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Abstract

Until now the majority of the neuro ~nd fu.zy modeling and control ap-
proaches for rotary wing Unmanned . er.al Vehicles (UAVs), such as the
quadrotor, have been based on batc . 'ear. ing techniques, therefore static in
structure, and cannot adapt to rapid. ci.anging environments. Implication
of Evolving Intelligent System (k.1 va.od model-free data-driven techniques
in fuzzy system are good alternatives, . ince they are able to evolve both their
structure and parameters to o, with sudden changes in behavior, and per-
forms perfectly in a single nass le arning mode which is suitable for online
real-time deployment. TT e Meuw. =) gnitive Scaffolding Learning Machine (Mc-
SLM) is seen as a gener uliz- d vrrsion of EIS since the metacognitive concept
enables the what-to-lr arn, “or -to-learn, and when-to-learn scheme, and the
scaffolding theory r .'izes a plug-and-play property which strengthens the
online working principle ¢ EISs. This paper proposes a novel online iden-
tification scheme ap lied to a quadrotor using real-time experimental flight
data streams basc? on McSLM, namely Metacognitive Scaffolding Interval
Type 2 Recv rert Fuszy Neural Network (McSIT2RFNN). Our proposed
approach de.. or stre ed significant improvements in both accuracy and com-
plexity age st so..e renowned existing variants of the McSLMs and EISs.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) are aircraft with 10 avi~tor on-board.
UAV autonomy varies from partial to complete, wh ch beg ns from human
operator based partial remote control to fully autonomc s ceatrol by onboard
computers. Autonomy enables UAVs to perform ,ome 'asks very well where
human involvement would be dangerous, expens. : or simply too tedious.
Comparatively higher portability, smaller size, »"pie method of assembly
and reconstruction and lower expenditure h~ve caw ed the rapid growth of
UAV applications such as delivery of equ'»me.* . hostile environments,
infrastructure inspection and environmental mo:. “oring as described in many
places in the literature (e.g. [1, 2, 3]).

UAVs are classified into three su' '*isions, namely fixed wing, rotary
wing and flapping wing, where the Rotc ™ wing UAVs (RUAVs) can be fur-
ther classified by the number of rc..»s a a helicopter, quadcopter, hexa-
copter, octocopter etc. Among variou” hJAVs, the most commonly used is
the quadcopter. The history ot ."e quadcopter is not new; since the first
one was built in 1907 [4]. However, from the beginning to the middle of
the 20th century all of the. w.e manned vehicles [5]. Advancements in
control theory accelerated he rese wrch on unmanned quadcopter in the last
quarter of the 20th cent .ry. Sc-.e of the latest research projects on quad-
copter are elaborated “a [f, 7. 8 9, 10]. The cross (x) and plus (+) are
the two main configr ratio. <« used to construct a quadrotor, and a simple
cross-configured qu-a.~oter is shown in Figure 1. Among four rotors, one
pair of rotors situated in .he two opposite arms rotate clockwise; another
pair rotates cour .er- lockwise for the torque balancing. The four elementary
movements of the - 1adcopter are vertical altitude Z, roll (), pitch (¢), and
yvaw (¢). For the verucal altitude movement, all four rotors need to speed
up or down .7 2qu'.l quantity. For rolling to the right on the X-axis, the
speed of *..C left .otors are increased and the right rotor decreased. The
opposite lifferer sial commands are given to move to the left. Similarly, for
the pitching ™ vement (with respect to the Y-axis), the front and rear rotors
are v ilized ‘n a similar way. In the yaw movement, the quadcopter rotates
on the Z-ax’s. It is accomplished by increasing the speed of one diagonally
or ~~<ite rotor pair whilst decreasing the speed of the other pair. Due to the
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Figure 1: A simple cross-configurea . 1adcopter model.

quadcopters vast applicability in bc . ~iviian and military sectors, research
interest is increasing to make them mure mtelligent.

The quadcopter has six degrec. ot ieedoms: they are three translational
motions along the X, Y, and Z-axes, and three rotational motions (6, ¢, ).
Besides, the quadcopter sys’em .. highly nonlinear and under-actuated. Ac-
curate modeling of quadco, *ers b' considering all the translational and ro-
tational motions and by utilizi. z the four control input (Z, 0, ¢, and 1))
is necessary to obtain cocd ¢ ntrol action. Until now, most quadcopter
models are based on .ynai ‘~ equations of the system, where the aggressive
trajectories of quadr oy “~rs are difficult to integrate. In addition, various non-
stationary factors e motor degradation, time varying payload, wind gusts,
and rotor damare ar > extremely difficult to predict and model mathemati-
cally and conseque. ly hard to incorporate even for the first principle model
based conven 1on I and advanced techniques like PID [11], Linear Quadratic
(LQ) technig.~. [17, 13], Sliding Mode Control (SMC) [14, 15, 16, 17, 18],
back-step iug conrol [19, 20, 21|, Feedback Linearization (FBL) [15, 22],
H, robu t contiol [23, 24] etc. In more complex systems the physical model
may net be 2~ _sible to derive. These challenges are leading to increasing re-
searc 1 inter st in data-driven modeling techniques for system identification
with 1 al-tir e sensory data and limited expert knowledge.

T

"= the data-driven techniques, system identification is a vital part. Suc-




cessful system identification indicates closeness of the input-ow.*nr behavior
of the identified system with the input-output behavior of t..~ acv. 2l plant.
The data-driven system identification or modeling can v.. - an ‘mportant
role in quadcopter systems, since their counterpart i.e. t.ae r.oaci based pa-
rameter identification requires several experimental tests to . htain the model
parameters. Even some parameters are difficult to ¢ otain ‘vom the experi-
ments and problem-dependent. Thus, the model-base ! syste m requires a lot
of effort for better accuracy. Whereas the data-dr’ en auadcopter model can
be used as a generalized model with different n ot s, ropellers or sensor
combinations. Some of the commonly used nc--lin--. data-driven system
identification techniques are: describing function n.~thod, block structured
systems, fuzzy logic, neural networks, and Nc -linsar Autoregressive Mov-
ing Average Model with Exogenous inputs (:'ARMAX methods). Among
these techniques, fuzzy logic [25, 26, 2. 23, 29] and neural network [30]
based artificial intelligent systems are promi.'mg computational tools since
they demonstrate learning capability ~or: a set of data and approximate
reasoning trait of human beings w! ~h cc he with the impression and uncer-
tainty of the decision making proces: [o']. Furthermore, the fuzzy system
offers a highly transparent solut. .. ~".=h can be followed easily by the op-
erator [32]. Due to the numerous «lvantages of fuzzy logic systems [33],
they are merged with conven*'_~al techniques as fuzzy-PID, fuzzy-PI, fuzzy-
PD [34, 35, 36, 37, 38, 39] fuzzy- liding mode [40, 41], fuzzy back-stepping
[42, 43] to model the quadzopuw = v ore accurately and consequently to achieve
better control action. I'. th se conventional data-driven approaches, the ex-
perimental quadcopter 1.._1t t sts are conducted repetitively on the desired
trajectory and from -hese experimental knowledge, the target trajectory is
estimated for the nonline. = time varying quadcopter dynamics. By following
this approach, th = quadcopter can be identified for a specific trajectory; and
further training -~ -equired for new trajectory. Actually, this difficulty in
identifying qu «dcopte system is not for the systems stochastic behavior or
for the unwea ted noi e from experimentation. Rather it is for not considering
the unobser—ed J~ta which rely highly on expert domain knowledge because
a purely uzzy s_stem approach without learning capability will have limited
generaliza ‘on power. Besides, a major limitation of these conventional fuzzy
logics and reural networks based quadcopter modeling and controlling is the
inabi 'ty to « volve their structure to adapt with sudden changes. They also
adopt a wcched working principle which has to revisit entire dataset over
mu'tiy.e passes rendering them not scalable for online real-time deployment.
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Therefore, to solve the problems that exist with conventic ~al mtelligent
systems, Evolving Intelligent Systems (EISs) are a good caw 'idavc [44, 45],
since they learn from scratch with no base knowledge and 7. embc 1ded with
the self-organizing property which adapts to changing sy ten dy..amics [46].
EIS fully work in a single-pass learning scenario which is sc>lable for online
real-time requirement under limited computational r :sourc s such as UAVs
platform [47]. Nevertheless, EISs remain cognitive in na‘are where they
still require scanning all samples regardless of t'.cir true contribution and
training samples must be consumed immediately w’.n t e absence of learn-
ing capability to determine ideal periods to lec™m tl-.e samples [48]. The
Metacognitive Learning Machine (McLM) technique =nhances the adaptabil-
ity of EIS by interpreting the meta-memorv 1.>del of [49] where the learn-
ing process is developed in three phases, name. - what-to-learn, how-to-learn
and when-to-learn [50, 51]. The what-tc earn 1s implemented with a sam-
ple selection mechanism which determines w..~ther to accept data samples,
the how-to-learn is where the underly. g raning process takes places, the
when-to-learn is built upon a sam 'e re ~rved mechanism which allows to
delay the training process of particul. v ~. mples when their significance does
not suffice to trigger the learning -..cch» rism. Recent advances in the McLM
[52, 53, 54| have involved the concepu ~f scaffolding theory as a foundation of
the how-to-learn another pre . “nent theory in psychology to help learners to
solve complex tasks. The v .e of sc ffolding theory is claimed to generate the
plug-and-play property v-herc ~ll learning process are self-contained in the
how-to-learn without or er-c ependence on pre-and/or post-processing steps.
It is worth noting thot ' » Sraffolding theory does not hamper the online
learning property of 'TSs since all learning components follow strictly single-
pass learning mode whicn ‘< well-suited for online real-time applications. The
scaffolding theor~ cc 1sists of two parts: active supervision and passive su-
pervision. The . ~ss.ve supervision is constructed using parameter learning
theories whicl demau. ! target variables to elicit system errors for correction
signals while the act’ve supervision features three components: fading, com-
plexity red—<tio.. =ad problematizing. The complexity reduction alleviates
learning omple -ities by applying feature selection, data normalization, etc.
and the p.~bler atizing focuses on concept drifts in data distributions while
the fe ung component is meant to reduce the network complexity by discard-
ing i1 active :omponents using the pruning and merging scenarios.

