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Abstract

Hub facilities may fail to operate in networks because of accidental failures
such as natural disasters. In this paper, a quadratic model was presented for
a reliable single allocation hub network under massive random failure of hub
facilities which more than one hub may be disrupted in a route. It determines
the location of hub facilities and the primal allocation of non-hub nodes. It
also determines the backup allocation in case of failure of the primal hub.
A lexicographic form of bi-objective quadratic model is developed where the
first objective (maximization of served demand or equivalently, minimization
of lost flows) must be attained before the second objective (total cost). By
adding a structure- based constraint and using enhanced linearization tech-
niques the model was converted into a classic linear zero-one mixed integer
model. The applied linear technique was compared with other techniques
in terms of computational time and its better performance was approved
in problem instances. An iterated local search algorithm was developed to
solve large sized instances in reasonable computational time and the compu-
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tational results confirm efficiency of the proposed heuristic. Moreover, the
proposed model was compared to the classical hub network using a network
performance measure, and the results show the increased efficiency of the
model.

Keywords: Hub Location, Disruption, Reliable Network Design,
Linearization, Heuristic Algorithm

1. Introduction

In facility location problems, network designers try to locate facilities to
achieve benefits such as reducing transportation costs and increasing market
capture. This requires reliable decisions, so consideration of disruption states
appear to be necessary for sustainable location decisions. Hub location [1] is
an important applied problem in facility location. It emphasizes the design of
compact networks instead of direct origin-destination network connections.
In a compact network, hub facilities are intermediate points through which
network demands are transported. Because of consolidation effects in hub
facilities, network managers benefit from economies of scale. In other words,
total transportation costs will decrease when hub points in networks are used.
These are also referred to as hub and spoke networks. A good example of
this type of network is that used by airlines [2]. It is often the case that
regional airports are connected to one or more major (hub) airports. In
turn, these hub airports on the whole are all connected to one another and
flights between them account for bulk passenger movement.

There are many ways in real life that a part of a hub network can be
disrupted. As an example, recent massive snowstorm Jonas, canceled more
than 10000 flights and shut down the eastern airspace of the United States.
Jonas shut down air transportation hubs such as Washington Dulles and
Newark Liberty International Airports [3]. In this paper, we address a single
allocation hub location network under hub facility failure probabilities so
that temporary diversions can be made while ensuring minimal impact on
the objective functions. Massive disruption (simultaneous disruption of both
hubs in a route) can occur within the network, and the model tries to tackle it
by providing a realistic alternative route for each flow through the network.
First, a lexicographic quadratic bi-objective model is developed which the
objectives are to minimize of the number of lost flows due to disruption and to
minimize network cost. Then, to reduce computational effort of bi-objective
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model, the model is transferred into single one by adding the first objective
as structure-based constraint. Moreover, an efficient linearization technique
is applied. By this technique, small cases can be solved exactly. However,
as the size of the problem increases, the problem becomes computationally
intractable and commercial solver requires substantial computation time and
even finding the optimum solution for large-sized cases may not be possible.
Therefore, the Iterated Local Search (ILS) heuristic algorithm is developed
to find a near optimal solution based on geographical closeness.

The remainder of this paper is organized as follows. Section 2 reviews the
literature relating to hub and spoke networks as well as the idea of reliability
in them. Section 3 describes the proposed mathematical formulation for the
problem in linear form. Section 4 presents the computational experiments.
Finally, in Section 5, the conclusions and future work are presented.

2. Literature Review

In classical hub location problems, network designers try to find suit-
able hub locations from all the node locations and then proper allocation of
non-hub nodes to minimize the total transportation costs. Extending this
to real world scenarios often involves network designers considering multiple
objectives [4] or uncertain parameters [5, 6, 7] and network incompleteness
[8, 9]. In addition, the disruptive effects of natural disasters play an impor-
tant role in determining the overall network performance. In the hub location
literature, some researchers have considered the effect of disruption on hub
location problems. We classify these studies into three categories: arc disrup-
tion; intentional disruption or interdiction; and hub disruption. Important
studies from each category are presented below with a brief explanation.

2.1. Arc disruption

Initially, Kim and O’Kelly [10] studied the failure effect on hub networks.
They considered reliability for each route. Reliability is evaluated by multi-
plying the probability of successful communication of each arc. The model
tries to find hub locations and their allocations with maximum reliability.
The authors applied this idea to both single and multiple allocation hub lo-
cation problems. Moreover, they applied a mandatory separation distance
between every pair of hubs. This constraint avoids hubs that are no closer
together than a predefined distance. As a result, it avoids centralizing strate-
gic facilities in one area of a network [11]. Davari et al. examined their single
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allocation model in a fuzzy environment, and they proposed a simulated
annealing algorithm for solving the problem [12]. Kim [13] proposed a pro-
tective hub model. In this model, when a flow path is disrupted, it can be
routed through another one-stop path. This path consists of an intermediate
backup hub. The distance restrictions on backup hub links were also consid-
ered. As a result of this constraint, backup hubs could not be more than a
predefined distance from each node.

2.2. Intentional disruption or interdiction

In the intentional disruption or interdiction model, a potential interdictor
or attacker hits unprotected facilities so the attack creates maximal deficiency
in the network [14]. Network designers try to minimize worst-case attacker
hit effects. Recently, Parvaresh et al. modeled intentional disruption in a
multiple allocation hub location problem using a multi-objective bi-level op-
timization approach [15]. In this study, the network designer and interdictor
were considered as a leader and a follower, respectively. The leader’s objec-
tives are to minimize network total transportation costs under normal condi-
tions and transportation costs after an r -interdiction (r -interdiction means
r facilities from p unprotected facilities are disrupted by an attacker), which
should be minimized. The follower’s objective is to maximize the total trans-
portation cost of the leader’s network after the disruption of r facilities. They
proposed a simulated annealing and tabu search to extract non-dominated
solutions.

