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Abstract

Until now the majority of the neuro and fuzzy modeling and control ap-
proaches for rotary wing Unmanned Aerial Vehicles (UAVs), such as the
quadrotor, have been based on batch learning techniques, therefore static in
structure, and cannot adapt to rapidly changing environments. Implication
of Evolving Intelligent System (EIS) based model-free data-driven techniques
in fuzzy system are good alternatives, since they are able to evolve both their
structure and parameters to cope with sudden changes in behavior, and per-
forms perfectly in a single pass learning mode which is suitable for online
real-time deployment. The Metacognitive Scaffolding Learning Machine (Mc-
SLM) is seen as a generalized version of EIS since the metacognitive concept
enables the what-to-learn, how-to-learn, and when-to-learn scheme, and the
scaffolding theory realizes a plug-and-play property which strengthens the
online working principle of EISs. This paper proposes a novel online iden-
tification scheme, applied to a quadrotor using real-time experimental flight
data streams based on McSLM, namely Metacognitive Scaffolding Interval
Type 2 Recurrent Fuzzy Neural Network (McSIT2RFNN). Our proposed
approach demonstrated significant improvements in both accuracy and com-
plexity against some renowned existing variants of the McSLMs and EISs.

Keywords: Evolving, Fuzzy, Metacognitive, Online Identification,

Email addresses: m.ferdaus@student.unsw.edu.au (Md Meftahul Ferdaus),
mpratama@ntu.edu.sg (Mahardhika Pratama), s.anavatti@adfa.edu.au (Sreenatha G.
Anavatti), M.Garratt@adfa.edu.au (Matthew A. Garratt)

Preprint submitted to Applied Soft Computing December 17, 2018



Quadcopter, Scaffolding

1. Introduction

Unmanned Aerial Vehicles (UAVs) are aircraft with no aviator on-board.
UAV autonomy varies from partial to complete, which begins from human
operator based partial remote control to fully autonomous control by onboard
computers. Autonomy enables UAVs to perform some tasks very well where
human involvement would be dangerous, expensive or simply too tedious.
Comparatively higher portability, smaller size, simple method of assembly
and reconstruction and lower expenditure have caused the rapid growth of
UAV applications such as delivery of equipment in hostile environments,
infrastructure inspection and environmental monitoring as described in many
places in the literature (e.g. [1, 2, 3]).

UAVs are classified into three subdivisions, namely fixed wing, rotary
wing and flapping wing, where the Rotary wing UAVs (RUAVs) can be fur-
ther classified by the number of rotors as a helicopter, quadcopter, hexa-
copter, octocopter etc. Among various RUAVs, the most commonly used is
the quadcopter. The history of the quadcopter is not new; since the first
one was built in 1907 [4]. However, from the beginning to the middle of
the 20th century all of them were manned vehicles [5]. Advancements in
control theory accelerated the research on unmanned quadcopter in the last
quarter of the 20th century. Some of the latest research projects on quad-
copter are elaborated in [6, 7, 8, 9, 10]. The cross (×) and plus (+) are
the two main configurations used to construct a quadrotor, and a simple
cross-configured quadcopter is shown in Figure 1. Among four rotors, one
pair of rotors situated in the two opposite arms rotate clockwise; another
pair rotates counter-clockwise for the torque balancing. The four elementary
movements of the quadcopter are vertical altitude Z, roll (θ), pitch (φ), and
yaw (ψ). For the vertical altitude movement, all four rotors need to speed
up or down by equal quantity. For rolling to the right on the X-axis, the
speed of the left rotors are increased and the right rotor decreased. The
opposite differential commands are given to move to the left. Similarly, for
the pitching movement (with respect to the Y-axis), the front and rear rotors
are utilized in a similar way. In the yaw movement, the quadcopter rotates
on the Z-axis. It is accomplished by increasing the speed of one diagonally
opposite rotor pair whilst decreasing the speed of the other pair. Due to the
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Figure 1: A simple cross-configured quadcopter model.

quadcopters vast applicability in both civilian and military sectors, research
interest is increasing to make them more intelligent.

The quadcopter has six degrees of freedoms: they are three translational
motions along the X, Y, and Z-axes, and three rotational motions (θ, φ, ψ).
Besides, the quadcopter system is highly nonlinear and under-actuated. Ac-
curate modeling of quadcopters by considering all the translational and ro-
tational motions and by utilizing the four control input (Z, θ, φ, and ψ)
is necessary to obtain good control action. Until now, most quadcopter
models are based on dynamic equations of the system, where the aggressive
trajectories of quadcopters are difficult to integrate. In addition, various non-
stationary factors like motor degradation, time varying payload, wind gusts,
and rotor damage are extremely difficult to predict and model mathemati-
cally and consequently hard to incorporate even for the first principle model
based conventional and advanced techniques like PID [11], Linear Quadratic
(LQ) techniques [12, 13], Sliding Mode Control (SMC) [14, 15, 16, 17, 18],
back-stepping control [19, 20, 21], Feedback Linearization (FBL) [15, 22],
H∞ robust control [23, 24] etc. In more complex systems the physical model
may not be possible to derive. These challenges are leading to increasing re-
search interest in data-driven modeling techniques for system identification
with real-time sensory data and limited expert knowledge.

In the data-driven techniques, system identification is a vital part. Suc-
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cessful system identification indicates closeness of the input-output behavior
of the identified system with the input-output behavior of the actual plant.
The data-driven system identification or modeling can play an important
role in quadcopter systems, since their counterpart i.e. the model based pa-
rameter identification requires several experimental tests to obtain the model
parameters. Even some parameters are difficult to obtain from the experi-
ments and problem-dependent. Thus, the model-based system requires a lot
of effort for better accuracy. Whereas the data-driven quadcopter model can
be used as a generalized model with different motors, propellers or sensor
combinations. Some of the commonly used non-linear data-driven system
identification techniques are: describing function method, block structured
systems, fuzzy logic, neural networks, and Nonlinear Autoregressive Mov-
ing Average Model with Exogenous inputs (NARMAX methods). Among
these techniques, fuzzy logic [25, 26, 27, 28, 29] and neural network [30]
based artificial intelligent systems are promising computational tools since
they demonstrate learning capability from a set of data and approximate
reasoning trait of human beings which cope with the impression and uncer-
tainty of the decision making process [31]. Furthermore, the fuzzy system
offers a highly transparent solution which can be followed easily by the op-
erator [32]. Due to the numerous advantages of fuzzy logic systems [33],
they are merged with conventional techniques as fuzzy-PID, fuzzy-PI, fuzzy-
PD [34, 35, 36, 37, 38, 39], fuzzy-sliding mode [40, 41], fuzzy back-stepping
[42, 43] to model the quadcopter more accurately and consequently to achieve
better control action. In these conventional data-driven approaches, the ex-
perimental quadcopter flight tests are conducted repetitively on the desired
trajectory and from these experimental knowledge, the target trajectory is
estimated for the nonlinear time varying quadcopter dynamics. By following
this approach, the quadcopter can be identified for a specific trajectory; and
further training is required for new trajectory. Actually, this difficulty in
identifying quadcopter system is not for the systems stochastic behavior or
for the unwanted noise from experimentation. Rather it is for not considering
the unobserved data which rely highly on expert domain knowledge because
a purely fuzzy system approach without learning capability will have limited
generalization power. Besides, a major limitation of these conventional fuzzy
logics and neural networks based quadcopter modeling and controlling is the
inability to evolve their structure to adapt with sudden changes. They also
adopt a batched working principle which has to revisit entire dataset over
multiple passes rendering them not scalable for online real-time deployment.
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Therefore, to solve the problems that exist with conventional intelligent
systems, Evolving Intelligent Systems (EISs) are a good candidate [44, 45],
since they learn from scratch with no base knowledge and are embedded with
the self-organizing property which adapts to changing system dynamics [46].
EIS fully work in a single-pass learning scenario which is scalable for online
real-time requirement under limited computational resources such as UAVs
platform [47]. Nevertheless, EISs remain cognitive in nature where they
still require scanning all samples regardless of their true contribution and
training samples must be consumed immediately with the absence of learn-
ing capability to determine ideal periods to learn these samples [48]. The
Metacognitive Learning Machine (McLM) technique enhances the adaptabil-
ity of EIS by interpreting the meta-memory model of [49] where the learn-
ing process is developed in three phases, namely what-to-learn, how-to-learn
and when-to-learn [50, 51]. The what-to-learn is implemented with a sam-
ple selection mechanism which determines whether to accept data samples,
the how-to-learn is where the underlying training process takes places, the
when-to-learn is built upon a sample reserved mechanism which allows to
delay the training process of particular samples when their significance does
not suffice to trigger the learning mechanism. Recent advances in the McLM
[52, 53, 54] have involved the concept of scaffolding theory as a foundation of
the how-to-learn another prominent theory in psychology to help learners to
solve complex tasks. The use of scaffolding theory is claimed to generate the
plug-and-play property where all learning process are self-contained in the
how-to-learn without over-dependence on pre-and/or post-processing steps.
It is worth noting that the Scaffolding theory does not hamper the online
learning property of EISs since all learning components follow strictly single-
pass learning mode which is well-suited for online real-time applications. The
scaffolding theory consists of two parts: active supervision and passive su-
pervision. The passive supervision is constructed using parameter learning
theories which demand target variables to elicit system errors for correction
signals while the active supervision features three components: fading, com-
plexity reduction and problematizing. The complexity reduction alleviates
learning complexities by applying feature selection, data normalization, etc.
and the problematizing focuses on concept drifts in data distributions while
the fading component is meant to reduce the network complexity by discard-
ing inactive components using the pruning and merging scenarios.

