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Abstract

The problem of allocating students to supervisors for the development of a
personal project or a dissertation is a crucial activity in the higher education
environment, as it enables students to get feedback on their work from an expert
and improve their personal, academic, and professional abilities. In this article,
we propose a multi-objective and near Pareto optimal genetic algorithm for the
allocation of students to supervisors. The allocation takes into consideration
the students and supervisors’ preferences on research/project topics, the lower
and upper supervision quotas of supervisors, as well as the workload balance
amongst supervisors. We introduce novel mutation and crossover operators for
the student-supervisor allocation problem. The experiments carried out show
that the components of the genetic algorithm are more apt for the problem
than classic components, and that the genetic algorithm is capable of producing
allocations that are near Pareto optimal in a reasonable time.
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Julian)

Preprint submitted to Elsevier February 19, 2020



1. Introduction

Every year in higher education (HE) institutions, students undertake indi-
vidual projects that are supervised by a tutor that offers academic advice and
guidance, either as an undergraduate or master dissertation, as part of their
coursework, or simply as a summer research project. Students are usually allo-5

cated to supervisors for their projects by means of a centralized human decision
maker or by means of interactions between students and staff members. The
decision makers have to take into consideration the preferences of both students
and supervisors with respect to the conduct of the project, as well as depart-
mental constraints such as minimum and maximum levels of workload (in terms10

of supervision) for each supervisor. This situation results in an extremely time
consuming process, and a suboptimal allocation due to a large and complex
search space faced by human decision makers. Automating this process by
applying artificial intelligence techniques may enhance the process in terms of
satisfaction and performance of students with these individual projects.15

In this article, we present a genetic algorithm for matching students to su-
pervisors according to both students’ and supervisors’ preferences and the con-
straints of the department. The rationale behind this problem is matching
an appropriate student with a supervisor for the development of an individ-
ual project. The problem of matching students to supervisors, or students to20

projects [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], is a subclass of the wider
problem of matching between two sets, one of the most studied fields in com-
puter science due to its applications to a wide range of domains such as the
hospital/residents (HR) or the college admission (CA) problem [14, 15, 16].
Particularly, the student-supervisor allocation problem solved in this article can25

be considered as an instance of the CA problem with lower and upper quotas,
where the colleges are the supervisors, both colleges and students (i.e., supervi-
sors and students in our case) have some representation of preferences on each
other for the conduct of a project, and the minimum and maximum quotas are
the minimum and maximum number of students to be supervised by staff mem-30

bers. In this situation, it has been shown that there is no guarantee for a stable
allocation to exist 1 and even looking for a near-stable allocation is a NP-hard
complex problem [15, 16].

In order to tackle the complexity mentioned above, in this article we pro-
pose a multi-objective and Pareto optimal genetic algorithm (GA). The main35

highlights of the GA proposed in this article are: (i) it takes into consideration
both the preferences of the students and the supervisors with respect to type
of project to undertake/supervise; (ii) it considers the constraints on the indi-
vidual minimum and maximum supervision workload of each supervisor; (iii) it
aims to provide a fair and balanced allocation in terms of the workload for each40

supervisor; (iv) it provides multiple near-optimal solutions considering both

1Stability defined as the lack of incentive for any pair of student and college to change
their current allocation in favor of one that allocates them together.
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the students’ preferences and the preferences of the supervisors; (v) it provides
multiple near Pareto optimal solutions that can be used by decision makers to
trade-off between the multiple objectives optimized; (vi) and the GA employs
novel mutation and crossover operators in the context of the student-supervisor45

allocation problem, specifically designed for allocation problems with lower and
upper bound supervision quotas.

The algorithm has been tested using real preferences elicited from students
and supervisors, and it has been compared with classic GA components, with
the proposed operators outperforming classic ones for the problem at hand.50

The rest of the article is organized as follows. First, we highlight the differences
between the problem tackled in this article and the work carried out by relevant
studies in Section 2. Then, we elaborate on problem description in Section 3.
Once the problem has been formally defined, the proposed genetic algorithm
for student-supervisor allocation is explained in Section 4. Section 5 provides55

empirical evaluation of the proposed approach. Lastly, we conclude our work
with future work directions in Section 6.

2. Related work

The problem of allocating the students to supervisor is a one-to-many match-
ing where we allocate only one supervisor to each student while more than one60

student can be assigned to a supervisor. As mentioned above, this particular-
ity makes it similar to the college admission (CA) and the hospital/residents
(HR) problem, two well-known one-to-many matching problems from the point
of view of theoretical computer science. In the HR problem, each resident has a
ranked list of preferences on the hospitals they may be assigned to, and hospitals65

also have ranked preferences on the residents they may accept. Similarly, in the
CA problem, each student has ranked preferences on the colleges they may be
accepted, and each college has ranked preferences on the students that they may
accept. Both colleges and hospitals may accept more than one student/resident,
making it a one-to-many matching.70

Our student-supervisor matching problem involves a one-to-many matching
where supervisors have both lower and upper supervision quotas, and both
sides have preferences on each other. Biro et al. [14] studied the problem of the
CA problem with both lower and upper quotas from a theoretical perspective.
Differently to our setting, the work presented in [14] allows for colleges to be75

closed in case that their minimum acceptance quota is not reached. The authors
found that, in the presence of both lower and upper quotas, there may not exist a
stable matching. A matching is considered stable if for every pair of student and
college not included in the matching, either the student is matched to a college
that he/she prefers, or the college quota is full with applicants that the university80

prefers. In addition to this, determining if a stable matching exists in this
setting is a NP problem. Biro et al. showed that a student oriented polynomial
algorithm and a college oriented polynomial algorithm can be provided in the
case that colleges are organized in nested sets and have common quotas. In our
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work, the minimum supervision quota for each supervisor must be achieved, and85

all specified staff members participate in the allocation.
Later on, Hamada et al. [15, 16] further studied the problem of matching

with lower and upper quotas, focusing on scenarios where all colleges/hospitals
should reach their minimum quota in the allocation. In this particular scenario,
it is proved that the problem of providing a matching that is as close as possible90

to be stable is still a NP-hard problem, but a polynomial time algorithm approx-
imation algorithm exists with an approximation guarantee equal to the sum of
the number of hospitals and residents. This approximation may not be appro-
priate for large numbers of hospitals and residents or student and supervisors,
as the problem faced in our proposal.95

The previous findings provide the reader with some background on the com-
plexity of the matching problem presented in this article. This complexity,
and the need to appropriately tackle large problems motivated the choice of
a metaheuristic instead of a global optimization technique. In the next few
lines, we discuss how our present work compares to other student-project or100

student-supervisor allocation schemes proposed in the literature.
Anwar et al. [1] were one of the pioneering authors in providing a computa-

tional solution to the student-project allocation problem. The article introduces
two different integer programming models: one to allocate students to projects
while minimizing the projects supervised by staff members, and another to max-105

imize the students’ satisfaction according to their preferences on group projects
to be allocated and to be undertaken. In this setting, staff members propose a
list of projects and students provide a rank of four projects to be allocated on.
Both integer programming models were tested on a real dataset consisting of 60
projects, 22 staff members, and 39 students. Similarly, [2] introduces the use of110

genetic algorithms for solving the student-project allocation problem. In their
setting, students provide a ranked list with their most preferred projects, and
each student is allocated a project from the provided list, with projects being
carried out individually. The algorithm was tested with real data consisting of
25 students and 34 projects, and also with problems created from data provided115

from the OR-library [17]. These models only take into consideration the stu-
dents preferences, but they do not consider the staff preferences with regards to
projects and students and the workload of supervisors. In addition to this, they
can only optimize a single objective function which precludes decision makers
from trading-off between the students’ and the staff preferences.120

Abraham et al. [3] focus on solving the student-project allocation problem
from an optimal perspective. The authors assume that a list of projects is
provided by staff members. The students provide a ranked list of their most
preferred projects, while staff members explicitly rank students that desire to
be allocated to the staff member’s projects. Under this assumption, the authors125

provide two linear algorithms to find stable matching: one from the perspective
of the students’ preferences, and another from the perspective of the lecturers’
preferences. While an optimal solution can be guaranteed employing these algo-
rithms, they either provide the optimal solution for the students or the optimal
solution for the staff members, but no trade-off opportunity is provided to deci-130

4



sion makers. In addition to this, the algorithms do not take into consideration
the workload of supervisors, with the possibility of producing unbalanced so-
lutions. Finally, it should also be considered that supervisors explicitly rank
students which may not be feasible if supervisors do not know students, or it
may be unfair for students with lower marks as many will end up in the last135

rank positions in lecturers’ preferences.
Later on, Manlove & O’Malley [4] study the student-project allocation prob-

lem in a scenario where students and supervisors have preferences over a set of
projects. Both projects and supervisors have capacity constraints. Under these
conditions, the authors prove that stable matchings can have different cardi-140

nalities, and thus the objective is that of finding the stable matching with a
maximum cardinality. Solving this problem is NP hard, but the authors provide
a student oriented approximation algorithm with a performance guarantee of 2
(i.e., only guaranteeing half of the cardinality of the maximum stable matching)
and polynomial complexity. Iwama et al. [8] further narrowed down this bound145

to a range between 1.5 and 1.10. The proposed algorithms focus on optimizing
the students’ preferences, with no explicit consideration of the staff members’
preferences, the workload of supervisors, or lower quota constraints.