In another study, Lei proposed a new r -interdiction hub model [16]. In
this model, r hubs from p established hubs might fail to operate due to nat-
ural causes or intentional disruption. The model tries to find the r critical
hubs such that in their disruption condition, the network will be faced with
maximum transportation costs while each flow follows the lowest-cost path.
This author also proposed a bi-level model where the service provider (leader)
and users (followers) are decision makers. In this model, the leader attempts
to find target critical hubs with maximum disruption effects in the network,
while the users are seeking to minimize their transportation cost individually.
A bi-level model that is similar to previous research and tried to minimize
the worst-case scenario is therefore contributed. Recently, efficient solution
approaches such as Benders decomposition[17], enumeration[18] and meta-
heuristic algorithms[19] have been developed to solve interdiction models.
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2.3. Hub disruption
An et al. investigated hub failure in both single and multiple alloca-

tions [20]. Their study suggested that the hub allocation structure should be
changed by using backup hubs under disruption conditions. The objective
function of their model minimizes normal transportation costs, transporta-
tion costs in disruptive situations, and costs of lost flows. They considered a
single disruption in their model, which means that a disruption could occur
in one hub at most in a single path. They proposed quadratic and linearized
formulations. Moreover, they proposed Lagrangian relaxation and branch-
and-bound solution approaches to find high-quality, near-optimal or optimal
solutions. In their proposed model, after the disruption and failure of a hub,
nodes can be served by multiple backup hubs. This assumption is not realis-
tic in single allocation structure networks like telecommunication problems;
more discussion of this and the properties of such networks has been provided
in Kim [11].

Azizi et al. proposed a mathematical model for the hub unavailability
issue [21]. In their research, a hub may have failed after disruption, a backup
hub supports it and handles disrupted hub operations to serve all its al-
located demands. Mohammadi et al. proposed a reliable single allocation
model with different allocation levels [22]. In their proposed nonlinear model,
disruption occurs in hub facilities and the structure of hub facilities follow a
tree structure. They also considered uncertain parameters in their proposed
model. A recent research in this category is proposed in Mohammadi et
al. [23]. Two objectives were considered in their model: median and center
objectives. In the first one, total cost is minimized and in the second one,
the network longest delivery time is minimized. The delivery time in hub
facilities depends on the traveling time and hub operation time as a function
of hub disruption rate.

Azizi developed a mathematical model to design single allocation hub and
spoke networks under disruption of only one hub at any given time [24]. He
developed three versions of particle swarm optimization algorithm to solve
large-sized instances.

The scenario based models to consider the disruption in multiple and
single allocation hub networks were presented by Yahyaei and Bashiri [25],
Zhalechian et al. [26] and Rostami et al. [27] .

Most of the reviewed implicit models did not take into consideration mas-
sive disruption in the network where both hub facilities are subject to failure
and non of them maintains singularity of assignment in case of disruption.
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On the other hand scenario based modeling in reliable facility location prob-
lem is that number of variables increase rapidly with increasing of the number
of scenarios [28] and consequently significant computational time is required
to solve the problem.

2.4. This Work

In the present study, we propose a lexicographic bi-objective model for
the single allocation hub network, where each candidate node for establishing
a hub facility has a predefined failure probability; massive disruptions can
occur and both hubs in a path can be disrupted simultaneously, while the
singularity of backup links is considered. Moreover, in this study, disrupted
hubs are treated as normal nodes and backup hubs needed to serve them.
In classical hub location problems, all nodes are served, and we apply the
same strategy under both normal and disruption conditions. In addition, a
heuristic algorithm based on iterated local search (ILS) [29] is proposed to
solve the problem for large instances.

3. The Hub Problem and the Reliable Version of it

O’Kelly [30] proposed the single allocation hub location problem as the
first model in the hub location literature. Generally, a hub facility is estab-
lished in one of the existing nodes of the network and a non-hub node is
connected to one of the established hubs. As seen in Fig. 1, consolidation
effects occur in hub facilities (demonstrated between parts a and b), and this
leads to reductions in the cost of traveling through inter hub connections.

In this paper, the reliable singe allocation hub network design problem,
that is independent of failure for each candidate hub location, is considered.
The candidate nodes are a subset of demand nodes. The network is assumed
to be a p-hub-Median problem with complete structure. A candidate point
is called a reliable one if its failure probability is zero. An established hub
among such points is therefore called a reliable hub. In the proposed reliable
model, in addition to a normal path for a flow, the model tries to design a
backup path for each flow (if necessary), and two allocations at most are pos-
sible for each demand node under normal and disruption conditions. Under
normal conditions, node assignments follow the classical hub structure and
each non-hub node is allocated to only one hub (hereafter called a primal
hub). In case of disruption, nodes will be allocated to their backups. In
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Figure 1: An origin-destination connections network b) A network based on hub facilities

this study, we assumed that only one backup allocation is allowable for each
node. Since a hub is located in a demand node, it serves that node demand
in normal conditions and after a hub facility disruption, the node should be
allocated to its corresponding backup hub. A massive disruption can also
occur in a network. This means that more than one hub may fail in a route,
and the network will as well. By considering a disruptive environment, six
conditions could occur to a hub network, which are depicted in Fig. 2.

In parts a to d of Fig. 2, backup hubs help the network to route flows, but
in parts e and f some flows cannot be routed in the network while two hubs
are disrupted. When both hubs in a route fail, the flow cannot be routed; we
call this a lost flow. The lost flows can be divided into two categories. In the
first category, suppose that both primal hubs of flow i -j are disrupted when
one or both of the failed hubs have been selected as backup hubs (see Fig. 2
e as an example). It is clear that flow i -j cannot be routed, and this failure
is based on the network structure. We call this a Type I lost flow. In the
second category, backup hubs are different from primal hubs, and lost flow
occurs when primal and backup hubs fail simultaneously due to a massive
disruption (see Fig. 2 f as an example). We call this a Type II lost flow.
In the proposed model, we aim to decrease the total number of Type I and
Type II lost flows in order to enhance network efficiency and responsiveness.
The number of Type I lost flows is dependent on how nodes are allocated
to the hubs and it can be controlled by adopting an appropriate allocation
strategy.

