y; and zj
co.. v ond tr the outputs of the NN in Figure 1 and y;c and z;ﬂ are the cascaded-reviewed

atput ve. s,
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in Section 4.1, and the neurons in each of these hidden lz ..., are co. aected
to a second hidden layer. Finally, a single output laye: is added with two
neurons, one that predicts deletions and another that predic.. == ¢ons. It is
worth mentioning that the parameters of the hidden ayer- v he independent
NNs are shared, thus reducing the number of parametcrs to b learned. As in
Section 4.2, for the words and insertion positions to v. ~ left of the beginning
or to the right of the end of a sentence, we usc “eature v ctors f: and g; with
all their values set to 0.0, except for the biu. v input feature introduced in
Section 4.1, whose value is set to one.

The number of parameters of this NN is .. "CH +2NCH + MH + NH +
FM+GN+3H+ M+ N +2, where + nu « respectively, the total number
of input features for each word end for .ch insertion position (including the
additional binary input neurons), 1" a.. ' N are the number of hidden layers in
the NN that predict word dr™ *~ns a1 1 insertion positions, respectively, H is
the number of units in the secona . *1den layer and C' is the amount of context
to be used on each side of the word and insertion position for which quality is

estimated.

5. Experiment’ and cesults

We have ¢ aluate.. "h method for word-level MT QE described in the pre-
vious sectir 1s . “ng the datasets provided for the shared tasks on MT QE at
the 2015 ""WMT15; |17]) and 2016 (WMT16; [18]) editions of the Workshop on
Statist cal M «chine Translation. In what follows we describe these two datasets
and how .. ~v were used to identify the words to be deleted and the word posi-
ti asip o which insertions are required (see Section 5.1), the sources of bilingual
inic .atior used (see Section 5.2), how the training of the different neural net-
worke described in Section 4 was performed (see Section 5.5) and the results

obtain d (see Section 5.6).
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Tigure . A ingle neural network that predicts the words to be deleted and the word positions
into w ‘ch insertions are required by using the context of a fixed number of tokens determined
by C' a und the word and the word position for which a decision is being made. Inputs fj

. represent the features for word deletions and insertion positions, while yi and z; are

he output (decision) nodes.
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5.1. Datasets

The WMT15 and WMT16 datasets consist of a collect m of segr ents S in
English, their corresponding machine translations 7" in*  Spamn..” . the case of
WMT15 and into German in the case of WMT16, ¢ rtair « tL ough MT, and
their post-edited versions R.

The original datasets label each word in every ti. slation 7" as GOOD
(match), when it is properly translated, or as BAL ‘delet in our experiments),
when post-editing is required (the word must ¢. her be removed or replaced);
however, no information is provided as = - w.us wue wnsertion positions. In or-
der to evaluate our method for predicting inse..” positions, we computed the
sequence of edit operations required . cor c.. I’ into R using the LCS algo-
rithm [41] and subsequently used "* to de. rmine the word positions into which
insertions were required.

Table 1 describes the am. ... ** <= ments and words in each of the three
portions of the two datasets (train. ~. development and test), along with the
amount of words to be " " *ed and the word positions into which insertions
are required. As cap oe seen, . 1¢ amount of insertions is slightly lower than
the number of worl dele. “ns or all datasets: in general, about 19% of the
words need to b dele ed, and about 16% of them require an insertion after
them. With reyara - the umber of insertion positions, Table 2 provides more
detailed infc  -~ation by dividing them into two classes: those that are the result
of a replacement (0.. deletion plus an insertion) and those that are independent
(one or .nore words are inserted). The results shown in this table indicate that
about . 7 f the insertion positions in the datasets are independent while the
res . are the result of a replacement. This accounts for the relevance of the
¢ ~blr 0 tac ded in this work, since these independent insertions would never

“ave be.  detected by any of the approaches in the literature.

Seque ce of edits. The sequence of edits from which the insertion positions
are derived is obtained as a by-product of the computation of the word-level

1 CS between T', the MT output, and its post-edited translation R. The edit




Total n1 .nber

Dataset segments words « ' Jons insertions
training 11,272 257,879 49,321 "9%) 38,246 (16%)

WMT’15  dev. 1,000 23,098 1455 (1 %) 3,405 (16%)
test 1,817 40,883 7,720 (19%) 6,010 (16%)

training 12,000 21. vy 45,162 (21%) 36,217 (19%)

WMT’16 dev. 1,000 19,487 3,809 (20%) 3,069 (17%)
test 2,000 45,1 6,668 (19%) 6,010 (15%)

Table 1: Number of segments, number 1 ~rds, = imber of word deletions and number of

insertions in each portion of the two datasc * use. in the experiment.

Dataset i .dependent insertions

insertions tied to deletions

10,212 (27%)
884 (21%)

raining

WMT’15  dev.

28,034 (73%)
3,405 (79%)

est 1,606 (32%) 2,521 (68%)
training 12,062 (33%) 24,155 (67%)
Y MT 6 dev. 1,062 (34%) 2,007 (66%)
test 1,948 (24%) 6,010 (76%)

Table ®: Number of insertions that are independent vs.

result ¢ a replacement (a deletion plus an insertion).
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operations that can be obtained with this algorithm are delet’ ... and in. rtions,
unlike with the edit distance algorithm [42] in which substit tions are lso taken
into account. The edition sequences obtained may, in some cas.  »- umbiguous,
given that the substitution of one word for anothe mav ¢ modelled as an
insertion followed by a deletion or as a deletion followed by . insertion (in
our experiments, we chose the second option); howeve. as all segments in the
datasets are processed in the same manner, this . 1 have n effect on the results.

With regard to the detection of insertion . -~itions, and given that the ob-
jective of our method is only to detect th-  *° . T into which words need
to be inserted, and not the exact number ot = ~rds to be inserted, a sequence
of insertions is simplified to just one . serw. . Tor example, for T'=The Euro-
pean Association for the Automatic Trar. ation is noncommercial organisation
and R =The European Associatior. o, acnine Translation is a nonprofit or-
ganisation, the sequence of '"**ns wuld be (match, match, match, match,
delete, delete, insert, match, u. “ch, delete, insert, match), in which the

last insert refers to the i»<ertion of two words, a and nonprofit.

1

5.2. Sources of biling. ' inform tion

‘We have used wo d"fereny kinds of sources of bilingual information: MT, a
less informative 1. “n- aal re ource (M), and a bilingual concordancer, a more in-
formative res jurce that , ovides the number of occurrences of each sub-segment
translatior (M<  We used three MT systems that are freely available on the
Internet n, ~rtium [43], Lucy,'® and Google Translate.!* While Google Trans-
late w = use . for both datasets, Lucy was used only for WMT16 and Apertium
for  vMT1s. Two MT systems (of different types) were, therefore, used for each
c tase’.

th

L. bi’ ngual concordancer used is Reverso Contex which provides, for

a giv. » SL sub-segment, the collection of TL translation alternatives, together

~“nttp://www.lucysoftware.com/english/machine-translation/
14http://translate.google .com
15nttp://context.reverso.net/
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with the number of occurrences of the sub-segment pair in tF «.anslatic. mem-
ory. The sub-segment translations obtained from this sour = of infor1 ation are
more reliable than those obtained from MT, since they are ex.. ~*~ " from man-
ually translated texts (although some sub-segments may .c¢ Tong owing to
alignment errors). Its main weakness is, however its iack of ource coverage:
although Reverso Context uses a large translation memec. - no translation can be
obtained for those SL sub-segments not found i..© Moreor or, the sub-sentential
translation memory contains only those sub-se, ment vranslations with a mini-

mum number of occurrences. On the con* T _, stems will always produce
a translation, but it may be wrong or conta.. "intranslated out-of-vocabulary
words. We have combined these comp. "meuw. . “ources of bilingual information
to improve the performance of the appro. aes for word-level MT QE proposed.
It is worth noting that other resour. »s, ch as phrase tables from phrase-based
statistical MT systems, could ™ ~ nsed = alternative bilingual resources.