Another genetic approach to the student-project allocation problem was pro-
vided by Srinivasan & Rachmawati [5]. The described scenario consists of stu-150

dents providing a ranked list of projects from a list published every year by
lecturers. The problem is tackled as multiobjective optimization problem where
both the preferences of the students and the departments are taken into consid-
eration. In order to compute the preferences of the department, the academic
performance of the students and the workload of supervisors/departments are155

taken into consideration. As mentioned, assigning projects on merit may lead to
undesirable situations whereby low performing students end up in less attractive
projects. In addition to this, the model does not support lower and maximum
supervision quotas for lecturers. Finally, it should be highlighted that despite
the fact that multiple objectives are considered, these are aggregated into a sin-160

gle and final objective function. This requires to compute the GA every time
that the human decision maker desires to trade-off between different objectives.

The work presented on [6] proposes the use of goal programming to tackle the
student-project allocation as a hierarchical multiobjective problem. The maxi-
mum priority of the model is maximizing the number of allocated students, and165

then it attempts to maximize the students’ preferences and then the academic
performance of allocated students. Again, the model employs academic per-
formance to prioritize the departments’ choice, which may be discriminatory.
Moreover, the model does not allow to execute trade-offs between the different
objectives, and it does not guarantee any degree of optimality for each of them.170

The authors in [7] present an artificial immune system optimization algo-
rithm for the student-project allocation problem. More specifically, the authors
model a problem where a set of students and projects exist, and students have
preferences on the projects to undertake. In their framework, students must be
matched a project, and a project can be matched at most once. The authors175

study the performance of several mutation operators on the problem, although
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they focus on swapping projects between students based on different criteria
like time. As it will be appreciated, our proposed mutation operator takes into
consideration both swapping (students between supervisors) and transferring
operations (giving a student to another supervisor) and they consider the min-180

imum and maximum supervision quota of each supervisor.
In [9], the authors focus on solving the student-project allocation problem

where only students’ preferences are present, but supervisors have both lower
and upper supervision quotas. In the article, the authors provide efficient al-
gorithms that aim to provide optimal solutions in the context of a single side185

optimization (i.e., students’ preferences). For that, their proposed algorithms
guarantee finding greedy maximum matchings or generous maximum match-
ings. The first aims to find the largest matching in terms of the number of
students allocated, and maximizing the number of students allocated their first
and most preferred choices. The second aims the largest matching that mini-190

mizes the number of students allocated their least preferred choices. The work
presented by the authors does not support lecturers’ preferences, and thus opti-
mizes a single objective criteria, and matchings found do not necessarily guar-
antee matching all of the students to projects/supervisors, something that we
have considered fundamental in our present work.195

Salami and Mamman propose another genetic algorithm for scenarios where
students have complete preferences on supervisors, and supervisors have a max-
imum supervision quota [11]. However, there is no consideration on supervisors’
preferences or the workload balance for supervisors.

In [13] the authors present mixed integer programming models for solving the200

student-project allocation problem with one-sided preferences (i.e., students).
Differently to other approaches, students apply for projects in teams and the
maximum capacity of projects is defined in number of teams rather than the
number of individuals. The main focus of the article consists of analyzing dif-
ferent fairness metrics from the point of view of the students’ allocation.205

Recently, Cooper and Manlove [12] have revisited the problem of allocating
students to projects, where both students and lecturers have preferences over
each other, and lecturers and projects have upper capacity constraints. The
authors have provided a 3/2-approximation algorithm capable of calculating
maximum stable matchings in linear time. It should be considered that this210

work does not include lower quotas and neither introduces fair balancing for the
supervisors’ workload.

Our approach is based on students’ and supervisors’ preferences on project
topics rather than projects. This is an advantage as it does not require lectur-
ers to propose projects prior to the allocation and they can be negotiated with215

students according to their research interests. Furthermore, it does not discrim-
inate students according to their performance as staff preferences’ are based on
topics rather than students. Most analyzed works only take into consideration
the students’ preferences [1, 2, 7, 9, 11, 13], or they base the department prefer-
ences on pure academic merit/opinion [3, 5, 6]. We consider both the students’220

and the departments’ preferences by adopting a multiobjective approach that
provides decision makers with flexibility to trade-off between objectives as it
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estimates Pareto optimal solutions. The works analyzed in this section are ei-
ther single objective (sided) [1, 2, 4, 7, 9, 11, 13] or they adopt a multiobjective
stance by aggregating or prioritizing objectives [5, 6] or by focusing on finding225

efficient matchings with no lower quotas [4, 8, 12]. In addition to this, we aim
to provide a balanced allocation that takes into consideration the workload of
lecturers, a characteristic that is only present in [5]. Therefore, the proposed
model should be more apt for the student-project allocation problem described
in this article.230

3. Problem definition

In this section we describe the problem of allocating students to supervisors
from a formal perspective. Let S = {s1, . . . , sn} and R = {r1, . . . , rm} represent
a set of students and a set of supervisors where n and m denote the number of
students and number of supervisors respectively.235

3.1. Matching definition

A matching2 M is an assignment of students to supervisors, where each
student is assigned exactly one supervisor. Without loss of generality, we say
that M(si) represents the supervisor assigned to student si in M , and M(rj)
represents the set of students assigned to supervisor rj in M . Each supervisor rj240

has an upper bound supervision quota cj,max, which is normally established by
the head of the department or school. Similarly, each supervisor rj has a lower
supervision quota cj,min, set by the department or school, that determines the
minimum number of students that he/she should supervise. This is the case in
many higher education institutions, where supervisors have different teaching245

loads and therefore, they may be more or less available to supervise students’
projects.

Given a matching, we say that a supervisor rj is under-subscribed iff cj,min ≤
|M(rj)| < cj,max, he/she is full iff |M(rj)| = cj,max, and he/she is over-
subscribed iff |M(rj)| > cj,max. We say that a matching M is feasible iff250

∀rj ∈ R, cj,min ≤ |M(rj)| ≤ cj,max, i.e. for every supervisor he/she is full
or under-subscribed.

3.2. Workload definition

As mentioned in the article, we aim to consider the balance of the workload
for supervisors when constructing a proper allocation with our GA. Therefore,255

we must provide a formal definition for what we consider workload and how
to measure the balance of the workload in a matching M . The workload level

of a supervisor rj in M as lj =
|M(rj)|
cj,max

. Namely, that is the ratio of students

supervised in the matching M over the maximum number of students that can

2Please note that the definition of matching employed in this paper aligns with the defini-
tion employed in the student-project allocation problem. It should be highlighted that this is
different to the classic definition of matching in a graph.
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be supervised by rj . Analogously, we can define and LM = {l1, . . . , lm} as a260

vector that contains the workload levels for all supervisors in the matching M ,
and we define σLM as the standard deviation of the workload levels of supervisors
in the vector LM .

3.3. Evaluation of a student-supervisor assignment

The first step towards evaluating the quality of a matching M is that of265

evaluating the individual allocation of student si to supervisor rj . We define
Vi,j , as the value given by a student si to being allocated a supervisor rj , and
V ′j,i as the value given by a supervisor rj to being allocated a student si.

