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Abstract  

Recently, the literature on Simulation assisted Optimization for solving stochastic 
optimization problems has been considerably growing. In the optimization context, the population 
based meta-heuristics algorithms, such as, Differential Evolutionary (DE), has shown tremendous 
success in solving continuous optimization problems. While in the simulation context, Monte-Carlo 
Simulation for Sample Average Approximation is one of the successful approaches in handling the 
stochastic parameters of such problems. However, the intertwined computational burden, when 
combining these two approaches is amplified, and that encourages new research in this topic. In 
this problem, the challenge is to maintain high quality stochastic solutions by minimizing the 
computational cost to a reasonable level. To deal with this challenge, we propose a novel Adaptive 
Segment Based Scheme (ASBS) algorithm, for allocating the MCS budget in a Simulation assisted 
Differential Evolution (Sim-DE) Algorithm. This allows the algorithm to adaptively control the 
simulation budget based on a performance measure. The performance of the proposed ASBS 
algorithm is compared with other simulation budget allocation techniques while using the same 
base algorithm. The experimental study has been conducted by solving a modified set of IEEE-
CEC’2006 test problems and a wind-thermal power systems application. The experimental results 
reveal that the ASBS algorithm is able to substantially reduce the simulation budget, with an 
insignificant effect in solution quality.  

Keywords: Simulation Optimization; Evolutionary Computations; Adaptive simulation 
budget; Stochastic Programming 

1. Introduction 

Many real-world decisions are made through optimization problem solving. These 
problems usually contain functional constraints and some of the parameters in those problems 
may be stochastic in nature. These problems are recognized as Stochastic Constrained Optimization 
Problems (SCOPs). The stochastic parameters may occur, either in the objective function, or in 
constraints functions or in both. In this research, we focus on studying such problems with the 
involvement of stochastic parameters in the objective function, as shown in the following 
equations (1)  

Min  
𝑥𝑥∈𝑋𝑋

𝑓𝑓 = 𝐸𝐸(𝑓𝑓��⃗�𝑥, ξ⃗𝑁𝑁𝐿𝐿 �)     

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑜𝑜: 

𝑞𝑞𝑘𝑘(�⃗�𝑥) ≤ 0, 𝑘𝑘 = 1,2, … . ,𝐾𝐾 

ℎ𝑒𝑒(�⃗�𝑥) = 0,        𝑠𝑠 = 1,2, … . ,𝐸𝐸 

𝑥𝑥𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗,     𝑠𝑠 = 1,2, … . ,𝐷𝐷                                                                                         (1)                                                       

Where �⃗�𝑥 = 𝑥𝑥1,𝑥𝑥2, … . , 𝑥𝑥𝐷𝐷 is a vector of D decision variables defined on a continuous domain 

of real values. 𝐸𝐸(𝑓𝑓��⃗�𝑥, ξ⃗𝑁𝑁𝐿𝐿 �) is the expected value of the stochastic objective function with L 
stochastic parameters, each of size N independent identically distributed (iid) samples/scenarios of 
the random vector ξ, with given probability distribution P, 𝑞𝑞𝑘𝑘(�⃗�𝑥) is the kth inequality constraint, 
ℎ𝑒𝑒(�⃗�𝑥) is the eth equality constraint and each 𝑥𝑥𝑗𝑗 has a lower limit (𝑥𝑥𝑗𝑗) and an upper limit (𝑥𝑥𝑗𝑗). 
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Large-scale stochastic optimization problem have inherent analytical complexities and high 
computational requirements. Simulation Optimization (Sim-Opt) is a prominent paradigm in solving 
such problems through combining two inveterate approaches, a detailed Sim-Opt review can be 
found in [1-3]. It has been adopted in many real and substantial applications such as, for 
production sectors and water distribution systems as proposed in [4, 5].  