In our experiments, we compu. 1 the features described in Section 3 sepa-
rately for both sources of information. It is worth mentioning again that the
features based on trar .ation oc. wrrences cannot be obtained for MT. The value
of the maximum snb-sey =nt ' ngth L used was set to 5 for both languages.
This value was ¢} ssen ter a set of preliminary experiments in which the value
of L was initialise. * 1 ar . incremented until the performance of the indepen-
dent NNs dr cribed in Section 4.1 on the WMT15 dataset converged. In fact
the differe..ce betv. ~m the results with L = 4 and L = 5 were not statistically

significs «, ¢ en though those with L = 5 were slightly higher.

5.8 Evalu. ‘on

Th eval ation was carried out by following the guidelines provided for each

+

share. *as’ to ease the comparison with the state of the art. In both WMT15
and . 'MT16, word-level MT QE is tackled as a binary-classification problem,
signif* ng that standard precision, recall, and Fj-score metrics are used for
evaluation. In WMT15, the main evaluation metric was the Fj score for the

1 ast frequent class in the dataset, that is the F; measure for the BAD class
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(or delete class, as it is denominated in this paper). Conv .ocly, in v. MT16,
the main evaluation metric was the product of the Fj sco. » of the t o classes:
GOOD and BAD (match and delete in our case). Althengh . €~ _ion 5.6 we
provide all the metrics mentioned above, we used t ese t o 1ain metrics to
tune the corresponding binary classifiers (see Sectinn 5.0 tor a ¢ :scription of the
method used), thus enabling the results obtained for we ! deletions to be easily
compared with those obtained by the approacu. varticip ting in these shared
tasks.

To compare our approach with other * * ” " _ art methods, we took the
best performing systems in the word-level 1. QE shared tasks in WMT15
and WMT16 as a reference; these a = i %s by Espla-Gomis et al. [13]
and Martins et al. [31], respectivelv, ana “cus solely on the task of identifying
the words to be deleted or replacec (w ~ds cagged as BAD). Given the absence
of previous approaches conce ‘»o the ‘dentification of insertion positions, we
defined a dumb baseline impleme.. ‘ng the null hypothesis. This is a classifier
that assigns a label to ea~h word and insertion position in a weighted-random

fashion, using the a p .ori prob. hility of each class in the dataset.

5.4. Baseline feat res

The organise. of che ¢ .ared tasks on word-level MT QE at WMT15 [17]
and WMT16 18] provia. « the participants with a collection of baseline features
obtained v ith tn. OuEst++ tool [44]. Some of these features were included
in the e .po ‘ments to evaluate whether any improvement could be obtained
when ~mbi .ing them with the features described in Section 3.'® The baseline

fea’ ires inci. 'ed in the evaluation are the following:

~ Jynta ic features:

1680, = features, such as the immediate neighbour words to that for which predictions are
produc d, require a large amount of features to be represented, such as one-hot representations
or word embedding. These features were discarded for the sake of the simplicity of the models

. ilt.
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Is the token a stop word?

Is the token a punctuation sign?

Is the token a proper noun?

Is the token a digit?

Part of speech of the current token

Part of speech of the SL token aligne. vith th current token

e Semantic features:

Number of alternative meanings o1 “e current token (only available

for WMT15 datasets)

Number of alternative ~eanin = of the SL token aligned with the

current token (only availchle . =~ WMT15 datasets)

e Language model (LM) fea. ves:

Longest n-gra~ ~een by the TL LM with the current token as the

last word

Longest a-gramu ~e . by the TL LM with the current token as the
first v ord

Be xoff pre ! .lity for the shortest n-gram not seen by the TL LM
- itn he current token as the last word

. ckoff probability for the shortest n-gram not seen by the TL LM
v c¢h the current token as the first word

Ba.off probability for the shortest n-gram not seen by the TL LM
w Jh the current token as the middle word

Longest n-gram seen by the SL LM with the SL token aligned to the

current TL token as the last word

Longest n-gram seen by the SL LM with the SL token aligned to the

current TL token as the first word
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e Other features:

— Number of tokens in the SL segment
— Number of tokens in the TL segment
— Ratio between the number of tokens in the .., and ” L segments

— Does the token appear in a given pseudo-rei. ~nce? (only available

for WMT15 datasets)

Note that all the features included in this list a. either binary or numeric,
with the exception of the part of speech ¢” the SL and TL tokens, which are
categorical. We dealt with these feat: ~= hv converting them into one-hot rep-
resentations. The length of these one "ot representations was 50 and 57 for
English-German, and 59 and 6% '« Eng. ‘h-Spanish. The difference in the
number of features needed to encode ~art-of-speech tags together with the fact
that the organisers of WMT p. ~idea sume features in WMT15 that were not
available for WMT16 (see the list abuve) lead to different amounts of baseline
features for each langu ge pa. = 121 for English-German and 143 for English—
Spanish.

5.5. Neural netv ork p rameters

Different ¢ nfigu. “ior , were tried using different numbers of neurons and
hidden laye s, = ~timisation algorithms, loss and activation functions and dropout
values. Those produc.ng the best results with the minimum number of param-
eters t- be le wned are described in this section.

The . ~ s described in Section 4 were implemented by using the Keras li-
br ay [#5].17 kvery NN contained in its hidden layer as many rectified linear
uw. ~ ReLT , Nair and Hinton [46]) as the number of nodes in the input layer. A
sigmoid activation function was chosen for the output node. The Adam [47] al-

gorith 1| was used to optimise the binary cross-entropy cost function. A dropout

http://www.keras.io
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of 20% was similarly set in order to minimise the risk of ove' ..ung. Tu. devel-
opment set of each dataset was used to compute the errc after eac = training
epoch; the training process was stopped after 10 epochs witi, -+ - .y improve-
ment on the development set. The training was repe ted 1”7 w. es for each NN
with random uniform initialisations using the method uctined ’ y He et al. [48];
the model used was the one which provided the lowest «. ~r on the development
set. After training, a thresholding strategy [49] v. = used tc choose the threshold
applied to the output node of each NN that . ~videa the best results for the
main evaluation metric: the Fj score of t* ' 7 _ent class in WMT15, and
the product of the F; scores for both classes .. WMT16. This tuning was also

carried out on the development set b, mea. =~ “ 2 line search.

5.6. Results and discussion

The following section cont~ins the =sults obtained for each of the architec-
tures proposed in Section 4 anu ~mpares the impact of taking context into

account when predicting word deletions and insertions positions.

5.6.1. Predicting wo:  deletions ind insertion positions independently

Tables 3 and 4 now the .. ilts obtained when using two independent neural
networks (see & ~tior 4.1) o identify word deletions and insertion positions,
respectively, ' oth for "~ dsh-Spanish and English-German. Table 3 includes
the results ot . ~ approach described in Section 4.1, both when using only
the base!” ~ features described in Section 5.4 (baseline), the combination of
featur 5 basr 1 on sources of bilingual information described in Section 3 (SBI),
and when ~mbining both types of features (SBI+baseline). The same NNs
w re us .d only with the baseline features in order to confirm the improvement
ot v. com! .nation of both feature sets. In addition to this, the results obtained
with the different combinations of features are compared to both the results
obtain d by the best performing systems in both editions of the shared task
auu the null hypothesis described in Section 5.3 (the approach that uses only

e a priori probabilities for each class). Note that the results in bold type are
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Approach Class Precision Recall Fj-s ore F -product
English—Spanish

keep 81.1%  50.0% 61

Null hypothesis 14,8%
delete 18.9% 50.1% 23.97
keep 88.2%  45.5% 50.0%

baseline 21.8%
delete 24.0%  To. " 6.2%
keep 88.0% 70.0.7 78.5%

SBI 33.2%
delete 32.8%  59.5% 42.3%
keep & 7 76.9 % 82.1%

SBI+baseline . 35.6%
delete 35.1 % 55.2% 43.4%
keep Ry. % 69.5% 78.1%

WMT15 best 33.6%
delete 32."% 63.6% 43.1%

Eng.. --German

kee 61.8% 80.6% 49.9%

Null hypothesis 25,0%
de *e 27.8%  19.3% 50.1%
keer 87.2% 81.0% 84.0%

baseline 36.8%
Jd lete 38.8% 50.4% 43.9%
keep 89.5%  64.2% 74.8%

SBI 31.5%
“Hlete 30.6% 67.8% 42.1%
keep 87.6%  87.6% 87.6%

SBI, “ase' ae 42.3%
delete 48.2%  48.4% 48.3%
keep 90.1% 86.8% 88.5%

YV 16 sest 49.6%
delete 52.3% 60.3% 56.0%

Table . Results obtained for the task of identifying word deletions for English-Spanish

and Er ;lish-German. The table includes the results obtained when using an independent