In this work we assume that students cannot explicitly provide a complete
list of preferences for supervisors. Even if they could provide a partial list of270

supervisors in rank of preference, the list would be biased to the supervisors that
they like or the ones that they have met. It is not possible for the students to
know all of the staff members in a relatively large school or department. There
are different reasons for this. Additionally, students may hesitate to specify their
preferences on their supervisors/teachers directly due to academic reasons and275

privacy issues. However, it is easy for them to specify which topics they would
like to work on more. Therefore, we consider that students are able to provide a
ranked list of k topics to represent their preferences in the problem. Again, we
assume that only k explicit preferences can be given as the number of potential
topics may be extremely large in some areas and that may result in a too280

costly elicitation process. Similarly, we can state the same about supervisors.
They cannot explicitly rank all of the students as they may not know them.
In addition to this, by making supervisors express their preferences in terms
of project topics rather than students, we avoid discrimination according to
academic performance.285

In order to evaluate both the students’ and supervisors’ preferences on topics,
we assume that the topics are represented in a tree-like and hierarchical structure
with a common root. In this structure, topics may be further divided into
subtopics and so on, but it is always possible to relate how similar two topics
are by analyzing the tree structure [18]. An example of this tree-like structure290

can be observed in Figure 1. In the example, let us assume that a student has
stated that his preferred topic is kw5. Given the tree structure, one can easily
compare how similar or related other keywords are based on the the number
of common nodes in the tree structure. This is the case, despite the fact that
the student may have not explicitly provided preferences for other keywords.295

We assume that each supervisor/student preferences are represented by a list
of k different topics from a tree-like and hierarchical structure. A student or
supervisor i describes his preferences with a ranked list KWi = {kw1, . . . , kwk}
of k topics where ∀j < k, kwj � kwk.

We consider that the similarity between a student’s and a supervisor’s pref-300

erences depends on two factors: the similarity of the keywords provided by both
in their lists, and the position of those keywords in their ranked lists. First, we
define the similarity between two keywords, and then we define the similarity
between the positions occupied by two keywords in two ranked lists.
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kw2 kw3 kw5 kw6 kw8 kw9

kw1 kw4 kw7

kw0

Figure 1: Topics organized in a tree-like structure

• Keyword similarity: Let us consider that there is a tree defined by
T = (KW, E) where KW = {kw1, . . . , kwl} is a group of l different nodes
that represent topics in an area of knowledge, and E is a group of edges in
the form (kwi, kwj) indicating that kwj specializes the topic in kwi. The
similarity of kwj to kwi topics in T is defined as:

ST (kwi, kwj) =
|path(kwi, T ) ∩ path(kwj , T )|

|path(kwi, T )|
(1)

where path : KW×T → 2KW is a function that retrieves the path defined305

from the root of the tree T to the node kw (included). As a consequence,
we define the similarity of kwj to kwi as the number of common nodes in
the path defined from the root to both topics. Please, the reader should
bear in mind that this similarity metric is not symmetric, to consider the
fact that more specific topics are only fully matched by topics of greater310

or the same specificity. Lastly, if we assume two lists of preferences KWi

and KWj , and a topic kwi ∈ KWi, we define its best matching topic
kw∗i ∈ KWj as arg max

kwj∈KWj

ST (kwi, kwj).

• Rank similarity: We define Srnk as the rank similarity between two
keywords in two ranked lists of preferences KWi and KWj . This similarity
metric represents the fact that the order of the topics in both the student
and supervisor’s preferences should matter as it denotes the degree of
interest of expertise in the topic. For instance, let us assume that the
topic artificial intelligence is defined as the most preferred topic for a
student, and the best matching keyword in a supervisor’s list is machine
learning. However, this topic appears as the last in the list of preferences
for the supervisor. The student should prefer matching supervisors that
have a closely related topic higher in their rank of preferences as it is the
most preferred topic for the student. This fact is reflected by the definition
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of the rank similarity:

Srnk(kwi, kwj ,KWi,KWj) =
1

1 + |pos(kwi,KWi)− pos(kwj ,KWj)|
(2)

where the function pos returns the position of a keyword in a ranked list of
preferences, with lower positions representing choices higher in rank. This315

similarity metric reflects the fact that the positions of the keyword and
best matching keyword in both supervisors and students is important.

From this point on, we define the evaluation given by a student si to a
supervisor rj : Vi,j . The evaluation given by si to rj is defined as:

Vi,j =
∑

kwi,r∈KWi

wr × Srnk(kwi,r, kw
∗
i,r,KWi,KWj)× ST (kwi,r, kw

∗
i,r) (3)

where, as mentioned, we define kw∗i,r ∈ KWj as the best matching topic to
kwi, and wr is a weight indicating the importance of matching the r-th most
important preference for the student. This way, we take into consideration320

that students may prefer to be matched according to their most preferred topic
rather than topics further down in their ranked list of preferences. It should be
highlighted that the evaluation given by a supervisor rj to the student si, V

′
j,i,

can be defined in an analogous way.

3.4. Optimization problem325

As we have mentioned in the previous section, in this article we consider
both the preferences of the students and supervisors. This means that there
are two objectives to be maximized and this is a multi-objective optimization
problem. We describe this optimization problem first from the point of view of
students and then from the point of view of the supervisors.330

3.4.1. Optimization: Student perspective

From the point of view of the students, the optimization problem is to max-
imize the overall satisfaction of the students from their assigned supervisors.
Next, we define the associated optimization problem:

max
1

|S|
∑
si∈S

∑
rj∈R

xi,j × Vi,j

subject to

∀rj ∈ R, cj,min ≤
∑
si∈S

xi,j ≤ cj,max (4)

∀si ∈ S,
∑
rj∈R

xi,j = 1

0 ≤ xi,j ≤ 1

10



where xi,j is a binary variable that indicates if the student si has been allo-335

cated to supervisor rj in matching M . The optimization function, which we aim
to maximize, is defined as the mean of the valuation given by students for their
assigned supervisors in matching M . The first constraint forces the optimization
problem to find a solution where no supervisor rj is over his/her upper bound
supervision quota cj,max, and that a minimum of cj,min students are allocated340

to rj . This latter value represents situations where the department establishes a
minimum supervision workload for supervisors. The next constraint forces the
optimization problem to assign a student si to just one supervisor. Finally, the
last constraint defines the domain for the binary variables.

3.4.2. Optimization: Supervisors’ perspective345

As mentioned above, the other optimization problem is defined by the in-
terests of the supervisors. In this article, we assume that the interests of the
department are (i) to make supervisors more comfortable with their work by
assigning a student who is willing to work in areas related to the supervisor’s
expertise; (ii) and to avoid unbalanced solutions where well-known supervisors350

have a much higher supervision load than other staff members, as this could
cause friction and envy amongst coworkers. Given these assumptions, we define
the optimization problem faced by the department as follows:

max
1

(1 + σLM )α
× 1

|R|
∑
rj∈R

1

|M(rj)|
∑
si∈S

xi,j × V ′j,i

subject to

∀rj ∈ R, cj,min ≤
∑
si∈S

xi,j ≤ cj,max (5)

∀si ∈ S,
∑
rj∈R

xi,j = 1

0 ≤ xi,j ≤ 1

The optimization problem is similar to that defined for the students. In fact,
the constraints of the problem are identical to the ones defined for the student355

problem. The objective function evaluates the satisfaction of a supervisor as
the average evaluation value given by the supervisor for the students allocated
to him/her. Then, the overall satisfaction of supervisors is taken as the average
satisfaction of all supervisors.

