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Online Distributed Fuzzy Modeling of Nonlinear PDF Cystems:
Computation based on Adaptive Algorithr, <

Mohammad Mehdi Mardani®?, Mokhtar Shasadeghi®*, Behrouz Safar uc 1dian , Tomislav
Dragi¢evic®

“Department of Electrical and Electronics Engineering, Shiraz University of Techne’ ,_, Moau. s Blvd., Shiraz, Iran.
b Energy Technology Department, Aalborg University, 9220 Aalb rg East, . *nmark.

Abstract

With the emergence of novel model-based controllers for parti: | differential equation (PDE)
systems, identifying the mathematical model of PDE ¢-'sten. h» become a promising and com-
plicated research topic. This paper suggests a new methoa . ~ identify an adaptive Takagi-Sugeno
(TS) fuzzy PDE model for nonlinear multi-input . -u-vupur (MIMO) first-order PDE systems.
The proposed approach is performed online based on u.~ measured input and output data of the
nonlinear PDE systems. Furthermore, the idei. ‘...~ nrocess will be obtained for the cases
that the noise is either white or colored. For the ¢ <. of white noise, a nonlinear recursive least
square (NRLS) approach is applied to ident -, the 1. nlinear system. On the other hand, when
the colored noise is exerted to the nonlinear PL ¥ s, ‘tem, the fuzzy PDE model of the nonlinear
PDE system and also nonlinear colored i -, ~~= . lentified based on the nonlinear extended ma-
trix methods (NEMM). Moreover, the proble.. of identification for both colored and white noise
cases is investigated when premise variables of membership functions are known or unknown.
Finally, in order to illustrate the ef ective. =ss and merits of the proposed methods, the identifi-
cation method is applied to a prac. ~al nonj .othermal Plug-Flow reactor (PFR) and a hyperbolic
PDE system with Ltka-Volterrs type a, ~ cations. As it is expected, the evolutions of the error
between the state variables fo the  otained TS fuzzy PDE model and the output data converge to
the zero in the steady-state con..”* ons. (hus one concludes, the proposed identification algorithm
can accurately adjust botbh -onseque. s and antecedents parameters of TS fuzzy PDE model.

Keywords: Nonlinear system 1u. ~tification, Nonlinear first-order partial differential equation
(PDE) system, Takag’ sug *no (TS) fuzzy model, Nonlinear least square (NLS), Parameter
estimation
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Acronyms
ANN Artificial neural network
EKF Extended Kalman filter
ELS Extended least square
EMM Extended matrix method

ERLS Extended recursive least square

GKCA  Gustafsone Kelssel clustering algorith.
LS Least square

LSE Least square estimation

MIMO  Multiple input multiple output
NEMM Nonlinear extended matrix r ethod

NLS Nonlinear least square
NRLS  Nonlinear recursive least . "are
PDE Partial differential equation
PFR Plug-flow reactor
RLS Recursive least squai.
TS Takagi Sugeno
Nomenclature

X Position

t Time

vi(x, 1) Jj-th system inpu.

y(x, 1) System input

zi(x, 1) i-th system o . *

Z2(x, 1) System output

Fuzzy sets

FL.

1
/,l[/-]i Grade ¢ menu. =rship functions
wﬁ(y(x, 1)) Degrec ~factivi ion of each rule
hﬁl(y(x, f)) Wei nting 1.~ dons

T Ar aptiv ¢ parameters in antecedent parts of fuzzy rules
e(x, 1) Mea. rem at white noise

u(x,t) Adaptive parameters

R, Co  ~viance matrix

i(x, 1) Estimation of adaptive parameters
P Covariance of the estimation

K Kalman gain

v(2, 1) 1.Ieasurement colored noise

C’J Set of adaptive parameters

hl.l. Set of adaptive parameters

ci.i Set of adaptive parameters

d. Set of adaptive parameters

Lu, x, 1) Nonlinear function
s U, x, 1) Nonlinear function
‘U, X, 1) Jacobian matrix
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1. Introduction

A significant number of physical phenomena in the real-world such as indu. 7 .l process and
biological systems inherently depend on spatially position as well as time \_ ». thc. - behaviors
are distributed in space) (1) (2). Whereas their dynamics depend on mor- “an o.. independent
variable thus they are well-known as a partial differential equation (PD7.) sy« .... ~ (3) (4). Based
on spatially distributed points, PDE systems are classified into three ca. < ries: (1) hyperbolic
(5) (2) parabolic (4) (3) elliptic (6). Consequently, due to infini* limens. nal and spatially
distributed behaviors of PDE systems, more effort is needed to des gn the ¢ ntroller, analyze the
stability and also identify the PDE systems. Moreover, it is gener. ''v mo : difficult to directly
apply the existing lumped parameter systems techniques to the aistributed ones (7).

Recently, a significant number of research has been devc ed ‘. the problem of stability and
stabilization of nonlinear PDE systems based on TS fuzzy PDE mode’ (5) (8) (9). TS fuzzy PDE
modeling of parabolic PDE systems is presented in (10) (11) "?) (13) and the hyperbolic ones
is investigated in (14) (7) (2). In the literature of PDE { stems, i1 is assumed that the nonlinear
system equations exist and subsequently, the exact TS fuzzy ~- uel has been obtained based on
sector nonlinearity approach (7) (15).

According to the control and system engineer.. - points of view, the fundamental part of a
study is achieving an accurate model for the existing 1. »ar or nonlinear physical system (16).
Since enough information for obtaining a suita. ‘¢ ... * ~matical model does not exist, the exact
mathematical dynamic representation of real-wo. - systems is seldom available (17). On the
other hand, in real applications, we encoun. » vith . nlored noise instead of white noise. Sub-
sequently, the effect of the colored noise is as ¢ -itic. 1 as the un-modeled dynamic in the system
identification and modeling (18). Hence, . - ..., ~* ant problem is to model and identify the linear
or nonlinear system based on input-output da.. The identified model must describe the physical
behavior of the original plant with an adequate level of accuracy (19) (20).