A novel online system identification of quadcopter based on a recently
developed McSLM [55], namely McSIT2RFNN, is proposed in this paper .
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McSIT2RFNN is structured as a six-layered network architecture actualiz-
ing interval type-2 Takagi Sugeno Kang (TSK) fuzzy inference scheme. This
network architecture features a local recurrent connection which functions as
an internal memory component to cope with the temporal system dynamic
and to minimize the use of time-delayed input attributes [55]. Note that the
local recurrent link does not compromise the local learning property because
the spatio-temporal firing strength is generated by feeding previous states
of system dynamic back to itself [55]. The rule layer consists of interval
type-2 multivariate Gaussian functions with uncertain means which char-
acterizes scale-invariant trait and maintains inter-correlation among input
variables.The rule consequent layer is constructed by the nonlinear Cheby-
shev polynomial up to the second order which expands the degree of freedom
of a rule consequent [55]. The polynomial is utilized here to rectify the ap-
proximation power of the zero-or first-order TSK rule consequent.

McSIT2RFNN features unique online learning techniques where a syn-
ergy between the metacognitive learning scenario and the Scaffolding theory
comes into picture while retaining computationally light working principle
through a fully one-pass learning scenario for online real-time applications.
The learning process starts from the what-to-learn process using an online
active learning mechanism, which actively extracts relevant training samples
for training process while ruling out inconsequential samples for the training
process. Selected training samples are then processed further in the how-to-
learn designed under the scaffolding concept. The problematizing facet of
the scaffolding theory is depicted by the rule growing mechanism which as-
sesses statistical contribution of data points to be a candidate of a new rule.
This scenario controls stability-and plasticity dilemma in learning from data
streams since it guides to proper network complexity for a given problem
and addresses changing data distributions by introducing a new rule when
a change is detected. A rule recall scenario is put forward to represent the
problematizing aspect which tackles the temporal or recurring drift. This
learning mechanism plays a vital role during real-flight missions of the UAV
because previously seen flight conditions often re-appear again in the future.
The complexity reduction component is portrayed by an online feature selec-
tion scenario which puts into perspective relevance and redundancy of input
features. This learning component lowers the input dimension which con-
tributes positively to models generalization and computational complexity.
The fading process relies on the rule merging scenario and the rule prun-
ing scenario. The rule pruning scenario removes obsolete rules which are
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no longer relevant to current training concept by studying mutual informa-
tion between fuzzy rule and the target variable. Significantly overlapping
rules are coalesced into a single rule by the rule merging scenario and this
mechanism is capable of cutting down network complexity and improving
interpretability of rule semantics. The efficacy of our proposed methodology
was carefully investigated through simulations using real-world flight data as
well as real-time flight tests. Our algorithm was benchmarked with several
prominent algorithms, and it was shown that our algorithm produced the
most encouraging performance in attaining a trade-off between accuracy and
complexity.

Our proposed methodology carry the following advantages: 1) it is com-
patible for online real-time deployment in the real flight tests of a quad-
copter since it works fully in the single-pass learning mode. Furthermore,
McSIT2RFNN does not necessarily see all sensory data streams due to its
what-to-learn component further substantiating scalability of McSIT2RFNN
in handling online data streams; 2) it features a highly flexible foundation
which self-evolves its network structure and parameters in accordance with
variations of data streams no matter how slow, rapid, gradual, and temporal
a change in data streams is; 3) McSIT2RFNN is created from a combination
between the interval type-2 fuzzy system which is more robust to face uncer-
tainties than its type-1 counterparts and the recurrent network architecture
which is capable of coping with temporal system dynamics and lagged in-
put variables; 4) it actualizes a plug-and-play working principle where all
learning modules are embedded in only a single training scenario without
the requirement of pre-and/or post-training steps. The major contributions
of this paper are summarized as follows: 1) a novel online system identifi-
cation of quadcopter based on a psychologically inspired learning machine,
namely McSIT2RFNN, is proposed; 2) real-time flight tests were done where
real-world flight data were obtained and preprocessed. We also made these
flight data publicly available for the convenience of readers; 3) Experimental
validations of the proposed approach were carried out to inspect the efficacy
of the proposed approach. This includes simulations using real-world flight
data and real-time flight tests [56].

The remaining part of the paper is organized as follows: Section 2 de-
scribes the learning policy of the McSIT2RFNN technique by describing both
the cognitive and meta-cognitive components. In section 3, the details of the
quadcopter flight experiment and system identification is explained. Finally,
the paper ends with concluding remarks in section 4.
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2. Online learning policy of McSIT2RFNN

This section describes the learning policy of Meta-cognitive Scaffolding
Based Interval Type 2 Recurrent Fuzzy Neural Network (McSIT2RFNN)
[55]. The McSIT2RFNN has two components namely cognitive and meta-
cognitive. The cognitive component corresponds to the network structure
of McSIT2RFNN while the metacognitive component consists of learning
scenarios to fine-tune the cognitive component.

2.1. Cognitive mechanism of McSIT2RFNN

In McSIT2RFNN, a six-layered recurrent network structure with a local
recurrent connection is utilized for the hidden layer. The first layer is known
as the input layer, which passes the fed input to the second layer as follows:(

ηout
)
1
k =

(
ηatv

)1
(xk) = xk (1)

where ηout represents output a layer, and ηatv denotes the forward activation
function of a layer.