Additionally, the objective function is penalized by an external factor that360

depends on the standard deviation of the workload levels σLM in M . The greater
the standard deviation, the greater becomes the penalization factor and the more
is reduced the value of the objective function. As a result, given two allocations
with the same value stemming from the value given by students assigned to
supervisors, the optimization problem prefers solutions with a more balanced365

workload level. This avoids situations like the one mentioned above, where
popular supervisors are highly subscribed while others have a very low workload
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level. The effect of this parameter can be further expanded by the coefficient
α, which should penalize allocations with a higher workload unbalance when
α > 1.370

4. A Pareto optimal genetic algorithm for the student-supervisor al-
location problem

Due to the ability of dealing with large search spaces and providing good
solutions in a reasonable amount of time, we decide to use genetic algorithms
to solve the student-supervisor allocation problem. In this section, we describe375

the design and implementation of the proposed genetic algorithm. In addition
to this, metaheuristics tend to provide a good solution in a reasonable amount
of time. Exact methods for non-linear, or even linear problems such as the
one presented in Section 3 are known to be costly in time for large search
spaces. Thus, we select genetic algorithms as the method for solving the problem380

presented in this work.
As the reader may have observed, there are two different objective functions

for the problem. Therefore, in this article we opt for a Pareto optimal genetic
algorithm. Pareto optimal methods allow to retrieve a variety of non-dominated
solutions which can later be analyzed by a decision maker to trade-off between385

the different objective functions. In this case, the staff entitled with the task of
allocating students to supervisors can select from a wide range of allocations to
better reflect the priorities of the students and the supervisors. More specifically,
due to the fact that the problem is composed by just two objective functions,
we employ a schema inspired by NSGA-II [19], a well-known GA schema for390

estimating Pareto optimal solutions in multi-objective problems.
Next, we define the specific details of the proposed genetic algorithm. First,

we explain how chromosome (solutions) are represented in our GA. Next, we
define the main operators of the proposed GA: crossover operators, and mutation
operator. Finally, we describe the selection mechanism employed and the outline395

of the GA.

4.1. Chromosome representation

For this GA, we employ a graph to represent a solution. Formally, a matching
M can be represented by means of a bipartite graph GM = (S,R, E) where
E = {(si, rj)|M(si) = rj} is the set of edges that determine the assignment400

of students to supervisors (i.e., an edge is present if a student is matched to a
supervisor in M).

Figure 2 show an example of how an allocation of 5 students to 3 supervisors
is represented by a bipartite graph. More specifically, in the example provided,
the supervisor r1 supervises student s3, supervisor r2 supervises students s2 and405

s5, and supervisor r3 supervises students s1 and s4.
In the bipartite graph GM representing an allocation, we define the structure

of the allocation as stGM = (|N(r1, GM )|, . . . , |N(rm, GM )|) as the number of
neighbors of each supervisor in the bipartite graph (i.e., the number of students
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Figure 2: An example of a matching of 5 students to 3 supervisors represented by a bipartite
graph

that each supervisor supervises in the allocation). For instance, in the example410

in Figure 2, the structure of the allocation is (1,2,2). As the reader may have
guessed by now, the structure of the allocation is important as it is related to
the workload level of the supervisors and, therefore, to the objective function of
the supervisors.

4.2. Mutation operator415

We introduce a mutation operator in the context of the student-supervisor
allocation problem that employs two actions: swap and transfer. Our swap
action is inspired by the mutation operator in bin packing problems [20]. Simi-
larly, the transfer action is inspired on the similar intuition proposed in [21] for
bin packing problems.420

The mutation operator is applied over a single parent and it generates a sin-
gle child. For this problem we have designed a special mutation operator that
applies a series of operations on a parent allocation: swapping of students be-
tween supervisors, and transferring of a student from one supervisor to another.
The former operation does not change the structure of the allocation (i.e., the425

workload of any supervisor), while the latter does by reducing the workload of
a supervisor by one and increasing the load of another supervisor by one.

The extent to which a parent changes by a single mutation operation is
defined by the mutation ratio pmt, that represents the probability of mutating
an edge in a graph GM . The type of operation that is applied over an edge that430

is to be mutated is controlled by psw, which controls the probability of applying
a swapping operation between two supervisors. An outline of the mutation
operator can be found in Algorithm 1. The operator iterates over edges in the
bipartite graph and attempts to perform an operation over an edge in the graph
with a probability of pmt. In case that a transfer operation is possible for the435

edge (i.e., the supervisor has more than the minimum quota established by the
department), it selects a random supervisor that can take students (i.e., under-
subscribed) and performs the operation with a probability of 1− psw (lines 1 to
9). Otherwise, the operation selected is a swap between supervisors (lines 10 to
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15), which is always possible in feasible solution as the structure of the solution440

does not change.

Algorithm 1: Outline of the mutation operator

Input: GM = (S,R, E) : A bipartite graph representing a feasible allocation
Output: GM′ = (S,R, E′) : A new bipartite graph representing a feasible

allocation
1 GM′ = GM ;
2 U = under-subscribed(GM′);
3 for (si, rj) ∈ E′ do
4 if random() ≤ pmt then
5 if random() > psw ∧ N(rj , GM′) > cj,min ∧ U 6= ∅ then
6 /*Transfer operation*/ ;
7 rq = random choice(U);
8 E′ = (E′ ∪ {(si, rq)})− {(si, rj)};
9 U = under-subscribed(GM′);

10 else
11 /*Swap operation*/ ;
12 rq = random choice(R);
13 sp = random choice(N(rq, GM′));
14 E′ = (E′ ∪ {(si, rq), (sp, rj)})− {(si, rj), (sp, rq)};
15 end

16 end

17 end

4.3. Crossover operators

As the structure of the allocation is important for the objective function of
the supervisors, we have devised two crossover operators for matching problems
that preserve the allocation structure of the parents as much as possible. More445

specifically, these two crossover operators take two parents as input and produce
a child as a result. Both operators preserve the original allocation structure of
one of the parents; however, the second approach may end up adding new genetic
material not present in any of the parents whereas the first one does not. As
a result, the latter crossover operation may induce in additional exploration as450

new assignments of students to supervisors. We call the first genetic operator as
the Hopcroft-Karp genetic operator as it is based on the popular algorithm to
find maximum cardinality matchings in bipartite graphs [22], while the second
receives the name of greedy structural preservation crossover due to its greedy
nature for selecting genetic material from parents. Next, we define both in455

detail.

4.3.1. Hopcroft-Karp genetic operator

As we mentioned, this crossover operator generates a new child from two
parents. In order to do so, the new solution inherits the allocation structure
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of one of the parents, and it exclusively employs genetic material from the two460

parents to generate the child.
The outline of this genetic operator is as follows. An example of the appli-

cation of this genetic operator to two parents can be found in Figure 3, while
the formalization of the operator can be found in Algorithm 2:

• Merging parents: This step can be found in Figure 3 (a) and lines 1-465

10 of Algorithm 2. First of all, we generate a new graph as a result of
merging both graphs by keeping the set of students and supervisors. The
selection of this structure is proportional to its impact in the objective
function of the supervisors. In addition to this, the structure of one of
the two parents is inherited as a goal for the new bipartite graph. In the470

example in Figure 3, the structure of the first parent is chosen.

• Transforming graph: The description of this step can be found in lines
11-14 of Algorithm 2 and an example can be found in Figure 3 (b). The
merged graph is transformed into a new bipartite graph whose set of su-
pervisors contains a copy of each original supervisor for each student that475

he/she should supervise according to the inherited structure. For instance,
in the example in Figure 3 (b), there are two copies of the original super-
visor r2 (r2,1 and r2,2) because two students should be assigned to the
second supervisor in the new allocation. Similarly, the same happens for
supervisor r3 (r3,1, r3,2).480

• Hopcroft-Karp: Lines 15-16 of Algorithm 2 and Figure 3 (c) represent
this step. The Hopcroft-Karp algorithm [22] is applied on the transformed
graph to find a maximum cardinality matching. As the merged graph
contains at least a perfect matching (i.e., one of the two original parents),
then the maximum cardinality matching is a perfect matching.485

• Transforming back: Finally, the perfect matching is transformed back
to the original supervisor set by merging those nodes that represent the
same supervisor. As a result of this process, a new child is generated
that inherits the structure of one of the two parents and it introduces no
new genetic material. This can be found in lines 17-19 of Algorithm 2 and490

Figure 3 (d). Note that the structure of the allocation is the same with one
of the parents; however, it does not mean that the allocation is exactly the
same with the chosen parent’s allocation. As seen from the given example,
the resulted allocation is different than the parent allocations (e.g. s3 is
assigned to r1 in the chosen parent allocation while it is assigned to r2 in495

the child allocation).