Our model objectives are a reduction of Type I lost flows and minimizing
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Figure 2: Different structures of a reliable hub network (i and j are O-D while the green
nodes are primal hub nodes and blue nodes are backup hubs). a) When there is no
disruption in a path; b) Shows the disruption of the first hub and the alternative backup
hub for node i ; c) Shows disruption of the second hub; d) When both hubs in a route are
disrupted and the flows are routed to backup hubs; e) Shows a Type I lost flow; f) Shows
a Type II lost flow

8



total transportation cost and lost flow costs under both normal and disrup-
tion conditions.

The mathematical model is given in Equations 1 - 25, This is denoted as
Model 1.

Model 1 : lex(min Z1,min Z2) (1)

Z1 =
∑
i

∑
j

lij (2)

Expected total transportation cost under normal conditions:

Z2 =
∑
i

∑
j

∑
k

∑
m

wijCijkm(1− qk − q1mk + qkq
1
mk)xijkm (3)

Expected total transportation cost under disruption of all hubs:

+
∑
i

∑
j

∑
k

∑
m

∑
n

∑
l

wijCijnl(qkq
2
mk(1− qn)(1− q1ln))xijkmtijnl (4)

Expected total transportation cost under disruption of the first hub:

+
∑
i

∑
j

∑
k

∑
m �=k

∑
n

wijCijnm(qk(1− qm)(1− q1nm))xijkmzin (5)

Expected total transportation cost under disruption of the second hub:

+
∑
i

∑
j

∑
k

∑
m �=k

∑
n

wijCijkn(qm(1− qk)(1− q1nk))xijkmzjn (6)

Expected cost of unmet flows under disruption of both hubs:

+
∑
i

∑
j

∑
k

∑
m

∑
n

∑
n

∑
l

wijLFij(qkq
2
mk(1− (1− qn)(1− q1ln)))xijkmtijnl

(7)
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Expected cost of unmet flows under disruption of the first hub:

+
∑
i

∑
j

∑
k

∑
m �=k

∑
n

wijLFij(qk(1− qm)q
1
nm)xijkmzin (8)

Expected cost of unmet flows under disruption of the second hub:

+
∑
i

∑
j

∑
k

∑
m �=k

∑
n

wijLFij(qm(1− qk)q
1
nk)xijkmzjn (9)

Expected cost of Type I lost flows:

+
∑
i

∑
j

∑
k

∑
m

wijLFij(qkq
2
mk)xijkmlij (10)

s.t :
∑
m

xijkm = yik ∀i, j, k (11)

∑
k

xijkm = yjm ∀i, j,m (12)

yik ≤ ykk ∀i, k (13)

∑
k

yik = 1 ∀i (14)

∑
k

ykk = p (15)

z1i ≤ yii ∀i (16)

zik ≤ z1k ∀i, k (17)
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zik + yik ≤ 1 +Rk ∀i, k (18)

yik +
∑
j �=k

zij ≤ 2−Rk ∀i, k (19)

∑
m

sijkm = zik ∀i, j, k (20)

∑
k

sijkm = zjm ∀i, j,m (21)

∑
k

zik = 1 ∀i (22)

sijkm +
∑
l

xijml +
∑
l �=m

xijlk − lij = 1 +Rk.Rm ∀i, j, k,m (23)

tijkm ≥ sijkm − lij ∀i, j, k,m (24)

0 ≤ sijkm, xijkm ∀i, j, k,m and the other variables are binary (25)
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Parameters :
dij: Travel distance between nodes i(origin) and j (destination);
wij: Volume of flow between nodes i -j ;
α: Discount factor for inter-hub connection transportation;
Cijkm: The cost per unit of flow between i and j, routed via k and

m as first and second hubs respectively, which is calculated
as Cijkm=dik+αdkm+dmj;

qk: Disruption probability of the k th candidate node;
q1mk: Equals qm If m �= k, otherwise equals 0;
q2mk: Equals qm If m �= k, otherwise equals 1;
p: Number of hubs that should be established;
Rk: Equals 1 if node k is a reliable node in the network (qk = 0),

otherwise equals 0;
Rmax: Equals 1 if there is at least a reliable node in the network,

otherwise equals 0;
λ: Minimum number of lost flows (Type I);
LFij: Penalty cost of lost flows i -j ;
|N |: Number of nodes in network.

Variables:
yij: 1 If node i is allocated to hub j (Primal allocation);
z1k: 1 if hub k is used as a backup hub;
zij: 1 If node i is allocated to hub j as a backup allocation;
xijkm: A primal path that flows from node i to node j is routed

via hubs k and m;
sijkm: Selected backup path that flow from node i to node j is

routed via hubs k and m when the primal path is disrupted;
tijkm: 1 if the selected backup path is feasible;
lij: 1 if flow i -j is a Type I lost flow.
Term 1 shows that the objectives are listed in order of priority. The first

objective (Equation 2) tries to minimize the number of Type I lost flows.
This shows that the network has a maximum demand servicing policy. The
second objective is related to system costs and includes the eight terms in
the above model (3-10).

Term 3 calculates the expected transportation cost under normal con-
ditions where the probability of being in this condition for path xijkm is
calculated as:
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One− Stop path i → k → k → j 1− qk
Two− Stop path i → k → m → j 1− qk − qm + qkqm

}
1−qk−q1mk+qkq

1
mk

Term 4 shows the total expected transportation cost when the interme-
diate hub in a one-stop path or both intermediate hubs in a two-stop path
are disrupted and none of backup hub(s) are disrupted. For each path, the
probability of this status is equal to qkq

2
mk.

Term 5 shows the total expected transportation cost when only the first
hub is disrupted in a two-stop path and the backup hub for the first hub
is working. Term 6 shows total expected transportation cost when only the
second hub is disrupted in a two-stop path and the backup hub for the first
hub is working. Terms 7-10 calculate total expected cost of lost flows.