A no. o online system identification of quadcopter based on a recently
de.=leseu MceSLM [55], namely McSIT2RFNN; is proposed in this paper .
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McSIT2RFNN is structured as a six-layered network archite. 1 actualiz-
ing interval type-2 Takagi Sugeno Kang (TSK) fuzzy inferenc - sche ne. This
network architecture features a local recurrent connection -.. *ch 1w actions as
an internal memory component to cope with the tempc al ¢ yste.n dynamic
and to minimize the use of time-delayed input attributes [5.' Note that the
local recurrent link does not compromise the local lee ning roperty because
the spatio-temporal firing strength is generated by .-eding previous states
of system dynamic back to itself [55]. The rule iayer consists of interval
type-2 multivariate Gaussian functions with un -er’ain means which char-
acterizes scale-invariant trait and maintains in'~r-cc~ clation among input
variables. The rule consequent layer is constructed 1 v the nonlinear Cheby-
shev polynomial up to the second order which ¢.mar s the degree of freedom
of a rule consequent [55]. The polynomial is v"ilized here to rectify the ap-
proximation power of the zero-or first-oi. v 15K rule consequent.
McSIT2RFNN features unique online lea. ~ing techniques where a syn-
ergy between the metacognitive learnii.~ s enario and the Scaffolding theory
comes into picture while retaining ~omp “tationally light working principle
through a fully one-pass learning sceau ~ for online real-time applications.
The learning process starts fror. ... =hat-to-learn process using an online
active learning mechanism, which acuely extracts relevant training samples
for training process while rul* __ out inconsequential samples for the training
process. Selected training camples are then processed further in the how-to-
learn designed under the sca.’~Id.ng concept. The problematizing facet of
the scaffolding theory i< de icted by the rule growing mechanism which as-
sesses statistical contribu. on ¢ r data points to be a candidate of a new rule.
This scenario contro’* stabilivy-and plasticity dilemma in learning from data
streams since it guides v. proper network complexity for a given problem
and addresses cbh .g ng data distributions by introducing a new rule when
a change is detec*er. A rule recall scenario is put forward to represent the
problematizin , aspec. which tackles the temporal or recurring drift. This
learning mec har sm plays a vital role during real-flight missions of the UAV
because previous’ seen flight conditions often re-appear again in the future.
The com lexity -eduction component is portrayed by an online feature selec-
tion scena io wh.ch puts into perspective relevance and redundancy of input
featur cs. This learning component lowers the input dimension which con-
tribu es pos sively to models generalization and computational complexity.
The fau.... process relies on the rule merging scenario and the rule prun-
ing sc nario. The rule pruning scenario removes obsolete rules which are
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no longer relevant to current training concept by studying m. *1s« informa-
tion between fuzzy rule and the target variable. Significan.'v ov.~lapping
rules are coalesced into a single rule by the rule merging .. =nar.. and this
mechanism is capable of cutting down network comple ity anu improving
interpretability of rule semantics. The efficacy of our propo. ~d methodology
was carefully investigated through simulations using » cal-wc -1d flight data as
well as real-time flight tests. Our algorithm was bern -hmar .ed with several
prominent algorithms, and it was shown that or. algorichm produced the
most encouraging performance in attaining a trac »--.i be ;-ween accuracy and
complexity.

Our proposed methodology carry the following « lvantages: 1) it is com-
patible for online real-time deployment ir thc rea’ flight tests of a quad-
copter since it works fully in the single-pass :~arning mode. Furthermore,
McSIT2RFNN does not necessarily see .+ sensory data streams due to its
what-to-learn component further substantiati.x scalability of McSIT2RFNN
in handling online data streams; 2) it ‘ee uies a highly flexible foundation
which self-evolves its network struc ire « nd parameters in accordance with
variations of data streams no matter ow slow, rapid, gradual, and temporal
a change in data streams is; 3) M- SIT2 2 FNN is created from a combination
between the interval type-2 fuzzy sys. m which is more robust to face uncer-
tainties than its type-1 count _arts and the recurrent network architecture
which is capable of coping with t mporal system dynamics and lagged in-
put variables; 4) it actu~lizes 2 slug-and-play working principle where all
learning modules are e abe ded in only a single training scenario without
the requirement of pre-a.. /or post-training steps. The major contributions
of this paper are su ‘marizeu as follows: 1) a novel online system identifi-
cation of quadcopter bas. 1 on a psychologically inspired learning machine,
namely McSIT2P ¢\ N, is proposed; 2) real-time flight tests were done where
real-world flight 'ata were obtained and preprocessed. We also made these
flight data pu'.licly a. :ilable for the convenience of readers; 3) Experimental
validations ¢ tbh : pr- posed approach were carried out to inspect the efficacy
of the pror~sea . proach. This includes simulations using real-world flight
data and real-ti 1e flight tests [56].

The re maini 1g part of the paper is organized as follows: Section 2 de-
scribe s the learning policy of the McSIT2RFNN technique by describing both
the c gnitive and meta-cognitive components. In section 3, the details of the
quadcop.o. flight experiment and system identification is explained. Finally,
the veper ends with concluding remarks in section 4.
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2. Online learning policy of McSIT2RFNN

This section describes the learning policy of Meta-cognitive Scaffolding
Based Interval Type 2 Recurrent Fuzzy Neural Networz ( I STT2RFNN)
[55]. The McSIT2RFNN has two components namely cc " ative and meta-
cognitive. The cognitive component corresponds to .ue network structure
of McSIT2RFNN while the metacognitive componet con;ists of learning
scenarios to fine-tune the cognitive component.

2.1. Cognitive mechanism of McSIT2RFNN

In McSIT2RFNN;, a six-layered recurrent netw. -k structure with a local
recurrent connection is utilized for the hiddew 'ayer. The first layer is known
as the input layer, which passes the fed inpu. to e second layer as follows:

(nout)llg = (natv)xib“\ = Tk (1)

where 1,,; represents output a layer, an.' /., denotes the forward activation
function of a layer.