Various Optimization and Simulation techniques have been intertwined together to solve 
stochastic optimization problems. For instance, Meta-heuristics such as, population based 
Evolutionary Algorithms (EAs), are frequently employed to solve stochastic problems, which is 
recognized as Sim-heuristics in [6, 7]. Among the EAs, Differential Evolution (DE) [8] has become 
very popular, due to its excellent performance in solving complex optimization problems [9]. DE is a 
population-based stochastic algorithm, its algorithmic steps start with Initialization along with 
Mutation, Crossover and Selection. These steps are managed through multiple DE control 
parameters and operators. Due to the importance of improving the performance of DE, many 
studies have proposed different ways of self-adaptively managing these control parameters and/or 
a mix of operators of DE, such as [9-11]. Recently Elsayed et al. [12] proposed an enhanced version 
of the Self Adaptive Multi-Operator DE (SAMO-DE) algorithm that dynamically emphasizes on the 
best-performing DE variants, based on the quality of the fitness values and/or constraint violations. 
This approach was found to outperform the state-of-the-art algorithms by introducing new 
improvement measures and putting more emphasis on the best performing DE operators [12].  

DE has been extensively studied for solving constrained problems in the deterministic 
context, but it requires further study to be adopted in the stochastic context. To deal with the 
stochastic parameters (which can be uncertainty with stochastic behaviour) within such population 
based algorithms, it is well-accepted to integrate a simulation based approach. Among the 
simulation approaches, Monte-Carlo Simulation (MCS) is popular and has been successfully 
employed in different applications for stochastic optimization [13-15].  Note that MCS is frequently 
used with Sample Average Approximation (SAA) [13, 16] to evaluate an approximated expected 
value for the stochastic objective function, as in (1). The evaluated expected values are used as 
feedback to EA’s evolution process, for effectively solving this type of problem through a hybrid 
Sim-Opt framework, as studied in [17].  

It is worthwhile to mention here that the simulation and optimization approaches are 
applied independently with very little interaction between them [18], as simulation focuses on the 
evaluation of the stochastic function with the values of the decision variables given from the 
optimization process, while using specific sample size or number of simulation replications. While 
the optimization process focuses on searching for better values of the decision variables, while 
considering the simulation evaluation process as a black box. In this context, the Optimal 
Computing Budget Allocation (OCBA) techniques [19] and their enhanced versions, such as 
OCBAm+ [20], have studied the allocation of the simulation budget to different 
alternatives/solutions as an independent study. However, they suggested that the budget 
allocation techniques can be combined with population based optimization algorithms, such as DE 
[20], where the solutions at each specific generation can be considered as a set of solutions for the 
OCBA algorithm. This approach has been studied in [17, 21].  
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OCBAm+ operates as an optimization technique to maximize the probability of the 
solution’s Correct Selection P(CS), which is asymptotically estimated, based on multiple 
assumptions [19]. A sequential heuristic procedure is used to apply the allocation rule given by 
OCBAm+, its details are in [20]. Therefore, it is observed that using OCBAm+ at each generation of 
the EA leads to another optimization issue. This nested optimization problem adds further 
computational complexity to the overall Sim-DE framework. Furthermore, recent studies have 
provided a remarkable hypothesis of non-monotonicity of P(CS), which means that an increase in 
sample size will not necessarily lead to higher P(CS) [22].   

There are a few papers that have studied different simulation budgets and their adoption 
in SAA from the simulation point of view [23]. The Sim-Opt joint paradigm is growing and requires 
further study, especially on the mutual benefits from the joint exploitation of the two approaches. 
Obviously, there are indications that the complexity of the Monte-Carlo Simulation grows faster 
with any increase of the number of generations or the population size of the EAs, which amplifies 
the overall computational budget enormously [6, 24]. Based on our preliminary investigation on 
the number of segments, that are representative enough for producing a good quality solution, it 
was found that five was the best [25]. The results are supported by the five-number summary 
statistical concept proposed in [26-28]. The five-number summary is a set of descriptive statistics 
that provide information about a dataset. It consists of the five most important sample percentiles: 
the sample minimum (smallest observation), the lower quartile or first quartile, the median (the 
middle value), the upper quartile or third quartile, and the sample maximum (largest observation) 
[28].  However, although this method showed efficient performance, the segments’ sizes remained 
fixed. Consequently, the challenge of choosing appropriate sample sizes adaptively, is an important 
component in our algorithm framework. Inappropriate sample size (or simulation budget) can lead 
to low quality solutions, as much time can be spent in simulation, rather than optimization [23]. 
Thus, we particularly focus our research on this issue, as we aim to analyse the evolutionary 
process, to efficiently and adaptively, determine the simulation budget.  