Most of the real-world systems ure inh. ently nonlinear (21) (22). Takagi-Sugeno (TS) fuzzy
models provide a powerful and sy. ~matic - ramework to analyze the stability and synthesize the
controller for nonlinear systen, (23) \.”,. Moreover, it can describe the complicated smooth
nonlinear systems in the conv « st «cturs (24) (25) (26). Thus, lots of attention has been focused
on the TS fuzzy systems during .* ~ las two decades (27) (28) (23). A TS fuzzy model represents
the nonlinear system via s me local ..near subsystems that will be introduced in fuzzy IF-THEN
rules structure. Then, by fuz., blending of the local linear subsystems, the overall fuzzy model
will be obtained. Suc* ~odels have the capability to approximate a wide range of nonlinear
systems (29). Therr exis. two approaches to obtain a TS fuzzy model. The first and more
attractive one is basea . - »n the identification using validation input-output data when the system
is unknown and f'.e secona une is derived from the given nonlinear system equations (29). This
paper focuses ¢ 1 th' firs’ approach which involves a technique to find optimal values of (/)
premise and (2) co. ~20 .ent parameters sets (30). The premise parameters set constructs the
characterist’ .s of fi7zy membership functions and the consequent one contains the coefficients
of the local inear su systems (19). It is generally difficult to quantify these parameters based on
an expert man . ~' yation knowledge. Hence, the parameters will be usually approximated based
on the east sq "ares estimate (LSE) (31), recursive least square (RLS), Kalman filter, extended
Kalma. filter (} KF) (25) and data-driven approach (32).

Nume. . researches have argued about the identification of linear and nonlinear ODE sys-
ten °. o .. (18) has suggested a method to estimate the states and parameters of the linear
dynai. “c system which is affected by the colored noise. Furthermore, it considers the minimum
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discrepancy measure criterion to model the colored noise. However, the prot’. ~ of identify-
ing nonlinear system has not been addressed in Ref. (18). In addition, if t’.e sa ipling times
get lower or sampling frequencies get higher, then due to the computational tn.. the approach
(18) cannot be applicable. Thus, constructing a fast computational algorith.. is necessary. In
(33), the extended recursive least square (ERLS) algorithm has been pr.>c ‘ted to estimate the
parameters of discrete-time nonlinear stochastic systems. Based on the £RI  aiorithm in (33),
the consistency of the parameters has been guaranteed without any resw.’ tive conditions such
as (1) the persistent excitation condition (2) the noise condition a’ 4 (3) the variance functions
condition. However, the identification algorithm (33) is only vali. for a c1 ss of nonlinear sys-
tems called polynomial systems. Due to the linearization process. = the presented algorithms
(18) and (33) identify the nonlinear system in a small vicinity of or~+ating point or equilibrium
point. Whereas TS fuzzy models create a powerful algorithm ~ r pres: nt the nonlinear systems,
respectable amount of studies have been focused on TS fu. ~v mo-~'.ag of nonlinear ODE sys-
tems based on input-output data (19). Recently, several approac. s are presented to identify the
TS fuzzy model of a nonlinear system such as: genetic a._orithm 34), artificial neural networks
(ANN) (32), gravitational search-based hyper-plane . *sterw.. algorithm (26), self-organizing
migration algorithm (35) (36), least square (LS) algorithm .”0) and EKF (25). The propose of
Ref. (34) is to present a new encoding scheme for . 'entifying the TS fuzzy model by the non-
dominated strong genetic algorithm. In addition identihc. ‘ion of multiple input multiple output
(MIMO) systems based on MIMO TS fuzzy moc *11s siecented in (35) (37). In (38), the Kalman
filter is utilized to design a state estimator for ea a local model of the fuzzy system. Then,
the states of the overall time-varying discretc u. = sy stem are estimated by aggregating the lo-
cal models. A small number of researches have heen focused on the problem of identifying TS
fuzzy model-based on the Kalman filters. .”~1. (.~ uses the Kalman filter and Gustafsone Kessel
clustering algorithm (GKCA) to update the ini. “mation of the consequent and antecedent parts,
respectively. In other words, the pa~ ~eters and structure of the fuzzy model are identified in
two separate steps. Thus, the accr acy of e obtained TS fuzzy model is reduced significantly.
Refs. (40) (38) use EKF to adjust e par ameters of the TS fuzzy model. In Refs. (40) (38),
the structure of the membershi , furctio... is assumed to be triangular. However, because of the
complexity of the learning al orit’ m, t' ¢ efficiency and the applicability of the approaches (40)
(38) for other types of men versw. ~ fv ictions are reduced. Ref. (25) also identifies the TS fuzzy
model by utilizing the EK™ ~lgorithm. The method presented in Ref. (25) is simpler than the ones
(40) (38). In addition, in the s1.. ~tion that the membership functions are overlapped by pairs, the
approach (25) is not 7 _p. ~able. Ref. (41) employs the EKF to approximate the parameters of
the antecedent and r )nse ,aent parts of TS Type-2 fuzzy systems. In addition, the high-speed
convergence and d=sira. = accuracy of the learning algorithm in comparison with the PSO algo-
rithm are improv d si‘ nificantly (41). However, according to the best knowledge of the authors,
the references (. 5) - ad (- 1) have some main drawbacks. First, the problem of identifying the
system in the »==senc <. colored-noise has not been addressed in the literature of identifying TS
fuzzy mode -based n KF. Second, as we mentioned previously, large numbers of phenomena
are describe ' by PD ! systems. The presented approaches are not capable to identify TS fuzzy
model of ach ., ..ems. Thus, it is essential to construct a symmetric approach to identify the
TS fuz :y modc’ of PDE systems. To the best knowledge of the authors, the identification of TS
PDE fu "zy mor 2l of nonlinear PDE systems based on input-output data has not been addressed
yet which 1> wne main contribution of this paper.

This paper presents a novel approach for online adaptive TS fuzzy PDE modeling of non-
linear 1IMO first-order PDE systems. The proposed identification algorithm investigates the
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cases that the system is affected by the white noise or the colored one. The imr .. ~nt feature of
the proposed approach is adjusting the antecedent and consequence parts of ae T , fuzzy PDE
model of nonlinear PDE system without limiting the size of the input-output da.  To cope with
these difficulties, the authors create a suitable structure to identify the nonlinea. ®DE system with
NRLS and NEMM approaches. Generally, the main contributions of the i« H0sea ..pproach can
be classified as follows:

o Identifying the nonlinear PDE systems based on input-output 7 ~*a

o For the cases that the colored noise affectes the nonlinear °DE sys 2m, not only the TS
PDE fuzzy model of the nonlinear PDE system is identified bu. ~I<~ .he TS fuzzy model of
the colored noise is identified.

o The TS fuzzy PDE model is defined in a suitable str-cture suc’ that deploying the NRLS
and NEMM approaches will be possible.