The theoretical complexity of this crossover operator is determined by the
complexity of each of its individual steps. In order to merge both parents, a
new set of edges must be created which consists of all the edges in both parents.
As the number of edges in each parent is exactly |S| then the cost of this step500

is O(|S|). Transforming the graph requires to create a new set of supervisors
that has exactly as many supervisors as students (O(|S|)) and creating a new
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Algorithm 2: The Hopcroft-Karp crossover operator

Input: GM1 = (S,R, E1) : A bipartite graph representing a feasible allocation;
GM2 = (S,R, E2) : A bipartite graph representing a feasible allocation;

Output: GM′ = (S,R, E′) : A new bipartite graph representing a feasible
allocation

1 /* Merge graphs */ ;
2 G = (S,R, E = E1 ∪ E2);
3 /* Inherit one of the structures */ ;
4 p1 = 1

(1+σM1
)α

;

5 p2 = 1
(1+σM2

)α
;

6 if random() ≤ p1
p1+p2

then

7 stGM′ = {|N(r1, GM1)|, . . . , |N(rm, GM1)|};
8 else
9 stGM′ = {|N(r1, GM2)|, . . . , |N(rm, GM2)|};

10 end
11 /* Transform graph */ ;
12 Rtr = {rj,l | rj ∈ R ∧ l ≤ stGM′ (rj)};
13 Etr = {(si, rj,l) | ((si, rj) ∈ E1 ∪ E2) ∧ rj,l ∈ Rtr} ;
14 Gtr = (S,Rtr, Etr) ;
15 /* Apply Hopcroft-Karp algorithm */ ;
16 Ehp = hopcroft karp(Gtr);
17 /* Transform back to original representation */ ;
18 E′ = {(si, rj) | ∃(si, rj,l) ∈ Ehp};
19 G′ = (S,R, E′)

set of edges that is at most O(|S|). The most expensive step is applying the
Hopcroft-Karp algorithm which has a complexity of O(|S|

√
|S|) in the worst

case. However, some recent studies show that in the average case the Hopcroft-505

Karp algorithm has a complexity of Θ(|S|log|S|) for random sparse bipartite
graphs [23]. The bipartite graphs generated by the merge operation will result
in graphs where students have at most two neighbors (i.e., the student has a
different supervisor in both parents). Therefore, we expect that in practice the
cost of this step will be closer to the Θ(|S|log|S|) complexity. The final step510

requires iterating over resulting edges in the perfect matching which is exactly
O(|S|). Therefore, the complexity of this operator is O(|S|

√
|S|) in the worst

case and we expect it to be Θ(|S|log|S|) in the average case. In both cases, the
complexity is quasi-linear.

4.3.2. Greedy structural preservation genetic operator515

The greedy approach preserves the structure of one of the two parents, which
is randomly inherited based on the impact of the structure on the fitness of the
supervisors. Differently to the Hopcroft-Karp crossover operator, this crossover
operator may introduce new genes that are not present in any of the two parents.
Nevertheless, the operator aims to keep original genetic material as much as520

possible. As a trade-off, the computational complexity of this operator is lower
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Figure 3: Steps of the Hopcroft-Karp crossover operator (in separate boxes). The order of the
steps is read left to right.

than that of the Hopcroft-Karp as it takes a greedy approach. The general idea
behind this method is locking edges that will be part of the resulting matching,
and removing those that are to be discarded.

Next, we describe the outline of this genetic operator in more detail. Figure525

4 shows how the operator is applied over a particular example, while Algorithm
3 depicts the specific details of the operator in more detail. The general steps
of the crossover operator are:

• Merging parents: This step can be found in the top left box of Figure
4 (a) and lines 1-11 of Algorithm 3. It is equivalent to the merging steps530

in Hopcroft-Karp crossover operator. In addition to inheriting the struc-
ture of one of the two solutions, the method initializes a counter for each
supervisor that contains the number of edges that have been locked for
the final allocation so far in the process. In Figure 4 (a), the allocation
structure inherited is that from the first parent.535

• Simplify: The details of this step can be found in Algorithm 3 from lines
12 to 20, and an example applied over a real graph is observable in Figure
4 (b). The merged bipartite graph is simplified. The simplification process
locks those edges that have a student with a single possible supervisor. For
instance, in Figure 4 (b), this corresponds to edges starting from students540

s4 and s5. The locked edges will be part of the final allocation and counters
are updated for supervisors whose edges have been locked (r2 and r3). In
case that one of the supervisors reaches the desired workload level, all
other unlocked edges involving that supervisor will be removed from the
merged graph. This step is repeated until the graph cannot be further545

17



simplified by this method.

• Locking and removing edges: This step corresponds to lines 21 to 30
in Algorithm 3, and Figure 4 (c). An unlocked edge is randomly chosen
from the current graph (e.g., edge (s1, r1) in Figure 4 (c)) and it is locked
to be part of the final allocation. As the edge has been locked, the number550

of locked edges for the supervisor is increased. Any other edges incident
in the selected student are removed from the merged graph (e.g., edge
(s1, r3) in Figure 4 (c)). In case that the supervisor has reached the desired
workload level, unlocked edges incident in the supervisor are removed from
the graph (e.g., edges (s2, r1) and (s3, r1) in Figure 4 (c)). This step is555

repeated while there are no more unlocked edges.

• Adding edges: This last step is represented in lines 31 to 39 of Algorithm
3 and Figure 4 (e). Once there are no more unlocked edges, the opera-
tor checks if there are any unmatched students and supervisors. If there
are unmatched vertex, then the operator randomly assigns students to su-560

pervisors while following the desired workload level in the allocation, and
considering the number of locked edges for each supervisor. The process
of adding edges is repeated until there are no more unmatched students.

The process described above ends up with a feasible allocation which has
inherited the structure of one of the two parents. The complexity of the op-565

erator is straightforward. As discussed, the merging process has a complexity
proportional to O(|S|). In the worst case, the simplify step will be applied as
many times as students in the problem (i.e., merging the same parents) which
gives a worst case cost of O(|S|). The lock and remove step will be applied as
any times as edges in the merged graph, which will be O(|S|) in the worst case.570

Then, the final step adds one edge per remaining unassigned student. This last
step will never be more costly than O(|S|). Therefore, the cost of this operator
is linear with the number of students in the problem.

4.4. Selection mechanism

The selection mechanism in this GA is employed to determine the parents575

that will take part in the crossover operation. More specifically, we run random
tournaments [24] between solutions in the population until we have selected a
number of pairs that is equal to half of the current population.

As this is a multi-objective optimization problem, the comparison carried out
in the tournament is determined by the solution that has a lower nondominated580

rank or the one that has a higher crowding distance in case of both solutions
having the same nondominated rank. The nondominated rank of a solution is
determined when calculating the different Pareto frontiers in the population,
and it is related to the number of solutions that dominate the specific solution.
On the other hand, the crowding distance makes sure that the solutions are585

well-spread on the Pareto frontier. The details of these metrics can be found in
[19].
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Figure 4: Steps of the greedy structural preservation crossover operator (in separate boxes).
The order of the steps is read left to right.
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Algorithm 3: The greedy structural preservation crossover operator

Input: GM1 = (S,R, E1) : A bipartite graph representing a feasible allocation;
GM2 = (S,R, E2) : A bipartite graph representing a feasible allocation;

Output: GM′ = (S,R, E′) : A new bipartite graph representing a feasible
allocation

1 /* Merge graphs */ ;
2 G′ = (S ′ = S,R′ = R, E′ = E1 ∪ E2);
3 /* Inherit one of the structures */ ;
4 p1 = 1

(1+σM1
)α

;

5 p2 = 1
(1+σM2

)α
;

6 if random() ≤ p1
p1+p2

then

7 stGM′ = {|N(r1, GM1)|, . . . , |N(rm, GM1)|};
8 else
9 stGM′ = {|N(r1, GM2)|, . . . , |N(rm, GM2)|};

10 end
11 L = ∅ /* Initializing locked edges */ ;
12 /* Simplify graph */ ;
13 foreach {(si, rj) | |N(si, GM′)| = 1} do
14 L = L ∪ {(si, rj)};
15 lj = lj + 1 /* Update locked edges counter for supervisor j */ ;
16 /* If supervisor has desired workload level, then remove non-locked edges

*/ ;
17 if lj = stGM′ (j) then
18 E′ = E′ − {(su, rj) | (su, rj) /∈ L}
19 end

20 end
21 /* Locking and removing edges */ ;
22 while E′ − L 6= ∅ do
23 (si, rj) = random choice(E′ − L);
24 E′ = E′ − {(si, rl) |rl 6= rj} /* Remove other edges incident in the student

*/ ;
25 L = L ∪ {(si, rj)};
26 lj = lj + 1;
27 if lj = stGM′ (j) then

28 E′ = E′ − {(su, rj) | (su, rj) /∈ L}
29 end

30 end
31 /* Adding edges to complete graph */ ;
32 Sre = {si | |N(si, GM′)| = 0};
33 Rre = {rj | lj 6= stGM′ (rj)};
34 while Sre 6= ∅ do
35 si = random choice(Sre);
36 rj = random choice(Rre);
37 L = L ∪ {(si, rj)};
38 update(Sre,Rre);
39 end

20



4.5. Evolution schema

As mentioned, the outline of the genetic algorithm is inspired by NSGA-II
[19]. The details of the GA can be found in Algorithm 4. The genetic algorithm590

initializes a population of popmax random feasible solutions (line 1). Then, the
main loop of the genetic algorithm runs for a fixed number of iterations (lines
4-20), determined by the parameter itmax.