To address this challenge, this paper proposes a new approach to enhance the 
performance of the basic MCS for SAA, by incorporating an Adaptive Segment Based Scheme 
(ASBS) strategy within a proposed Sim-Opt algorithmic framework. In basic SAA, a constant 
“conservative” large number of scenarios is generated in each iteration and the objective function 
is evaluated iteratively until the Sim-DE termination condition is reached. In our approach, the large 
number of scenarios is considered as an initial sample size and ASBS is employed to reduce this 
large sample size into a small number of segments. We assume that most representative segments 
can be extracted from this initial large sample after ordinal transformation by our novel Segments 
Extraction Technique (SET). The size of each segment, called Window Size (WS), is adaptively 
determined, based on its performance within the evolutionary algorithm.  We then represent those 
segments as scenarios and use them to solve stochastic problems by our proposed Simulation 
assisted Differential Evolutionary framework (Sim-DE).  

ASBS is a novel idea, that can be considered as an inspiration from the importance 
sampling concept for MCS [29], which transforms the probability distribution to a biased 
distribution that emphasizes important values. However, unlike importance sampling, ASBS keeps 
the original distribution and emphasizes on important and representative values, from an initial 
large sample of scenarios. It consequently forms a smaller and representative sample of scenarios.  
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It is different from prior studies where the sample size is kept either fixed or increased 
monotonically [17, 23]. Our approach provides the opportunity to adaptively control the size of the 
scenarios, based on the computational performance obtained through Sim-DE iterations.  

This approach is experimentally validated in the context of the constrained benchmark test 
problems of IEEE-CEC’2006 [30], with modified stochastic objective functions, as shown in 
Appendix A. A comparison is performed between the proposed ASBS, basic SAA and OCBAm+ for 
simulation budget allocation, where the results are compared based on the Optimality Gap (OG), 
simulation budget, computational time and significance test analysis. A well-known real-world 
problem such as the Dynamic Economic Dispatch (DED) wind-thermal problem [23, 31], is solved to 
demonstrate the usefulness of the proposed algorithm. From the overall benchmark results, the 
proposed approach showed its superiority in terms of reducing the simulation budget by 90% and 
the computational time by 42%, while keeping OG to a minimum value compared to others, which 
reveals the highest solutions quality.  

2. Proposed methodology 

In this paper, a new Simulation assisted Differential Evolution (Sim-DE) algorithm 
framework is proposed. It combines a DE algorithm, known as SAMO-DE [12], and Monte-Carlo 
Simulation (MCS) [15] for SAA, with our proposed Adaptive Segment Based Scheme (ASBS) and 
Segments Extraction technique (SET). For convenience of explaining the algorithm, we define a 
number of notations, as shown in Table 1. 

Table 1. Notations  

Notation  Description 

𝑅𝑅 Total number of independent runs of Sim-DE, where r =1, .., R. This generates R best 
solutions (/near optimal solutions), one from each run 

𝐺𝐺 Maximum number of Sim-DE generations in each run r 

𝑃𝑃𝑃𝑃 Population size, the number of individuals 

𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥 The maximum number for the scenarios (generated based on uncertain parameters) that 
can be used to evaluate the individuals in each generation  

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 A subset of scenarios used to evaluate each individual, where the upper bound is Nmax 

𝑇𝑇 Total simulation budget for all individuals in a population per generation,  
Where  𝑇𝑇 = 𝑃𝑃𝑃𝑃 ∗ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                             (2) 

TCB Total Computational Budget for function evaluations of Sim-DE,  
where   𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐺𝐺 ∗ 𝑇𝑇                                                                                                                 (3) 