Unlike the conventional neuro-fuzz, system, the univariate Gaussian func-
tion is replaced by an interval-valu. 1 miuwtivariate Gaussian function with un-
certain mean and then it is utilized in Jhe second layer of the McSIT2RFNN,
which is also known as the - ule I>ver. This Gaussian function consequently
generates an interval-value.' firing strength as follows:

ﬁoth = (77af ‘J) (f/outl\/ = exp<_(F721 - a)z;l(ri - EZ)) (2)

where, Tou”® = Mo ¢ Tout |, G = €., ¢;], and (; is the uncertain centroid
of the ith rule abiding by the condition G, < ¢,. If we consider to model

or identify a Mu-I' put-Single-Output system, the If-Then rule of the Mc-
SIT2RFNN can b ~xpressed as follows:

¢ If X, 8 7w, ” Then y; = 27Q; (3)

where 7 Q; a e respectively an extended input variable resulted from a
nonlinear wapr ag of the wavelet coefficient (z, € R'*(2#*1) and a weight
vector (32 & RXC#H)) The consequent part of the rule is explained in
the f.%th lay r. However, the rule presented in Eq. (3) is not transparent
enough o expose atomic clause of the human-like linguistic rule [57]. It
op.at zs 1n a totally high dimensional space, therefore cannot be represented
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in fuzzy set. Since the non-axis-parallel ellipsoidal rule cannc. be expressed
directly in interval type-2 fuzzy environment, a transforma. ~n s. ategy is
required [58, 59]. Such transformation technique should har _ “he capability of
formulating the fuzzy set for the non-axis parallel ellipsc dal clus.er [60, 61].
The transformation strategy developed in [62] is extendew n this work in
terms of interval type-2 system, which can be expres ed as “ollows:
(r; +73)

T W
where ¥;; represents the diagonal element of v..~ cc.uriance matrix and 7;
denotes the Mahalanobis distance, which is 7; = (-7, — ()2, 1(Xn —G) =
[F; 1], where 7; is the upper and r; is the lowc - Mahalanobis distance and
G = [QZ,Zl] No transformation is required 1. the mean or centroid (EZ)
of the multivariate Gaussian function, s.>ce it can be directly applied to
the fuzzy set level. After successfully »resenv.ng the interval-valued multi-
variable Gaussian function into fuzzy -e’, the fuzzification process of the
the upper and lower Gaussian mer . ~rsh.» functions with uncertain means
Ci = [gjﬂ,, Zﬂ] is exhibited as follows:

~ O\
2
Natv; — C'vi Pl j = —=J j

Mout,; = €XD —< = j—> ) N ol i) G =10 ¢ ()

O'jﬂ
4/ J(ZJa 035 T]) ngtvi < Zz
ﬁgUtj,i y 1 1 ) ZZ <T; < gﬁ (6)
N({, 056 M24,) Moty > €
P € +¢)
2 N(gﬁf;n) T S —5 .
"M Ci+¢) (™)

N(ZZ7 O’f’ nzt’ui) €T > 27
After getting b . ab ,ve expression of the fuzzy set, the fuzzy rule exposed in
Eq. (3) cer. be tic sformed (2) into a more interpretable form as follows:

R;:If X isn, 4t12 and X5 is ﬁout22 and ... and X,,, is ﬁoutMQ Then y; = I‘éQl
(8)
wher j is tI > number of rules, nu is the number of inputs. This transforma-
tion tec.~'que has overcame the issue of transparency of the multi-variable
Getsst s function. The validity of 75, . = [75., 7>, ] is proven in [55].
) »7 T —OU, 7,
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In the third layer, the upper and lower bound of memb.~sk.p degrees
are connected using the product ¢ — norm operator in eac.. fuzz, set and
generates an interval-valued spatial rule firing strength as .'lows.

(ou); = [T (a) s = T (ona) o > (owa); = 11 )50 = 11 (o)
k=1 k=1 k=1 k=1

(9)
The forth layer is known as temporal firing lav.i. 1u chis layer of Mec-
SIT2RFNN a local recurrent connection is observ=d wh« re the spatial firing
strength of previous observation is fed back to iv. ~If ar< generates a temporal
firing strength as follows:

(nout)ia - A? (natv);L + (1 - “;).\ ﬁ?out)j(n - 1) (10)
(toue) 1 = A2 () + (1 A7) () (1= 1) (11)

where A? € [0, 1] denotes a recurrent w~1gr « Jor the ith rule of the oth class.
The fifth layer of McSIT2RFNN is t" = cou '‘equent layer, where the Chebyshev
polynomial up to the second order is ~ti.'7ed to construct the extended input

1

feature x, [63]. This Chebyshev .. :mc mial is expressed in Eq. (12).

Tni1(T) = 22,70 (Tk) — Tno1(xk) (12)

If X is considered as a 2-D nput ¢ mposition like [z1, x5, then the extended
input vector can be pres nteu as z. = [1,z1, To(21), T2, T2(x2)], where z, €
R+ and p repres nts che input dimension. This layer functions as an
enhancement layer thet 1. s t) the original input vector to high dimensional
space to rectify the r ~vping capability of the rule consequent. The extended
input variable z. is weigh. 1 and generates an output of the consequent layer
as follows:

(Now)” = 210 (13)

i
where ©; is 7 co’ nection weight between the temporal firing layer and the
output layer. T. tho output layer, type reduction mechanism is observed,
where ¢ d sign coudicient method is used instead of commonly used Karnik-

Mendel ( {M) te hnique. The final crisp output of the McSIT2RFNN can be
expressed a. - lLiows:

(1 - QOut) (m) iO (nout) f Qout nout) io (nout) 25

S (), L (),

You. ~ U]out)G = (14)
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where R represents the number of fuzzy rules and ¢ is the derign factor
q € R*"°. The q design factor based type reduction mechan.. M pe. “orms by
altering the proportion of the upper and lower rules to the .. ~al ciisp output
of McSIT2RFNN, where the normalization term of the or’ zine g u.csign factor
[64] is modified to overcome the invalid interval as shown 1. '55].

2.2. Meta-cognitive learning mechanism of McSIT2h "NN

In meta-cognitive learning policy, incoming treiune data streams ((Xn,),
where X, is an input variable vector ) are fed int. t!'c w .at-to-learn section.
In this section, the probability of a sample to s.~v iz Lne existing cluster is
calculated as:

¥ S Sn XN X)

R Ni (XN, Xn)

7

P.(X, € N;) (15)
where, Xy is representing the current incon..ng data stream and X, is indi-
cating the nth support of the ith clusy v, v <. awhile Sy (Xy, X,,) is defining
the similarity measure. Since Eq. (15, requires to revisit previously seen
samples, its recursive form is formulc te' as follows:

Zgil Su(Xn, X5) _ Zg;l Do (Xnj— Xn;)?

_ (v = Dawg® =230 ang Ky + owy (16)

where, Ky, j = Kn,—1, v, j, and vy, = N1+ D5 TN, 14

The necessity of 7 data saiaple to be trained by the how-to-learn section is
monitored by the wanat-tc 'earn section through computation of the sample’s
entropy which prct1 ys the level of uncertainty caused by the samples as

follows:
R

H, N|X,) ==Y P(X, € N;)log P.(X, € N;) (17)
i=1

In McSIT2RFNN structure, a highly uncertain data stream is accepted as

a training samp! : since it helps to mitigate the uncertainties in learning the
target ‘.activu. However, it opens the door for outliers to be fed to the how-
to-lec rn seci'on. To overcome this shortcoming, the entropy or uncertainty
measu. ~1 b Eq. (17) can be weighted by its average distance to the R, which
a1 w.. “onsest local regions of the cognitive part [65]. Thus, computation
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of an average distance between the enquired sample and foca. nc.nt can be

expressed as:

S similarity(X, C;)
R

where similarity (X, C;) is a distance function that coputc- the pair-wise

similarity value between two examples like Cosine, I uclide n, etc. Finally,

combining the concept of Eq. (18) in Eq. (17) the Hy, ~an e modified as:

Ay(X) = (18)

Hyy = Hy (N X)) x Ag(L0) (19)

Acceptance of a data stream depends on the 1. agnitude of Hy. in Eq.
(19), where Hy, should be greater than or equ.' to < threshold as follows:

Htr Z i (20)

where 0 denotes an uncertainty thre. .. -hich is not constant rather it
is adjusted dynamically. In this methc., 0 is set as dyi1 = In(1 £ s4),
where dy41 = Oy (1 + s5) creates ato. enuation by admitting training data
from the training process for minimizng the computational load and vice
versa. The value of the step size s, *s set as 0.01, which refers to the thumb
rule in [66]. This tuning scenario is necessary notably in non-stationary
environments since a conce ,t chage directly hits the sample consumption.