Constraints 11-15 ensure consistency of the network with the classical
hub network primary constraints. Constraint 16 guarantees that the backup
hubs will be selected from the primal hub set as well. Under constraint 17,
all nodes are assigned to hubs opened as backup hubs. Constraint 18 ensures
node i cannot have a primal and backup link to hub k simultaneously, unless
hub k is a reliable hub. Constraint 19 ensures that nodes allocated to a
reliable hub cannot be allocated to another backup hub. Constraints 20 and
21 ensure that flow i -j cannot be routed to a backup route unless backup
hubs are related to that route have been allocated to i -j before. Constraint
22 guarantees a single allocation strategy in a disruption situation. Consider
that nodes i and j are assigned to primal hubs k and m respectively. When
both hubs in this route are disrupted, k and m cannot be used as backups
for nodes i and j, respectively. Constraint 23 tries to enforce this condition.
However, as we show later, this condition is not always possible for some
flows, and in such cases (Type I lost flows), the selected backup route should
be considered a lost flow and cannot be routed physically. Constraint 24
extracts the feasible routes from the selected backup routes. Flow between
nodes i and j is considered a lost flow; hence, the objective function tries to
minimize with the feasible route being zero.

3.1. Transforming a lexicographic bi-objective model into a single objective
model

In the single allocation hub location problem, each node is restricted to
be served by a hub, and all the flows are served. As it is mentioned, we
considered only one primal and one backup hub for each node. However,
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in some circumstances, part of flows in the network may not be feasible
(unserved). In this paper, we considered a maximum servicing policy, and the
minimization of the total number of lost flows (unserved flows) is considered
as objective while this objective has priority over a network cost. In classical
model servicing all the flows are considered as constraints. However, a similar
constraint is not valid here for all cases of disruption.

In order to attain optimal solution of Model 1, a two-step optimization
approach is needed. In Step 1, the first objective is optimized; in Step 2, the
second objective is optimized while a constraint that guarantees optimality
of the first objective is added to the model. In this section, we transform the
lexicographic bi-objective model into a single objective model. Had there
not been a definite priority between objective functions 1 and 3, a multi-
objective approach could have been used. By this transformation, we can
solve the model in a single step instead of two steps.

Assume that the first objective optimal value is λ (Minimum number of
Type I lost flows). Moreover, assume that there is no reliable point and as
a result, there is no reliable hub on the network. For a better illustration,
assume that the network assignments are similar to Fig. 3. Non-hub nodes
i,j and i′ are assigned to primal hubs k, m and n respectively. Hubs n and l
are chosen as backups for nodes i and j respectively. This means that xijkm

and sijnl are equal to 1. According to the network depicted in Fig. 3, sijnl
is a feasible selected path. Now consider xii′kn, a primal path between nodes
i and i′. When both hubs are disrupted in this path, the selected backup
path is sii′nb, where b is one of nodes k,m or l and it is infeasible because
this path contains hub n, which is disrupted. sinnb′ is also an infeasible path
where b′ is the backup for disrupted hub n and is one of nodes k, m or l. In
the following, we attempt to find the minimum number of Type I lost flows
for an arbitrary network (like Fig. 3).

Definition 1: A hub is a semi-isolated hub if the only node assigned to this
hub is itself in primal allocations.

Theorem 1: Suppose that there is no reliable point. In this case, the
network has the least number of Type I lost flows for non-hub nodes if all
assigned backup hubs for non-hub nodes are semi-isolated hubs.

Proof. It is obvious that for origin non-hub nodei assigned to backup
hub k these backup paths are not feasible: sijkx, x∈ {H\k},j∈ a; where H
is the set of hubs and a is the set of the nodes assigned to hub k in a primal
allocation and 1≤ |a| ≤ |N | − p − 1. Therefore, the range of Type I lost

14
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Figure 3: An illustrative example for different assignments in a hub network with backups

flows for each origin node varies from 1 to |N | − p− 1. If they are allocated
to semi-isolated hubs by backup assignment, they will have the least Type
I lost flows; and conversely, if node i is considered as the destination, this
deduction is valid.

Corollary 1: Whenever there is no possibility of establishing a reliable
hub, the lowest total number of Type I lost flows for non-hub nodes is 2 ×
(|N | − p).

Proof. Due to the previous theorem, if each node such as i is assigned to a
semi-isolated hub such as k, flow origins from i to destination k are infeasible;
moreover, the same flow origins from k to destination i are infeasible as well.
Since there are |N | − p non-hub nodes, we have 2 × (|N | − p) Type I lost
flows and the corollary is proved.

Definition 2: Hubs i and j are teammate hubs if hub i is used as backup
for j and hub j is used as backup for i.

Theorem 2: Assume that there is no reliable point in the network. In
this condition, the network has the lowest number of Type I lost flows for
demand of hub nodes if it has the maximum possible teammate hubs.

Proof. First, assume that p is even. We can demonstrate a graph equiv-
alent to hub nodes and their backup assignments (see Fig. 4). As is clear,
each edge (e) in the demonstrated graph shows two lost flows (two backup
assignments in a teammate hub are demonstrated by one edge). For exam-
ple, elm shows that slmmk and smlkm are infeasible (flows from l to m and
from m to l are infeasible when both hubs are disrupted). On the other
hand, since all nodes should have backup hub assignments, each node degree
is equal to or greater than 1 in the graph (di ≥ 1). If we have the maximum
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number of teammate hubs in a network, the lowest value for each node degree
is achieved (di = 1∀i). A similar conclusion is valid when p is odd, but it
should be noted that we have di = 2 for one hub node like i.

Corollary 2: In a network without reliable points, the lowest number of
Type I lost flows for hub nodes is p if p is even and p+1 if p is odd.