(𝜇𝜇𝑖𝑖𝑖𝑖) 𝐸𝐸�𝑓𝑓(𝑋𝑋𝚤𝚤𝑖𝑖����)� =   � �
𝑓𝑓(𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖)
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

�
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗=1

, 𝐸𝐸𝑥𝑥𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸 𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓 𝑠𝑠ℎ𝑠𝑠 𝑓𝑓𝑡𝑡ℎ 𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑜𝑜𝑓𝑓 𝑜𝑜𝑓𝑓 𝑠𝑠ℎ𝑠𝑠 𝑟𝑟𝑡𝑡ℎ 𝑟𝑟𝑠𝑠𝑓𝑓,

𝑤𝑤ℎ𝑠𝑠𝑟𝑟𝑠𝑠 𝑓𝑓 = 1, . . ,𝑃𝑃𝑃𝑃, 𝑟𝑟 = 1, … . ,𝑅𝑅  
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2.1. Adaptive Segment Based Scheme (ASBS) and Segments Extraction Technique 
(SET) 

ASBS is designed to adaptively choose a subset of scenarios, to reduce the simulation 
budget, based on the algorithm’s performance. It aims to encapsulate important inferences about 
the expected fitness values, to efficiently guide the DE algorithm in the search space.  ASBS allows 
Sim-DE to adaptively determine the scenario size 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and the chosen scenarios, as shown in 
Algorithm1. Specifically, we use an ordinal transformation and then segment a large sample size to 
extract few smaller segments of the scenarios, by using the proposed SET in Algorithm 2. The 
selected segments are then combined together to form a useful subset of scenarios. We then use 
these scenarios to obtain an upper bound for our SAA problem, which is also an upper bound for 
the underlying problem.   

To illustrate the fundamental idea behind ASBS, we have considered an example stochastic 
problem with four decision variables (x1, x2, x3, and x4). The fitness component for each variable (i.e. 
f(x1), f(x2), f(x3), and f(x4)) is independent and the overall fitness value is the simple sum of the four 
components. The problem has been solved and its fitness has been evaluated for (Nmax =1000) 
independently and identically distributed (iid) scenarios following a Normal distribution. In Figure 1, 
we plotted the obtained f(x1) against the scenario numbers (in the order of scenario generation), 
which does not show any specific pattern of behaviour. In Figure 2, all four fitness components 
were plotted after an ordinal transformation, which shows interesting patterns of behaviour for 
each variable against the scenarios. Ordinal transformation is concerned with the ordering of the 
scenarios, generated based on the stochastic parameters, from lowest to highest fitness, as shown 
in eq. (4), where a list of lth scenarios is scaled in increasing order.  

↑ ξ𝑁𝑁𝑙𝑙 = �ξ𝑖𝑖𝑙𝑙 , 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑠𝑠ℎ𝑎𝑎𝑠𝑠 ξ𝑖𝑖𝑙𝑙 ≤ ξ𝑖𝑖+1𝑙𝑙 ,∀ 𝑓𝑓 = 1, . . ,𝑁𝑁� 𝑤𝑤ℎ𝑠𝑠𝑟𝑟𝑠𝑠 𝑠𝑠 = 1, . . , 𝐿𝐿,                                          (4)   

The level of contribution is different for different variables and some scenarios are more 
sensitive than others. Based on the insights uncovered in Figure 2, we propose the idea of using 
certain segments of scenarios (as a sub-set) instead of all 1000 scenarios for simulation 
replications.  As an example, we have shown five segments in Figure 2, that are assumed to be 
representative scenarios for our purpose (say, two extreme segments because of their high 
sensitivity and three in between). While the algorithm is running, the segment size (also called here 
as window size, WS) can be varied adaptively, based on the performance of the segments.  