Unlike the conventional neuro-fuzzy system, the univariate Gaussian func-
tion is replaced by an interval-valued multivariate Gaussian function with un-
certain mean and then it is utilized in the second layer of the McSIT2RFNN,
which is also known as the rule layer. This Gaussian function consequently
generates an interval-valued firing strength as follows:

η̃out
2 =

(
ηatv

2
)
(ηout

1) = exp(−(Γ2
n − ζ̃i)Σ

−1
i (Γ2

n − ζ̃i)) (2)

where, η̃out
2 = [ηout

2, ηout
2], ζ̃i = [ζ

i
, ζ i], and ζ̃i is the uncertain centroid

of the ith rule abiding by the condition ζ
i
< ζ i. If we consider to model

or identify a Multi-Input-Single-Output system, the If-Then rule of the Mc-
SIT2RFNN can be expressed as follows:

Rj : If Xn is η̃outj
2 Then yj = xjeΩj (3)

where xje, Ωj are respectively an extended input variable resulted from a
nonlinear mapping of the wavelet coefficient (xe ∈ �1×(2μ+1)) and a weight
vector (Ω ∈ �1×(2μ+1)). The consequent part of the rule is explained in
the fifth layer. However, the rule presented in Eq. (3) is not transparent
enough to expose atomic clause of the human-like linguistic rule [57]. It
operates in a totally high dimensional space, therefore cannot be represented
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in fuzzy set. Since the non-axis-parallel ellipsoidal rule cannot be expressed
directly in interval type-2 fuzzy environment, a transformation strategy is
required [58, 59]. Such transformation technique should have the capability of
formulating the fuzzy set for the non-axis parallel ellipsoidal cluster [60, 61].
The transformation strategy developed in [62] is extended in this work in
terms of interval type-2 system, which can be expressed as follows:

σi =
(ri + ri)

2
√
Σii

(4)

where Σii represents the diagonal element of the covariance matrix and r̃i
denotes the Mahalanobis distance, which is r̃i = (Xn − ζ̃i)Σ

−1
i (Xn − ζ̃i) =

[ri ri], where ri is the upper and ri is the lower Mahalanobis distance and

ζ̃i = [ζ
i
, ζ i]. No transformation is required for the mean or centroid (ζ̃i)

of the multivariate Gaussian function, since it can be directly applied to
the fuzzy set level. After successfully presenting the interval-valued multi-
variable Gaussian function into fuzzy set, the fuzzification process of the
the upper and lower Gaussian membership functions with uncertain means
ζ̃j,i = [ζ

j,i
, ζj,i] is exhibited as follows:

η̃2outj,i = exp

⎛⎝−
(
η2atvi − ζ̃j,i

σj,i

)2
⎞⎠ N(ζ̃ji , σ

j
i , η

2
atvi

) ζ̃j = [ζ
j

i , ζ
j

i
] (5)

η2outj,i =

⎧⎪⎨⎪⎩
N(ζ

j

i , σj,i; η) η2atvi < ζ
j

i

1 , ζ
j

i < xi < ζj
i

N(ζ̃ji , σj,i; η
2
atvi

) η2atvi > ζj
i

(6)

η2
outj,i

=

⎧⎨⎩ N(ζj
i
, σj

i ; η) xi ≤ (ζ
j
i+ζj

i
)

2

N(ζ
j

i , σ
j
i ; η

2
atvi

) xi >
(ζ

j
i+ζj

i
)

2

(7)

After getting the above expression of the fuzzy set, the fuzzy rule exposed in
Eq. (3) can be transformed (2) into a more interpretable form as follows:

Rj : If X1 is η̃out1
2 and X2 is η̃out2

2 and ... and Xnu is η̃outnu

2 Then yj = xieΩi

(8)
where j is the number of rules, nu is the number of inputs. This transforma-
tion technique has overcame the issue of transparency of the multi-variable
Gaussian function. The validity of η̃2outj,i = [η2outj,i , η

2
outj,i

] is proven in [55].

9



In the third layer, the upper and lower bound of membership degrees
are connected using the product t − norm operator in each fuzzy set and
generates an interval-valued spatial rule firing strength as follows:(
ηout

)3
i
=

nu∏
k=1

(
ηatv

)3
i,k
=

nu∏
k=1

(
ηout

)2.1
i,k

,
(
ηout

)3
i
=

nu∏
k=1

(
ηatv

)3
i,k
=

nu∏
k=1

(
ηout

)2.1
i,k

(9)
The forth layer is known as temporal firing layer. In this layer of Mc-
SIT2RFNN a local recurrent connection is observed, where the spatial firing
strength of previous observation is fed back to itself and generates a temporal
firing strength as follows:(

ηout
)4
i,o
= Λo

i

(
ηatv

)4
i
+ (1− Λo

i )
(
ηout

)4
i
(n− 1) (10)(

ηout
)4
i,o
= Λo

i

(
ηatv

)4
i
+ (1− Λo

i )
(
ηout

)4
i
(n− 1) (11)

where Λo
i ∈ [0, 1] denotes a recurrent weight for the ith rule of the oth class.

The fifth layer of McSIT2RFNN is the consequent layer, where the Chebyshev
polynomial up to the second order is utilized to construct the extended input
feature xe [63]. This Chebyshev polynomial is expressed in Eq. (12).

τn+1(x) = 2xkτn(xk)− τn−1(xk) (12)

If X is considered as a 2-D input composition like [x1, x2], then the extended
input vector can be presented as xe = [1, x1, τ2(x1), x2, τ2(x2)], where xe ∈
�1×(2μ+1), and μ represents the input dimension. This layer functions as an
enhancement layer that maps to the original input vector to high dimensional
space to rectify the mapping capability of the rule consequent. The extended
input variable xe is weighted and generates an output of the consequent layer
as follows: (

ηout
)5
i
= xieΘi (13)

where Θi is a connection weight between the temporal firing layer and the
output layer. In the output layer, type reduction mechanism is observed,
where q design coefficient method is used instead of commonly used Karnik-
Mendel (KM) technique. The final crisp output of the McSIT2RFNN can be
expressed as follows:

yout =
(
ηout

)6
=
(1− qout)

(
ηout

)4
i,o

(
ηout

)5
i∑R

i=1

(
ηout

)4
i,o

+
qout

(
ηout

)4
i,o

(
ηout

)5
i∑R

i=1

(
ηout

)4
i,o

(14)
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where R represents the number of fuzzy rules and q is the design factor
q ∈ �1×no. The q design factor based type reduction mechanism performs by
altering the proportion of the upper and lower rules to the final crisp output
of McSIT2RFNN, where the normalization term of the original q design factor
[64] is modified to overcome the invalid interval as shown in [55].

2.2. Meta-cognitive learning mechanism of McSIT2RFNN

In meta-cognitive learning policy, incoming training data streams
(
(Xn,),

where Xn is an input variable vector
)
are fed into the what-to-learn section.

In this section, the probability of a sample to stay in the existing cluster is
calculated as:

Pr(Xn ∈ Ni) =
1
Ni

∑Ni

n=1 SM(XN , Xn)∑R
i=1

∑Ni

n=1
SM (XN ,Xn)

Ni

(15)

where, XN is representing the current incoming data stream and Xn is indi-
cating the nth support of the ith cluster, meanwhile SM(XN , Xn) is defining
the similarity measure. Since Eq. (15) requires to revisit previously seen
samples, its recursive form is formulated as follows:∑Ni

n=1 SM(XN , Xn)

Ni

=

∑Ni−1
n=1

∑u
j=1(Xn,j −XN,j)

2

(Ni − 1)u

=
(
∑u

j=1(Ni − 1)xN,j
2 − 2

∑u
j=1 xN,jKi,j + vNi)

(Ni − 1)u
(16)

where, KNi,j = KNi−1,j + xNi−1,j, and vNi
= vNi−1 +

∑u
j=1 xNi−1,j

2.
The necessity of a data sample to be trained by the how-to-learn section is

monitored by the what-to-learn section through computation of the sample’s
entropy which portrays the level of uncertainty caused by the samples as
follows:

Htr(N |Xn) = −
R∑
i=1

Pr(Xn ∈ Ni) logPr(Xn ∈ Ni) (17)

In McSIT2RFNN structure, a highly uncertain data stream is accepted as
a training sample since it helps to mitigate the uncertainties in learning the
target function. However, it opens the door for outliers to be fed to the how-
to-learn section. To overcome this shortcoming, the entropy or uncertainty
measured by Eq. (17) can be weighted by its average distance to the R, which
are the densest local regions of the cognitive part [65]. Thus, computation
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of an average distance between the enquired sample and focal point can be
expressed as:

Ad(X) =

∑R
i=1 similarity(X,Ci)

R
(18)

where similarity (X,Ci) is a distance function that computes the pair-wise
similarity value between two examples like Cosine, Euclidean, etc. Finally,
combining the concept of Eq. (18) in Eq. (17) the Htr can be modified as:

Htr = Htr(N |Xn)× Ad(X) (19)

Acceptance of a data stream depends on the magnitude of Htr in Eq.
(19), where Htr should be greater than or equal to a threshold as follows:

Htr ≥ δ (20)

where δ denotes an uncertainty threshold, which is not constant rather it
is adjusted dynamically. In this method, δ is set as δN+1 = δN(1 ± ss),
where δN+1 = δN(1 + ss) creates augmentation by admitting training data
from the training process for minimizing the computational load and vice
versa. The value of the step size ss is set as 0.01, which refers to the thumb
rule in [66]. This tuning scenario is necessary notably in non-stationary
environments since a concept change directly hits the sample consumption.