In the main loop, the genetic algorithm calculates the successive Pareto op-
timal frontiers in the current population (P, line 6): calculating the first Pareto595

optimal frontier, removing the Pareto frontier from the set and calculating a
new one following this process until no more frontiers can be calculated. The
genetic algorithm limits the number of solutions in the population by filling
the new population (Pnew) with solutions from the first to the latest Pareto
optimal frontiers (lines 8-15). Then, each solution in the resulting population is600

mutated, and the crossover operator is applied over solutions selected by tour-
nament selection (lines 16-19). Lines 21 and 22 calculate the resulting frontiers
after applying genetic operators in the last iteration.

Algorithm 4: The proposed Pareto optimal genetic algorithm

1 P = Pnew = initialize(popmax);
2 it = 0;
3 Poff = ∅;
4 while it < itmax do
5 P = Pnew ∪ Poff ;
6 F = calculate frontiers(P);
7 Pnew = ∅;
8 foreach f ∈ F do
9 if |Pnew|+ |f | ≤ popmax then

10 Pnew = Pnew ∪ f ;
11 else
12 Pnew = Pnew ∪ select(popmax − |Pnew|, f);
13 break;

14 end

15 end
16 Pmut = mutation(P);
17 P ′ = tournament selection(P);
18 Pcr = crossover(P ′);
19 Poff = Pmut ∪ Pcr;
20 end
21 P = Pnew ∪ Poff ;
22 F = calculate frontiers(P);

5. Experiments

In order to validate the performance of the proposed genetic algorithm, we605

carry out a series of practical experiments. These experiments aim to study the
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impact of the different elements of the genetic algorithm, as well as the overall
performance of the genetic proposal. First, we provide a brief analysis of the
real data collected from the student-supervisor allocation process at Coventry
University, as this data is employed to create real allocation problems that will610

be employed to validate the performance of the genetic proposal. Then, we
empirically analyze the impact of the mutation operator on the performance of
the GA by studying the appropriate degree of mutation rate and the importance
given to exploring the structure of the allocation rather than the allocation
itself. After that, we analyze the empirical complexity of the Hopcroft-Karp615

and the greedy structural preservation crossover operator, and we compare their
optimization performance with classic crossover operators. Finally, we compare
the performance of the proposed genetic algorithm with that of global optimal
optimization methods to assess the quality of the solutions found by the GA.

5.1. Dataset620

In order to test the genetic algorithm in a realistic setting, we collected real
data from undergraduate students and staff members that participate in the
undergraduate dissertation module for computing related degrees at Coventry
University. The preferences of students and staff members were elicited by
allowing individuals to specify, in order, their k = 5 most preferred topics in625

the 2012 ACM Computing Classification System3. This taxonomy provides a
tree-like and hierarchical classification of areas in computing, as needed by our
fitness functions, and it is a well-known system employed to categorize research
papers in computing.

A total of of 195 students’ preferences and 33 supervisors’ preferences were630

collected. This dataset4 contains real preferences of students on computing
areas for their undergraduate dissertations, as well as the preferences of staff
members on research areas where they would like to supervise students on.

By analyzing the preferences of both students and supervisors, one can ob-
serve that there are some differences. For instance, Figure 5 analyzes the distri-635

bution of the top 10 topics selected by students and supervisors when focusing
on the third level of the path defined by the topics selected by both populations.
As one can observe, some topics that are popular amongst students like Software
creation and management are not as popular for supervisors, while some pop-
ular topics amongst students like Electronic commerce are not even present in640

the top 10 third level topics for supervisors. Therefore, there is conflict between
the students’ and supervisors’ preferences with respect to dissertation areas.

In Figure 6, we analyze the level or depth of the topics provided by super-
visors and students. As we can see, there are divergences with respect to the
specificity of topics. The reader can observe that while supervisors were more645

generic with their provided topics, students were more prone to provide a fine-
grained topic for their dissertations. Therefore, we can conclude again that the

3https://www.acm.org/publications/class-2012
4The dataset is available at http://sanchez-anguix.com/index.php/research/
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Figure 5: Distribution of the top 10 third level topics in the 2012 ACM Computing Classifi-
cation System for the topics selected by students (left) and supervisors (right)

Figure 6: Level of the topics selected by students (left) and supervisors (right) from the 2012
ACM Computing Classification System

optimization problem is complex due to the diversity of preferences.
It should be highlighted that the preferences contained in this dataset were

employed to generate the student and supervisor profiles in the subsequent ex-650

periments.

5.2. Optimizing the mutation operator

As a first step to analyze the performance of the proposed genetic algorithm,
we studied the impact of the mutation operator and its parameters on the
problem. To be specific, we studied what the impact of the parameters psw and655

pmt is on the general performance of the GA. For this matter, we created a
experiment as follows:

• We created 5 problems consisting of 150 students and 30 supervisors from
the collected dataset. The minimum workload of supervisors cj,min was
set to 1 student (i.e., a supervisor will advise at least one student) and the660

upper bound supervision quota cj,max of each supervisor was generated
from a uniform distribution U(4, 10), guaranteeing that the sum of all the
supervisors upper bounds exceeded in 20% the total number of students
(i.e., 180 students of capacity).

• We set α = 2 to highly penalize solutions with a high standard deviation665

for the workload level of supervisors.

• The weights of topics’ ranks in Vi,j were set to (0.561,0.258,0.129,0.064,0.032)
respectively, following an exponential decreasing function. This way, we
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Figure 7: An example of the hypervolume between a reference point and the estimated Pareto
optimal frontier (left) and the real Pareto optimal frontier (right).

take into consideration the fact that the disappointment of being matched
on the second topic over the first topic is not linearly related to the dif-670

ference of being matched on the last topic over the second last topic, as it
was suggested by [2].

• The crossover operation was deactivated to isolate the effect of the muta-
tion operation on the performance of the genetic algorithm.

• The initial population size was set to 128 solution, and the initial pop-675

ulation was shared amongst different runs of the same case in order to
compare results on a fair basis.

• The maximum number of iterations itmax was set to 250 iterations.

• The values tested for pmt ranged from 0.05 to 0.5 with increments of 0.05.
On the other hand, the values tested for psw ranged from 0.1 to 0.9 with680

increments of 0.1.

The metrics employed to study the quality of the Pareto optimal frontier
obtained by the different configurations are:

• The S metric [25]. This metric takes a reference point above the real
Pareto optimal frontier provided by the researcher, and it calculates the685

hypervolume between the estimated Pareto optimal frontier and the ref-
erence point. The closest the estimated Pareto optimal frontier is to the
real frontier, the lower the volume will be between the estimated fron-
tier and the reference point. Figure 7 shows the hypervolume between
a reference point and the estimated Pareto optimal frontier (left), and690

the hypervolume between the reference point and the real frontier. As it
can be observed, the closest the estimated frontier is to the real frontier,
the lower the hypervolume will be between the frontier and the reference
point, with the lowest being when the estimated Pareto optimal frontier
is equal to the real one. In the experiments, we take (1.0, 1.0) as the695

reference point.

• The maximum fitness found for the students.
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Figure 8: Average maximum fitness for the students (left), for the supervisors (right), and
the average hypervolume (bottom) on the different combinations of the mutation rate (pmt)
and the probability of swapping supervisors (psw) when mutating a gene

• The maximum fitness found for the supervisors.