After satisfying the cona.""on o Eq. (20), a data stream is fed to the how-
to-learn phase. The how co-'eari, phase of McSIT2RFNN is derived from the
Scaffolding theory. It «~ccmprssses both parameter and structural learning
scenarios which are cone in '.e strictly single-pass manner.

2.2.1. Mechanism ~f grow.ng rule

The feature f growing rules in the how-to-learn section is governed by
the Generalized 1, ne-2 Datum Significance (GT2DQ) method forming a
modification Hf t'.e neuron significance of [67, 68] to the context of interval-
valued multi-, > iab’e fuzzy rule. Gaussian Mixture Model (GMM) is used
in this me.nod as vhe input density function to cope with complex and even
irregular lata ciouds. The extended formula of the neuron significance for
the mu'i-va.” le Gaussian neuron [68] is further extended to the generalized
inter: al-valt »d neuron in [55], which is utilized in the rule growing mechanism
of this work To express the significance of 7th multi-variable interval-valued
rv o, “he L, — norm of the error function is weighted by the input density
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function which can be presented as follows:

e= 191 =) ([ exploulle - CIR plote))
AN

w0l ([ ool = ¢ ptoien @)
where the Gaussian term under the integral can e written as follows:
(2 /u)™/?det(8:)V* x N(z; ¢S /), 7 = (¢, C))

Therefore, it can be realized that the neuro.. sign‘dcance depends on the
input density p(z). Usually, the input densi.” p(x) is considered to follow
simple data distributions as explained in "55; o1 uniform data distribution as
described in [70]. Utilizing the concept of CMM, p(z) is able to cope with
complex data distributions and can be exj .c.sed as follows:

p(x) =" am N (&5 vm, Si) (22)

where N(x; v, 2,) denote~ multi-variable Gaussian probability density
function with mean vector J,,, € h'*™ and covariance matrix ¥, € Rrexnv,
o, denotes the mixing ceethc -t which satisfies the condition Z%ﬂ Uy =
1, a, > 0. Now usin/, th: GMM in the input density p(z), the further

derivation can be expres.~ ( as follows:
E =1 . (1 fl)((27r/u)det(2i)_l/2

> o [ N(@ GE7 u)N (@5 v, S )da) "
>, SRnu

€0 lug((27 fu)det () 2

o
< Zam - N(m;gixfl/u)N(m; Uy L)) M/ (23)
m=1

The “ategra. term of Eq. (23) is a product of two Gaussian distributions and
can be alve d as [on. N (256X /u)N (23 Uy S )da = N(G—vm; 0, 571 /u+
>, ;. ‘rcordingly, the final formula of the GT2DQ method to express the
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significance of the ith interval-valued multivariable rule [55] is ~x ressed as:

1/u

& = I1u(1 = a){(2n /)" det() 2N}
19 af (2w 2den(m) 2T 24)
In (24) the mixing coefficient is denoted by v and ca be ex ressed as:

V=0, ey Qoo g € F 5T (25)

In Eq. (24), N; and N, are defined as N; = | N(¢, -v1;0, % /u+%), (¢, —
V2,0, 57 u+0), o, (G —0m; 0,57 u+ 30 o (G — v 0,57 Ju+ ) |
N,y = [N(¢,=v1;0, 57 /utD0), (¢, =25 0,5, us Tg), oy (€ —0m; 0,57 Jut
Sin)y s (€ = 050,87 fu 4 ) |

Lo-norm is utilized in McSIT2RFNN w: ~re u = 2 since the majority of
the researchers are using the same te .. "~ Besides, some parameters of
the Gaussian Mixture Model (GMM), 1.~ mely the mean v,,, the covariance
matrix X,,, the mixing coefficients «, ., ~na the number of mixing models M,
are acquired using previously recorded lata points Nyerecora like [69, 67, 68].
In today’s world of big data, havin, access to the Np,erecord 1s €asy. Further-
more, the total number of training data samples is noticeably larger than
that of the pre-recorded de.a sa. ples. The proposed method’s sensitivity
with regards to an altered 1. -maber of prehistory samples is analyzed in [55],
which proves that the N, ¢ orq -3 DOt case sensitive.

In McSIT2RENN, e _ene ation of hypothetical rule depends upon an
incoming data strear. and ."crefore, ¢;, ¢;, X ! are substituted with ¢y,
Crits Efz}rl' The for mul~ for crafting a hypothetical rule can be expressed as
follow:

max((C; — Ci—1), (C; — Ciy1))

/1
In(e=0.5)

where € .3 a predefined constant with a set value of 0.5. The e regulates
the proyorue.. of rule base plenitude. AX is the uncertainty factor which
initie izes tL > footprint of uncertainty. In McSIT2RFNN, the value of AX is
fixed & 0.1 “Or simplicity, although one can also use an optimization technique
tc «o, ot the uncertainty factor. A hypothetical rule can be added as a new

Crin =2 n 2 AX, diag(Spi) =

(26)
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rule by utilizing Eq. (26), only if the condition of Eq. (27) ‘< catisfied as
follows:
max (&) < (Ep1) (27)

i=1,...,.R

However, this condition itself does not suffice to be ti. only criteria to
judge the contribution of a hypothetical rule because ¢ - the fact where limited
information in respect to the spatial proximity of a « ata sa aple to existing
rules is included. The distance information is reo . ed . delineate its rele-
vance to current training concept. To overcome he ".m, ation, another rule
growing condition need to be satisfied as follow.

Fz < p, where Fz = i31lf.i..},(R(q(z7°“—t>? + (1 —¢q) (m)f) (28)

where p denotes a critical value of the -u-square distribution x? with nu
degrees of freedom and a significant « level. 1.. [55], the p is expressed as p =
exp(—x?(«)), which is similar to the ex, res 1oi of [71]. In McSIT2RFNN, the
value of « is set as 5%. To computs the . 'z of Eq. (28), the ¢ design factors
are applied for considering the effect ¢t icver and upper rules. When a newly
added rule satisfies the conditior. .\ 7~ ‘28), the new rule is sufficiently away
from the existing rules, and consequ.ntly, has a low risk of overlapping. A
similar approach is observed = 69, 67, 68]. However, McSIT2RFNN utilizes
the spatial firing strength “astead »f measuring point to point distance [69,
67, 68]. The second section o Fe. 28 indicates the maximum spatial firing
strength, which is also «no /n as the winning rule. Finally, a hypothetical
rule is added as a new 1.": by complying Eq. (26), Eq. (27) and Eq. (28),
where the consequer vart o1 the new rule is expressed as follows:

Qri1 = Quin, Y=0w (29)

where @ is a lrrge | ~sitive constant of magnitude of 10°.

When a ! ypcchetical rule does not satisfy the condition of neither Eq.
27 nor Eq. 2», rhe'. it is not added as a new rule. Nonetheless, the rule is
then utilied by fine tuning its antecedent part. This tuning helps to absorb
informati ' carr ed by the latest data stream, while it maintains the existing
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network architecture as follows:

- N N-1 (XN—6'<N_1)
N __ wn N—1 win
Cuin" = mcwm + N N_1 11 (30)
Ywin(N —1)71 o
X]win N _17 = ==
(N) 11—« - 11—«

(Ewm(N — 1)71(XN — éwinNil))(Ewin(N . 1)71 (XN - é\winNil))T

~

1 + a(XN - Cme71>Zwm(O] 1)71 il:\] - éwinNil)T

NwinN = NwinN_l +1 (32)

where @ = 1/(Nuin ™™ 4+ 1), Cuin = [Coin Cuwin)y and Coin = (Cone +
am) / 2. This adaptation technique is awacied from the idea of the se-
quential maximum likelihood principle with ~n extension for incorporating
the interval valued multivariate Gaus.‘an rw.action. Here the mid-point of
uncertain centroids are utilized to a 'apt . 1e certain input covariance matrix.
The inverse covariance matrix is adj. suw.d directly with no re-inversion pro-
cess. This re-inversion process ¢ . - a.wn the model update. Moreover, it
may cause unstable computation in ‘he presence of an ill-defined covariance
matrix. A constant, ky,, is »»nlied in our practical implementation where
it aims to replace big values of in erse covariance matrix causing numerical
instability. Note that big valu. = of covariance matrix means very small values
of covariance matrix imr yir g the Gaussian function with a very small width.
In relationship to Scafto.1"ag *aeory, the rule growing and adaptation tech-
nique described in t) ‘s sub-scction can be categorized as the problematizing
component of active sup ~rvision due to its relationship with the drift han-
dling approach d-.¢ .o the capability of updating the model with respect to
the learning con. »xt To overcome the drift, McSIT2RFNN embraces a pas-
sive approach Hy upg. ~ding its structure continuously in accordance with the
new incomin - sa aples, and does not depend upon a dedicated drift detection
approach like [ !