After satisfying the condition of Eq. (20), a data stream is fed to the how-
to-learn phase. The how-to-learn phase of McSIT2RFNN is derived from the
Scaffolding theory. It encompasses both parameter and structural learning
scenarios which are done in the strictly single-pass manner.

2.2.1. Mechanism of growing rule

The feature of growing rules in the how-to-learn section is governed by
the Generalized Type-2 Datum Significance (GT2DQ) method forming a
modification of the neuron significance of [67, 68] to the context of interval-
valued multi-variable fuzzy rule. Gaussian Mixture Model (GMM) is used
in this method as the input density function to cope with complex and even
irregular data clouds. The extended formula of the neuron significance for
the multi-variable Gaussian neuron [68] is further extended to the generalized
interval-valued neuron in [55], which is utilized in the rule growing mechanism
of this work. To express the significance of ith multi-variable interval-valued
rule, the Lu − norm of the error function is weighted by the input density
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function which can be presented as follows:

Ei = ‖Ωi‖u(1− q)

(∫
�nu

exp(−u||x− ζ i||2Σi
p(x)dx)

)1/u

+ ‖Ωi‖u q
(∫

�nu

exp(−u||x− ζ
i
||2Σi

p(x)dx)

)1/u

(21)

where the Gaussian term under the integral can be written as follows:

(2π/u)nu/2det(Σi)
−1/2 ×N(x; ζ̃iΣ

−1
i /u), ζ̃i = [ζ

i
, ζ i]

Therefore, it can be realized that the neuron significance depends on the
input density p(x). Usually, the input density p(x) is considered to follow
simple data distributions as explained in [69] or uniform data distribution as
described in [70]. Utilizing the concept of GMM, p(x) is able to cope with
complex data distributions and can be expressed as follows:

p(x) =
M∑

m=1

αmN(x; vm, Σm) (22)

where N(x; vm, Σm) denotes multi-variable Gaussian probability density
function with mean vector vm ∈ �1×nu and covariance matrix Σm ∈ �nu×nu,
αm denotes the mixing coefficients which satisfies the condition

∑M
m=1 αm =

1, αm > 0. Now using the GMM in the input density p(x), the further
derivation can be expressed as follows:

Ei =‖Ωi‖u(1− q)((2π/u)det(Σi)
−1/2

×
M∑

m=1

αm

∫
�nu

N(x; ζ iΣ
−1
i /u)N(x; vm, Σm)dx)

1/u

+ ‖Ωi‖uq((2π/u)det(Σi)
−1/2

×
M∑

m=1

αm

∫
�nu

N(x; ζ
i
Σ−1

i /u)N(x; vm, Σm)dx)
1/u (23)

The integral term of Eq. (23) is a product of two Gaussian distributions and

can be solved as
∫
�nu N(x; ζ̃iΣ

−1
i /u)N(x; vm, Σm)dx = N(ζ̃i−vm; 0, Σ−1

i /u+
Σm). Accordingly, the final formula of the GT2DQ method to express the
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significance of the ith interval-valued multivariable rule [55] is expressed as:

Ei = ‖Ωi‖u(1− q)
{
(2π/u)n

/
2det(Σi)

−1/2N iγ
T
}1/u

+ ‖Ωi‖u q
{
(2π/u)n

/
2det(Σi)

−1/2N iγ
T
}1/u

(24)

In (24) the mixing coefficient is denoted by γ and can be expressed as:

γ = [α1, ..., αm, ..., αM ] ∈ �1×m (25)

In Eq. (24), N i and N i are defined as N i = �N(ζ i − v1; 0,Σ
−1
i /u+Σ1), (ζ i −

v2; 0,Σ
−1
i /u+Σ2), ..., (ζ i− vm; 0,Σ

−1
i /u+Σm), ..., (ζ i− vM ; 0,Σ

−1
i /u+ΣM)	,

N i = �N(ζ
i
−v1; 0,Σ−1

i /u+Σ1), (ζ i−v2; 0,Σ−1
i /u+Σ2), ..., (ζ i−vm; 0,Σ−1

i /u+

Σm), ..., (ζ i − vM ; 0,Σ
−1
i /u+ ΣM)	.

L2-norm is utilized in McSIT2RFNN where u = 2 since the majority of
the researchers are using the same technique. Besides, some parameters of
the Gaussian Mixture Model (GMM), namely the mean vm, the covariance
matrix Σm, the mixing coefficients αm, and the number of mixing models M,
are acquired using previously recorded data points Nprerecord like [69, 67, 68].
In today’s world of big data, having access to the Nprerecord is easy. Further-
more, the total number of training data samples is noticeably larger than
that of the pre-recorded data samples. The proposed method’s sensitivity
with regards to an altered number of prehistory samples is analyzed in [55],
which proves that the Nprerecord is not case sensitive.

In McSIT2RFNN, the generation of hypothetical rule depends upon an
incoming data stream and therefore, ci, ci, Σ

−1
i are substituted with cR+1,

cR+1, Σ
−1
R+1. The formula for crafting a hypothetical rule can be expressed as

follow:

C̃R+1 = XN ±ΔX, diag(ΣR+1) =
max((Ci − Ci−1), (Ci − Ci+1))√

1
ln(ε=0.5)

(26)

where ε is a predefined constant with a set value of 0.5. The ε regulates
the proportion of rule base plenitude. ΔX is the uncertainty factor which
initializes the footprint of uncertainty. In McSIT2RFNN, the value of ΔX is
fixed at 0.1 for simplicity, although one can also use an optimization technique
to adjust the uncertainty factor. A hypothetical rule can be added as a new
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rule by utilizing Eq. (26), only if the condition of Eq. (27) is satisfied as
follows:

max
i=1,...,R

(Ei) ≤ (EP+1) (27)

However, this condition itself does not suffice to be the only criteria to
judge the contribution of a hypothetical rule because of the fact where limited
information in respect to the spatial proximity of a data sample to existing
rules is included. The distance information is required to delineate its rele-
vance to current training concept. To overcome the limitation, another rule
growing condition need to be satisfied as follows:

Fz ≤ ρ, where Fz = max
i=1,...,R

(
q
(
ηout

)3
i
+ (1− q)

(
ηout

)3
i

)
(28)

where ρ denotes a critical value of the chi-square distribution χ2 with nu
degrees of freedom and a significant α level. In [55], the ρ is expressed as ρ =
exp(−χ2(α)), which is similar to the expression of [71]. In McSIT2RFNN, the
value of α is set as 5%. To compute the Fz of Eq. (28), the q design factors
are applied for considering the effect of lower and upper rules. When a newly
added rule satisfies the condition of Eq. (28), the new rule is sufficiently away
from the existing rules, and consequently, has a low risk of overlapping. A
similar approach is observed in [69, 67, 68]. However, McSIT2RFNN utilizes
the spatial firing strength instead of measuring point to point distance [69,
67, 68]. The second section of Eq. 28 indicates the maximum spatial firing
strength, which is also known as the winning rule. Finally, a hypothetical
rule is added as a new rule by complying Eq. (26), Eq. (27) and Eq. (28),
where the consequent part of the new rule is expressed as follows:

ΩR+1 = Ωwin, Ψ = ω (29)

where ω is a large positive constant of magnitude of 105.
When a hypothetical rule does not satisfy the condition of neither Eq.