According to the previous theorem, if p is even, we have di = 1 ∀i. We
have |E| = 1

2

∑
i

di = p where |E| is the number of edges in the equivalent

backup assignment graph. As mentioned, for each edge in the graph we have
two Type I lost flows and the value is equivalent to for a hub node. If p is
odd, the number of Type I lost flows is

∑
i di = p+ 1.

By corollary 1 and 2, we can calculate the lowest number of Type I lost
flows (the optimal value of the first objective) using the following equation:

λ = 2× (|N | − p) + p+ β = 2|N | − p+ β (26)

where β = (p mod 2). It is worth noting that if there is a reliable hub in the
network, a solution for the model is a network in which the reliable hub is
used as backup for all flows. Therefore, we can have no lost flows (Type I and
II) in the network. Now, by adding the following constraint to the model, we
can omit the first objective and change the bi-objective model into a single
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objective model.

∑
i

∑
j

lij = 2× λ(1−max
k

{Rk}) (27)

3.2. Linearization

Many techniques have been proposed for linearization of zero-one quadratic
problems. In order to transform our quadratic model into a linear model, we
applied an efficient linearization technique that is proposed in He et al. [31].
Suppose that there is a quadratic model similar to the following:

min
∑
i∈N

∑
j∈M

dijxitj

s.t : Aixi +Bjtj ≤ C

xi, tj ∈ {0, 1} ∀i, j
where dij ≥ 0. It can be proved that the above model is equivalent to the
following model:

min
∑
i∈N

(si − σxi)

s.t : Aixi +Bjtj ≤ C∑
j∈M

dijtj + σ = si + yi ∀i ∈ N

yi ≤ (L+ σ)(1− xi) ∀i ∈ N

xi, tj ∈ {0, 1}, yi, si ≥ 0 ∀i, j
where the relaxation parameter (σ) is equal to or greater than 0 and

L = max
i∈N

∑
j∈M

dij (28)

After this presentation, we propose a linear form of Model 1:
Theorem 3: The formulations in Model 1 are equivalent to the following

minimization problem:
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Model 2:

minZ =
∑
i

∑
j

∑
k

∑
m

wijCijkm(1− qk − q1mk + qkq
1
mk)xijkm

+
∑
i

∑
j

∑
k

∑
m

(S1ijkm − σtijkm) +
∑
i

∑
j

(S2ij − σzij)

+
∑
i

∑
j

(S3ij − σzij) +
∑
i

∑
j

(S4ij − σlij)

(29)

∑
k

∑
m

wij(Cijnl(qkq
2
mk(1− qn)(1− q1ln)) + LFij(qkq

2
mk(1− (1− qn)(1− q1ln))))xijkm

+ σ = S1ijnl + Y 1ijnl ∀i, j, n, l
(30)

Y 1ijnl ≤ (L1 + σ)(1− tijnl) ∀i, j, n, l (31)

∑
j

∑
k

∑
m �=k

wij(Cijnm(qk(1− qm)(1− q1nm)) + LFij(qk(1− qm)q
1
nm))xijkm

+ σ = S2in + Y 2in ∀i, n
(32)

Y 2in ≤ (L2 + σ)(1− zin) ∀i, n (33)

∑
j

∑
k

∑
m �=k

wij(Cijkn(qm(1− qk)(1− q1nk)) + LFij(qm(1− qk)q
1
nk))xijkm

+ σ = S3in + Y 3in ∀i, n
(34)

Y 3in ≤ (L3 + σ)(1− zin) ∀i, n (35)
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∑
k

∑
m

wijLFij(qkq
2
mk)xijkm + σ = S4ij + Y 4ij ∀i, j (36)

Y 4ij ≤ (L4 + σ)(1− lij) ∀i, j (37)

S1ijkm and Y 1ijkm ≥ 0 ∀i, j, k,m;S2ij, S3ij, S4ij, Y 2ij, Y 3ij, Y 4ij ≥ 0 ∀i, j
(38)

where L1,L2, L3 and L4 can be calculated according to Equation 28; the
calculation will be discussed presently.

Proof. Necessity : Since yik ∀i, k is binary and according to Equations
11, 12 and 14, xijkm has binary behavior. Similar to the proof in He et al.
[32], assume B∗ is the optimal solution of Model 2. By multiplying t∗ijnl on
both sides of the Equations 30-38 and summing them over all i, j, n and l
we get:

∑
i

∑
j

∑
k

∑
m

∑
n

∑
l

wij(Cijnl(qkq
2
mk)(1− qn)(1− q1l n))

+ LFij(qkq
2
mk(1− (1− qn)(1− q1ln)))xijkmt

∗
ijnl

+
∑
i

∑
j

∑
n

∑
l

σt∗ijnl =
∑
i

∑
j

∑
n

∑
l

(S1ijnl + Y 1ijnl)t
∗
ijnl

(39)

Moreover, by 31 and Y 1ijnl ≥ 0; we have:

Y 1∗ijnlt
∗
ijnl = 0 ∀i, j, n, l (40)

According to Equations 39 and 40, proof of the following equation leads
to proof of equivalence of the objective functions for the two models:

S1∗ijnlt
∗
ijnl = S1∗ijnl∀i, j, n, l (41)

This is equivalent to the proof that for any i, j, n and l if t∗ijnl = 0 then
S1∗ijnl = 0. Reasoning by contradiction, let us assume that for certain i′, j′, n′

and l′ of equation 41 are not valid; this means that t∗i′j′n′l′ and S1∗i′j′n′l′ > 0.
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To exhibit this contradiction; we created a solution like B′ where Y 1′i′j′n′l′ =
Y 1∗i′j′n′l′+S1∗i′j′n′l′ , S1

′
i′j′n′l′ and the values of the other variables are the same

as B∗. It can be confirmed that B′ is a feasible solution for Model 2 with a
lower objective function value. Thus, this result contradicts the assumption
that B∗ is the optimal solution. This proof is valid for other quadratic terms.