Niv tocused only on this task (see Section 4.1) and fed with the SBI features described in

. >ction 3, the same NN using only the baseline features provided by the organisers of the

" ITQE shared task at WMT, the combination of both feature sets, the best performing

systems at WMT15 [17] and WMT16 [18], and the null-hypothesis baseline.
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Approach Class Precisio» ™-- Fi-score Fj-product
English—Spai.. »
no insert 409 50.0% 63.2%
Null hypothesis 13.9%
insert 14.7%  50.2% 22.0%
no insert 90.6%  68.5% 78.0%
SBI 25.0%
insert 225%  55.8% 32.1%
English-German
ne msert 75.5%  50.5% 60.2%
Null hypothesis 19.9%
nseru 24.6%  50.2% 33.1%
nc mser’ 79.4% 78.2% 78.8%
SBI 29.0%
L. ort 36.0% 37.6% 36.8%

Table 4: Re' ults ou med for the task of identifying insertion positions for English—Spanish

and Englis' “‘erman datasets. The table includes the results obtained when using an inde-

pendent N fo used only on this task (see Section 4.1) and the null-hypothesis baseline.
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those that outperform those obtained by the rest of approar’ .. with su. .istical
significance of p < 0.05. Statistical significance was eve uated by 1sing the
approximate randomisation strategy described by Yeh [50].

As will be noted, our approach outperforms the 1 all hv .ou =sis in the case
of both datasets and, in both cases, the approach that combines che SBI and the
baseline features is better than that which uses only v. SBI and the baseline
features separately (in the case of word deletion. “r whicl baseline features are
available). In general, the results obtained by v.. SBI 1cature set is quite similar
for English-Spanish and English—-Germa~ ™" __, che baseline features lead
to much better results in the case of Englisi. “~erman; this explains why the
SBI+baseline combination for Englis. -Ge. . leads to slightly better results
than the same combination for Enclish-S) aish. Focusing on the latter language
combination, the results obtained 1. » L. ~lisa—Spanish are comparable to those
obtained by the best perform’  ~vsten. in WMT15, a result which is reasonable
given that both systems use a very ‘milar approach, even though the approach
presented in this paper neee less features (see Table 8) because it does not use
the negative features ¢ 1ginally , "oposed by Espla-Gomis et al. [14]. In the case
of English—-German the ~oros :h presented in this paper does not attain the
performance of t' e be . system in WMT16 and would rank third among the
fourteen systems . ' nitte to the shared task.

Table 4 ¢* ~ws the results of the approach with which to identify insertion po-
sitions described 1. “ection 4.1. Given that this is the first work in the literature
to tackl thi problem, it was only possible to compare it to the null hypothesis.
For ti.. ~ar ¢ reason, no baseline features are available for this approach, and
on' the SBI1-. “sed features described in Section 3.2 could be used. In the case
« bot". Eng ish-Spanish and English-German the proposed approach clearly
~utper. .8 the null hypothesis with a statistical significance of p < 0.05. It
is wo. h noting that the results obtained when identifying insertion positions
are w rse than those obtained when identifying word deletions. This may indi-
~ate that the former problem is more difficult than the latter. We additionally

« raluated the performance of this approach as regards both insertions that are
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related to a word deletion, that is, those that are the resul” o. a repla. :ment,
and independent insertions; the recall obtained for both types of ditions is

almost the same, signifying that both tasks have a similar de, -~ - difficulty.

5.6.2. Predicting word deletions and insertion positic -~ uking ontext into ac-
count

Tables 5 and 6 show the results obtained fo!" ~wing the « 1scaded-revision (see
Section 4.2) and single-NN (see Section 4.3) ‘rateg.  uat use context. With
regard to the cascaded-revision method, the two tr- ing approaches described
in Section 4.2 were evaluated: the two-step v. ‘ning that first trains the indepen-
dent networks and then builds on the! . "~tions to train the cascaded-revision
NNs, and the one which trains all the NI - .multaneously. For both approaches,
the features used for word deletio. : . ~re t. > same as in the SBI+baseline ap-
proach, while for insertion positions, t. » features employed by the SBI approach
were used.

All the methods were evaluated using different values of context C' and the
experiments showed t' at valu s of C' greater than 1 did not lead to better
results. In general, for . "Ferent + ilues of C', the Fj-score and F-product metrics
vary by about 0.5 percent anc their differences are not statistically significant.
This may be in, mre ed as an indication that only the immediately preceding
and following edit opei.  ons are relevant to predict the current edit operation;
operations  hat « ~ more distant do not have a sufficient influence to make such
decisions . 'l the results in Tables 5 and 6 use, therefore, this level of context
in ord r to » duce the complexity of the networks.

.s can . seen, the methods using context outperform those focusing on a
¢ ugle ~ ord ¢~ insertion position. With regard to the results in Table 5, all the
reswi. nre ded outperform those obtained by the SBI+baseline approach with
a sta ‘stical significance of p < 0.05. Namely, the approach that performed best
was t} : one that used a single NN to predict both word deletions and insertion
positions, which, for both datasets, obtained better results than a cascaded-

1 vision with a statistically significant difference (p < 0.05). It is worth noting
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Approach Class Precision Recall Fj-s ore F -product
English—Spanish
keep 89.1%  69.5% e
WMT15 best 33.6%
delete 32.6% 63.6% 43.1Y
keep 88.1% 76.9% R2.1%
SBI-+baseline 35.6%
delete 35.7%  bo. " 45.4%
Cascaded rev. keep 89.8%  T3.. 80.5%
35.2%
2-step training  delete 33.7%  62.3% 43.7%
Cascaded rev.  keep & 27 T18A 79.5%
35.1%
1-step training  delete 34075 62.6% 44.1%
keep w. 7% 69.4% 78.5%
Single NN 35.3%
delete 33.°%  67.2% 45.0%
Eny ~h—German
kee” 87.6% 87.6% 87.6%
SBI+baseline 42.3%
d ~te 48.2%  48.4% 48.3%
Cascaded rev.  keen 89.7%  84.3% 86.9%
43.4%
2-step train d- .ete 44.7%  56.7% 50.0%
Cascaded r v. keep 88.9%  84.5% 86.6%
43.8%
1-step trein lolete 46.3% 52.9% 50.6%
keep 89.4%  84.7% 87.0%
Sing’ - NN 45.5%
delete 47.6%  58.2% 52.4%
keep 90.1% 86.8% 88.5%
VNV (16 7 est 49.6%
delete 52.3%  60.3% 56.0%

Table  Results obtained for the task of identifying word deletions for English-Spanish and

Englist German. The table includes the results obtained when using the cascaded-revision

ap . -vach described in Section 4.2, both when training the networks in two steps and when

oing so in a single step, and the single-NN approach described in Section 4.3. The shaded

' ws contain the results obtained by the best performing systems in Table 3 and have the

objective of easing the comparison between the new results and the previous ones.
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that in the case of the WMT16 dataset, none of the approa ... sugges. d out-
performs the best performing system in the shared task. lowever, = 1e results
obtained by the single NN approach do not show statistically “~*"cant differ-
ences with the method ranking second in the task ((/NBA L. /linear), which
attained an Fj-product of 46.3 [18, Table 21].

In the case of Table 6, which contains the resulv. ~btained for insertion
positions, the conclusions are mostly the same. . this casc the results obtained
with the two training strategies for the casce. '~d-revision approach are even

closer, but are both outperformed by the -~ _° _.poroach with a statistically
significant difference of p < 0.05.