 

 
Figure 1.  Fitness values of f(x1) by Nmax non-ordinal scenarios   
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Figure 2.  ASBS over fitness values of f(xi) by Nmax ordinal scaled scenarios   

Algorithm1 illustrates the ASBS process. Based on the solutions obtained after every 100 
generations, a Fitness Test (FT) is performed for each segment of NS segments. Depending on the 
relative performances of the segments, the number of individuals in the segments can be changed 
adaptively (increased or decreased) with a predetermined step size. In the FT, the expected fitness 
for the PS individuals is re-evaluated using Nmax scenarios and the best individual is selected, along 
with its index, as the best index. This best index is then compared with the best individual’s index, 
that is selected after decreasing each segment’s WS independently by a predetermined step. If the 
best indices’ selection is matched, then this WS decrement is kept, otherwise the WS is penalized 
with an increased step. Then the rectified WS for all segments is determined and assigned to SET 
Algorithm 2, to extract the new representative segments of scenarios.  

Algorithm 2 illustrates the steps of the representative Segments Extraction Technique (SET), 
where Nmax initial (i.i.d.) scenarios are generated by following a given probability distribution. These 
scenarios are ordinal scaled, as shown in Fig.2. Five NS representative and sparse segments, each 
with predetermined WS by using Algorithm 1, are extracted from the ordinal transformed initial 
large sample. The start points of these segments are located around the first quartile, median and 
third quartiles of the initial data sample, as well as at the beginning and end of it to include 
extreme scenarios. It is assumed that by using ordinal transformation and quartiles’ perspective, 
with the five-number summary concept discussed earlier, the potential of targeting the most 
representative and sparse scenarios is heightened for these ranges, as shown in Fig.2. 
Consequently five segments (NS=5) are targeted for extraction of sample scenarios, as that showed 
superior performance over others, in our preliminary investigation [25]. Afterwards these segments 
are combined into a subset of scenarios (C) with size Nindv , 𝑇𝑇𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ↑ ξ𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥

𝑙𝑙 , ℎ𝑠𝑠𝑟𝑟𝑠𝑠( 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤
 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥) 

 The adaptive segments’ WS attempts to capture enough fitness values’ variations from 
important segments, for directing the DE algorithm with an efficient simulation budget. ASBS and 
SET allow the DE to determine the sizes of the segments adaptively, based on their performance, 
and to emphasize and extract important segments that require high WS, and efficiently save the 
simulation budget through the segments that can be represented by a low WS.  
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Algorithm 1: steps of applying proposed ASBS 

1: Input: WS, 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥  
2: Every 100 generations: perform Fitness Test (FT)  
3:      Re-evaluate PS individuals with Nmax scenarios, and record best individual index (BI) 
4:      Step Determine decrement or increment step for each WS 
5:      for i =1 to NS segments Test reduction in each WS respectively  
6:               Re-evaluate population of individuals with reduced WS(i) = WS(i) − Step  
7:               Record each segment’s new best individual index SBI(i)   
8:               Compare best individual indices respectively    
9:                if BI == SBI(i)  
10:                      Update WS(i) with the reduction  
11:                else 
12:                      Penalize WS(i) = WS(i) + Step 
13:                end if  
14:       end for  
15: Return updated (𝑊𝑊𝑃𝑃) 

 

Algorithm 2: steps of representative SET  

1: Input: WS, Probability Distribution (PD), 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥  
2: RS  generate an initial i.i.d. sample of 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥  scenarios given a PD. 
3: SRand  ordinal scaled/sorted list of the initial (RS). 
4: Sn  [1,.., NS] segment’s number n=1,…NS. 
5: Subset C  segments selection and subset formation   

             𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇 = �𝑃𝑃𝑅𝑅𝑎𝑎𝑓𝑓𝐸𝐸�1:𝑊𝑊(𝑃𝑃1)�, 𝑃𝑃𝑅𝑅𝑎𝑎𝑓𝑓𝐸𝐸�𝑓𝑓: 𝑓𝑓 + 𝑊𝑊𝑃𝑃(𝑃𝑃2)�, 𝑃𝑃𝑅𝑅𝑎𝑎𝑓𝑓𝐸𝐸�𝑠𝑠: 𝑠𝑠 +