To illustrate the efficiency of these key ideas, a pracu. ~! PFR system and a hyperbolic PDE
system with Lotka-Volterra type are considered. The iac. *ificauon is obtained for two cases: the
premise variables in membership functions are known or 1=- own. The results will be indicated
that the nonlinear first-order PDE system can be suita. 'v approximated by the obtained TS fuzzy
PDE first-order model. Moreover, in the case t~~t the me..surement colored noise is presented,
the measurement colored noise dynamic will be ~or ecuy approximated by the TS fuzzy PDE
model.

The remainder of the paper is organized <~ .. 'lows. In Section 2, the problem formulation
regarding MIMO TS fuzzy PDE models i< revic ved. Section 3 focusses on two methods. The
first one investigates the nonlinear least squ e (INoS) method and the second one studies the ex-
tended matrix method (EMM). In Section 4, T> {uzzy PDE modeling of nonlinear PDE systems
in the presence of white and colore © ... ~surement noise are discussed. Then in Section 5, the
simulation results are presented f , identit  the nonisothermal PFR based on the identification

1

methods. Finally, the conclusions w.." clos . the paper in Section 6.

2. Problem formulation

TS fuzzy models are ' .. wn as universal approximators. Thus, any smooth nonlinear system
can be approximated via a TS fu. -y model with any desired degree of accuracy (30) (29). The TS
fuzzy model has been ~viu ly used to analyze and synthesize the nonlinear ODE or PDE systems.
Furthermore, it is su” able (or designing fuzzy ODE or PDE controllers (42) (43) (44). Therefore,
fuzzy modeling ar 1 iden. Scation of nonlinear PDE processes are very essential. In this Section,
a TS fuzzy MIM .O f st-order PDE model is presented which will be identified in Section 4.
The nonlinear fu. “~ cder ‘DE system can be represented with the following discrete-time linear
MIMO first-~ .r PL." ules.

Rule ! f r outpy * i

IF yi(x,. is F}. nd --- and y,(x, 1) is F',,

4 oy i(x, t
THE! Z(xn) = ) d, 2 ’;x )

J=1

+ Dy (1) + yxy (1) + dixPy (e, ) + - (1)

whee! =\, R}, je{l,---,n}and i € {1,---,q} indices indicate the /-th plant rule, j-th

systen input (y;(x, 7)) and i-th system output (z;(x, 7)), respectively. F j.[ are fuzzy sets. ai,[, bi,i,
5




140

145

150

155

clAi, d’Ai and - - - are the set of adaptive parameters in the consequent parts of the fi- .. - rules, which
will be identified. x and ¢ denote the current sampling position and time, respr ctive y.

The fuzzy representation (1) is constructed in a multiple-input and multiple-. put structure.
Each output of the (1) is modeled with different numbers of fuzzy rules. This . ~nrescatation not
only reduces the number of fuzzy rules but also facilitates the modelling 7 .o« >dure vy decreasing
the number of model parameters. Furthermore, x*, s € {1,2,---} are - chie' ed ., Taylor-series
expansion of the nonlinear spatially distributed elements in i-th output . the system. Subse-
quently, if s increases then the identified first-order PDE model is r ore reliab.e.

By aggregating the set of rules (1) and applying singleton fuzz fier, proc 1ct inference engine
and center average defuzzifier, the overall TS fuzzy MIMO first-¢. ‘er POE model for output
zi(x, 1) is expressed as follows

R
- Ay, N
aten = 3RO T 25" + b

. (2
+c§.l.xy.,-(x, H+ di,l.xzyj\ )
where y(x, 1) = [yi(x, ) y2(x, 1) -+ y(x,0]", and
Wi 1) = [1 e 20
i )

R(x, 1) = i
RRTELCIEN)

where ,ui.l.(y (X, 1), o-é.i) are the grade of r ~mhers, ip functions. w!(y(x, 1)) are the degree of acti-
vation of each rule, and hf(y(x, 1)) are the we._hting functions. Furthermore, o-éi are the adaptive
parameters in antecedent parts of fuzzy rules which will be determined with estimation algo-

rithms to obtain a more efficient TS (uzz, ‘rst-order PDE model.

3. Nonlinear least square an/ extenac.” matrix method

Rudolf E. Kalman develo,. - the Lalman filter that is defined as a linear combination of
measurements (45). It is v ell-know. as an optimal linear filter and also, it is the best recursive
state estimator for linear ,ysw. s in the presence of zero-mean white noise in measurements and
model (45). In general *he real systems are inherently nonlinear and complex. For the nonlinear
systems, several kin- of 1 onlinear Kalman filters are formulated to aproximate the solutions,
such as: linearized K« ™ .n filter, EKF (46), uncented Kalman filter and particle filter (45). Here,
we consider the F <F whic. is defined by linearizing the nonlinear system around each working
point, and then wppl" g “1e Kalman filter on the linearized model. The NRLS algorithm for
nonlinear PDE sys. ms *.ill be presented in this Section.