27 nor Eq. 28, then it is not added as a new rule. Nonetheless, the rule is
then utilized by fine tuning its antecedent part. This tuning helps to absorb
information carried by the latest data stream, while it maintains the existing

15



network architecture as follows:

C̃win
N =

Nwin
N−1

Nwin
N−1 + 1

C̃win
N−1 +

(XN − C̃win
N−1)

Nwin
N−1 + 1

(30)

Σwin(N)
−17 =

Σwin(N − 1)−1

1− α
+

α

1− α

(Σwin(N − 1)−1(XN − Ĉwin
N−1))(Σwin(N − 1)−1(XN − Ĉwin

N−1))T

1 + α(XN − Ĉwin
N−1)Σwin(old)−1(XN − Ĉwin

N−1)T

(31)

Nwin
N = Nwin

N−1 + 1 (32)

where α = 1
/
(Nwin

N−1 + 1), C̃win = [Cwin, Cwin], and Ĉwin = (Cwin +

Cwin)
/
2. This adaptation technique is extracted from the idea of the se-

quential maximum likelihood principle with an extension for incorporating
the interval valued multivariate Gaussian function. Here the mid-point of
uncertain centroids are utilized to adapt the certain input covariance matrix.
The inverse covariance matrix is adjusted directly with no re-inversion pro-
cess. This re-inversion process slows down the model update. Moreover, it
may cause unstable computation in the presence of an ill-defined covariance
matrix. A constant, kfs, is applied in our practical implementation where
it aims to replace big values of inverse covariance matrix causing numerical
instability. Note that big values of covariance matrix means very small values
of covariance matrix implying the Gaussian function with a very small width.
In relationship to Scaffolding theory, the rule growing and adaptation tech-
nique described in this sub-section can be categorized as the problematizing
component of active supervision due to its relationship with the drift han-
dling approach due to the capability of updating the model with respect to
the learning context. To overcome the drift, McSIT2RFNN embraces a pas-
sive approach by upgrading its structure continuously in accordance with the
new incoming samples, and does not depend upon a dedicated drift detection
approach like [72].

2.2.2. Mechanism of pruning rule

The idea of the neuron significance is also used in the rule pruning scheme
due to its capability of detecting a superfluous fuzzy rule which does not have
a significant role during its lifespan. Generalized Type-2 Rule Significance
(GT2RS) method is utilized in McSIT2RFNN, which is an enhanced version
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of the T2ERS method through the utilization of the interval-valued mul-
tivariate Gaussian function [73]. The GT2RS technique follows the same
principle like its rule growing counterpart, where a fuzzy rule’s contribution
is evaluated based on its statistical significance presented in Eq. (27). To
sum up, a rule is pruned from the training process after satisfying a condition
as follows:

Ei < mean(Ei)− 2std(Ei), mean(Ei) =
∑N

n=1 Ei,n
N

,

std(Ei,n) =
√∑N

n=1(Ei,n −mean(Ei))2
N − 1

(33)

The calculation of mean and standard deviation of Eq. (33) can be done
easily in a recursive way. The condition of Eq. (33) analyzes not only the sta-
tistical contribution of ith rule during its lifetime, but also the down-trend
of the statistical contribution of that rule. The GT2RS method can ap-
proximate the rule significance rigorously by considering the overall training
region, which verifies the methods effectiveness. In addition, the capability
of handling complex and irregular data distributions of the GMM based in-
put density function p(x) is indicating that the future contribution of the ith
fuzzy rule is also taken into account during the estimation of the rule signifi-
cance. Furthermore, by utilizing Eq. (27) in GT2RS method, the influence of
the local sub-model Ωi is considered, which is usually ignored by most of the
rule pruning techniques. It is worth-noting that the contribution of a fuzzy
rule to the overall system output is highly affected by the output weight.
Low output weight forces the output of a fuzzy rule to be negligible. The
GT2RS method is representing the fading component of active supervision
in Scaffolding theory.

In this work, using the default threshold values of growing and pruning
module, only two rules are generated and no rules are pruned to identify the
quadcopter from data streams with a very insignificant RMSE. Therefore, to
observe the rule pruning mechanism clearly, the rule pruning threshold has
been reduced from 0.9 to 0.4 and rule growing threshold from 0.45 to 0.25 in
case of modeling quadcopter with 27000 samples. After that, the number of
generated and pruned rules have been witnessed graphically as follows:

2.2.3. Mechanism of forgetting and recalling rule

Type-2 Relative Mutual Information (T2RMI) method is utilized in Mc-
SIT2RFNN for detecting the obsolete rules, where the main idea is to examine
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Figure 2: Number of added and pruned rules with a reduced threshold (in case of quad-
copter model with 27000 samples)

the correlation between the fuzzy rules and the target concept. This T2RMI
method is an improved version of RMI method in [74] with respect to the
sequential working framework of the T2RMI. Moreover, the T2RMI method
is tailored to cope up with the methodology of interval type-2 fuzzy system.
Unlike the RMI, in T2RMI the maximum compression index (MCI) [75] is
utilized, which ameliorates the robustness of the linear correlation measure.
In comparison with other linear correlation measures like Pearson coefficient,
the MCI is not affected by rotation. The MCI is another improved character-
istic of the T2RMI method with respect to the RMI method since the RMI
method is still supported by the classic symmetrical uncertainty approach.
The T2RMI also has the ability to detect the outdated fuzzy rules by ana-
lyzing their relevance to the current data progression. In McSIT2RFNN, the
T2RMI method is expressed as follows:

ξ
((
η̃out

)3
i
, yout

)
= q0ξ

((
η
out

)3
i
, yout

)
+ (1− q0)ξ

((
ηout

)3
i
, yout

)
(34)

ξ
((
η
out

)3
i
, yout

)
=
1

2

(
var

(
η
out

)3
i

)
+ var(yout)−√

(var
(
η
out

)3
i
+ var(yout))2 − 4var

(
η
out

)3
i
var(yout)

(
1− ρ

((
η
out

)3
i
, yout

)2)
(35)

ρ
((
η
out

)3
i
, yout

)
=

cov
(
η
out

)3
i
, yout)√

var
(
η
out

)3
i
)var(yout)

(36)
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where var
(
η
out

)3
i
, cov

(
η
out

)3
i
, ρ

(
η
out

)3
i
respectively represent the variance,

covariance, Pearson index and output variable of the ith fuzzy rule with lower
bound. Similar technique is also applied to the upper bound of the fuzzy rule

ξ
((
ηout

)3
i
, yout

)
. Since the spatial firing strength extracts the relevance of the

fuzzy rule in the input space, the fuzzy rule is represented by the spatial firing

strength. In principle, ξ
((
η̃out

)3
i
, yout

)
implies the eigenvalue for the normal

direction to the principal component of two variables
((
η̃out

)3
i
, yout

)
, where

maximum data compression is attained in time of projection of information
along its principal component direction. Therefore, the MCI has the ability
to categorize the cost of discarding the ith rule from the training process,
aiming to achieve the maximum amount of information compression. Some
interesting features of the MCI is exposed in [55]. A fuzzy rule is regarded
as obsolete, or the rule is forgotten after satisfying the condition as follows:

ξi,o < mean(ξi,o)− 2std(ξi,o), mean(ξi,o) =

∑N
n=1 ξ

n
i,o

N
,

std(ξi,o) =

√∑N
n=1(ξ

n
i,o −mean(ξi,o))2

N − 1
(37)

The T2RMI method is also utilized to recall the discarded rules when
they become relevant again to the output of the system. This function is
supported by the fact that correlation of a rule to target concept is influ-
enced by the environments. In other words, in McSIT2RFNN a fuzzy rule
is not permanently deleted and is added to a list of rules pruned by the
T2RMI method R∗ = R∗+1, where R∗ is the number of deactivated rules by
the T2RMI method. Such a rule may recall in the future when it becomes
relevant again to the systems output. This rule recall scenario makes the
T2RMI method effective to deal with the cyclic drift by remembering old
data distribution, which increases the relevance of the obsolete rules. The
rule recall technique is activated after satisfying the condition as follows:

max(ξi∗) > max(ξi), where i
∗ = 1, ..., R∗ and i = 1, ..., R (38)

From Eq. (38) it is obvious that a rule is recalled when the validity of the
obsolete rule is higher than any of the existing rules. Therefore, an obsolete
rule brings the most compatible concept to describe the current data trend
and should be reactivated as follows:

C̃R+1 = C̃i∗ , ΣR+1
−1 = Σi∗

−1, ΨR+1 = Ψi∗ ,ΩR+1 = Ωi∗ (39)

19



Unlike the rule recall concept in [76], the rule recall scenario of Mc-
SIT2RFNN works as another rule growing mechanism as clarified in [55].
The rule recall scenario can be categorized as the problematizing part of the
Scaffolding theory.