𝑊𝑊𝑃𝑃(𝑃𝑃3)�, 𝑃𝑃𝑅𝑅𝑎𝑎𝑓𝑓𝐸𝐸�𝑘𝑘: 𝑘𝑘 + 𝑊𝑊𝑃𝑃(𝑃𝑃4)�, 𝑃𝑃𝑅𝑅𝑎𝑎𝑓𝑓𝐸𝐸(𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥 −𝑊𝑊𝑃𝑃(𝑃𝑃5):𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥)�,𝑤𝑤ℎ𝑠𝑠𝑟𝑟𝑠𝑠  𝑓𝑓 = 𝑞𝑞1 ∗ 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑠𝑠 =

𝑞𝑞2 ∗ 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑘𝑘 = 𝑞𝑞3 ∗ 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥  

𝑞𝑞1, 𝑞𝑞2 𝑎𝑎𝑓𝑓𝐸𝐸 𝑞𝑞3 𝑎𝑎𝑟𝑟𝑠𝑠 𝐸𝐸𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑓𝑓𝑠𝑠ℎ𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠,𝑚𝑚𝑠𝑠𝐸𝐸𝑓𝑓𝑎𝑎𝑓𝑓 𝑎𝑎𝑓𝑓𝐸𝐸 𝑠𝑠ℎ𝑓𝑓𝑟𝑟𝐸𝐸 𝑞𝑞𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑟𝑟𝑎𝑎𝑓𝑓𝑎𝑎𝑠𝑠𝑠𝑠 𝑟𝑟𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟  

6: 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Calculate the total number of scenarios,  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑊𝑊𝑃𝑃(𝑓𝑓)5 
𝑖𝑖=1 ,𝑤𝑤ℎ𝑠𝑠𝑟𝑟𝑠𝑠  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥   

7: return (𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  , 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇)                  
 

2.2. The Proposed Algorithm  

The flowchart of the proposed simulation optimization (Sim-DE) algorithm is presented in a 
flowchart, as shown in Figure3. It is mainly divided into three components, the evolutionary 
component, the simulation component of MCS along with ASBS and SET (Algorithms 1 and 2), and 
the performance measure component. 

Sim-DE starts with an initial random population of size PS, where the individuals are generated 
within the lower and upper bounds of X. As discussed earlier, the process starts with five equal 
segments. The expected fitness value is evaluated for each individual by using the simulation 
component. The simulation component includes ASBS Algorithm 1, SET Algorithm 2 and MCS for 
SAA. The algorithm then continues with the DE component which applies self-adaptive crossover 
and mutation to generate the new population, based on the improvement measure, as suggested 
in SAMO-DE [12]. Improvement and diversity measurements for the self-adaptive mutation and 
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crossover rates for the evolutionary process is one of the key aspects. The parameters F and CR 
depend on a historical memory of the successful values of the operators, while the improvement 
and diversity measurements assess the improvement in each operator over generations and adopts 
the successful values. The evolutionary selection process between any offspring and its parent 
follows one of three scenarios: (1) for two infeasible solutions, the one with a smaller sum of 
constraint violations is selected; (2) a feasible point is always better than an infeasible one; (3) for 
two feasible solutions, the fittest one (according to the expected fitness value) is selected. 
Consequently, SAMO-DE algorithm has the feature of implicitly minimizing the violation function 
through the selection process and hence targeting the minimum violation. Where the sum of 
constraints violation function is calculated as follows [12]. 

𝜓𝜓𝑧𝑧 = ∑ max (0,𝑎𝑎𝑘𝑘(𝑥𝑥𝑧𝑧����⃗ )𝐾𝐾
𝑘𝑘=1 ) + ∑ max (0, |ℎ𝑒𝑒(𝑥𝑥𝑧𝑧����⃗ )|𝐸𝐸

𝑒𝑒=1 − 𝜖𝜖𝑒𝑒                                                                  (5) 

where every equality constraint (ℎ𝑒𝑒),  𝜖𝜖𝑒𝑒 is initialized with a large value and is then reduced to 
0.0001. Setting the initial value of 𝜖𝜖𝑒𝑒 is problem dependent, as indicated in [32]. 