2.2.2. M. ~hanis n of pruning rule

T} _ .dea o1 the neuron significance is also used in the rule pruning scheme
due t) its ca ability of detecting a superfluous fuzzy rule which does not have
a signi. >, role during its lifespan. Generalized Type-2 Rule Significance
(Ctzr 25 method is utilized in McSIT2RENN, which is an enhanced version
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of the T2ERS method through the utilization of the interv.'-v-.iued mul-
tivariate Gaussian function [73]. The GT2RS technique fol'aws ‘he same
principle like its rule growing counterpart, where a fuzzy - ..>’s coitribution
is evaluated based on its statistical significance present d ir. ky. (27). To
sum up, a rule is pruned from the training process after satis. 7ing a condition
as follows:

ZN
E < mean(&;) — 2std(&;), mean(&;) _N -

(’\4
std(E.,) \/an in me‘m( ) (33)

The calculation of mean and standard ¢~viay.~ of Eq. (33) can be done
easily in a recursive way. The condition of Ea. (..?) analyzes not only the sta-
tistical contribution of ¢th rule during its ‘ifetime, but also the down-trend
of the statistical contribution of tha’ -=le. [he GT2RS method can ap-
proximate the rule significance rigorous.” by considering the overall training
region, which verifies the methods - cti\~ness. In addition, the capability
of handling complex and irregular da.» a.stributions of the GMM based in-
put density function p(z) is indica" "ng w.at the future contribution of the ith
fuzzy rule is also taken into account auring the estimation of the rule signifi-
cance. Furthermore, by utili.ug ™q. (27) in GT2RS method, the influence of
the local sub-model €2; is c.vsidere 1, which is usually ignored by most of the
rule pruning techniques. it is v~ th-noting that the contribution of a fuzzy
rule to the overall syst »m outrut is highly affected by the output weight.
Low output weight fcrces "he output of a fuzzy rule to be negligible. The
GT2RS method is r: ~esenting the fading component of active supervision
in Scaffolding theorv.

In this work. asii g the default threshold values of growing and pruning
module, only two .- tes are generated and no rules are pruned to identify the
quadcopter from lata streams with a very insignificant RMSE. Therefore, to
observe the . "l¢ priaing mechanism clearly, the rule pruning threshold has
been redu- .d frou. 0.9 to 0.4 and rule growing threshold from 0.45 to 0.25 in
case of n hdeling quadcopter with 27000 samples. After that, the number of
generated ¢~ _runed rules have been witnessed graphically as follows:

2.2.5 Mech mism of forgetting and recalling rule
Type 2 Relative Mutual Information (T2RMI) method is utilized in Mec-
S1.72F « (vN for detecting the obsolete rules, where the main idea is to examine
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Figure 2: Number of added and pruned rules with a 1. 'ces threshold (in case of quad-
copter model with 27000 samples)

the correlation between the fuzzy rules and tu. target concept. This T2RMI
method is an improved version of RM™ v etuod in [74] with respect to the
sequential working framework of th T2k MI. Moreover, the T2RMI method
is tailored to cope up with the methc 1ow 2y of interval type-2 fuzzy system.
Unlike the RMI, in T2RMI the asl> m compression index (MCI) [75] is
utilized, which ameliorates the robus.ess of the linear correlation measure.
In comparison with other lins .. ~orrelation measures like Pearson coefficient,
the MCI is not affected by " otation The MCI is another improved character-
istic of the T2RMI meth: d w. ' h espect to the RMI method since the RMI
method is still support-d b/ the classic symmetrical uncertainty approach.
The T2RMI also has the  biliy to detect the outdated fuzzy rules by ana-
lyzing their relevanc . +o the current data progression. In McSIT2RFNN, the
T2RMI method is expres. ~d as follows:

E((out) v t) = € ((1,,,)7 Yout) + (1= 00)E((Toue) ;» Your) (34)

1

f((ﬂoutﬁyyb )= é(var(ﬂout)f) + var (Your ) —

Var g )7 = var(ye))? — dvar(y,,)? var@o) (1 - p((n,,,)% vour))
(35)

OV (1): Yout)

\/V‘?“r (1m,,,,);)var (Your)

() Your) = (36)
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where var (nout)?, cov (nout)?, p(nout)? respectively represent *hr variance,
covariance, Pearson index and output variable of the ith fuzzy mile v, 'th lower
bound. Similar technique is also applied to the upper bour . f the fuzzy rule
§ ((Uout) yout) Since the spatial firing strength extracts che elevance of the
fuzzy rule in the input space, the fuzzy rule is represented by _he spatial firing
strength. In principle, 5((770ut) yout) implies the eig envalu » for the normal

direction to the principal component of two variables ’ (7 dt)z‘ , yout), where
maximum data compression is attained in time c. prc,.~tion of information
along its principal component direction. Therefoi., the VICI has the ability
to categorize the cost of discarding the ith rule ~om the training process,
aiming to achieve the maximum amount of forma ion compression. Some
interesting features of the MCI is exposed i~ [5o] A fuzzy rule is regarded
as obsolete, or the rule is forgotten after satisfv. o the condition as follows:

N gn
§ZO < mean gzo Q‘Std(glb ) mwl(é'i,O) = Zn]_\; gz,ov

std(€,.) = \/ Zoe 6 RN’ (37)

1

The T2RMI method is also utili.~d to recall the discarded rules when
they become relevant again .. ‘he output of the system. This function is
supported by the fact tha’ correl tion of a rule to target concept is influ-
enced by the environmer:s. 1. o her words, in McSIT2RFNN a fuzzy rule
is not permanently del ted and is added to a list of rules pruned by the
T2RMI method R* = R . 1, - here R* is the number of deactivated rules by
the T2RMI method Such a rule may recall in the future when it becomes
relevant again to tne sys.~ms output. This rule recall scenario makes the
T2RMI method tfe tive to deal with the cyclic drift by remembering old
data distribution, v nich increases the relevance of the obsolete rules. The
rule recall tec’micue 1. activated after satisfying the condition as follows:

max,_ ) -~ max(;), where i =1,..., R*andi=1,...., R (38)

From Eq (38) .% is obvious that a rule is recalled when the validity of the
obsolete ru'= is Ligher than any of the existing rules. Therefore, an obsolete
rule t rings “he most compatible concept to describe the current data trend
and s ould ! e reactivated as follows:

Cry1 = Cp, ER+1_1 =%t VUreir = Vi, Qppq = Q- (39)
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Unlike the rule recall concept in [76], the rule recall sc.ma 10 of Mc-
SIT2RFNN works as another rule growing mechanism as < ~rific in [55].
The rule recall scenario can be categorized as the problem ... 7ing , art of the
Scaffolding theory.

2.2.4. Mechanism of Merging rule

In the online identification of a quadcopter, a cow vlete ‘.ataset may not
be available. This phenomenon creates an opportr ...ty tor two rules to move
together which may cause a significant overlapy ne as . result of the con-
tinuous adaptation of fuzzy rules [77]. There’~re, ~» online rule merging
mechanism is required to reduce the system’s cou »lexity and to improve
rule interpretability. Recently, the idea of onli.. rule merging has been intro-
duced in EIS by [63, 78]|. However, in these ap ~roaches, an over-dependence
on a problem-specific predefined threshc « o uetermine an acceptable level
of overlapping is observed, which limits the 1. xibility of EIS.

A novel online rule merging techni e caed Type-2 Geometric Criteria
(T2GC) is utilized in McSIT2RFNN. 1. GC is an extended version of ge-
ometric criteria of [79], which was C=vi'oped for the type-1 fuzzy system.
This T2GC not only observes & >~ « erlapping degree between rules but
also looks at their geometric interprc ation in the product space thoroughly.
Two important properties of *»is T2GC are the overlapping degree and ho-
mogeneity. These two crite.ia are applied mainly to examine the similarity
of the winning rule in light o1 ‘he fict that the winning rule is the only one to
receive the rule premise ads ptation expressed in Eq. (34)-(36) and a major
underlying reason of ove "app'ag. Hence, this procedure targets to relieve
the computational b rden.