In general, it would appear obviou: “hav. . NNs that take into account the
previous and following words anc insert. 1 positions to those being evaluated
lead to substantially better results 1. ~ur evaluation we also considered the
possibility of using a context  ~*ainin, only word deletions and only insertion
positions. However, providing tu. context independently led to significantly
worse results than those <hown in tables 5 and 6. It therefore seems obvious
that the combination of the i1 »rmation obtained for both types of editions
helps to mutually impro. thei results.

The results ol .aine also indicate that the use of context is especially useful
in the task of iac. “ .ying nsertion positions. This would appear to be rea-
sonable, giv ' that, accurding to the results obtained, the models trained to
identify word deleo. ms are more reliable than those trained to identify insertion
positior , an  therefore, the former help the latter more than in the opposite
case.

rable 8 cu. “pares our best performing system for predicting word deletions
“ mgle NN) o the best approaches in the literature that, in spite of not having
~articy, *+ d in the WMT15 an WMT16 shared tasks, have used these datasets
for we d-level MT QE. The results in this table confirm that the single NN ap-
vroac’ . clearly outperform the most basic approaches using deep NNs, such as
+hose by Kreutzer et al. [29] and Liu et al. [30]. When compared to approaches

I ased on much more complex neural architectures, such as the one by Martins

38




Context size Class Precision Recall " -scu. Fi-product
English—Spanish
no insert 90.5%  68.5,. 10.0%
SBI 25.0%
insert 22.5%  55.8% 32.1%
Cascaded rev.  no insert 91.8%  72.1% 80.7%
29.5%
2-step training insert 26,27 o0 36.6%
Cascaded rev.  no insert 91.9% 4% 80.4%
29.5%
1-step training insert A% oLl6% 36.6%
no insert 91.3, 78.2% 84.3%
Single NN ) 31.9%
insert 29.1,5  54.5% 37.9%
"mglisn—German
no insert 79.4%  78.2% 78.8%
SBI 29.0%
ins .t 36.0% 37.6% 36.8%
Cascaded rev. o inse. 89.8%  82.9% 86.2%
34.2%
2-step training inse ¢ 33.8%  48.1% 39.7%
Cascaded re . mno. « t 90.2%  80.9% 85.3%
34.3%
1-step tra i, insert 32.9%  51.5% 40.2%
no insert 91.0%  83.3% 87.0%
Sing! . NN 38.5%
insert 37.3% 54.5% 44.3%

Ta' .e 6: Results sbtained for the task of identifying insertion positions for English—Spanish

7 d Er tish-C :rman.

revisic

The table includes the results obtained when using the cascaded-

app vach described in Section 4.2, both when training the networks in two steps and

when -oing so in a single step, and the single-NN approach described in Section 4.3. The

shaded o>ws contain the results obtained by the best performing system (SBI) in Table 4 and

have * e objective of easing the comparison between the new results and the previous ones.
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WMT15 WD 16

Approach (F1-scoreqeiete)  (Fi-ps vduct)
Kreutzer et al. [29] 43.1
Liu et al. [30] 38.0
Single NN (SBI) 45.0 45.5
Kim et al. [35] 42.7 50.1
Martins et al. [33] 17.1 57.5
Table 7: Results obtained for word deletion v**' ) . erforming system (single NN

architecture) and the best performing approaches 1. “he literature evaluated on the WMT15

and WMT16 datasets.

et al. [33], which is based on ths hest p. -forming system at WMT16, or the
one by Kim et al. [35], the winner € v,>TT'17, results are not that clear. On
the WMT15 dataset, our ap, ...’ ~m. erforms the system by Kim et al. [35]
and obtains results close to those b, Martins et al. [33]. However, the distance
to these two approaches = -~mes larger when we compare the results on the
WMT16 dataset. T? : fact the these two approaches lead to better results

(at least for some latase.

is quite reasonable if one takes into account the
extremely compl x ne’ :al architectures described by their authors. It is worth
noting that tk- ap, ~ach' s proposed in this paper require much less compu-
tational res: -ces (see Section 5.6.3) and, still, they lead to results that are

competitive when . ~pared to the state of the art and even better than some

much r ore ¢ mplex and costly neural approaches.

5.6 5. Discu. “on regarding the performance of the approaches evaluated

For a mr e detailed analysis of the approaches compared in this section,
Table <t ,ws the total number of features used and the number of parameters
to be 'earned by each of them. This allows us to discuss the complexity and
comp cational cost of each approach compared to the results obtained. Please
recall that the SBI4-baseline approach can be computed only for word deletions,

¢ ven that the baseline features are only available for this task. The same occurs
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Approach # feat. del. # feat. ins. # paramr “ers

Null hypothesis 0 0 1
SBI 51 41 4,468
SBI+baseline 172/194 - 31,6¢ 3/39,789
WMT15 best 213 45,796
WMT16 best not available

Cascaded rev. 518/584 o 31,935/40,031
Single NN 516/582 L% 441,931/492,201

Table 8: Number of features and parameters to be lea.. - for each of the approaches discussed
in Section 5.6. Note that two values are pr . ' “» the number of features and parameters
for the SBI+baseline, Cascaded and Single N. ™ ar proaches, because the number of baseline

features available for the WMT15 and  “MT16 1. lifferent.

with the best performing syst —- at W.TT15 and WMT16, which were designed
only to predict word deletions. 1. “he case of the null hypothesis, no features
are used and only the a nriori probability of each class in the training data is
computed.

It is worth noting v. * the number of baseline features provided for the
English-Spanish WM 15) dataset is slightly higher than that provided for
the English-Geri. » (WM ('16) dataset; as a result, two values are provided
for the feat’ ‘es and pa.ameters of those approaches that use them, that is
the SBI+Laseline ~d the cascaded-revision and single NN approaches. Sixty
baseline .ca. res are available for English-German, while this amount increases
to 91 . = Sr «nish-English, as defined in Section 5.4.

iccording "o the data provided, it would appear that the cascaded-revision
s rater y (us’.g the SBI and SBI+baseline collections of features) provides the
hest o °r omise between computational cost and performance. This is partic-
ularly noticeable when comparing the results obtained by this approach to the
best » orforming systems at WMT15 and WMT16. In the first case, it outper-
forms the WMT15 system using less parameters, even when this approach is

¢ so learning to identify insertion positions, something that could not be done
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by the best-performing WMT15 system. In the case of the .cond, the Jdetails
regarding the implementation of the best performing app: ach at W IT16 are
not available. However, the description by Martins et 21. [5.] -~~~ .fes that a
combination of five instances of: (a) a convolutiona™ recur cu. network, (b) a
bilingual recurrent language model, and (c) a feed-forward ne work, are used,
summing 15 NNs in a voting scheme, which leads us te Melieve that this archi-
tecture requires tens, if not hundreds of millio.. of para eters to be learned.
On the other hand, the single NN approach p. ved to pe the best performing
of all the methods proposed in this pape " 7 _ _nly exception of the win-
ner of the WMT16 shared task. However, eve. though it must learn hundreds
of thousands of parameters, the con. lexsv " he NN proposed is still suffi-
ciently simple for it to be trained on a s ndard CPU in a reasonable amount
of time (see Table 9), something v av ~owd not be possible with any of the
deep-learning approaches at ™™ "T15 o -d WMT16.

Table 9 provides the actual ti.. (per epoch and total amount) required to
train the different NN architectures described in Section 4, both on a CPU'®
and on a GPU.' The ¢ results ‘ere obtained for the WMT15 dataset, the one
using most features: 194 ~ ide cify word deletions and 41 to identify insertion
positions. The tr* .ning .ime shown for the independent NNs was only computed
for word deletion. - hich s the most time-consuming network to train as it
has almost f = times more features than the independent NN used to identify
insertion positions.