 
Then the simulation component is re-called to evaluate the expected fitness for the new PS 

individuals. The stochastic nature of the results in the SCOP problem requires consideration inside 
the design of the DE algorithm. In traditional DE for deterministic problems, the fitness value is 
sufficient as the solutions’ quality measure, but in the stochastic context, the solution’s expected 
fitness value is used along with its standard deviation (𝜎𝜎) to express quality. Therefore, we 
penalized the stochastic fitness function with the upper bound of its 𝛽𝛽 Confidence Interval (CI) [13] 
in the following form in eq. (6).      

             Min
𝑥𝑥∈𝑋𝑋

 (  𝐸𝐸(𝑓𝑓��⃗�𝑥, 𝜉𝜉𝑖𝑖𝐿𝐿  �)  +  𝑧𝑧𝛽𝛽(
𝜎𝜎𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
�𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 ))                                                                                             (6) 

             where 𝐸𝐸(𝑓𝑓��⃗�𝑥, 𝜉𝜉𝑖𝑖𝐿𝐿 � =  ∑ �
𝑓𝑓�𝑥𝑥,𝜉𝜉𝑗𝑗

𝐿𝐿 �

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
� ,       𝑠𝑠 = 1, . . , 𝐿𝐿           𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑗𝑗=1  

The evolutionary process continues until the DE stopping convergence criterion holds, that is 
after a period where it can no longer improve its fitness. This is repeated for R runs.  Sim-DE is 
assumed to be converged, at the end of each run r, to its best solution (𝑥𝑥𝑏𝑏𝑖𝑖),  with its associated 
expected fitness value, denoted as (𝜇𝜇𝑏𝑏𝑖𝑖), where  (𝜇𝜇𝑏𝑏𝑖𝑖) < (𝜇𝜇𝑗𝑗𝑖𝑖) , 𝑠𝑠 = 1, . . ,𝑃𝑃𝑃𝑃, 𝑠𝑠 ≠ 𝑠𝑠 .  The final 
Average Outcome/Expected fitness of Sim-DE over all runs is  𝜇𝜇 = ∑ (𝜇𝜇𝑏𝑏𝑖𝑖)𝑅𝑅

𝑖𝑖=1  . 
It is assumed that assigning intensive simulation budget Nmax scenarios, results in more 

accurate approximation for the true function value, as of the Law of Large Numbers (LLN) [33]. As 
LLN indicates that higher numbers of scenarios will result in more accurate estimation for the 
stochastic function, with probability tending to one. Thus, we considered Nmax scenarios as the 
Basic Strategy (BS), with a fixed intensive simulation budget for Sim-DE, as a reference strategy.  
Consequently, for comparison reasons, after the proposed ASBS Sim-DE terminates, the fitness 
values of the (𝑥𝑥𝑏𝑏𝑖𝑖) best solutions, are re-evaluated using the Nmax scenarios, as shown in eq. (7).  

(𝜇𝜇′)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 : ∑ ∑ (
𝑓𝑓(𝑋𝑋𝑏𝑏𝑗𝑗𝑏𝑏,   𝜉𝜉𝑗𝑗

𝑙𝑙)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥

)𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥
𝑗𝑗=1𝑖𝑖  ,𝑤𝑤ℎ𝑠𝑠𝑟𝑟𝑠𝑠 𝑟𝑟 = 1, … ,𝑅𝑅, 𝑠𝑠 = 1, . . , 𝐿𝐿                                        (7) 
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Figure 3. Flowchart of Sim-DE main algorithm 
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3. Experimental study 

The experimental study with the proposed methodology is discussed in the following three 
subsections. The first one is experimental design, then the experimental results of the test 
problems follows and finally the experimental results of the practical problem known as the 
Dynamic Economic Dispatch Wind-Thermal problem is given.  

3.1. Experimental design 

The problem setting is defined as choosing the minimum mean among population size (PS) 
individuals at each Sim-DE generation. The Sim-DE algorithm settings are defined in Table 2, as 
recommended in [12, 14]. 