In order to decide on the best set of parameters for the mutation operator, we
followed a grid search strategy on all the possible combinations of pmt and psw.700

The results of this experiment can be seen in Figure 8. The left heatmap
shows the average maximum fitness for the students, while the right heatmap
contains the average maximum fitness for the supervisors. Finally, the bottom
heatmap contains the average hypervolume defined by the reference point and
the estimated Pareto optimal frontiers. All of the three heatmaps show a similar705

trend. In general, the mutation operator is more effective when a small ratio of
the genes are mutated (i.e., pmt = 0.05), thus obtaining a mutated solution on
the close neighborhood of the parent. Moreover, apart from remaining in the
close neighborhood of the parent, the GA benefits from transferring students
from one supervisor to another rather than swapping students between super-710

visors. As a consequence, the best values for psw tend to be low and between
0.1 and 0.2. Another way to interpret this result is that the mutation opera-
tor is more suited to the problem when it explores new allocation structures
instead of remaining on the same allocation structure. This result is important,
as both proposed crossover operators do not explore solutions with a new allo-715

cation structure and, therefore, the goal of the mutation operator will be that
of introducing new allocation structures into the population.

5.3. Studying the Hopcroft-Karp and Greedy structural preservation crossover

As part of the design of our genetic proposal, we have proposed two new
crossover operators that are specifically designed for the problem of allocating720

students to supervisors. Next, we study some of the practical properties of
those operators. More specifically, we will focus on studying the experimental
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Figure 9: Average time spent by the the Hopcroft-Karp and the greedy structural preservation
crossover operators (left), and the average ratio of new genetic material (right) introduced by
the greedy structural preservation operator with different number of students supervisors.

temporal cost of both crossover operators, as well as identifying the ratio of
new genetic material introduced by the greedy structural preservation crossover
operator.725

In Section 4.3 we studied the worst case temporal complexity of both genetic
operators, with the greedy structural preservation operator having a complexity
of O(|S|), and the Hopcroft-Karp operator having a worst case complexity of
O(|S|

√
|S|) and an expected average complexity of Θ(|S|log|S|). In the following

experiment we study the experimental time complexity of both operators and730

corroborate their adherence to their expected complexities.
In this experiment, we ranged the number of students from 50 to 500 with

steps of 50. The number of supervisors was set to one tenth of the number of
students. The minimum and maximum supervision quotas of supervisors were
set as described in the previous experiment. We generated one problem for each735

number of students. For each problem, we generated 1000 pairs of solutions
that would become parents for the crossover operations. Then, for each number
of students, we measured the average time taken by both crossover operators
over the available pairs of solutions.

The results of this experiment can be found in the left graph in Figure 9.740

The graph shows the average time spent by the Hopcroft-Karp (blue dots) and
the greedy structural preservation (red dots) operators over allocations with dif-
ferent number of students. The dot markers represent the experimental data
collected from the experiment, while the lines show the best fitting functions
for the experimental points. One can observe that the greedy structural preser-745

vation operator is generally faster than the Hopcroft-Karp operator, with the
differences being greater as the number of students increases. This results is
aligned with our initial expectations and the suggested temporal complexity
for both operators, as the Hopcroft-Karp crossover was expected to behave at
most as an O(|S|log|S|) algorithm. The best fitting function by least squares750

approximation for the Hopcroft-Karp operator is a nlogn linearithmic function,
and the best fitting function for greedy structural preservation operator is, as
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expected, a linear function. This confirms our initial hypothesis with regards
to the Hopcroft-Karp operator, with the average time being close to the case
when the underlying graph is random and sparse bipartite. As a result, the755

operator can tackle larger problem sizes with a reasonable time, making it more
applicable in a realistic context.

The next experiment that we carried out over our crossover operators has
the aim of studying the ratio of new genetic material introduced by the greedy
structural preservation operator. As it was mentioned, the operator preserves760

the structure of one of the two parents (i.e., the number of students allocated to
each supervisor) but there may be some new genetic material that is not present
in any of the two parents.

For this experiment, we ranged the number of students from 50 to 500 with
steps of 50, and the number of supervisors was set to be either one eighth,765

one tenth, or one twelfth of the number of students. Again, the minimum and
maximum capacities of supervisors were set as described in the other experi-
ments. For each combination of number of students and number of supervisors
we generated a random problem. Then, for each problem we generated again
1000 pairs of solutions to act as parents for the greedy structural preservation770

operator. For each combination of number of students and supervisors we mea-
sured the average ratio of new genetic material (i.e., number of new genes over
the total number of genes) introduced by the operator over the 1000 crossover
operations carried out.

The results of this experiment can be found in the right graph in Figure775

9. The first observation that can be made is that, regardless of the proportion
between the number of students and supervisors, the trend appreciated is sim-
ilar and so is the average ratio of new genetic material introduced in the three
scenarios. The ratio of new genetic material tends to become smaller as the size
of the problem becomes larger, with the highest ratios found at small number of780

students. Despite these ratios being higher with smaller problems, they should
not be considered as disruptive with respect to the original parents. In fact,
the average ratio of new genetic material in the experiments ranges from ap-
proximately 9% to approximately 12% of the genes. Therefore, the new genetic
material introduced by the operator only explores the close neighborhood of the785

genetic material of both parents. If the two parents have a good fitness, one
can expect that the child will yield a similar or better fitness as only a small
disruption is introduced in the original genetic material.

5.4. Optimizing the crossover operator

Once we carried out an initial study on the behavior of the crossover oper-790

ators introduced in this article, we carried out an experiment to select the best
crossover operator for the problem from the ones proposed in this work and
some classic and well-known crossover operators. With that goal in mind, we
devise the following experiment:

• We ranged the number of students from 50 to 150 with steps of 50, and795

we ranged the number of supervisors from 5 to 30 with steps of 5. All
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of the student and supervisor profiles were selected from the collected
dataset. The minimum workload of supervisors cj,min was set to 1 student
(i.e., a supervisor will advise at least one student) and the upper bound
supervision quota cj,max of each supervisor was generated from a uniform800

distribution U(4, 10), guaranteeing that the sum of all supervisors upper
bound quotas exceeded in 10, 15, or 20% the total number of students.
For each combination of number of students, number of supervisors, and
upper bound supervision quotas we generated 5 different problems. This
gives a total of 3× 6× 3× 5 = 270 different problems.805

• The mutation operator was set with a mutation ratio pmt = 0.05 and the
probability of carrying out a swap operation in a gene to be mutated was
set to psw = 0.2. These values were found to be one of the best performing
in the first experiment.

• We tested the performance of the Hopcroft-Karp, the greedy structural810

preservation, the uniform [26], and the 8-point5 [27] crossover operators.

• The rest of the parameters were adjusted in the same way as defined in
the experiment carried out to optimize the mutation operator.

Similarly to the first experiment, we employed the S-metric, the best fitness
found for the students, and the best fitness found for the supervisors as metrics815

to assess the quality of the different configurations. The results of this experi-
ment can be observed in Table 1. This table contains 4 sub-tables that describe
the performance of the different crossover operators on the problem set.

The first subtable in Table 1 summarizes the performance of the genetic al-
gorithm configured with the proposed crossover operators plus the uniform and820

8-point crossover operator. At a first glance, one can observe that the greedy
structural preservation operator tends to outperform the rest of crossover op-
erators for all of the metrics. A one-sided Mann-Whitney test6 comparing the
performance of the aforementioned crossover operator with the individual per-
formance of each of the other three crossover operators was carried out to assess825

the statistical significance of the results. The test suggests that the greedy struc-
tural preservation operator outperforms the rest of the crossover operators for
the S-Metric (i.e., the quality of the estimated Pareto frontier, to be minimized),
and the best utility found for the supervisors. With regards to the best util-
ity found for the students, the greedy structural preservation operator was also830

the best performing operator, although this time we could not find statistical
differences with the uniform crossover. Another interesting point that should
be raised is that the Hopcroft-Karp crossover tends to be amongst the worst
performing operators from the set. Despite the similarities between the greedy
structural preservation and the Hopcroft-Karp operator, the results suggest that835

5This value of k was found to perform the best for the problems at hand
6α = 0.05, with the alpha values adjusted with the Bonferroni-Holm correction
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Hopcroft Greedy Uniform 8-point