3.1. Nonlir. »ar leas: square approach

Consider .. ~ ¥~",owing nonlinear PDE system

u(x,t+ 1) =u(x,t)

(e, t+ 1) = glu, x,t) + e(x, 1) @)

whc e e’ x, ., indicates the measurement noise. We assume that the measurement noise is white,
with « mean of zero and a covariance of R, = E(e(x,?)e’ (x,1)). The vector u(x, ) consists of
6
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adaptive parameters which will be approximated in each iteration for each spe’..""v distributed
point. g(u, x, ) is the spatial and time-varying nonlinear function of vector u(x ). z( ., f) indicates
the output of the system. This algorithm must be started with initial conditions. " ve initialize it
via

i(x,0) = E(u(x,0)) 5)
P(x,0) = E((a(x, 0) - u(x, 0))(a(x, 0) — u(x, ) (©)
and in the next step Jacobian matrix is computed as follows
o1+ 1) = 8020 )
ou u=i(x

where ii(x, t) is the current estimation of u(x, ). Now, the K. 'mau filter is utilized to estimate
the adaptive parameters of the linearized PDE system (4). The K: Iman filter is divided into two
phases: time update (a priori estimation) and measurement . ~da* . (a posteriori estimation). The
time update algorithm (a priori estimation) for system (4, "

a(x,t + 1|t) = i ft) (®)

P(x,t+ 1) = ’(x,1)f) )

and the measurement update (a posteriori estin. ‘tio..) is

K(x,t+ 1) = P(x,t + 1|)gp(x, t + 1,\’{~T(x,t+ DP(x,t + 1|H)d(x, t + 1) + R(_,)‘1 (10)

ax,t+ e+ 1 = a(x,t- 1) + K(x, t + 1)(z(x, 1) — 2(x, 1)) (11

Px,t+ 1.+, = ("= K(x,t+ Dp(x, t + D)P(x, t + 1]f) (12)

where t + 1|t and ¢ + 1|t + ' denotc = riori and a posteriori estimations, respectively. # indicates
the estimation of u, and 7 1. *he covariance of the estimation and K is the Kalman gain. Finally,
the estimated outputs Z(x, ¢ + 1) «. 2 achieved by

2ot + 1) = g(alx, t+ 1t + 1), x,1) (13)

The online proce .s pr sented in (8) to (13) is updating the estimation during time for each spa-
tially distribute.. ~o7 «t. T".en, both estimation error and covariance matrix will be minimized in
each time iter~*on.

Remark 1. The foll. wing algorithm is presented to adaptively adjust the parameters of the TS
fuzzy PDFE mo.'~1 % sed on the NRLS approach:

1. aitializu 7 the algorithm by utilizing equations (5) and (6)

2. C.lcular the Jacobian matrix by considering equation (7)

.. Menloving equations (8) and (9) for priori estimation of the parameters (TIME UPDATE)
4. Calculating the Kalman gain by utilizing equation (10)

7
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5. Deploying equations (11) and (12) for posterior estimation of the parame* .. ‘MEASURE-
MENT UPDATE)
. Utilizing the parameter data obtained from step 5 to evaluate the output o, >quation (13)
7. If llz(x, 1) — Z(x, 0|l < € and the identified parameters converge to .  cons.ant values
(u(x,t) — constant), then STOP. Else Go to step 2.

[*))

Remark 2. In the proposed approach, it is assumed that the open-l. ~n s stem is stable. The
identification algorithm is addressed for the open-loop configuratio» wh.. " is only excited by
the white noise or the colored one. Additionally, step seven of 7 te Rem. vk 1 indicates if the
true output signals are fitted to the model output signals and the ~aramet rs of the fuzzy PDE
model converge to the constant values, then the identified PD™ ‘uzz, .del is acceptable and
the algorithm can be stopped. After identifying the parameter , the .u. “ined fuzzy model of PDE
system describes the behavior of the overall system.

Remark 3. State estimators are divided into two categories. 1. first category is static state es-
timators (i.e. their dynamic characteristics are unchang. ~hle) anc the other one is dynamic ones
(i.e. they have changeable dynamic characteristics). "he k.7 selongs to the second category.
This algorithm will be converted to the NRLS one for static . vstems.

3.2. Nonlinear extended matrix method
Consider the following nonlinear PDE systc

z2(x,t+ 1) = o(uy,. t)+vix,1) (14)

The unmeasurable input v(x, ) indicates that e . easurement noise, which is assumed to be
colored in this subsection (i.e. v(x1,#) ¢ =92 v(xy, 1) for each x; # xp or t; # 1). u(x,t)
denotes the adaptive parameters of system (. *). Moreover, we consider the following nonlinear
PDE model for the colored noise:

2x,8) = T(up, x, 1) + e(x, 1) (15)

where e(x,f) is a white noise. uy(a, ) 7, the adaptive parameters of the error system (15).
I'(uy, x, 1) is a spatial and tim’ -var ing nonlinear function of vector u,(x, ), which we want to
identify its fuzzy model besiu. - * ie fv .zy model of g(uy, x, t). The algorithm presented in (8) -
(12) will be recursively do .e for tu. * ystem via colored noise by considering

ul(x,t) 3 ¢1(x,t)
u(x, 1) [uz(x, "k (x,1) = [¢2(x, t)} (16)
where 4 .
pirn = D L o = LD
ouy uy =0 (x,1) Oy wr=ialed)

Thus, we ini. ~V ze tb . above algorithm with (5) and (6). Then, based on matrices (16), we
recursively ar "y the « .. (8) - (12). Furthermore, the estimation of the output Z(x, f) and colored
noise ¥(x, ¢ which , vesented in equation (14) and (15), respectively, are defined as

Y(x, 1) = z2(x, 1) — ¢1Tu1(x, ?)
2(x, 1) = ¢ (x, Hu(x, 1) (17)
e(x, 1) = z(x, 1) = 2(x, 1)

where (x,., and é(x,f) are used to determine ¢(x,7) in (16). Finally, by applying the above
algc -ith' 1, wie set of adaptive parameters i(x, ) will be identified and the fuzzy model of the
plant < «d the error system will be achieved.

8
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4. Application of the proposed methods to fuzzy PDE modeling of nonliner . “OE systems

Resently, one of the most interesting and efficient applications of LS ana “¥ .7 is TS fuzzy
modeling of nonlinear ODE systems. The LS algorithm presents an offline .. nrox.. ation (30),
while the EKF algorithm presents an online one (25). This paper obtains = onlu.. fuzzy model
for nonlinear first-order PDE systems, which the identified parameters are - ..."fied during the
adaptive process. The mentioned identification is achieved based on In” € 1n a pesudo-optimal
way (i.e. optimal for linear systems).

4.1. Application of the NLS algorithm to fuzzy PDE modeling of nc ~linear PDE systems

For achieving the goal, first we raise the problem of parar cter i*~ntification of fuzzy model
(2) by a NLS algorithm. Thus, we must build a nonlinear syst m ".ke tl e one presented in (4) by
the existing nonlinear fuzzy model (2) and then applying N S. We ~- asider

R; .
: ayt)
sl xn) = % b, O ) @ 2+ Ly )+ ()

R (18)
+d§.l.x2yj(x, )+ } = L) HEN)!