Quverlapping Degr-_  The overlapping degree examines the similarity level of
two rules to an' lyze their possibility of being redundant. Because of the
necessity of develo.ng a threshold-free rule merging process and the con-
struction of McSIT2RFNN is with multi-variable Gaussian function, the
Bhattacharyye« dist unce is utilized[80]. The benefits of using the Bhat-
tacharyye distence is that it can analyze whether two clusters are exactly
disjoint, «Huchin ;, or overlapping without any trouble in selecting predefined
thresh~'1. 1. overlapping degree between the winning rule and other rules
i={.,..,t \ {win} can be expressed as:

s1(win, 1) = (1 — q)s1(win, 1) + qos, (win, 1) (40)
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1
31 (U)Zn, Z) — _(Ewin — Ei)TE_l(Ewm Cz> 5 det(z—; - /S‘—_ (41)
win/ 4 )
1 1 dev ¥ 1
s1(win, i) = 2(Cuin = €)' 27 (Com =€) + 511173 t?% ) ()2_1) (42)

where ¥7! = (X; +%; ") /2. The conditions such 7 51w, i) > 0, s1(win, i)
0, and sy(win,i) = 0 exhibit respectively the o erl- ppi1g, disjointing, and
touching phenomenon of two clusters. In the N ~SIT?R.“NN, the rule merg-
ing process is considered mandatory when two rule. are overlapping and/or
touching as follows:

s1(win, 1) > U (43)

It is important to mention that the ut..'zation of Bhattacharyya distance
is suitable for the McSIT2RFNNs rule ~ince tne multivariate Gaussian func-
tion in the Bhattacharyya distance has a one-to-one relationship with that
of the McSIT2RFNN.

Homogeneity Criterion. Homog -...*:7 « f clusters has an important role in
merging two clusters, since the mei_ing of non-homogeneous clusters may
cause cluster delamination, »~-Jermining generalization and representation
of local data clouds [81, 79" The \'luster delamination is indicating an over-
sized cluster that covers two ¢~ wore distinguishable data clouds. The mea-
sure of homogeneity of c.ust rs in McSIT2RFNN is formulated by examining
the volume of the merge.' cluccers in contrast with their individual volume
as follows:

Z/,na ed + vmerged < U(Dl + Zz + ﬁw“l + Zwin) (44)

Finally after sav.~fving the condition of Eq. (43), and Eq. (44), the rules
are merged. 2q. (44) also presents a minor chance of cluster delamination
since the volu.. » of the merged cluster is less than the volume of two inde-
pendent r.usters, and therefore the two clusters form a joint homogeneous
region. The terr 1 u is involved in Eq. (44) to combat obstruct the curse of
dimen<’ nau.,.

A ter sa'sfying all rule merging conditions, two merging candidates are
combu. ~d. “ince a rule containing more supports should have higher influence
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to ultimate shape and orientation of the merged cluster, the *v'e merging
procedure is directed by the weighted average strategy [77] a. foli s:

~ ld Id | /1 old Id
-~ Cwino Nwino +Ci0 Nio

new
Cmerged - N old N old )
win + i
~ al new old old
Oz' - [Ql + Oz]a Nmerged - Nwin + Nz (45)
1 w _
2_1 new Ewmoldemold + ) _Zuld NT.old
merged - I
g Nwin()ld + Nz
ld ld 1d n, wd
new Qwino Nwino + Sli Nz ‘
Qmerged = | (46)

Nwmold 4 7\[iold

2.2.5. Mechanism of Online Feature Selectior.

The feature selection mechanism play - an 1mportant role to improve the
performance of EIS by reducing computation.' complexity and makes mod-
eling problems easier to solve. Therefc e, eavure selection characterizes the
complexity reduction part of Scaff 'ding theory. Majority of these feature
selection mechanisms are a part of » L e-processing step. However, very
recently research in online featu. - . !~ ion mechanism of EIS is being con-
ducted [63, 77, 81]. These techniques ~an minimize the significance of incon-
sequential features by assigni- _ = low weight. But they still keep superfluous
input attributes in the m' mory. Therefore the complexity issue remains
unsolved. Besides, in rezent ™I¢s the online feature selection mechanism
only measures the relevanc: between input attributes and target variables.
They do not consider thc ed’ ndancy among input attributes. A novel on-
line feature selection mechanism, called Sequential Markov Blanket Criterion
(SMBC) is utilized m McITT2RFNN, which is able to mitigate all the above
mentioned limite ;101 5 of the existing EIS and works completely with the
single-pass learu. ~o cnvironment. It is an improved version of MBC [82].

By analyz'ng the Markov blanket theory, four different types of input
feature are < bte ned in respect to their contribution; they are namely: ir-
relevant, woakly - evant, weakly relevant but non-redundant, and strongly
relevant. The CMBC targets to eliminate irrelevant, weakly relevant input
features 1. m t'.e training process, while keeps weakly relevant but non-
redur uant, and strongly relevant features in the training process. In SMBC,
C-Co relatic 1 and F-Correlation tests are developed and then utilized to
deal wivi. vne issue of irrelevance and redundancy respectively. These two
cou els aions are defined as follows:
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Definition 1 (C-Correlation) [82]: The relevance of ti. ir Jut feature
15 indicated by the correlation of input feature xy and targ.* var.-ble tyy,
which are measured by the C-correlation C(xy, tou)-

Definition 2 (F-Correlation) [82]: The issue ¢ recunuwuncy is sig-
nified by the similarity degree of two different input vari."les xp, xp, k #
k1. The measure of similarity between two input at’ibute. is called the F-
correlation F(xy, xp).

The MCI method exposed in Eq. (34)-(36) s adopted to analyze the
C and F-correlation. It is accomplished by just rolaciag ((77out)3 yout) in
Eq. (34)-(36) with (zk,touw), and (zg, zg1). Tu SMIC is implemented in
two stages, where in the first stage the F-correlatic 1 eliminates the incon-
sequential features, and consequently redv-e cc mr'exity. It helps the next
step, the C-correlation, to run with a smaller n. mber of input variables. The
working procedure in the F-correlation a. 1 C-correlation in McSIT2RFNN
is described elaborately in [55].

2.2.6. Mechanism of Adapting q de “an j.ctor and recurrent weight

Adaptation or fine tuning of the 1.~ network parameters of the Mc-
SIT2REFNN, namely the design ¢ .l.2*~ 'ts and the recurrent weights are ac-
complished by utilizing the zero-order lensity maximization (ZEDM) method.
This ZEDM method is an i, ~ved version gradient descent technique since
ZEDM utilizes error entro’.y as ccst function unlike the mean square error
(MSE) in gradient descer® tec. nic_ue, therefore leads to a more accurate pre-
diction. Since the accurate model of the error entropy is too complex to be
derived with the first-ori.. le technique, the cost function is formulated by
utilizing the Parzen ¥ "indow uensity estimation method and can be expressed
as follows:

~

. N 2 2
i, V2 _en,O —€n0
f0) = 5 o el = 1 mZ ) U

where e, o repre.~r s the system error of the oth output variable, 17" denotes
a smooth ng pa ameter, fixed as 1 for simplicity and N is the total number
of sample. seen so far. It is worth noting that a recursive expression can be
derive 1 10 satisfy the one-pass learning requirement. The detailed adaptation
proce ss is exlained in [55].
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2.2.7. Mechanism of Adapting Rule Consequent

The adaptation of the rule consequent represents the pass.—e su, ervision
of Scaffolding theory because it relies on the system errs., actueiizing the
action-consequent mechanism. For adapting the rule cor seq” ent che Fuzzily
Weighted Generalized Recursive Least Square (FWGRLS, method [62] is
used in McSIT2RFNN. FWGRLS is an improved ver sion o. the Generalized
Recursive Least Square (GRLS) method [83] and perfc mms lc cally. This local
learning scenario provides a flexible mechanism e.a greater robustness, be-
cause each rule is fine-tuned separately. Thereby, e vre earning procedures
of a particular rule do not affect the stability .nd . _.vergence of remain-
ing rules. The local learning scenario also raises th » interpretability of the
TSK fuzzy rule as explained in [84]. The d-tan. of ‘ne FWGRLS method is
elaborated in [62, 63, 70].