S-Metric 0.620 0.604 0.614 0.620

Best F. Stu 0.238 0.245 0.244 0.239

Best F. Sup. 0.230 0.242 0.231 0.227

S-Metric Hopcroft Greedy Uniform 8-point

|S| = 50
22%
0.626

30%
0.624

30%
0.625

17%
0.626

|S| = 100
12%
0.613

62%
0.600

15%
0.608

10%
0.613

|S| = 150
7%

0.621
89%
0.588

4%
0.607

0%
0.620

F. Stu Hopcroft Greedy Uniform 8-point

|S| = 50
19%
0.248

19%
0.248

33%
0.249

29%
0.248

|S| = 100
3%

0.240
45%
0.247

44%
0.246

7%
0.242

|S| = 150
1%

0.226
60%
0.239

38%
0.236

1%
0.227

F. Sup Hopcroft Greedy Uniform 8-point

|S| = 50
20%
0.228

69%
0.230

5%
0.226

5%
0.226

|S| = 100
4%

0.233
96%
0.243

0%
0.232

0%
0.229

|S| = 150
1%

0.230
99%
0.251

0%
0.234

0%
0.226

Table 1: The performance of the crossover operators on the S-Metric, the best fitness found
for the students, and the best fitness found for the supervisors over all of the problem sets
(top), and detailed over different problem sets (middle and bottom).

the ratio of new genetic material introduced by the greedy structural preserva-
tion crossover is beneficial for the problem at hand. In addition to this, the
temporal complexity of the operator is lower than the Hopcroft-Karp operator,
making it more appropriate for this problem.

The other three subtables offer a more detailed view on the performance of840

the crossover operators with problems of different size. Each cell represents the
performance of a given crossover operators with the problems of a given size.
The performance is summarized in the form of the average over the different
problems of that size, and the percentage of the problems of that size for which
the crossover operator outperform the other operators. A closer look at the845

three subtables suggests that for the smaller problem instances (i.e., 50 stu-
dents) the four crossover operators tends to perform similarly. As the problem
size increases, so does the difference between the greedy structural preservation
crossover and the rest of the operators. For the larger problem instances, the
proposed crossover operator is the best performing operator for all of the met-850

rics. It should be highlighted that this is particularly true for the S-Metric
and the best fitness found for the supervisors, as the operator was found to
outperform the other three for 89% and 99% of the cases respectively. This in-
dicates that the greedy structural preservation operator is more suited for larger
problem instances, making it the best choice overall from the studied set.855

5.5. Studying the optimality of the genetic algorithm

In the previous subsection we have studied the individual performance of
each of the configurable components of the GA. These studies only aimed at
selecting the best possible configuration, but they did not focus on studying
whether or not obtained solutions could be considered as good for the problem860
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F. Students F. Supervisors

Supervision capacity
165

89.5% 93.4%

Supervision capacity
172

88.3% 93.2%

Supervision capacity
180

88.1% 94.9%

Table 2: Average percentage of optimality obtained by the proposed genetic algorithm for the
best fitness of the students, and the best fitness of the supervisors

at hand. In this section we focus on comparing the quality of the solutions found
with the optimal solution found by global optimal optimization methods. More
specifically, we analyze the optimality of the best fitness found for the students,
and the optimality of the best fitness found for the supervisors in the genetic
algorithm. In this experiment, we focus on the largest problem instances, as865

metaheuristics tend to degrade their performance with the size of the problem.
More specifically, the experiments were designed as follows:

• The number of students was set at 150, and the number of supervisors
was set at 30. All of the student and supervisor profiles were selected
from the collected dataset. The minimum workload of supervisors cj,min870

was set to 1 student (i.e., a supervisor will advise at least one student)
and the upper bound supervision quota cj,max of each supervisor was
generated from a uniform distribution U(4, 10), guaranteeing that the sum
of all supervisors upper bound supervision quotas exceeded in 10, 15, or
20% the total number of students. For each combination of number of875

students, number of supervisors, and maximum upper bound we generated
5 different problems. This gives a total of 3× 5 = 15 different problems.

• We selected the greedy structural preservation as the crossover operator
for the GA.

• The stop criteria was changed to keep running iterations in the GA unless880

the S-Metric of the estimated Pareto optimal frontier has not improved in
20 iterations. At that point, we consider that the GA has converged.

• Given a particular problem instance, the best possible solution for the
students and for the supervisors were calculated executing two different
optimization problems on BARON [28]. BARON is a state-of-the-art885

global non-convex optimization algorithm that supports constrained and
pure integer optimization problems.

• The rest of the parameters were adjusted in the same way as defined in
the previous experiment.

The main results of this experiment can be found in Table 2. The table890

depicts the average percentage of optimality obtained for the best solution found
for the students, and the best solution found for the supervisors by the GA. As
it can be observed, the average percentage of optimality of the best solution for
the students ranges from 88 to 89% of the best fitness, while it ranges from 93
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Figure 10: Convergence of the GA for an optimization problem with 180 students and 30
supervisors. The left graph shows the convergence of the best solution found for the students,
the middle graph depicts the convergence of the best solution found for the supervisors,
while the right graph shows the convergence of the S-Metric for the estimated Pareto optimal
frontier.

to 94% for the best solution for the supervisors. These results indicate that the895

Pareto optimal frontier obtained by the GA contains solutions that are close
to both the optimal solution for the students and the optimal solution for the
supervisors. The gradual convergence of the GA for a particular problem can
be observed in Figure 10. As it is observable, the initial population of the GA
is far from the optimal solutions (i.e., optimal solution for the students, optimal900

solution for the supervisors, and the distance to the reference point (1,1) in the
S-Metric). As several iterations are undertaken, the GA gradually converges
towards solutions that are closer to the optimal values.

Moreover, it should be highlighted that the Python implementation of the
GA obtained these estimations in an average of 247 seconds, while BARON905

took approximately 1020 seconds per non-linear optimization problem and only
obtaining a single solution each time. Not only the estimated frontier contains
solutions that are close to the optimal one for both the students and the super-
visors, but these are obtained in a reasonable amount of time compared to the
exact method. Nevertheless, it should be considered that our approach aims for910

obtaining a Pareto optimal frontier, and the exact method computes a single
solution. The former is preferred from the point of view of a human decision
maker with possibly uncertain preferences. In addition, the GA was capable of
providing an average of 27 solutions in the estimated Pareto optimal frontier,
which also provides with diversity to the human decision maker.915

6. Conclusions

In this article we have proposed a multiobjective genetic approach for the
student-supervisor allocation. This optimization problem is a subclass of the
student-project allocation problem. Given the hardness of the matching prob-
lem, we have opted for a metaheuristic approach with that ability to take mul-920

tiple objectives into consideration. More specifically, we take into consideration
the students’ preferences with regards to research/project topics, as well as the
lecturers’ preferences with regards to topics, which does not require the mas-
sive proposal of projects prior to the allocation, and it avoids providing explicit
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preferences on students as that may be regarded as a discriminatory practice.925

Furthermore, the genetic algorithms takes into consideration the constraints of
the department in the form of lower and upper supervision quotas for lecturers,
and attempts to provide a balanced workload allocation for lecturers.

For this purpose, we have taken a Pareto optimal genetic scheme that aims
to provide human decision makers with trade-off opportunities. The genetic930

algorithm employs a new mutation operator that can offer either explore the
structure of the allocation (i.e., the number of students supervised by each lec-
turer) and the allocation itself. In addition, two new crossover operators have
been specifically designed for the student-supervisor allocation problem: the
Hopcroft-Karp crossover operator, and the greedy structural preservation oper-935

ator. Both aim to preserve the allocation structure of one of the parents, the
difference being that the Hopcroft-Karp crossover preserves also the original ge-
netic material from parents, while the greedy structural preservation crossover
may introduce new genetic material. The theoretical and empirical complexity
of both operators has been studied, with the complexity of the former operator940

being linearithmic, and the complexity of the latter being linear. The genetic
algorithm has been tested with real data collected from the student-supervisor
allocation process at Coventry University. The results show that (i) the muta-
tion operator benefits from giving more importance to exploring the structure
of the allocation; (ii) the greedy structural preservation operator outperforms945

classic crossover operators for the problem at hand; (iii) and that the genetic
algorithm is capable of providing solutions that are very close to the optimal
solutions in a limited span of time, even for large problem instances.
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