2.2.4. Mechanism of Merging rule

In the online identification of a quadcopter, a complete dataset may not
be available. This phenomenon creates an opportunity for two rules to move
together which may cause a significant overlapping as a result of the con-
tinuous adaptation of fuzzy rules [77]. Therefore, an online rule merging
mechanism is required to reduce the system’s complexity and to improve
rule interpretability. Recently, the idea of online rule merging has been intro-
duced in EIS by [63, 78]. However, in these approaches, an over-dependence
on a problem-specific predefined threshold to determine an acceptable level
of overlapping is observed, which limits the flexibility of EIS.

A novel online rule merging technique called Type-2 Geometric Criteria
(T2GC) is utilized in McSIT2RFNN. T2GC is an extended version of ge-
ometric criteria of [79], which was developed for the type-1 fuzzy system.
This T2GC not only observes at the overlapping degree between rules but
also looks at their geometric interpretation in the product space thoroughly.
Two important properties of this T2GC are the overlapping degree and ho-
mogeneity. These two criteria are applied mainly to examine the similarity
of the winning rule in light of the fact that the winning rule is the only one to
receive the rule premise adaptation expressed in Eq. (34)-(36) and a major
underlying reason of overlapping. Hence, this procedure targets to relieve
the computational burden.

Overlapping Degree. The overlapping degree examines the similarity level of
two rules to analyze their possibility of being redundant. Because of the
necessity of developing a threshold-free rule merging process and the con-
struction of McSIT2RFNN is with multi-variable Gaussian function, the
Bhattacharyya distance is utilized[80]. The benefits of using the Bhat-
tacharyya distance is that it can analyze whether two clusters are exactly
disjoint, touching, or overlapping without any trouble in selecting predefined
threshold. The overlapping degree between the winning rule and other rules
i = {1, ..., R} \ {win} can be expressed as:

s1(win, i) = (1− q)s1(win, i) + qos1(win, i) (40)
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s1(win, i) =
1

8
(cwin − ci)

TΣ−1(cwin − ci) +
1

2
ln

det(Σ−1)√
det(Σ−1

win)(Σ
−1
i )

(41)

s1(win, i) =
1

8
(cwin − ci)

TΣ−1(cwin − ci) +
1

2
ln

det(Σ−1)√
det(Σ−1

win)(Σ
−1
i )

(42)

where Σ−1 = (Σ−1
win+Σ

−1
i )

/
2. The conditions such as s1(win, i) > 0, s1(win, i) <

0, and s1(win, i) = 0 exhibit respectively the overlapping, disjointing, and
touching phenomenon of two clusters. In the McSIT2RFNN, the rule merg-
ing process is considered mandatory when two rules are overlapping and/or
touching as follows:

s1(win, i) ≥ 0 (43)

It is important to mention that the utilization of Bhattacharyya distance
is suitable for the McSIT2RFNNs rule since the multivariate Gaussian func-
tion in the Bhattacharyya distance has a one-to-one relationship with that
of the McSIT2RFNN.

Homogeneity Criterion. Homogeneity of clusters has an important role in
merging two clusters, since the merging of non-homogeneous clusters may
cause cluster delamination, undermining generalization and representation
of local data clouds [81, 79]. The Cluster delamination is indicating an over-
sized cluster that covers two or more distinguishable data clouds. The mea-
sure of homogeneity of clusters in McSIT2RFNN is formulated by examining
the volume of the merged clusters in contrast with their individual volume
as follows:

νmerged + νmerged < u(νi + νi + νwin + νwin) (44)

Finally after satisfying the condition of Eq. (43), and Eq. (44), the rules
are merged. Eq. (44) also presents a minor chance of cluster delamination
since the volume of the merged cluster is less than the volume of two inde-
pendent clusters, and therefore the two clusters form a joint homogeneous
region. The term u is involved in Eq. (44) to combat obstruct the curse of
dimensionality.

After satisfying all rule merging conditions, two merging candidates are
combined. Since a rule containing more supports should have higher influence
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to ultimate shape and orientation of the merged cluster, the rule merging
procedure is directed by the weighted average strategy [77] as follows:

C̃merged
new =

C̃win
oldNwin

old + C̃i
oldNi

old

Nwin
old +Ni

old
,

C̃i = [C i + C i], Nmerged
new = Nwin

old +Ni
old (45)

Σ−1
merged

new =
Σ−1

win
oldNwin

old + Σ−1ioldNi
old

Nwin
old +Ni

old
,

Ωmerged
new =

Ωwin
oldNwin

old + Ωi
oldNi

old

Nwin
old +Ni

old
(46)

2.2.5. Mechanism of Online Feature Selection

The feature selection mechanism plays an important role to improve the
performance of EIS by reducing computational complexity and makes mod-
eling problems easier to solve. Therefore, feature selection characterizes the
complexity reduction part of Scaffolding theory. Majority of these feature
selection mechanisms are a part of a pre-processing step. However, very
recently research in online feature selection mechanism of EIS is being con-
ducted [63, 77, 81]. These techniques can minimize the significance of incon-
sequential features by assigning a low weight. But they still keep superfluous
input attributes in the memory. Therefore the complexity issue remains
unsolved. Besides, in recent EISs the online feature selection mechanism
only measures the relevance between input attributes and target variables.
They do not consider the redundancy among input attributes. A novel on-
line feature selection mechanism, called Sequential Markov Blanket Criterion
(SMBC) is utilized in McSIT2RFNN, which is able to mitigate all the above
mentioned limitations of the existing EIS and works completely with the
single-pass learning environment. It is an improved version of MBC [82].

By analyzing the Markov blanket theory, four different types of input
feature are obtained in respect to their contribution; they are namely: ir-
relevant, weakly relevant, weakly relevant but non-redundant, and strongly
relevant. The SMBC targets to eliminate irrelevant, weakly relevant input
features from the training process, while keeps weakly relevant but non-
redundant, and strongly relevant features in the training process. In SMBC,
C-Correlation and F-Correlation tests are developed and then utilized to
deal with the issue of irrelevance and redundancy respectively. These two
correlations are defined as follows:
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Definition 1 (C-Correlation) [82]: The relevance of the input feature
is indicated by the correlation of input feature xk and target variable tout,
which are measured by the C-correlation C(xk, tout).

Definition 2 (F-Correlation) [82]: The issue of redundancy is sig-
nified by the similarity degree of two different input variables xk, xk1, k 
=
k1. The measure of similarity between two input attributes is called the F-
correlation F (xk, xk1).

The MCI method exposed in Eq. (34)-(36) is adopted to analyze the

C and F-correlation. It is accomplished by just replacing
((
η̃out

)3
i
, yout

)
in

Eq. (34)-(36) with (xk, tout), and (xk, xk1). The SMBC is implemented in
two stages, where in the first stage the F-correlation eliminates the incon-
sequential features, and consequently reduce complexity. It helps the next
step, the C-correlation, to run with a smaller number of input variables. The
working procedure in the F-correlation and C-correlation in McSIT2RFNN
is described elaborately in [55].