Ase pec d, training on a GPU is appreciably faster (time is at least halved).
When -air ag on the CPU, time grows with the complexity of the networks.
He /ever, whe training on a GPU, results vary slightly. In this last case, the
« scac .d-rev sion NNs training is the most time-consuming process. In the case
~fthe . ~ step training, this is due to the fact that the independent NNs and the

cascaw d-revision NN have to be trained separately, which prevents the process

18An AMD Opteron(tm) Processor 6128, with 16 cores and 64 GB of RAM.
19A Geforce GTX 1080 Ti card with 11GB DDR5X.
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training time on CPU train’ ig timr on GPU

Approach per epoch total per € och total
Independent NNs 9+1 s 6.5 min 4+1 g 4.0 min
Cascaded rev. 2-step 1842 s 11.5 min 7+2 8.5 min
Cascaded rev. 1-step 45+2 s 17.0 min Ze_18 10.5 min
Single NN 64+2 s 34.5 min 5+1s 4.0 min

Table 9: Time per epoch and total time needed to t:. ~ each .« architecture described in
Section 4 on a CPU and on a GPU. All times are compute. ‘r the WMT15 dataset. For
Independent NNs, we only include the time for v. -1 deletions, since it is the network that
takes more time to train as it has much more features (1. ‘ vs. 41) and both networks can be

trained in parallel.

to benefit from the high compute 1c. ~1 pe.allelisation provided by GPU. In
the case of the one-step trairine proc ss, the injection of error signals at two
different levels of the neural ne. ~rk may be rendering the backpropagation
calculation harder to parallelize. Finally, in the case of the single NN, it may
be the opposite: grour ag of te. sor calculations in blocks seems to bring about
a sharp speed-up.

In general, the resul s in 'lable 9 demonstrate that the approaches described
in this work not « v ead t ., competitive results, but are also feasible even with

non-specializ d comput.. .onal resources.

6. Cor .u. ‘ng remarks

In tn. vork, we have presented a new method for word-level MT QE that
p¢ tiall" builds on the approach by Espla-Gomis et al. [13]. The results obtained
co. Sr athe this method makes it possible not only to identify the words in the
vutput 0. an MT system that need to be deleted or replaced, as most word-level
MT Q '’ approaches do, but also to detect the positions into which one or more

=, need to be inserted. The latter is particularly relevant, given that this is

he first work in the literature to tackle this problem.
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This paper proposes a collection of features that build . those lefined
by Espla-Gomis et al. [13] and can be obtained from an, source o bilingual
information: in our experiments, online MT systems and a. ~»'" .¢ bilingual
concordancer were used. The results obtained on the latas’ .5 , blished for the
word-level MT QE shared tasks at WMT15 and WM1 1v confi a the good per-
formance of the approach proposed, which is able to re, ~duce or even improve
on the results obtained by Espla-Gomis et al. |.”! and Es j1a-Gomis et al. [51].
The features used have, however, been redesign. ' to reuuce their number, which
has led to methods that require a lower ¢~ * 7___l cost. In addition to the
features proposed, several NN architectures ai. ~xplored for word-level MT QE:
one that uses two independent NNs t. oreu ord deletions and insertion po-
sitions, one that revises each prediction . taking into account the predictions
made for the words and insertion ~os. ‘ons surrounding it, and another that

' wora eletions and insertion positions simul-

uses a single NN to predict F
taneously. The experiments carric.’ ~ut confirm the relevance of the latter two
approaches, that is, those msing context. These results have led us to the con-
clusion that the simul* meous ia ntification of both word deletions and insertion
positions may lead to be. ~r rec ilts than those in the state of the art, in which
only word deletic .s arc identitied.

The experime.r. * arrie . out confirm the feasibility of the method proposed
to identify i ertion posivons in 7. These results are especially relevant, given
that being capabi. ~f identifying both word deletions and insertion positions
will alle v tn. prediction of the full edit sequence required to post-edit a trans-

-

lation ¢ mething that is not currently possible. This research paves the
wa  towards . 2 creation of systems that may support the task of professional
+ ansl- .ors }y, for example, helping them to obtain reliable budgets based on

“he pro e ed technical effort?® required for a given translation task. It would

20Te inical effort may be predicted as the number of edit operations required to produce
a post-edited translation. Other effort metrics could be explored, such as keystroke ratio or

‘en post-editing time, although they would not be as straightforward to predict from edit
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also be possible to provide metrics similar to fuzzy-match .coces [11], a very
popular and easy-to-interpret metric used by professional translato. : to mea-
sure the effort required to post-edit a suggestion from a tran.. *~- memory in
a computer-aided translation environment. It would ven F . . ssible to go one
step further and build systems that could guide post-eaivors by adicating which
parts of T require an action, as is done by Espla-Gomis . al. [52] for translation
memories.

With regard to improving the results obtau. 1 one natural step would be to
study other features used by other syster- = 7 ___.e of the art of word-level
MT QE and attempt to adapt them in order . identify insertion positions.

Apart from this, one of the most ¢ viou. = ' promising next steps would be
to adapt the techniques described in this rork to the problem of sentence-level
MT QE; that is, the task of predic. ng ™e total post-editing effort required for

-2 19, .7, 18] this effort is measured using the

a sentence. In most shared
human-targeted translation error . ~te (HTER) metric [53], which consists of
identifying the number of deletions, insertions, substitutions and movements of
sub-sequences of worc , (block . Mifts). Given that three?! of these operations
can be identified bv ow1  ~oro’ ch, it would be natural to attempt to apply it
to this new task It v huld even be possible to design new architectures and

features that wou.  1ake ", possible to predict the fourth operation type used

in HTER, t} t is, movew.ents of sub-sequences of words.
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Appendix A. Mathematical description ¢~ *he nev -al networks used

This appendix contains the equations that des. ‘be the NNs used proposed
in Section 4. Equations A.1 and A.2 de. -ibe how to obtain predictions y
and z; for the word t; and the gap -~ respectiv.ly, using the NNs defined in

Section 4.1.

/M
Yr, = sigmoi vw; “pr)i + wi? (A1)
=1
/N
2 = sigme D wi(gy)i + wgq> (A.2)
-l
where sigmoid(-) is the =~ ~tion function defined as:
sigme d(z) = _eple) (A3)
ST " exp(x)+ 17 ’

M and N are t' ¢ tot .L nur-ber of neurons in the hidden layer, w¥? and w?*¢
are the collect’ bn o1 ~igh s learned in the output neuron for each of them, and

(pr); and (c . ~ve defined as:

F
(pr)i = ReLU Y wlf (fu); +wlhf | i€ [1,M] (A.4)
j=1
G
(ak)i = ReLU [ > wi(ge); + 0l | i€ [1,N] (A.5)
j=1

where RenU(+) is an activation function [46] defined as:

0 forx<O
ReLU(z) = (A.6)
xz forx>0
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F and G are the total number of features for word deletionc ;) and 1. ertion
positions (gi), respectively, and w? / and w1 are the weigh :learned | y the i-th
neuron in the hidden layer of each of the NNs defined.

Similarly, the predictions produced by the casc ded-r viz m architecture

NNs (see Section 4.2) would be defined as follows:
P N

yj, = sigmoid (Z w;/s(s )i + ngS) (A7)

i=1

Q
2, = sigmoid <Z e .ud/“> (A.8)

i=1

where yj, and zj, are the reviewed pr~ictions to, the word ¢, and the gap v,
respectively, P and @) are the number fr urons in each of the hidden layers,
@Y'¢ and W' are the collection o, .. ‘chts. arned in the output neuron for each

of them, and

I=+C .

(s%); = ReLU ( S Wi S wiF s +wf£”"’>> Ji€[LP] (A9)
I=-C =-C
I=+( I=+C

(uk); = ReLU ( Y iyt Y wz*ﬁszwiff“)) Lie[LQ] (A.0)
l=—C ==C

In this case, (sx); ad (13); ta.c the outputs of Equations A.1 and A.2 as inputs.
Here, C is the s. ~ of Jhe cr atext used. It is worth noting the dependency on &
as a result of paramete. .aaring.