-

where the parameters 0'5,[., ajl., bﬂ,,., ci,[., d;i, and « «. .. *he parameter of the fuzzy model which
we want to estimate. Consider two cases: 1) the 1. = abership functions are known, 2) the mem-
bership functions are unknown, which will t. - . ~vest. ~ated in the following subsections.

4.1.1. Case I: The membership function. .. =~ n
In this case, we assume that the members.."  functions are known. The vector of parameters
for each output is obtained as follows

w=[c - aibl, -clood (19)

1 ni

and the Jacobian matrix is cor pute i as follows

Gilnt+ )= le o B by o b b ] (20)

1i ni

where
bay, = G = bl (0, 0) 252,
T AL
Ony, = E5 = H OG0 D)y (6 0),
gop = B0 _ 1y )y, (x, 1),

li
0gi(u,x, R;
B = BT = 1 (06 D)y, 1),

ni

Remar < 4. Ir ~ase I, the term g;(u, x, t) yields from the linear combination of parameters which
will be identifie | i.e. g;(u,x,t) is linear in u. In this case, the NLS algorithm will be reduced
to the L> - Furthermore, as mentioned above, since the system is linear in each output, the
SOv ‘wus.  ontimal.




205 4.1.2. Case II: The membership functions are unknown
In this case, the vector of parameters are

1 R 1 1 1 Ri
wix,0) = [0}, -+ N oay e by eocpp e dN (1)

and the Jacobian matrix is computed as follows

T
$ixt+ 1) =g - bx B By B B ] (22)
where |
Ogi(ux,t) (9/! 0(x,0) Ar1
¢("1f dor| do ), ol N (x. 1)
U =i (x,1) Iu,-]:l? L)
0gi(u,x,t Bh {(x0) A rR;
6 = k0 PNy
ni 9o ,; w=0;(x,t) 30',” Ui=up K1)
0gi(u,x,1) _pl Iy (x.0)
gy = Zuts0 = B, ) 2
U lu=a(x,0) w=" (0
0gi t
e e = B O 00 %)
! li ui=i;(x,t) u;=it;(x, l)
0gi(u,x,1) \
¢c|. - gacux = h;())(x",\x)/l()QI) P
! i =iy (x,1) wi=it;(x,1)
ﬁg,(u X,1) W2 o
P i : =h; VO, 1))ya(x, 1)
df" ‘Mz w;=i;(x,1) ! ! wi=i;(x,1)

Furthermore, the derivatives of membership 1 '‘n“ons from a set of parameters 0'51 (where I, J
and L indicate the particular paramaters ~f the sc* o) are caculated as follows

, R;
oMoy ante oy OO 3 wi0G0)

L - o L
doy, doy, 80'”

83 Wit
Z w;(v(x, 1) = —W,(y(x n)

awt y(x )

@www#

W (y(x,t 23)
““szmm)Wmm)

@wwmw

d H ﬂ/,(y,u 0oty R

(2 w006 0) = wi o)

(§wwmf

No. ® that, i is necessary to determine the derivative of 6/15, / 60'?1, which is related to the
type of the wvir's /111‘1. It can be calculated if the type of the MF and its expression is pre-defined.
Mo. ~ov' g, 1. 1S not essential that the MFs ,uf, are differentiable. The piecewise differentiable ones
are ac. *ptable. It is well-known that the derivative of piecewise MFs cause jump discontinuity.

10
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Since the singular points are null thus the sufficient condition to calculate the ak .. ~ derivative is
that they are piecewise differentiable. From the numerical implementation po’ it of /iew, we can
consider it as a derivative of the right hand point (or left hand point or averag. f the left and
right hand points) nearby the discontinous point.

4.2. Application of the NEMM to fuzzy PDE modeling of nonlinear PL < sy« en. -

In addition to the NRLS estimation algorithm, several modified rec. - e schemes are pre-
sented to identify the output of the nonlinear system and its error synamic .a the presence of
colored noise (18). Some popular kind of these schemes are: ext :nded le. st square algorithm,
instrumental variable and EMM algorithms (47).

Assume that the colored noise affects the nonlinear PDE 1 sael. The proposition of this Sec-
tion is to estimate the adaptive parameters in fuzzy PDE moc 1 f-. apj roximating the nonlinear
first-order PDE systems in the presence of colored noise. T’ is fuzzv r odel consists of two parts:
the first one is to estimate the parameter of the fuzzy model (2) . ~d the second one is to estimate
the fuzzy error model of colored noise. The nonlinea. “rst-orde - PDE model via the colored
measurement noise will be approximated by the follov. ‘g tu. = cules:

Rule / for output i: IF y(x,7) is F|, and - -- and y,(x,.) is F',, THEN

2, t+ 1) = Ni(ug, x,.) + vi(x, 1)

(24)

VGt + 1) = A, e(x D)

s

where
n

9yj(x, 1) ,
Ni(uy, x,1) = Z azl-ja—x + bi-iyj\‘c, 1,k c?ixyj(x, 1)+ dj»,-xzyj(x, D+
=1

/lf(uz, X, 1) =k11i + mll e(x, 1) + nl]iXe\' o1+ ol]ixze(x, HD+---+ kIZi

l
+ mlzl.e(x, r o+ ’”;. w(x,t) + olzl.xzv(x, H+---

and k!, kb, m' . m), n|. nb. ol ¢, andetc are the adaptive parameters which will be identified
during the estimation algorith The o. >+ I fuzzy model can be calculated as follows:

Ri
Z06t+ 1) = g, %+ v = D HGE DN + vilx, 1) (25)
=1

Ri

vilx,t -1, =Ti(up, x, 1) + e;(x, 1) = Z hf(y(x, t))Af(x, 1+ ei(x,1) (26)

I=1

Note that as showr in (-  for each rule we assume that the colored noise share the same fuzzy
set with the PDF fuz- y model in the premise parts. Thus, the membership functions of output
zi(x,t+ 1) are t. ~» ae a‘ the colored noise membership functions v;(x,t + 1). This scenario can
be also invest*_ “ted 1. - 1 two points of views (case I. known and case II. unknown membership
functions). ‘or eacl. ~ase, the adaptive parameters ui (x,1) and ué(x, t) are considered as follows:

4.2.1. K= ~wn .. ..oership functions

i 1.l 1 1 R; T
ul(x’t) _[ali e bli cee Cli coe dni ...]
i il 1 R 1 R 1 R; !
wy(x, 1) =[Kyj mys om0y 0y ks @7
LoeeemBonl i ol R
T YR T Y TR YD

11
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4.2.2. Unknown membership functions

i _ 1 R; 1 1 1 Ri 1
ul(x’ t) _[O—Ii e O-ni ali PPN bli cee Cli PRPEN dni .o .]
i el ] l DY Rl 1 DY Rl 1 CECIRY Rl DECEEY l
y(x, 1) =[Kyyy my, - oomiyng, g oy, o ke (28)
1 R 1 R 1 R;
Mjs *ot My Mgy w2 Myl Oy =+ O+ |

Finally, by utilizing the same procedure as investigated in subsectio.. ? 2, the adaptive pa-
rameters of the fuzzy model will be achieved and the TS fuzzy r odel of nonlinear first-order
PDE system will be obtained. Moreover, the nonlinear dynamic « f colorec measurement noise
will be identified by TS PDE fuzzy model based on the proposed aly, ~ith~ ..

Remark 5. In this subsection (subsection 4.2), we approxin 1ite * .e . 7zy model of the colored
noise. Thus according to (26), the behavior of the colored roise 1s ass .med to be nonlinear. The
proposed approach can be reduced to a more simplest case in  hich the dynamic of the colored
noise has linear behavior. Under the mentioned condit' ~us, the e uation (26) will be described
by a linear system. Subsequently, it will be identific 1 ba,. 1 -« NEMM by modifying matrix
ug(x, t) in (27) or (28).

Remark 6. Recall that, the proposed fuzzy represen.. “ion of nonlinear first-order PDE system
is completely general. It can describe hyperbol’  ~avabouc and elliptic categories of first order
PDE systems. Furthermore, there was no restric ‘or on the convection matrix. As a result, the
general first-order PDE model will be consi ~ved w. *h the proposed kind of fuzzy representation
in (18) and (25). On the other hand, some of th. ay, oaches presented to analyze the stability and
performance of nonlinear PDE systems o -~ hasea ' these restrictions on fuzzy model (7). Hence,
if we want to apply these restrictions, it is . “ough to choose the convection coefficients in (18)
and (25) as alii = aji. Consequently, based on ine method which we select for identification, by
applying some modifications, the pc amc 'r of the considered fuzzy model will be approximated.

Remark 7. The main advantages w. 7 disc lvantages of the proposed approach are investigated
in this remark.

o The main advantages o) ' pro osed approach can be classified as follows: (1). A novel

Sframework is propo ed to iac tify the TS fuzzy PDE model-based on input-output data.
(2). In the presenr 2 o) Testructive effects such as colored-noise, the TS fuzzy PDE model
can be identified (3). The proposed identification procedure is simple, which is suitable
for the complic uted 1ature of the nonlinear first order hyperbolic PDE systems. (4). For
the first time, u. - M LS, and NEMM are extended for identifying PDE systems.

e Apart fror adv intages of the proposed approach, when the effect of diffusion matrix is
negligible, v 1 the PDE system is described by a first order hyperbolic PDE system. The
propos- " iden,” ation procedure is valid for the first order PDE systems. Identifying
the h her or. °r PDE systems needs more efforts which was not investigated through this
manu. “ript.

Remar < 8. B, deploying spatially distributed sensing elements, the proposed approach can
be eas.’v imple 1ented in the real-world applications by the micro-electro-mechanical systems
(MEMS) ' ....cology. Due to the recent improvements in the MEMS, the problem of applying
larg > ar ., Jf micro-sensors is applicable. Furthermore, the proposed identification approach
prepa. the atmosphere for further improvements.

12
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Figure 1: Nonisothermal plug-flow reactos.

5. Examples

270 In this section, the proposed online distributed fu.. ~ modeling approach is applied on two

examples: PFR (7) and a nonlinear hyperbolic I T ~~<tem with Lotka-Volterra type (2).

5.1. Plug-Flow Reactor

In this section, the proposed approach to 1.'enu.y the nonlinear first-order PDE systems is
applied on nonisothermal PFR (48). In “ca: ™-7, no back mixing will be occured when the
reactants pass through the vessel (49). Also, ."! of the reaction mixture elements have a spatial
reaction time which is precisely the same as the reactor residence time. The following chemical
reaction is occurred in this reactor

\ — bB
where b is the stoichiometric oeff zient. Thus, as shown in Figure 1, among the spatially dis-
tributed points x, the compc. *io". of f ¢ reaction mixture will be changed. This reaction is a
275 kind of endothermic one ar { the j.. ¥ cis used to heat the reactor, hence the system is open-loop
stable and dissipative.

The dynamic model of the . actor will be obtained from the energy and mass balance by

considering the neglis .ole liffusion and constant heat capacity and density (49):

T 9T kAH . = 4k
=T Cp-eit + T, -T

ot V(’)x ppCp Ane ppde( ! )

Ca_9C % (29)
o - Vax eCae

ac P

= VG blaCy - o

subjec’ to the 1+ llowing initial and boundary conditions

T(O’ t) = Tin’ CA(O’ t) = CA,',,s CB(Os t) =0
T(x,0) =To(x),  Ca(x,0) = Cyy(x), Cp(x,0)=0

13
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Table 1: Model parameters and their definitions for simulation.

Parameters || Defnition of each parameter | Numerical values |
v Velocity of the fluid phase 0.025 m/s

L Length of the reactor 1m

E Activation energy 11250 cal/mol |
ko Pre-exponential factor 10° 577

Ca, Concentration of the inlet stream || 0.02 mol/L

R Ideal gas 1.986 cal/(mc I.K)
Tin Temperature of the inlet stream 340K

) ((=AH)C4,)/(ppCpTi) 0.25 = |
b 4h/p,Cpd 025!