3. Quadcopter flight experiment ~~d ounline system identification
results

3.1. Ezxperimental set up of quadcop.=1 Tight

Our quadcopter experiments ~c.> = complished in the indoor UAV lab-
oratory at the University of New Sou"h Wales, Canberra campus. We use a
Pixhawk autopilot framewor' '~veloped by an open and independent hard-
ware project called PX4. rhe Pi:hawk flight control unit (FCU) is man-
ufactured and sold by 31" ro.~ti's and has three onboard sensors; namely
gyroscope, acceleromete ., a.d magnetometer. The experimental quadcopter
model is displayed in 1y e 2 To record quadcopter flight data the Robot
Operating System (7 9S), running under the Ubuntu 16.04 version of Linux
was used. A ROS packag. called MAVROS was utilized in this work, where
the MAVROS h-d «nabled communication between the PX4 and a ROS
enabled comput. - 3y utilizing the ROS, a well-structured communication
layer was intr- ducea :ito the quadcopter that reduced the burden of having
to reinvent r ~cer sarv software.

During *he 1o 1 ¢ime flight testing accurate vehicle position, velocity, and
orientaticn wer. the required information for verification of the proposed
McSIT2R."NN 1 ased on-line system identification of quadcopter. In order to
track .he gradcopter in three dimensional space, a VICON optical motion
captt e syst m was employed to track the UAV motion with sub-millimetre
accuracy. «he indoor VICON motion capture system consisted of a volume
the © was 10x10x4.3 m?® and formed by a netted truss framework.
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Figure 3: Pixhawk autopilot based experi.. ntal quadcopter model

The object tracking information w-~ routed to the quadcopter via a cus-
tom SDK UDP package to the desired . iddress which in our platform was
an Odroid single board computer. ... eac. time step, position, velocity and
orientation information was recordea rLuring testing the pilot controlled
the quadcopter RUAV manually ‘rou. wn RC transmitter using pitch, roll
and yaw and thrust commands. To 1ccord key published topics, the rosbag
recording tool was used. T'.c ;. <bag enables us to record and synchronize
all critical experimental d: -a via ~ ublished topics that are required for on-
line system identificatior. Figu - 4 represents the way of communicating of
the experimental quadropt r UAV system during all the flight tests, where
the dotted lines repre ents i :less communication and solid lines represents
wired connection.

3.2. Online systc.n « lentification results

J

For system ide. ’ fication of the quadcopter, a variety of quadcopter flight
data have be n vtilized. Among them, there are three different datasets of
quadcopter’s ~1*.tuc 2, consisting of approximately 9,000, 27,000 and 66,000
samples. T.ing ti. se datasets, the quadcopter’s altitude based multi-input-
single-ou put (N ISO) online system identification model of quadcopter has
been consy.et.d by utilizing the proposed McSIT2RFNN technique [55].
The  ropos 4 technique [55] based online data-driven quadcopter model has
been ~lso s ructured from four inputs and output datasets (vertical alti-
tv '~ and the three rotational movements (6, ¢,v)). The time step of all the
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Figure 4: Pixhawk quadcopter RUAV s communication flow

dataset was 0.0198 sec. For compari. < ~nd salidating the accuracy of the pro-
posed technique, the quadcoper’s data (riven model has also constructed with
eight different renowned EIS base neuro-fuzzy system, namely: eTS [44],
simp_eTS [85], DENN [86], GDFNN [37], FAOSPFNN [88], GENEFIS [62],
Adaptive Neuro Fuzzy Infer nce . rstem (ANFIS) [89], and PANFIS [70]. For
the performance analysis ti.. RMS J, number of network parameters, number
of training samples, fuzz rules, . ad execution time have been considered for
each algorithm. All the res (ts are summarized in Tables from 1 to 4. Table
1 to Table 3 express “ne res *'.s for a MISO quadcopter model with approx-
imately 27,000, 66, Ju, ~nd 9,000 samples of quadcopter’s altitude for three
different flight res~~ctively. Table 4 summarizes the results of the MIMO
quadcopter mod L. T is clearly observed from the results that, among these
eight different algc ithms the proposed McSIT2RFNN algorithm performs
the best, sinr e th e lowest RMSE, fastest execution is observed. Besides, by
utilizing the ." at-t>-learn mechanism the McSIT2RFNN has reduced the
number ¢’ samnles required to train, which helps to reduce the execution
time as o»servec in the Tables from 1 to 5. This sample deletion mechanism
is not »*ilizc ! L any other renowned variants of EIS discussed in this article.
The « Ititude tracking performance of the proposed McSIT2RFNN algorithm
based MISC quadcopter model with nearly 27,000 and 66,000 samples are
di .l ;4 in Figure 6a and 6a respectively. A MIMO quadcopter model
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with nearly 9,000 samples for identifying thrust, roll, pitch, ai.' v.w are dis-
played from Figure 7a to 7d correspondingly. From those Fig.ves 1v "5 clearly
observed that the proposed online models output are fol' ., ing .e desired
dataset collected experimentally very closely in all the asec. 1l.ie evolving
and online nature of the proposed McSIT2RFNN techniqw.~ helps to track
the quick changes in the desired trajectory.

In this work, to model the quadcopter with approx matel- 27,000, 66,000,
and 9,000 samples two inputs (X (¢) and Y (t—1)) we utinzed and in all cases
two rules are generated. The If-Then expressior. of che rule in this work is
exposed in Eq. (3). However, the rule presentea ™ E¢ 3) is not transparent
enough to expose atomic clause of the human-like 111 guistic rule. It operates
in a totally high dimensional space, therefore c."no’ be represented in fuzzy
set directly. To express such fuzzy rules witn multidimensional kernel, the
phrase "close to” is conventionally used v, v1|. As a solution, a transfor-
mation strategy is employed in this work as c.-pressed in Eq. (4) to convert
the high dimensional space based rule t- a lower dimensional human-like
linguistic rules. After transformat’ =, ri'es can be expressed in a conven-
tional interval type-2 fuzzy set envircnu. nt as exposed in Eq. (5), (6), and
(7). Utilizing those fuzzy set e. oovom of Eq. (5), (6), and (7), a more
interpretable fuzzy rule is exhibited .. Eq. (8).

Now the non-axis-paralle’ 'ipsoidal rule generated in the high dimen-
sional space by the McSIT :RFND in case of quadcopter model with 27000
samples can be expressed as i 'or/s:

Ry :If X is close to

_ [ —0F934 0 T2 277 [[00066] [2 2
fout \ Do = || —0 2258 J 2 2]t T 03542 7] 2 2
Then y; = —0.0042 — 0.0u39.X; — 0.00467(X;) + 0.9999.X5 — 0.00027(X5)
(48)
where 7, . = {ym,ﬁout} is the rule antecedent of the multi-variable

Gaussian funcu. 'n. which consists of uncertain centroids ¢ = [C ,a, where

- ).5934 = 0.0066 . .
¢ = [ 9458 ] ,and ¢ = { 0.3549 ], and the inverse co-variance ma-

Y 2 2 . . :
trix .70 = { 9 9 ]; y; is denoting the rule consequent of the ith rule
obtaine. Lom y; = x10;, where ©; is a connection weight between the

ter. oc ar ring layer and the output layer; In this work, X is a 2-D input

27




Type 2 Fuzzy Set of McSIT2RFNN
T

¢ = —0.5934
0.9

081 &= 0.0066
0.7+
06+

o1 = 0.25
0.5

Nout,

0.4

0.3

0.2

0.1 | | ‘\ \ bl

-1 05 0 5 1
Tlout, (k)

Figure 5: 1st Membership function (with uncei. 'm centroid and certain width) of rule 1
of McSIT2RFNN

composition like [z1, 3], then x, is .~ ex ~nded input vector obtained using
Chebyshev polynomial and can be exp.=sscd as . = [1, xy, 7(x1), 2, T(x2)],
where, z, € R4 1 s expre.~ug Lae input dimension.