Finally £que ~ns A.7 and A.8 could be adapted for the single NN defined

in 4.3 as . ows:

u
Yy}, = Sigmoid (Z 1U§/,v(ﬂk)i + w%{’”) (A.11)

i=1
H
2}, = Sigmoid (Z wi ’(vk)i + W “) (A.12)
i=1
where H is the size of the common second-level hidden layer, and,
I=+C M I=+C N
(W) = ReLU | S S wiipresa)j + Y D wifi(gna); +wig”” | i € [1, H]
I=—C j=1 I=—C j=1

(A.13)
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where (pr+i); and (gr+:); are defined in Equations A.4 and ..c.

Appendix B. Pseudo-code for feature extraction

This appendix provides an algorithmic descriptior of 7 e six eature sets de-
fined in Section 3. It is worth noting that, for the sa.. of cl. .y, an independent
algorithm is provided for each feature set. The actual im lementation is more
efficient and does not compute each featurs indep ~de .ly to avoid iterating
over the same sets more than once. The followw._ auxiliary functions, which

were previously defined in Section 3, are w. 1 inside these algorithms:

e seg,, (X): returns the set of all oss.. -vord sub-segments of segment

X;

e seg,(X): returns the set of aL nos. ble sub-segments of segment X, re-

gardless of length;

e span(7,T): returns the set of word positions spanned by sub-segment 7 in

segment 717

e LCS(X,Y): eturns “e word-based longest common sub-sequence be-

tween segr :nts . anc Y

e occs(o. ,M°): _ urns the number of occurrences of sub-segment pair

(o, 7" m 1%

e e .top; X;, X,Y): returns the edit operation assigned to the word Xj,
o. "1 ed as a by-product of the computation of the longest-common sub-

seruence of segments X and Y; and

< dite 5(Y;,X,Y): returns the edit operation assigned to the word Yj,
obtained as a by-product of the computation of the longest-common sub-

¢ :quence of segments X and Y.
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Algorithm 1 Algorithm for the Keep,, feature set |\ "~ctio.. ».1.1)

1: procedure KEEP(j,5,T,M ,n)

2: Input:

3: S: segment in SL;

4: T: segment in TL;

5: j: position of a word in T
6: M: collection of sub-segmen ve s (o, 7);
7 n: length of 7 in word.

8: Output:

9: value of Keep,, (4,5, +, M)
10: confirm segs < 0

11: segs, « seg, (o

12: segs, < seg, (1,

13: for (o,7) M 7o
14: if o« ~o /AT _segs, Aj€span(r,T) then
15: confirm sc_s < confirm segs + 1

16: tot.lsegs v 0

17: o = segs, do
18: i j €span(r,T) then
19: ‘otal_segs <— total_segs + 1

retv n confirm segs/total_segs
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Algorithm 2 Algorithm for the Freqk®P feature ret (section ‘section 3.1.2)

1: procedure FREQ*®°P (5,5, T M° n)

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

21:

Input:
S: segment in SL;
T: segment in TL;
j: position of a word in T
Meee: collection of sub-seg eu
and their number ¢ occuri aces (o, 7, @);
n: length of target sub-se¢ me. " in words
Output:
value of Freqi‘fep (4,8, T, ;v °°)
total_occs < 0
segs, « seg. ()
segs, < se ,(T)
for (o,7 = M =¢dr
if  esegs, ' €segs, Aj€span(r,T) then
o firm_occs < occs(o, T, M°°)
all_occs < 0
for 7’ € segs, do

all_occs <— all_occs + oces(o, 7/, M©°°)
total_occs «— total_occs + confirm_occs/all_occs

~et 1rn total_occs

50




Algorithm 3 Algorithm for the Align®*®? f “ure s. /< _ction 3.1.3)

1: procedure ALIGN¥®P (.S T M en)

2: Input:

3: S: segment in SL;

4: T segment in TL;

5: j: position of a word i1 «

6: M: collection of sub-segme 't pairs (o, 7);
7 n: length of target s.” -segmcat in words;
8: e: edit operation (either delete or match)
9: Output:

10: value of Alig. “*°P(j, ", T, M, e)

11: total_algs — 0
12: segs, — se., ()

13: for ( 7)€ M ac

14: £ o es <. A|r| =nAeditop(t;, T,7) = e then
15: total_algs < total_algs + |[LCS(7,T)|/|7|
16: -t rn total_algs
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Algorithm 4 Algorithm for the Nolnsert,, feature . * (Sec..on 3.2.1)

1: procedure NOINSERT(5,S,T,M n)

2: Input:

3: S: segment in SL;

4: T: segment in TL;

5: j: position of a word in T

6: M: collection of sub-segmen ve s (o, 7);
T n: length of target sul ~. “ment n words
8: Output:

9: value of Nolnsert,,(3,." T, M)

10: confirm segs < 0

11: segs,  seg, (S

12: segs, < seg, (1,

13: for (o,7) M 7o
14: if o ~o AT -segs, Aj€span(t,T)Aj+ 1€ span(t,T) then
15: confirm sc_s < confirm segs + 1

16: tot.lsegs v 0

17: o = segs, do
18: i jespan(r,T) A j+ 1€ span(r,T) then
19: ‘otal_segs <— total_segs + 1

retv n confirm segs/total_segs
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Algorithm 5 Algorithm for the Freq™™ feature set (oection ,.2.2)
1: procedure FREQ"™ (5,9, T, M n)

2: Input:

3: S: segment in SL;

4: T: segment in TL;

5: j: position of a word in T

6: MPe<¢: collection of sub-seg ey

7 and their number ¢ occuri aces (o, 7, @);
8: n: length of target sub-se_ me. " in words

9: Output:

10: value of Freq®®"(j, S, T, 1.”)

11: total_occs +— 0

12: segs, « seg, (o

13: segs, < se ,(T)

14: for (0,7 = M ¢ dr

15: if  €segs, ° €segs, Aj€span(r,T)Aj+1¢€span(r,T) then
16: . firm_occs « oces(o, T, M)

17: all_.occs - 0

18: for 7/ € segs, do

19: all_occs < all_occs + oces(o, 7/, M)

2 total_occs <— total_occs + confirm_occs/all_occs
21: ~et arn total_occs
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Algorithm 6 Algorithm for the Align®™™ { ~ture . * /" ection 3.2.3)

1: procedure ALIGN™S(5 ST M en)

2: Input:

3: S: segment in SL;

4: T: segment in TL;

5: j: position of a word iL .

6: M: collection of sub-segme 't pairs (o, 7);
T n: length of target s. " -segicat in words;
8: e: edit operation (either insert or match)

9: Output:

10: value of Alg. r‘Oi“S(j, 5T, M,e)
11: total_algs — 0

12: segs, « se. )

13: for ( 7)€ M ac

14: £ oes < A|T|=nAeditopy(t;,7,T) = e then
15: total_algs « total algs + [LCS(7,T)|/|7|
16: - ~tr rn total algs

54



995

1000

1005

1010

1015

1020

References

(1]

2]

3]

(4]

[5]

(6]

il

M. Plitt, F. Masselot, A Productivity Test of Statistic. ' Machir : Transla-
tion Post-Editing in a Typical Localisation Cont xt, The Prague Bulletin
of Mathematical Linguistics 93 (2010) 7-16.

A. Guerberof Arenas, Productivity and quality 1. he post-editing of out-
puts from translation memories and machi.. translati n, The International

Journal of Localisation 7 (1) (2009) 11-z.

L. Bowker, Computer-aided transla.. n technology: a practical introduc-
tion, chap. Translation-memory <vstems, U. ‘versity of Ottawa Press, 92—

127, 2002.

H. Somers, Computers and t1. 1o *ion. a translator’s guide, chap. Trans-
lation memory systems, Tohn Bei ‘amins Publishing, Amsterdam, Nether-

lands, 31-48, 2003.

L. Specia, M. Tur-".., 7 Cancedda, M. Dymetman, N. Cristianini, Es-
timating the Ser ence-Leve Quality of Machine Translation Systems, in:
13th Annual € onfere.. ~ ¢ . the European Association for Machine Trans-
lation, Bar clons Spe‘n, 28-37, URL http://www.mt-archive.info/
EAMT-20C 5-Spe “a.r 4f, 2009.