Sufficiency : The proof is similar.
Equation 28 proposes very loose bounds on Y1, Y2, Y3 and Y4. There-

fore, we strengthened these bounds based on the model structure. According
to Equation 28, the bound for Y1 is

∑
k

∑
m wijCijnl(qkq

2
mk(1−qn)(1−q1ln))+

LFij(qkq
2
mk(1 − (1 − qn)(1 − q1ln)))∀i,j,n,l. However, the model follows the

classical single allocation hub problem; for each i and j we have:

∑
k

∑
m

xijkm = 1 (42)

This means that we have:

∑
k

∑
m

wij(Cijnl(qkq
2
mk(1− qn)(1− q1ln)) + LFij(qkq

2
mk(1− (1− qn)(1− q1ln))))xijkm

≤
L1ijnl︷ ︸︸ ︷

max
k,m

wij(Cijnl(qkq
2
mk(1− qn)(1− q1ln)) + LFij(qkq

2
mk(1− (1− qn)(1− q1ln)))) ∀i, j, n, l

≤
∑
k

∑
m

wij(Cijnl(qkq
2
mk(1− qn)(1− q1ln)) + LFij(qkq

2
mk(1− (1− qn)(1− q1ln))))

(43)

Therefore, we can use the second term in the above inequality instead of
third term. A similar conclusion is valid for Y4. To obtain tighter upper
bounds for Y2, for each i we have:∑

j

∑
k

∑
m

xijkm = |N | (44)

So, the following tightened bounds can be used for Y2 :

L2in =
∑
j∈N

max
k,m �=k

wij(Cijnm(qk(1− qm)(1− q1nm)) + LFij(qk(1− qm)q
1
nm))xijkm ∀i, n

(45)

Tighter bounds for Y3 can be created according to a similar process.
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3.3. Iterated local search for a reliable single allocation hub location problem
The linearization technique applied in the previous section can improve

the computational ability of the model. However, due to the complexity of
the model, this improvement may not be effective in large instances. From a
computational complexity point of view, Kara proved that the single alloca-
tion p-hub problem is NP-Hard[33], therefore an efficient heuristic is needed
to solve large instances of this problem. The reliable model is a generaliza-
tion of single allocation p-hub, and an efficient heuristic is needed for solving
this model as well.

The applied heuristic for treating NP-hard combinatorial optimization
problem of this research is Iterated Local Search (ILS). The ILS is well known
for its effectiveness and simplicity in practice [34] and it can escape from a
local minimum without losing of the good attributes of the current solution.
It has been successfully implemented for many optimization problems, such
as the vehicle routing problem [35], inventory routing problems [36], univer-
sity course timetabling [37] and machine scheduling [38].

The basic ILS algorithm contains four major steps: 1) generating an ini-
tial solution (S0), 2) generating solution by local search (SL), 3) perturbation
solution (SP), and 4) termination criteria. The S0 can be generated randomly
or a special heuristic can be used. In our implementation, a random proce-
dure is used. Then, to improve the S0, new solutions (SL) are generated by a
local search procedure. Next, one of SL is selected and perturbed (SP). The
local search is applied again for SP. A new solution can be accepted according
to the specified rule. This process is repeated until termination criteria are
satisfied. The basic algorithm is developed for reliable hub location prob-
lem and is briefly described in following. We assume that there exists at
least a reliable point within the network (a basically similar explanation can
be mentioned if there is no reliable point within the network). In order to
gain a better understanding, Fig. 5 illustrates on how the algorithm works.
To start the main steps of ILS algorithm, a feasible solution in the problem
should be encoded. As it is mentioned there are |N | nodes and p hubs should
be selected. In Fig 5 (a), there are nine nodes within the network and we
intend to establish three hubs. The red dashed line nodes are reliable ones
(nodes 2, 4 and 5). Moreover, a primal and backup assignment should be
considered for each node. According to the explanation in section 3.1, the
optimal solution contains at least a reliable hub. Therefore, one of the p hubs
should be selected among the reliable nodes (Fig. 5 (b), nodes 4 and 5 are
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Figure 5: Graphical presentation of ILS for reliable single allocation hub network design
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selected). Primal and backup allocations of nodes are based on the nearest
distance (Fig. 5 (c)), but for backup ones, a hub should be selected among
the reliable hubs (Fig. 5 (c)). As depicted on Fig. 5, encoded solution of this
feasible network contains three parts: (4-5-7) represent the established hubs,
(5-5-4-4-5-4-7-7-7) represent primal assignments and lastly, (5-5-4-5-5-5-4-4)
indicate backup assignments. In the global search approaches, intensifica-
tion and diversification are two main operations which should be considered.
By using diversification operation, different domains of solution are searched
and by using intensification, a specified part of space is searched to find high-
quality solutions [39]. ILS contains two main procedures, local search and
perturbation. In this paper, we aim to local search as intensifier operator
and perturbation as a diversifier. In local search phase, the aim is to find a
random similar solution. Clearly, the network structure is highly depended
on the location of hubs. So to find a similar solution a small part of the
selected hub should be changed, for example, one of the three hubs (node 4
should is chosen randomly in Fig. 5 (d)). Moreover, the new hub should be
selected within a specified distance (orange dashed line). Then, the primal
and backup assignments are created according to previous explanation (Fig.
5 (e and f)). These steps are done repeatedly for specified times. It is worthy
of noting that selecting of new solution is according to the always the best
known solution [40]. In Perturbation phase, the aim is to explore new regions
of solution space. Therefore, more hubs can be replaced by new ones and
there is no distance restriction in selection of new hubs (Fig. 5 (g)). Fig. 5 (h)
and (i) show the updated primal and the backup assignments, respectively.
This procedure is repeated until stopping criterion (number of iterations) is
satisfied. The proposed algorithm is summarized by the provided flowchart
shown in Fig. 6.