7 E/RT;, 16.66C”

B2 koe™ 0.0581

Bi 0B 0.6. ‘S

where C4 and Cp are the reactant concentration anu ~roduct one, respectively. 7 and T; indicate
the reactor temperature and the jacket temperature, respe. “ively. Fp is the partial flow of product
B. Furthermore, AH denotes the enthalpy of v ¢ 1c <" n. h indicates the wall heat transfer
coefficient. d illustrates the reactor diameter. p, shows the density, and C, is specific heat
capacity. Besides the other parameters, their w “niti 1s and their numerical values are given in
Table 1.

From (29) we conclude that, if C4 «. 7+ .~ known, then Cg will be computed. Hence,
only the two first equations are considered. 1u.. dimension-less model will be obtained from the
following change of variables

WA T=T7 Ciin — Ca 2 Ti=Tin

X1 = X2 T 9=
T, Cain ! T;,

The equilibriume porfile of t! ~ di' iens’ yn-less model is computed as follows

L
X1e(x) =0 ~(x)=1- exp(_,%x)’ Pie = = ﬁl (_ﬁix)

Consider the follwing sta. transformation and input vector

e L

Now, the unforceu ste’ « in the presence of noise can be rewritten as

Wi(x, )
Dy PED g fox, 1,0 by + e
(30)

Ay (x, d

—yz(;f Do L yZ(x D B fo(y(x 1) + €2, 1)

where e;. ** i€ {l1,2} denote the white noises and
Hy1(x, 1) Hy1(x, 1)
o009 = (1 =y exp(7 75 ) = 1 =aen|exn(77 5755 )

+y1(x, 1)
14
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Figure 2: (a) First (b) second, output of the ~stem with validation data as input. (c) First (d) second, output of the
estimated fuzzy model.

The behavior of the ¢ sen-loop onlinear PDE system (30) is shown in Figures 2 (a) and
(b). This practical applic .tio.. ‘< considered to demonstrate the fuzzy modeling performance of a
first-order PDE system via input-vutput data. This example is investigated for both cases which
are introduced in Sec .on « . Fuzzy modeling of PFR in the presence of white and colored noises
are presented in Secu. »¢ 5.1.1 and 5.1.2, respectively.

5.1.1. Fuzzy mc lelir ; of ~lug-flow reactor in the presence of white noise

Case I: The me. “her naip functions are known

In this ¢ .se, trisngular membership functions as shown in Figure 3, are considered and the
parameters n the cc 1sequence of membership functions are computed according to the NLS
algorithm.

Thr oehaviurs of the state variables of the overall fuzzy first-order PDE model are displayed
in Figt es 2 (¢) and (d). In Figure 2, the x-axis, y-axis, and z-axis indicate the position through
the lengu. ~* “.e reactor, the time variable, and the amplitude of the evolutions of the state vari-
ab. s, .. , ~~tively. Comparing Figure 2 (a) with (c), and Figure 2 (b) with (d). For the case the
mem. = ship functions are known, It can be observed that the NLS algorithm can accurately iden-
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Figure 3: Antecedents in case I. (a) F il/. and Fizj (i, j € {1,2}) denoted by dots .. * dashed lines, respectively. (b) Fl.3j and
F ?j indicated by dots and dashed lines, respectively.

M
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Figure 4: Fina! mo. g e’ or z(x, 1) — Z(x, 1), (a) first output (b) second output.

tify the TS fuzzy model of noni.. ear hyperbolic PDE system. Furthermore, the error dynamic
between the compute . fu. 'y model and the exact nonlinear model is illustrated in Figures 4 (a)
and (b). The results . “dic .ce that the proposed method presented in subsection 4.1.1 can suitably
estimate the states of the . linear PFR system. Precisely, based on the proposed NRLS identi-
fication method “or P"JE svstems, by utilizing the current and the past measurement data in each
sampling period, .- sysf.m parameters are identified. To do this, in each iteration, the nonlinear
system is lin” ...zed ai« und the estimated parameters (See equation (7)). Then, the Kalman gain
K(x,t + 1), vhich is ‘he set of modifications coefficient, is calculated such that the performance
index is min. nized ‘ see equation (10)). Next, by utilizing the Kalman gain, and calculating the
error be .ween the measured z(x, f) and the estimated Z(x, f) outputs, the parameters of the system
it(x,14 1) are e« imated and the covariance matrix P(x, ¢+ 1) is calculated (See equations 11, and
12). Fin. "v. th, system output Z(x, ¢ + 1) is predicted by deploying the estimated parameters (See
eq .~ 13). Due to the minimization of the performance index, the error between the system
outp. t 7 .ad identified output converges to zero over time. This issue can be seen in Figure 4.
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Figure 5: Estimated fuzzy model, (a) first output ( ) ser .ad o tput.

Case I1: The membership functions are unknown
In this case, the membership functions are assumed to . ~ Gar ;sian

(vﬂ‘rf;)‘
,ul{j(Gaussian) =_
Her.lce, O'fj = [allj, nfj]T. The derivative of the p. “tic’ tax .nembership function ,ufj(Gaussian) is
achieved as follows:
6,ufj(Gaussian) _ 20—

T — —uy(Gaussian)
day; Uy

9
ur=y(x,1)

our (Gaussian) 20~ ak)?
any; ap)

The assumed membership funct’ons he = r onlinear behaviours. Thus, by applying the NLS algo-
rithm presented in subsection ..1.2 the fuzzy rules and membership functions will be achieved.

a5 In each iteration, the Kalman _~i .s arr obtained such that the error between the real output and
estimated output is minim’zed. Th.. , with an acceptable speed, the estimated outputs converge

to the output variables ¢ ver “he time. The evolutions of states of the identified overall fuzzy
model are illustrated in Figures . (a) and (b). Furthermore, the evolutions of the error signals
between the nonlinea sys :m (30) and the overall fuzzy identified model are shown in Figures 6

a0 (a) and (b). As show. n Jigure 6, the error signal is converged to zero over the time. From the
steady-state behay .our of . or signals, we can conclude that the system is suitably approximated.

uk(Gaussian)

wy=y(x,r)