2.2.6. Mechanism of Adapting q design factor and recurrent weight

Adaptation or fine tuning of the free network parameters of the Mc-
SIT2RFNN, namely the design coefficients and the recurrent weights are ac-
complished by utilizing the zero-order density maximization (ZEDM) method.
This ZEDM method is an improved version gradient descent technique since
ZEDM utilizes error entropy as cost function unlike the mean square error
(MSE) in gradient descent technique, therefore leads to a more accurate pre-
diction. Since the accurate model of the error entropy is too complex to be
derived with the first-principle technique, the cost function is formulated by
utilizing the Parzen Window density estimation method and can be expressed
as follows:

f̂(0) =
1

Nφ
√
2π

N∑
n=1

exp(−en,0
2

2φ2
) =

1

Nφ
√
2π

N∑
n=1

K(
−en,02
2φ2

) (47)

where en,0 represents the system error of the oth output variable, T denotes
a smoothing parameter, fixed as 1 for simplicity and N is the total number
of samples seen so far. It is worth noting that a recursive expression can be
derived to satisfy the one-pass learning requirement. The detailed adaptation
process is explained in [55].
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2.2.7. Mechanism of Adapting Rule Consequent

The adaptation of the rule consequent represents the passive supervision
of Scaffolding theory because it relies on the system error, actualizing the
action-consequent mechanism. For adapting the rule consequent the Fuzzily
Weighted Generalized Recursive Least Square (FWGRLS) method [62] is
used in McSIT2RFNN. FWGRLS is an improved version of the Generalized
Recursive Least Square (GRLS) method [83] and performs locally. This local
learning scenario provides a flexible mechanism and greater robustness, be-
cause each rule is fine-tuned separately. Thereby, entire learning procedures
of a particular rule do not affect the stability and convergence of remain-
ing rules. The local learning scenario also raises the interpretability of the
TSK fuzzy rule as explained in [84]. The details of the FWGRLS method is
elaborated in [62, 63, 70].

3. Quadcopter flight experiment and online system identification
results

3.1. Experimental set up of quadcopter flight

Our quadcopter experiments were accomplished in the indoor UAV lab-
oratory at the University of New South Wales, Canberra campus. We use a
Pixhawk autopilot framework developed by an open and independent hard-
ware project called PX4. The Pixhawk flight control unit (FCU) is man-
ufactured and sold by 3D robotics and has three onboard sensors; namely
gyroscope, accelerometer, and magnetometer. The experimental quadcopter
model is displayed in Figure 3. To record quadcopter flight data the Robot
Operating System (ROS), running under the Ubuntu 16.04 version of Linux
was used. A ROS package called MAVROS was utilized in this work, where
the MAVROS had enabled communication between the PX4 and a ROS
enabled computer. By utilizing the ROS, a well-structured communication
layer was introduced into the quadcopter that reduced the burden of having
to reinvent necessary software.

During the real-time flight testing accurate vehicle position, velocity, and
orientation were the required information for verification of the proposed
McSIT2RFNN based on-line system identification of quadcopter. In order to
track the quadcopter in three dimensional space, a VICON optical motion
capture system was employed to track the UAV motion with sub-millimetre
accuracy. The indoor VICON motion capture system consisted of a volume
that was 10×10×4.3 m3 and formed by a netted truss framework.
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Figure 3: Pixhawk autopilot based experimental quadcopter model

The object tracking information was routed to the quadcopter via a cus-
tom SDK UDP package to the desired IP address which in our platform was
an Odroid single board computer. At each time step, position, velocity and
orientation information was recorded. During testing the pilot controlled
the quadcopter RUAV manually from an RC transmitter using pitch, roll
and yaw and thrust commands. To record key published topics, the rosbag
recording tool was used. The rosbag enables us to record and synchronize
all critical experimental data via published topics that are required for on-
line system identification. Figure 4 represents the way of communicating of
the experimental quadcopter UAV system during all the flight tests, where
the dotted lines represents wireless communication and solid lines represents
wired connection.

3.2. Online system identification results

For system identification of the quadcopter, a variety of quadcopter flight
data have been utilized. Among them, there are three different datasets of
quadcopter’s altitude, consisting of approximately 9,000, 27,000 and 66,000
samples. Using these datasets, the quadcopter’s altitude based multi-input-
single-output (MISO) online system identification model of quadcopter has
been constructed by utilizing the proposed McSIT2RFNN technique [55].
The proposed technique [55] based online data-driven quadcopter model has
been also structured from four inputs and output datasets (vertical alti-
tude and the three rotational movements (θ, φ, ψ)). The time step of all the
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Figure 4: Pixhawk quadcopter RUAV’s communication flow

dataset was 0.0198 sec. For comparing and validating the accuracy of the pro-
posed technique, the quadcoper’s data driven model has also constructed with
eight different renowned EIS based neuro-fuzzy system, namely: eTS [44],
simp eTS [85], DFNN [86], GDFNN [87], FAOSPFNN [88], GENEFIS [62],
Adaptive Neuro Fuzzy Inference System (ANFIS) [89], and PANFIS [70]. For
the performance analysis the RMSE, number of network parameters, number
of training samples, fuzzy rules, and execution time have been considered for
each algorithm. All the results are summarized in Tables from 1 to 4. Table
1 to Table 3 express the results for a MISO quadcopter model with approx-
imately 27,000, 66,000, and 9,000 samples of quadcopter’s altitude for three
different flight respectively. Table 4 summarizes the results of the MIMO
quadcopter model. It is clearly observed from the results that, among these
eight different algorithms the proposed McSIT2RFNN algorithm performs
the best, since the lowest RMSE, fastest execution is observed. Besides, by
utilizing the what-to-learn mechanism the McSIT2RFNN has reduced the
number of samples required to train, which helps to reduce the execution
time as observed in the Tables from 1 to 5. This sample deletion mechanism
is not utilized in any other renowned variants of EIS discussed in this article.
The altitude tracking performance of the proposed McSIT2RFNN algorithm
based MISO quadcopter model with nearly 27,000 and 66,000 samples are
displayed in Figure 6a and 6a respectively. A MIMO quadcopter model
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with nearly 9,000 samples for identifying thrust, roll, pitch, and yaw are dis-
played from Figure 7a to 7d correspondingly. From those Figures it is clearly
observed that the proposed online models output are following the desired
dataset collected experimentally very closely in all the cases. The evolving
and online nature of the proposed McSIT2RFNN technique helps to track
the quick changes in the desired trajectory.

In this work, to model the quadcopter with approximately 27,000, 66,000,
and 9,000 samples two inputs (X(t) and Y (t−1)) are utilized and in all cases
two rules are generated. The If-Then expression of the rule in this work is
exposed in Eq. (3). However, the rule presented in Eq. (3) is not transparent
enough to expose atomic clause of the human-like linguistic rule. It operates
in a totally high dimensional space, therefore cannot be represented in fuzzy
set directly. To express such fuzzy rules with multidimensional kernel, the
phrase ”close to” is conventionally used [90, 91]. As a solution, a transfor-
mation strategy is employed in this work as expressed in Eq. (4) to convert
the high dimensional space based rules to a lower dimensional human-like
linguistic rules. After transformation, rules can be expressed in a conven-
tional interval type-2 fuzzy set environment as exposed in Eq. (5), (6), and
(7). Utilizing those fuzzy set expression of Eq. (5), (6), and (7), a more
interpretable fuzzy rule is exhibited in Eq. (8).