4. Computational analysis

In this research, we considered two cases with 8 and 10 nodes of the CAB
data set [30]. We applied CPLEX software for optimization. All of the com-
putational tests were carried out on a laptop computer with an INTEL Core
i5 CPU with 2.5GHz clock speed and 4 GB of RAM. Failure probability was
randomly generated from (0, 0.1]. Moreover, two and three random nodes
from the data for 8 and 10 nodes are considered to be reliable nodes in the
computations in Table 2. The value of LFij is equal to 3dij and σ is equal to
zero. For comparison of the linearization technique, three modes are consid-
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Create new solution (x)
Select p nodes as hubs

 Allocate N nodes to hubs
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Calculate cost: C(x)
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Stop?

End

Calculate cost: C(xʹ)

C(xʹ)<C(x)?

Replace x by xʹ

Yes

Stop (Local Search 
Phase)?

No

No

NoYes

Yes

Perturb x (xʹʹ)
Change part of p hubs

 Allocate N nodes to hubs
Allocate N nodes to reliable hubs 

Update Best solution

Calculate cost: C(xʹʹ)

Replace x by xʹʹ

Figure 6: An illustrative flowchart of the proposed algorithm

ered: loose bounds (LB) calculated according to Equation 28, tight bounds
(TB) as proposed in this research according to Equations 43 and 45, and the
bilinear-programming-based linearization (BP) method proposed by Sherali
and Smith [41].Their values were the same as reported for tight bounds. In
the Test Problem column, the first number indicates the number of nodes in
the network; the second number shows the number of hubs that should be
located; and the third number shows the discount factor value. The values of
OFV (Objective Function Value) and Location have been deleted for loose
bounds and bilinear linearization in Tables 1 and 2 for simplicity, while their
values are equal to the values of the tight bounds.

As is clear in Table 1 and Table 2, tight bounds work better in most
test problems. In both tables, the objective values are equal in the three
approaches while the CPU time in seconds (denoted by Time in Table 1 and
Table 2) of the proposed approach is less than the other two approaches in
most cases.

4.1. Analysis of network performance

Network performance is an important issue in the evaluation of network
design. Network performance can be defined as the capability of serving
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Table 1: Optimization results for the selected data set without reliable points

Time(Sec) Locaion OFV
Test Problem LB TB BP
10-3-0.8 2493.5 1748.37 3548.95 4-6-7 733601861.4
10-3-0.2 1009.87 1226.29 2351.96 4-6-7 515278569.5
10-2-0.8 394.93 612.68 339.04 4-6 926335484.6
10-2-0.2 888.21 352.23 566.07 6-7 840004664.7
8-3-0.8 2761.57 143.09 2347.23 4-5-6 490589221.4
8-3-0.2 165.8 139.34 215.37 4-6-7 351267219
8-2-0.8 93.96 94.54 102.82 4-6 545709836.1
8-2-0.2 88.8 71.2 100.09 3-4 481765105.2

Table 2: Optimization results for the selected data set with reliable points

Time(Sec) Locaion OFV
Test Problem LB TB BP
10-3-0.8 128.53 92.42 229.39 6-8-10 794235690.2
10-3-0.2 136.21 136.73 214.76 2-4-7 561106570.6
10-2-0.8 84.59 78.78 97.67 6-10 865365787.8
10-2-0.2 76.39 82.09 91.26 6-10 678373626.5
8-3-0.8 30.93 28.36 36.39 4-5-6 464833580.8
8-3-0.2 31.09 29.56 35.25 2-4-7 337337014.3
8-2-0.8 21.56 22.32 22.48 4-6 495236399.1
8-2-0.2 23.37 23.84 22.82 6-7 433383900.2

25



various traffic demands placed on the network [42]. We can define an adapted
meaning for network performance in disruption mode as the capability of the
network to serve the demands in normal and disruption situations. By this
definition, we can calculate classical and reliable hub network performance
according to Equations 46 and 47:

Classic network performance measure:

(∑
i

∑
j

∑
k

∑
m

wij(1− qk − q1mk + qkq
1
mk)xijkm

)
/
∑
i

∑
j

wij (46)

Reliable hub network performance measure:

(∑
i

∑
j

∑
k

∑
m

wij(1− qk − q1mk + qkq
1
mk

)
xijkm

+
∑
i

∑
j

∑
k

∑
m

∑
n

∑
l

wij(qkq
2
mk(1− qn)(1− q1ln))xijkmtijnl

+
∑
i

∑
j

∑
k

∑
m �=k

∑
n

wij(qk(1− qm)(1− q1nm))xijkmzin

+
∑
i

∑
j

∑
k

∑
m �=k

∑
n

wij(qm(1− qk)(1− q1nk))xijkmzjn)/
∑
i

∑
j

wij

(47)

According to Equations 46 and 47, we show our test problem performance
in Table 3. The Potential Flows column shows the maximum demand on the
network that is equal to

∑
i

∑
j>i

wij. As shown in Table 3, our proposed model

has a much higher performance than the classical model.

In order to show the efficiency of iterated local search, we compared its
performance with CPLEX. We created some examples from the CAB data
set. The number of iterations for the search was set at 400 and 1000 for small
cases (8 and 10 nodes) and larger instances (15 and 25 nodes) respectively.
The results for small cases can ensure the validity of the proposed heuristic
and shows that the iterated local search outperforms the exact solution ap-
proach, considering computational time. In order to get a proper comparison
scale, we defined Δ according to Equation 48.