5.1.2. Fuzzy moac’ 1¢ o plug-flow reactor in the presence of colored noise

In this s cuon, the simulation results will be extended for the case that the colored noise
affects the . onlinea1 first-order PDE system. Thus, the approach proposed in Section 4.2 has
been tested tu erif- the effectiveness of the proposed approach in the absence of colored noise.
It is as< umed that the PFR system is affected by the following colored noise:

w = _V/Lw +B1fo(r(x, 1), x) = by + vi(x, 1)
Gt (31)
('3)’2(;% t) = —V/LM +ﬁ2f0(y(x, t), X) + VQ(X, t)

t Ox
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Figure 6: Final modeling error z(x, t) — Z(x, t), (a) first ot out “) sec nd output.

where v| and v, are colored noises with the following nonlinear 1. odels

vi(x, 1) = v%(x, )+ 0.9x%sin(vi(x, 1)) + ef(x, RS ‘?’ LD +ei(x, 1) +0.001

va(x, 1) = v%(x, 1)+ 0.9x%v,(x, ) + e;(x, 1+ xze‘z\‘ 1)+ ex(x, 1)+ 0.001 (32)

and also, e (x, f) and e,(x, ) are white noise signals. "he behaviour of the colored noise signals
(32) are displayed in Figures 8 (a) and (b), respr ~*ively.

If we apply the NRLS approach presented in ~ut ,ecuon 4.1.1 directly to this example, then
the error signal between the exact nonlinear « '<tem . 1d the fuzzy model will converge to infinity,
which clearly indicates the unreliable results. By ~onsidering the NEMM identification method
which is proposed in subsection 4.2.1 fc= PFR s 'stem in the presence of measurement colored
noise, we can identify the fuzzy model for v. *h the PFR system and also the dynamic of measure-
ment colored noise one (32). Hence, similar tria..gular membership functions are introduced (the
same as Figure 3) and the parametr ., " the fuzzy model are approximated via NEMM. Then,
evaluations of online estimated ov .rall fuzz  model for the first and second outputs are shown in
Figures 7 (a) and (b), respectively. 1o “Mlus’.ate the efficiency of the proposed approach, the error
signals between the identified sver- 1l fuzzy model based on the NEMM algorithm presented in
subsection 4.2.1 and the nonl. ~ar ;yste a (31) are simulated in Figures 7 (c) and (d), respectively.
Moreover, Figures 8 (c) ar . (d) 1. "<’ ate the estimation of the colored noise. Thus, the simula-
tion results in Figure 8 ir u. ate that the proposed NEMM algorithm can correctly approximate
the behaviour of colored noise (. ) besides nonlinear first-order PDE system (31).

5.2. A hyperbolic P /E s~ ;tem with Lotka-Volterra type

Consider a nolinea. distributed system with Lotka-Volterra type, which are usually used
in modeling of I .olor .cal distributed systems and networks, competing species interaction and
predatorprey (2,. Tt 2 dit" .buted dynamical model of the system is represented as follows:

091 (x,1, 091 (x, A A A
Bl =y () ED 4 By (091 + r (DI P2 + bCOU + v (x, 1)

o . 33
B0 - ()P0 | (035, + ra(0)91 92 + V2l ) 33)

where ‘e state variables y;(x,#) and 9,(x, ) indicate the predator and the prey, respectively.
u(x,t) sthe dis tibuted controller. v (x, ) and v,(x, ) are colored noise. r;(x), r2(x), vi(x), va(x),
B1(x) an (" are system parameters. Deploying the following change of variables

V@ D] 5100 = 91|
_ 1A, _ 1A 0) = )1
-W”‘&m%ghmowJ Y
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one can conclude

1) 3 Ay (x,
WD =y () 2D By )y + () fo(X, o, + buagu + vi(x, 1)
Ay (x,1)

) = —yy (1) 225D+ By(xX)ya + ra(X) P, 1)+ (x, 1) %)

where
Jo(x, 1) = y1(x, Oya(x, 1) + P =1 Pogyi(x, 1)

where the desired values of ¥(x,#) and y,(x, ) are de..>ted by $14 and 9,4, respectively. The
numerical values of the system parameters are « 10

B2(x) =0.5c0os(2x), ri(. =1, r(x) = -1,
vi(x) =0.1, va(x) v Bi(x) = 0.8sin(2x),
b(x)=1, v A Y2 = 1.1

with the following initial and boundary conditio.s

10,0 = y2(0,1) =0

yi(x,0) = tsin( .wx) y2(x,0) = 0.2 sin(x) (36)

Additionally, the dynamical r odel uf th~ colored noise is assumed to be similar to the (32). Since
the open-loop system is steble, e id .ntification problem of open-loop system is investigated.
Whereas the colored noisr affects the hyperbolic PDE system, the NEMM is used to identify the
PDE system as well as t’ e co.. *=d noise. The error signal between the obtained TS fuzzy model
and the real nonlinear "™ F system is illustrated in Fig. 9.

6. Conclusions

From this p.>=r one - an conclude that a general structure for identifying the TS fuzzy PDE
model of nonli~ear 1, O first-order PDE systems in the presence of white and colored noises
was propos d. Ag: st the existing approaches on TS fuzzy PDE modeling of nonlinear PDE
systems, the ‘dentific ition method in this paper was based on input-output data. For PDE systems
with wh** nois., we can conclude that the NRLS method was able to identify the fuzzy PDE
model When “e colored noise affects the PDE system, the NEMM method was proposed to
identify the fus zy model of the MIMO nonlinear PDE system with the measurement colored
noi<e. In tue case that the colored noise affected the nonlinear PDE system, not only the TS fuzzy
PD." mc uc, of nonlinear PDE system, but also the nonlinear distributed model of colored noise
was ic utified. Furthermore, the identification of known and unknown membership functions
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was investigated. Additionally, in the cases that the membership functions v .. unknown, it
was illustrated that the proposed approach has the ability to identify the TS .uzzs PDE model
of nonlinear PDE system. The proposed approach was successfully tested on tu. ‘onisothermal
PFR and the applicability of the proposed approach was clearly indicated.

For the future works, the authors suggest to extend the proposed iden’ v tion n.ethod for the
high order class of PDE systems. Additionally, the authors suggest to .ntrc .ucc 1 new identifi-
cation algorithm such that the optimal solution will be achieved.
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