After transformation of the rule p.:sented in Eq. (48) to a lower dimen-
sional space, it can be expre se as follows:

Ry:If Xy is close to P, (1, (—0.5934, 0.25),7,,, (0.0066, 0.25))

and X5 is close to 1o, (7 g - —0.2458, 0.20), gy, (0.3542, 0.20)) ,

Then y; = —0.0043° — 0.00037X; — 0.004577(X7) 4+ 0.99995X, — 0.000227(X>)
(49)

1
Lou

where 7oy, «d 7w, stand for the interval valued Gaussian member-
ship function corresp "nding to X; X,. The uncertain centroid of 7y, is
¢ = [, ¢ = |—0.5934, 0.0066], and width is o = 0.25, and for 7y,
those parameter. sre ¢y = [cy, G = [—0.2458, 0.3542], 0o = 0.20. The 1Ist
members 1ip fur -tion of our rule 1 is shown in Figure (5). The plotted mem-
bership fuctior has uncertain centroid of ¢; = [¢;, ¢1] = [—0.5934, 0.0066],
and c rtain width of o; = 0.25.
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Figure 6: System identification of Quad. ~nter MT,O model

3.3. Online system identification with nois: sa:. »l,

To prove the robustness of the McSIT2RFE 1\ against uncertainties, an-
other quadcopter flight experiment has be.n accomplished considering some
noise from VICON optical motion ce ~*»re system. The quadcopter flight
dataset consists of nearly 27000 sampl s with a noisy 1000 samples, which
is utilized to model the quadcopter The ~daptation power of the proposed
algorithm against noise is clear from t. e iowest obtained RMSE compared to
its type-1 counterparts. Furtheri.~ve, \.ith the noisy data still it can model
the quadcopter with only 546 data san.ples, where its type-1 variants need all
the training samples i.e. 16750 (0% of the total samples). Thereby, lowest
execution time in modeling the qu ydcopter is also observed from the type-2
fuzzy based proposed Mr SITzi " NN algorithm, which is only 2.13 seconds.
Therefore, the results re tearly indicating its improved performance and
uncertainty handling :apa.tv than the type-1 counterpart. The results are
summarized in Tabl : T

4. Conclusion

EIS is an r ppropr. te candidate for modeling a complex and highly non-
linear syster lik . qu «dcopter RUAV. The incorporation of McSLM with EIS
make it more ap opriate. Such an advanced EIS called McSIT2RFNN is
utilized t ) modc' the quadcopter with uncertainties from experimental quad-
copter flight da’a. In McSIT2RFNN, a new local recurrent network archi-
tectw ¢ 1s driven by the interval-valued multivariate Gaussian function in the
hidde 1 node and the nonlinear Chebushev function in the consequent node.
As with ..., predecessors, the McSIT2RFNN characterizes an open structure,
wh'ch aas the ability to grow, prune, adjust, merge, recall its hidden node
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Table 1: Online system identification . sw. .~ nparison of MISO quadcopter model (ap-
prox. 27,000 samples)

Algorithm Reference | MSE g:ﬁ:r(rﬁ;ers g;illr;lrelsg 1;{1111212}7 g?ri(;uzézz)
DFNN [86] 0770 10 16483 1 194.86
GDFNN [87] 20067 10 16483 1 329.93
FAOSPFNN [8& 0.0280 12 16483 2 38.10
eTsS [ 0.0021 40 16483 4 9.39
simp_eTS 1_5] 0.0020 13 16483 1 3.50
GENEFIS [A2] 0.0020 63 16483 1 3.29
PANFIS |70] 0.0020 5 16483 1 2.92
ANFIS loJ] 0.0061 36 16483 6 33.01
McSIT2’FNN  55] 0.0013 32 1279 2 2.27

autom. *ic2’,y and to select relevant data samples of quadcopter flight on the
> 2n online active learning methodology. The McSIT2RFNN is also

<

ﬂ) Uoda.
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Table 2: Online system identification result comparison of MISO quade nter model (ap-
prox. 66,000 samples)

Algorithm Reference RMSE gsgvr?i}l‘{gcrs g;ii?)llzf F U7| ;Y gii(;uzzg)
DFNN [86] 0.0810 10 39640 1 1113.69
GDFNN [87] 0.0080 10 39640 1 1666.33
FAOSPFNN [88] 0.0150 12 37040 2 135.59
eTS [44] 0.0016 40 3vC+0 2 21.03
simp_eTS [85] 0.0015 13 3uo10 1 11.20
GENEFIS [62] 0.0015 4 3964 , 1 7.63
PANFIS [70] 0.0015 5 39640 1 6.93
ANFIS [89] 0.0050 30 39640 5 34.93
McSIT2RENN  [55] 0.0008 32 2329 2 5.5

Table 3: Online system identification resu’t . ~mp rison of MISO quadcopter model (ap-
prox. 9,000 samples)

Network Training Fuzzy Execution

Algorithm Reference R .
& / Parameters Samples Rule  Time (sec)

DENN 186] vrh 10 5467 1 19.77
GDFNN [87] r14 10 5467 1 23.64
FAOSPENN  [8§] 0.2, 12 5467 2 28.58
eTS [44] 0.14 40 5467 4 2.10
simp_eTS [&F] 0.13 13 5467 4 1.77
GENEFIS 162] 0.13 26 5467 1 1.10
PANFIS 70, 0135 5 5467 1 1.15
ANFIS 89] 046 48 5467 8 36.94
McSIT2RFNN - =7 0.13 32 769 2 0.91

equir ped with the online dimensionality reduction technique to cope with
the c.rse of dimensionality. All learning mechanisms are carried out in the
sirole-pass and local learning mode and actualize the plug-and-play learning
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Table 4: Online system identification result comparison of MIMO quadc mter model (ap-
prox. 9000 samples)

Algorithm  Reference RMSEI RMSE2 RMSE3 RMSE4 gg:&ﬁm g;;ﬁllgf e :nff ugil) ig‘;ﬁute
DFNN [86] 026 018 014 015 10 5753 1 4998 1
GDENN [87] 023 018 014 013 10 5753 1 05.75 4
FAOSPFNN  [88] 055 028 014 013 12 575 1 12.11 4
TS [44] 022 020 015 010 292 5753 14 2006 4
simp TS [85] 029 031 020 018 104 sio3 b 8.11 4
GENEFIS (62) 024 019 019 011 4 575 1 6.1 1
PANFIS [70] 024 017 014 013 3 S5 1 54 4
McSIT2RFNN  [53] 023 017 014 010 66 161 2 45 4

Table 5: Online system identification result comp. <ison . ¢ ".1ISO quadcopter model (ap-
prox. 27,000 samples with 1000 noisy samples)

Algorithm Reference RMSE garwllterb g;illgﬁf gl:lzlzy ?ii?;;zlcl)
DFNN [86] 0.0583 v 16483 1 211.72
GDFNN [87] 0.014* 10 16483 1 328.56
FAOSPFNN [88] 0.0242 2 16483 2 216.47
eTS [44] 0"°79 40 16483 4 9.39
simp_eTS [85] 1.0212 13 16483 6 14.36
GENEFIS [62] 0.0uC7 63 16483 1 3.20
PANFIS [70] J.00r7 5 16483 1 2.79
ANFIS [89] 7061 36 16483 6 32.29
McSIT2RFNN  [55 0.0011 32 546 2 2.13

principle, whira ain. to minimize the use of pre-and/or post-training steps.
These featur :s }alp he McSIT2RFNN method to identify the quadcopter
RUAV more acc "re ely than other variants of EIS. Thus, the accurate MISO
and MIM O que lcopter modeling or better online identification results from
McSIT2R NN + crifies their feasibility in modeling UAVs. In future research,
a flexi’ie controller for UAVs based on McSIT2RFNN will be developed and
valid. te exp rimentally.
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This paper presents at the first time the real-world application of a newly developed algorithm, namely

MCcSIT2RFNN for online identification of rotary wing UAV.
Real-world experiments were carried out under real flight tests with a real-world quadcopter and

different flight conditions. Our algorithm was deployed to perform online identification of UAV
dynamic, namely position, velocity and orientation. Furthermore, another numeric .. validation using

artificially injected noise was performed.
MCcSIT2RFNN characterises the plug-and-play characteristic where all lea .ing components are

integrated in a single dedicated learning modules without the need of pre-and/or , st-training steps. It
also features the what-to-learn and when-to-learn scenario which makes po<sible . reduce the number

of training samples leading to faster training speed while producing enco .ragi" g «. ~uracies.
The advantage of McSIT2RFNN was experimentally validated using - al-world flight data and

comparisons with state-of-the art algorithms. It is shown that ov . algor. hm delivered the highest

accuracy while imposing the lowest space and memory complexities.