J. Ble z, k. Titzgerald, G. Foster, S. Gandrabur, C. Goutte, A. Kulesza,
A. . his, N. Ueffing, Confidence Estimation for Machine Translation,
ir  Prc eedings of the 20th International Conference on Computational

Lingui. "~s, COLING ’04, Geneva, Switzerland, 315-321, 2004.

M . L. Torcada, F. Sdnchez-Martinez, A general framework for minimizing
tra. ation effort: towards a principled combination of translation tech-
n logies in computer-aided translation, in: Proceedings of the 18th Annual
“onference of the European Association for Machine Translation, Antalya,

Turkey, 27-34, 2015.




1025

1030

1035

1040

[8] L. Specia, Exploiting objective annotations for measuri-

9

10

[11

12

13

]

]

]

]

]

5 weanslatic « post-

editing effort, in: Proceedings of the 15th Conferer e of the <Zuropean

Association for Machine Translation, Leuven, Belginm, , = °® _011.

0. Bojar, C. Buck, C. Federmann, B. Haddov P «oel 1, J. Leveling,
C. Monz, P. Pecina, M. Post, H. Saint-Am. 4. R. 7 _ricut, L. Specia,
A. Tamchyna, Findings of the 2014 Workshop on Stat. tical Machine Trans-
lation, in: Proceedings of the Ninth Works. ~» ¢ . Statistical Machine

Translation, Baltimore, MD, USA, 12-58, 2u. *

N. Ueffing, H. Ney, Word-Level Confide.. ~ Estimation for Machine Trans-
lation, Computational Linguistic. >o (- “*707) 9-40, ISSN 0891-2017, URL
http://dx.doi.org/10.1162/coly .007.33.1.9.

R. Sikes, Fuzzy Matching in . heo., and Practice, Multilingual 18 (6)
(2007) 39-43.

O. Bojar, C. Buck, C. Callison-Burch, C. Federmann, B. Haddow,
P. Koehn, C. Mo z, M. t st, R. Soricut, L. Specia, Findings of the 2013
Workshop on Stat.. ‘~al Me hine Translation, in: Proceedings of the Eighth
Workshop or Stati-tical ./[achine Translation, Sofia, Bulgaria, 1-44, URL
http://www ~c” veb.r -g/anthology/W13-2201, 2013.

M. Esr . “omis, F. Sanchez-Martinez, M. Forcada, UAlacant word-level
machine transi. ‘on quality estimation system at WMT 2015, in: Proceed-
in s of 1e Tenth Workshop on Statistical Machine Translation, Lisbon,

Po. - al, 309-315, URL http://aclweb.org/anthology/W15-3036, 2015.

M Espla-Gomis, F. Sanchez-Martinez, M. L. Forcada, Using on-line avail-
~le ¢ urces of bilingual information for word-level machine translation
nality estimation, in: Proceedings of the 18th Annual Conference of the

F ropean Association for Machine Translation, Antalya, Turkey, 19-26,

2015.

56




1050

1055

1060

1065

1070

1075

[15]

[16]

[17]

[18]

[19]

[2

il

[21)

M. Barlow, Parallel concordancing and translation, * .. Procee. ags of

ASLIB Translating and the Computer 26, London, U. ', 2004.

L. Bowker, M. Barlow, Bilingual concordancers aud translation memo-
ries: a comparative evaluation, in: Proceedin; * o che { >cond Interna-
tional Workshop on Language Resources for _ ansla’" . Work, Research

and Training at Coling 2004, Geneva, Switzerland, « -79, 2004.

O. Bojar, R. Chatterjee, C. Federmann, .. Hadau., M. Huck, C. Hokamp,
P. Koehn, V. Logacheva, C. Monz, M N~ M st C. Scarton, L. Specia,
M. Turchi, Findings of the 2015 Worksu. on Statistical Machine Transla-
tion, in: Proceedings of the Tent. vv..” " ~m on Statistical Machine Trans-

lation, Lisbon, Portugal, 1-46, 2015

0. Bojar, R. Chatterjee, C. Fea. ma. ~, Y. Graham, B. Haddow, M. Huck,
A. Jimeno Yepes, P. Koe. ~ v. T = icheva, C. Monz, M. Negri, A. Neveol,
M. Neves, M. Popel, M. Post, h. 2ubino, C. Scarton, L. Specia, M. Turchi,
K. Verspoor, M. ", ‘ori, Findings of the 2016 Conference on Ma-
chine Translatic in: Pro eedings of the First Conference on Machine
Translation, F erlin, « -r any, 131-198, URL http://www.aclweb.org/
anthology/ /W1f ,W16- 2301, 2016.

S. Gand ibur, G. 1. cer, Confidence Estimation for Translation Prediction,
in: Proceea. ~s of the 7th Conference on Natural Language Learning at
HL™ .. * ACL 2003 - Volume 4, CONLL ’03, Edmonton, Canada, 95-102,
2 3.

N. "Teffing, H. Ney, Application of word-level confidence measures in inter-
2 tive < atistical machine translation, in: Proceedings of the 10th European
Ass. iation for Machine Translation Conference ”Practical applications of

n chine translation”, Budapest, Hungary, 262-270, 2005.

G. A. Miller, WordNet: A Lexical Database for English, Communications
of the ACM 38 (11) (1995) 39-41.

57




1080

1085

1090

1095

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, R. L. M ..cer, The /Jlathe-
matics of Statistical Machine Translation: Parameter istimatioi Compu-

tational Linguistics 19 (2) (1993) 263-311.

F. J. Och, H. Ney, The Alignment Template A} »rc ch to Statistical Ma-
chine Translation, Computational Linguistics .~ (4) (777 &) 417-449.

E. Bigici, Referential Translation Machine., " Qualits Estimation, in: Pro-
ceedings of the 8th Workshop on Statis. "al Macaine Translation, Sofia,

Bulgaria, 343-351, 2013.

E. Bigici, D. Yuret, Instance selection for . achine translation using fea-
ture decay algorithms, in: Procee. ‘ngs ot tne 6th Workshop on Statistical

Machine Translation, Edinb: _h. Uk 272-283, 2011.

F. Blain, C. Scarton, L. Snecia, B. ~xical embeddings for quality estimation,
in: Proceedings of the Secou. “‘onference on Machine Translation, 545-550,

2017.

P. S. Madhyastb , X. Carr -as Pérez, A. Quattoni, Learning task-specific
bilexical embe 'dings, - T roceedings of the 25th International Conference

on Computs Jiona” Lingnistics, 161-171, 2014.

0. Bojar R. Chau. - ee, C. Federmann, Y. Graham, B. Haddow, S. Huang,
M. H» k, » Koehn, Q. Liu, V. Logacheva, C. Monz, M. Negri, M. Post,
R. ™ "uo, L. Specia, M. Turchi, Findings of the 2017 Conference on
Machin  Translation (WMT17), in: Proceedings of the Second Confer-
ence o. Machine Translation, Volume 2: Shared Task Papers, Associa-
tic « for Computational Linguistics, Copenhagen, Denmark, 169-214, URL
. “tp: /www.aclweb.org/anthology/W17-4717, 2017.

J Kreutzer, S. Schamoni, S. Riezler, QUality Estimation from ScraTCH
" QUETCH): Deep Learning for Word-level Translation Quality Estimation,
in: Proceedings of the Tenth Workshop on Statistical Machine Transla-

58




1105

1110

1115

1120

1125

[30]

31]

32]

33]

[34]

[

1361

tion, Association for Computational Linguistics, Lisbon " u.tugal, .. 5-322,

URL http://aclweb.org/anthology/W15-3037, 201 .

L. Liu, A. Fujita, M. Utiyama, A. Finch, E. Sv una, L. Liu, A. Fujita,
M. Utiyama, A. Finch, E. Sumita, Translatior. av- .ty e :imation using
only bilingual corpora, IEEE/ACM Transacv. s on * .dio, Speech and
Language Processing (TASLP) 25 (9) (2017) 1762-1.72.