Δ% = 100× CPLEX OFV − ILS OFV

CPLEX OFV
(48)
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Table 3: Optimization results for the selected data set with reliable points
Test Problem Served demands Potential flowsPerformance

Reliable Classical Reliable Classical
CAB-10-3-0.8 498165.5 437312.3 499513 99.73 87.548
CAB-10-3-0.2 498165.5 458533.9 499513 99.73 91.796

Without reliable hubCAB-10-2-0.8 498843.7 478395.8 499513 99.866 95.772
CAB-10-2-0.2 499023.5 478395.8 499513 99.902 95.772
CAB-8-3-0.8 301806.8 274694.7 303567 99.42 90.489
CAB-8-3-0.2 302591 261225.7 303567 99.678 86.052
CAB-8-2-0.8 303450.4 276896.9 303567 99.962 91.214
CAB-8-2-0.2 303454.1 266739.9 303567 99.963 87.869
CAB-10-3-0.8 499513 476510.4 499513 100 95.395
CAB-10-3-0.2 499513 473503.9 499513 100 94.793
CAB-10-2-0.8 499513 481649 499513 100 96.424

With reliable hub CAB-10-2-0.2 499513 481649 499513 100 96.424
CAB-8-3-0.8 303567 277283.1 303567 100 91.342
CAB-8-3-0.2 303567 277165.3 303567 100 91.303
CAB-8-2-0.8 303567 279188.6 303567 100 91.969
CAB-8-2-0.2 303567 277415.9 303567 100 91.385

The value of Δ shows the amount of deviation of iterated local search
from the CPLEX solution. Since we restricted the CPLEX run time to one
hour, the CPLEX solution may not have been optimum. Therefore, the value
of Δ may be positive or negative where the positive value of Δ shows that
iterated local search finds a better solution than CPLEX. The results are
reported in Table 4 and Table 5.
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Tables 4 and 5 indicate the solutions obtained from CPLEX, and the
best results obtained from ILS in five replications. As reported in Table 4,
for some instances (with 8 and 10 nodes), the ILS can reach exact solutions
for all small sized instances in a significantly shorter run time comparing with
the CPLEX. Moreover, because of the restricted run time of CPLEX, the ILS
was able to find a better solution in some of the other instances. For 15 and 25
nodes instances, no feasible solution could be obtained by the CPLEX in the
allowed computational time. As it is clear, the ILS could find a near optimal
solution in a few seconds. The results show that computational increases by
increasing of the problem size. The same results can be considered in the
table 5. However, in two small instances (8 nodes), the CPLEX found better
solutions (0.37 and 0.21 % better). It is worth mentioning that CPLEX run
times are dramatically higher than those of the ILS.

The results shown in Table 4 and Table 5 confirm that applying an it-
erated local search algorithm reduces the computational time significantly
in small cases. In larger instances, this algorithm solved the model in a
reasonable time, while CPLEX could not solve the model at all.

4.2. Algorithm performance on IDA data set

In this subsection, Iranian Aviation Dataset (IDA) is selected to ana-
lyze performance of the proposed algorithm[43]. IDA contains of aviation
information of 37 active airports. To adjust this IDA, we considered nodes
(3-10-12-14-16-20-22-23-29-32-34) as reliable points and disruption probabil-
ity of remained nodes are randomly generated from (0, 0.1]. Since IDA
includes more nodes than the CAB, termination criterion is considered as
10000 iterations. The obtained results are reported in Table 6.

Clearly, increasing the number of hubs (p) and decreasing the discount
factor reduce the total cost. Moreover, obtained results indicate that by
increasing the p computational cost of the algorithm slightly increases (Fig.
7).
4.3. Model validation analysis

Consider that all the nodes on the network are reliable. In this case, it is
expected that the classical hub network results according to the model pro-
posed in Skorin-Kapov et al.[44] and our proposed model will be the same.
We checked that for the case of CAB-10-3-0.8 and (9-7-4) were the location
of hubs and network cost was 358041878.8 in both models. The result con-
firms that the proposed model performs as expected.
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Table 6: Computational results for the IDA data set

p α Mean OFV(∗108) Best OFV(∗108) Best Location Average Time (s)
4 0.1 9.4 9.38 31-29-23-16 19.39
4 0.4 11.4 11.31 15-23-10-31 19.79
4 0.7 13.4 12.98 23-31-10-34 19.39
6 0.1 7.45 7.39 31-36-16-23-10-29 20.63
6 0.4 10.02 9.97 31-23-34-10-12-14 20.68
6 0.7 12.05 11.93 23-31-34-12-10-20 20.74
8 0.1 6.26 6.14 23-36-31-10-29-30-2-24 22.58
8 0.4 9.23 9.13 23-36-31-10-29-30-2-24 23.59
8 0.7 11.8 11.73 12-30-23-34-10-32-31-20 21.64
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Figure 7: Computational efforts of proposed algorithm for the IDA data set
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5. Concluding Remarks

In this paper, hub location problems with potential disruption hubs in
network is studied. A new quadratic model is present and the aim of the
model is to find the location established hubs and the allocations in normal
situation (primal) and also in case of disruption (backup) so that minimize
the number unserved flows in case of disruption as a measure of network
responsiveness and total network cost based on a lexicographic order. To
solve the general bi-objective lexicographic model a two-step optimization
approach is needed. However, it is proved that the model can be transform
to a classic single objective one by adding a new structure- based constraint.
While it may be solved by commercial quadratic integer programming solvers
directly, the model is linearized based on three techniques so that it is solved
with great efficiency in small-sized problem. The obtained result shows that
tight bound linearization technique takes less run time than two other tech-
niques while objective function values of all three techniques are similar. A
comparison between classic model and the proposed model in terms of ca-
pability in serving flows in normal and disruption situation shows that the
proposed model is significantly more efficient that classic one.

Furthermore, the problem is NP-hard and this means that optimal solu-
tion of large instances cannot obtained by exact algorithm in a reasonable
time. As a result, an efficient heuristic algorithm based on ILS is developed.
A comparison of Δ reveals that ILS outperforms CPLEX in most cases for
each test instance. Moreover, the result reveals that CPLEX is highly sensi-
tive to the size of problem its run times are dramatically higher than those
of the ILS and it cannot solve the instances with 15 nodes. We check the
validity of our proposed model in special cases of the classical hub network,
and the results confirm this.

In real world data may not characterize disruption probability sufficiently
and an interesting future research direction is to investigate two-stage robust
approach can be suggested for future research direction. Moreover, due to
computational complexity of problem, development of new algorithm hy-
bridized with the ILS can be suggested as another future research direction.
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