Now the non-axis-parallel ellipsoidal rule generated in the high dimen-
sional space by the McSIT2RFNN in case of quadcopter model with 27000
samples can be expressed as follows:

R1 : If X is close to

η̃out

(
η
out

=

[[ −0.5934
−0.2458

]
,

[
2 2
2 2

]]
, ηout =

[[
0.0066
0.3542

]
,

[
2 2
2 2

]])
Then y1 = −0.0043− 0.0039X1 − 0.0046τ(X1) + 0.9999X2 − 0.0002τ(X2)

(48)

where η̃out =
[
η
out
, ηout

]
is the rule antecedent of the multi-variable

Gaussian function, which consists of uncertain centroids ζ̃ =
[
ζ, ζ

]
, where

ζ =

[ −0.5934
−0.2458

]
, and ζ =

[
0.0066
0.3542

]
, and the inverse co-variance ma-

trix Σ−1 =

[
2 2
2 2

]
; yi is denoting the rule consequent of the ith rule

obtained from yi = xieΘi, where Θi is a connection weight between the
temporal ring layer and the output layer; In this work, X is a 2-D input
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Figure 5: 1st Membership function (with uncertain centroid and certain width) of rule 1
of McSIT2RFNN

composition like [x1, x2], then xe is the extended input vector obtained using
Chebyshev polynomial and can be expressed as xe = [1, x1, τ(x1), x2, τ(x2)],
where, xe ∈ �1×(2μ+1), μ is expressing the input dimension.
After transformation of the rule presented in Eq. (48) to a lower dimen-

sional space, it can be expressed as follows:

R1 : If X1 is close to η̃out1

(
η
out1

(−0.5934, 0.25), ηout1(0.0066, 0.25)
)

and X2 is close to η̃out2

(
η
out2

(−0.2458, 0.20), ηout2(0.3542, 0.20)
)
,

Then y1 = −0.00432− 0.00387X1 − 0.00457τ(X1) + 0.99995X2 − 0.00022τ(X2)
(49)

where η̃out1 and η̃out2 stand for the interval valued Gaussian member-
ship function corresponding to X1,X2. The uncertain centroid of η̃out1 is
c̃1 = [c1, c1] = [−0.5934, 0.0066], and width is σ1 = 0.25, and for η̃out2
those parameters are c̃2 = [c2, c2] = [−0.2458, 0.3542], σ2 = 0.20. The 1st
membership function of our rule 1 is shown in Figure (5). The plotted mem-
bership function has uncertain centroid of c̃1 = [c1, c1] = [−0.5934, 0.0066],
and certain width of σ1 = 0.25.
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Figure 6: System identification of Quadcopter MISO model

3.3. Online system identification with noisy samples

To prove the robustness of the McSIT2RFNN against uncertainties, an-
other quadcopter flight experiment has been accomplished considering some
noise from VICON optical motion capture system. The quadcopter flight
dataset consists of nearly 27000 samples with a noisy 1000 samples, which
is utilized to model the quadcopter. The adaptation power of the proposed
algorithm against noise is clear from the lowest obtained RMSE compared to
its type-1 counterparts. Furthermore, with the noisy data still it can model
the quadcopter with only 546 data samples, where its type-1 variants need all
the training samples i.e. 16483 (60% of the total samples). Thereby, lowest
execution time in modeling the quadcopter is also observed from the type-2
fuzzy based proposed McSIT2RFNN algorithm, which is only 2.13 seconds.
Therefore, the results are clearly indicating its improved performance and
uncertainty handling capacity than the type-1 counterpart. The results are
summarized in Table 5.

4. Conclusion

EIS is an appropriate candidate for modeling a complex and highly non-
linear system like quadcopter RUAV. The incorporation of McSLM with EIS
make it more appropriate. Such an advanced EIS called McSIT2RFNN is
utilized to model the quadcopter with uncertainties from experimental quad-
copter flight data. In McSIT2RFNN, a new local recurrent network archi-
tecture is driven by the interval-valued multivariate Gaussian function in the
hidden node and the nonlinear Chebushev function in the consequent node.
As with its predecessors, the McSIT2RFNN characterizes an open structure,
which has the ability to grow, prune, adjust, merge, recall its hidden node
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Figure 7: System identification of Quadcopter MIMO model with approx. 9,000 samples

Table 1: Online system identification result comparison of MISO quadcopter model (ap-
prox. 27,000 samples)

Algorithm Reference RMSE
Network
Parameters

Training
Samples

Fuzzy
Rule

Execution
Time (sec)

DFNN [86] 0.0780 10 16483 1 194.86

GDFNN [87] 0.0067 10 16483 1 329.93

FAOSPFNN [88] 0.0280 12 16483 2 38.10

eTS [44] 0.0021 40 16483 4 9.39

simp eTS [85] 0.0020 13 16483 1 3.50

GENEFIS [62] 0.0020 63 16483 1 3.29

PANFIS [70] 0.0020 5 16483 1 2.92

ANFIS [89] 0.0061 36 16483 6 33.01

McSIT2RFNN [55] 0.0013 32 1279 2 2.27

automatically and to select relevant data samples of quadcopter flight on the
fly using an online active learning methodology. The McSIT2RFNN is also
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Table 2: Online system identification result comparison of MISO quadcopter model (ap-
prox. 66,000 samples)

Algorithm Reference RMSE
Network
Parameters

Training
Samples

Fuzzy
Rule

Execution
Time (sec)

DFNN [86] 0.0810 10 39640 1 1113.69

GDFNN [87] 0.0080 10 39640 1 1666.33

FAOSPFNN [88] 0.0150 12 39640 2 135.59

eTS [44] 0.0016 40 39640 2 21.03

simp eTS [85] 0.0015 13 39640 1 11.20

GENEFIS [62] 0.0015 4 39640 1 7.63

PANFIS [70] 0.0015 5 39640 1 6.93

ANFIS [89] 0.0050 30 39640 5 34.93

McSIT2RFNN [55] 0.0008 32 2329 2 5.5

Table 3: Online system identification result comparison of MISO quadcopter model (ap-
prox. 9,000 samples)

Algorithm Reference RMSE
Network
Parameters

Training
Samples

Fuzzy
Rule

Execution
Time (sec)

DFNN [86] 0.15 10 5467 1 19.77

GDFNN [87] 0.14 10 5467 1 23.64

FAOSPFNN [88] 0.21 12 5467 2 28.58

eTS [44] 0.14 40 5467 4 2.10

simp eTS [85] 0.13 13 5467 4 1.77

GENEFIS [62] 0.13 26 5467 1 1.10

PANFIS [70] 0.135 5 5467 1 1.15

ANFIS [89] 0.46 48 5467 8 36.94

McSIT2RFNN [55] 0.13 32 769 2 0.91

equipped with the online dimensionality reduction technique to cope with
the curse of dimensionality. All learning mechanisms are carried out in the
single-pass and local learning mode and actualize the plug-and-play learning
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Table 4: Online system identification result comparison of MIMO quadcopter model (ap-
prox. 9000 samples)

Algorithm Reference RMSE1 RMSE2 RMSE3 RMSE4
Network
Parameters

Training
Samples

Fuzzy
Rule

Execution
Time (sec)

Input
attribute

DFNN [86] 0.26 0.18 0.14 0.15 10 5753 1 49.98 4

GDFNN [87] 0.23 0.18 0.14 0.13 10 5753 1 85.75 4

FAOSPFNN [88] 0.55 0.28 0.14 0.13 12 5753 1 12.11 4

eTS [44] 0.22 0.20 0.15 0.10 292 5753 14 20.06 4

simp eTS [85] 0.29 0.31 0.29 0.18 104 5753 5 8.11 4

GENEFIS [62] 0.24 0.19 0.19 0.11 4 5753 1 6.1 1

PANFIS [70] 0.24 0.17 0.14 0.13 3 5753 1 5.4 4

McSIT2RFNN [55] 0.23 0.17 0.14 0.10 66 461 2 4.5 4

Table 5: Online system identification result comparison of MISO quadcopter model (ap-
prox. 27,000 samples with 1000 noisy samples)

Algorithm Reference RMSE
Network
Parameters

Training
Samples

Fuzzy
Rule

Execution
Time (sec)

DFNN [86] 0.0583 10 16483 1 211.72

GDFNN [87] 0.0141 10 16483 1 328.56

FAOSPFNN [88] 0.0242 12 16483 2 216.47

eTS [44] 0.0072 40 16483 4 9.39

simp eTS [85] 0.0212 13 16483 6 14.36

GENEFIS [62] 0.0067 63 16483 1 3.20

PANFIS [70] 0.0067 5 16483 1 2.79

ANFIS [89] 0.0061 36 16483 6 32.29

McSIT2RFNN [55] 0.0011 32 546 2 2.13

principle, which aims to minimize the use of pre-and/or post-training steps.
These features help the McSIT2RFNN method to identify the quadcopter
RUAV more accurately than other variants of EIS. Thus, the accurate MISO
and MIMO quadcopter modeling or better online identification results from
McSIT2RFNN verifies their feasibility in modeling UAVs. In future research,
a flexible controller for UAVs based on McSIT2RFNN will be developed and
validate experimentally.
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