A. F. T. Martins, R. Astudillo, C. Hoka.. ~ F. 1.cpler, Unbabel’s Partici-
pation in the WMT16 Word-Level Tronalati~—=  gality Estimation Shared
Task, in: Proceedings of the First Co..">rence on Machine Translation,
Berlin, Germany, 806-811, UI . .. //yww . aclweb.org/anthology/
W16-2387, 2016

D. Wang, N. S. Chaudhari, b nar, neural network training algorithms

* ‘nternational journal of neural systems

based on linear sequentia. ‘“ai....

13 (5) (2003) 333 351.

A. F. Martins, . Jun =zys-Dowmunt, F. N. Kepler, R. Astudillo,
C. Hokamp, R. u. -ndkiev .cz, Pushing the limits of translation quality
estimation, T anse-tions of the Association for Computational Linguistics

5 (2017) 20. 1°

H. Kin, "7-Y. Jung, H. Kwon, J.-H. Lee, S.-H. Na, Predictor-Estimator:
Neural Quality “stimation Based on Target Word Prediction for Machine
Tr nslai on, ACM Transactions on Asian and Low-Resource Language In-

for.. ~* on Processing (TALLIP) 17 (1) (2017) 3.

H Kim J.-H. Lee, S.-H. Na, Predictor-estimator using multilevel task
arni* ¢ with stack propagation for neural quality estimation, in: Pro-

~edings of the Second Conference on Machine Translation, 562-568, 2017.

" .. Espla-Gomis, F. Sanchez-Martinez, M. L. Forcada, Using machine

translation in computer-aided translation to suggest the target-side words

59




1130

1135

1140

1145

1150

.155

[37]

[38]

39]

[40]

[41]

[42]

[43]

[ 5)

to change, in: Proceedings of the Machine Translation ~w.amit X. I, Xia-

men, China, 172-179, 2011.

R. O. Duda, P. E. Hart, D. G. Stork, Pattern ("ussification, John Wiley

and Sons Inc., second edn., 2000.

K. Hornik, M. Stinchcombe, H. White, Multilay. Feedforward Networks
Are Universal Approximators, Neural Nev. ~rks 2 (5) (1989) 359-366.

P. Geurts, D. Ernst, L. Wehenkel, 1. ‘remely randomized trees,
Machine Learning 63 (1) (200 * 3-42, ISSN 1573-0565, doi:
\bibinfo{doi}{10.1007/s10994-006-6226-1;, = URL https://doi.org/
10.1007/s10994-006-6226-1.

B. Scholkopf, K.-K. Sung, C. 1. Purge ., F. Girosi, P. Niyogi, T. Poggio,
V. Vapnik, Comparing stnport v ~tor machines with Gaussian kernels to
radial basis function classu. ~s, ILEE transactions on Signal Processing

45 (11) (1997) 2758-2765.

V. Chvatal, D. £ .nkoff, Lo. gest common subsequences of two random se-

quences, Jourr al of A, ~lir « Probability 12 (2) (1975) 306-315.

R. Wagner, ‘1. F scher The String-to-String Correction Problem, Journal
of the A M 21 (1, “ 974) 168-173.

M. L. Forcada, *1. Ginesti-Rosell, J. Nordfalk, J. O’'Regan, S. Ortiz-Rojas,
J. .. Pe ez-Ortiz, F. Sdnchez-Martinez, G. Ramirez-Sanchez, F. M. Tyers,
Ap ~tiam: a free/open-source platform for rule-based machine translation,

Marhine _ranslation 25 (2) (2011) 127-144.

Spr ia, G. Paetzold, C. Scarton, Multi-level Translation Quality Pre-
Aiction with QuEst++, in: Proceedings of ACL-IJCNLP 2015 System
D monstrations, Beijing, China, 115-120, URL http://www.aclweb.org/
anthology/P15-4020, 2015.

F. Chollet, et al., Keras, https://github.com/fchollet/keras, 2015.

60




1160

1165

1170

1175

1180

[46]

[47]

[48]

[49]

[50]

53)

V. Nair, G. E. Hinton, Rectified linear units improve re ...cted bo. zmann
machines, in: Proceedings of the 27th international cc ference o machine

learning, Haifa, Israel, 807-814, 2010.

D. P. Kingma, J. Ba, Adam: A Method for St <h» .c O timization, in:
Proceedings of the 3rd International Conferew. ~ for I  .ing Representa-

tions, San Diego, 807-814, 2015.

K. He, X. Zhang, S. Ren, J. Sun, Delvi.. - Deep ...co Rectifiers: Surpass-
ing Human-Level Performance on ImaoaNo+ 71~ ification, in: Proceedings
of the 2015 IEEE International Conferc. ~= on Computer Vision (ICCV),
ICCV 15, Washington, DC, U A, 77N 078-1-4673-8391-2, 1026-1034,
URL http://dx.doi.org/10.1105, 7 SCV.2015.123, 2015.

Z. C. Lipton, C. Elkan, B. Nar, na. -amy, Optimal Thresholding of Clas-
sifiers to Maximize F1 .. ~wsw. < ringer Berlin Heidelberg, Berlin, Hei-

delberg, 225-239, 2014.

A. Yeh, More Acc rate 1o ts for the Statistical Significance of Result Dif-
ferences, in: Proc ~dings ¢ the 18th Conference on Computational Lin-
guistics - Vol .me 2, COLNG 00, Stroudsburg, PA, USA, 947-953, URL
https://dc’ or ;/10 ,115/992730.992783, 2000.

M. Es' " -Gomis, M. Forcada, S. Ortiz Rojas, J. Ferrandez-Tordera,
Bitextor’s par. ~ipation in WMT’16: shared task on document align-
me it, 1,  Proceedings of the First Conference on Machine Translation,
Be."'n Germany, 685-691, URL http://www.aclweb.org/anthology/W/
W1€/W16-.367, 2016.

" . Es Ja-Gomis, F. Sanchez-Martinez, M. L. Forcada, Target-Language
dit Hints in CAT Tools Based on TM by Means of MT, Journal of Arti-
fi .al Intelligence Research 53 (2015) 169-222.

M. Snover, B. Dorr, R. Schwartz, L. Micciulla, J. Makhoul, A study of

translation edit rate with targeted human annotation, in: Proceedings of

61




18 Association for Machine Translation in the Americas, v .. .00, Caw.Dridge,

MA, USA, 2006.

62




1190

1195

1200

1205

1210

Vitae

Dr. Miquel Espla-Gomis is assoc. *e lectu :r and re-
search assistant at Universitat < Alacant (Spain). He re-
ceived his Ph.D. in computer . Yie e in 016. His main
fields of research are machine -ansl. "_a quality estima-
tion and automatic date collection ‘or training machine
translation systems. H~ is ouc ~f t* - main developers and
maintainers of the tool Bitea ~r. a well-known free/open-
source tool to automatically crawl paralle. 'ata from the Internet.

Dr. Felipe ' “~chez-Mau .inez is associate professor at
Universitat d’Ala ar (Spain) and member of the Euro-
pean Assoc. . "n for Tachine Translation; he received his
Ph.D. in comp. *er s:ience in 2008. His main field of re-
search is . =chiue .canslation, both corpus-based and rule-
based, and the nitegration of machine translation in other
t' ansla. “u technologies, such computer-aided translation

~ols base . on translation memories. He is part of the
team that is respr asible fo. .e design, development and maintenance of the
Apertium shallc v-tre .sfer iachine translation platform. Most of his under-
graduate and ,raduaw. ‘e ching involves translation and language technologies.

Dr. Mikel L. Forcada (Caracas, 1963) is professor
of Computer Languages and Systems at the Universitat
d’Alacant, president of the European Association for Ma-
chine Translation, founder and president of the project
management committee of the free/open-source machine
translation platform Apertium, and co-founder and chief
research officer of language technology company Prompsit

Langu ge Engineering.

63




	Predicting insertion positions in word-level machine translation quality estimation