Table 2. Sim-DE settings 

Parameter  Value 
R 30 
G 2,000 
PS 100 
WS [20, 20, 20, 20, 20] 
Nmax 1000 
Step 2 

The performance of the proposed ASBS approach is compared with three distinct 
simulation budget strategies within the Sim-DE main framework. The first with the reference BS, 
has an intensive simulation budget with T = 100K. From eq. (3) the maximum TCB for BS is 200 
million function evaluations in a single run, which is a formidable budget that requires efficient 
reduction while preserving the quality of the solutions. The second strategy follows the OCBAm+ 
technique [20] to determine each Nindv with a maximum T = 100k. Finally, the Fixed WS strategy 
uses SET Algorithm 2 separately from the ASBS Algorithm 1, with initial constant WS, as shown in 
Table 1, throughout all Sim-DE iterations, thus T = 10k. Algorithm 2 parameters, q1, q2 and q3, are 
set to 20%, 50% and 80% respectively, as initial start points, for the adaptive segments, in the first, 
median and third quartiles’ ranges. The Sim-DE algorithm is terminated for a single run when at 
least one of the following conditions is met, a) stability state of convergence, b) the maximum 
number of generations G is reached.   

The algorithm has been coded using MATLAB (R2015b) and was implemented on a PC with a 
3.60-GHz Core™ i7 processor, with 16.0-GB RAM and Windows 7. For each strategy and algorithm, 
we conducted 30 independent runs. As per the minimization characteristics of the problem and the 
stochastic nature of the results, the mean values are coupled with their associated standard 
deviations for meaningful analysis of the output. Consequently, we are concerned with the 𝜇𝜇′ Upper 
Limit (UL) of 𝛽𝛽 confidence interval, as shown in eq. (8). 
𝜇𝜇′𝑈𝑈𝐿𝐿 = 𝜇𝜇′ +  𝑧𝑧𝛽𝛽(𝜎𝜎𝑁𝑁𝑚𝑚𝑎𝑎𝑥𝑥

�𝑁𝑁𝑚𝑚𝑎𝑎𝑥𝑥
 )), 𝑤𝑤ℎ𝑠𝑠𝑟𝑟𝑠𝑠  𝛽𝛽 = .95                                                                                                (8)       

The Optimality Gap (OG) is used as a performance measure to compare different studied 
simulation budget strategies within the proposed Sim-DE framework. As the optimal for the true 
stochastic problem can’t be calculated exactly [13], therefore the approximated estimates are 
calculated in eq. 5 by MCS. In addition, meta-heuristics (i.e. DE algorithm) do not guarantee 
optimality and its solution is possibly only a near optimal solution. Hence, the Optimality/near 
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optimality Gap assumption is posited to calculate the difference between the best reached near 
optimal solution average fitness (𝜇𝜇′𝑈𝑈𝐿𝐿)𝐴𝐴𝑒𝑒𝐵𝐵𝑡𝑡 by one of the studied strategies, and near optimal 
solutions’ average finesses by the rest of the studied strategies, at each test problem, as shown in 
eq. (9). 
   𝑂𝑂𝐺𝐺 = (𝜇𝜇′𝑈𝑈𝐿𝐿)

𝑃𝑃𝑠𝑠
− (𝜇𝜇′𝑈𝑈𝐿𝐿)

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
,   𝑤𝑤ℎ𝑠𝑠𝑟𝑟𝑠𝑠 𝑃𝑃𝑠𝑠 = [ 𝑇𝑇𝑃𝑃,𝐹𝐹𝑓𝑓𝑥𝑥𝑠𝑠𝐸𝐸 𝑊𝑊𝑃𝑃, 𝐴𝐴𝑃𝑃𝑇𝑇𝑃𝑃, 𝑂𝑂𝑇𝑇𝑇𝑇𝐴𝐴𝑚𝑚+]                                    (9) 

3.2. Solving the Test Problems 

Experiments were performed on a modified version of the IEEE-CEC’2006 single objective 
constrained optimization test problems [30], as no suitable constrained stochastic optimization set 
of test problems, with such characteristics, were found in the literature. Therefore, we modified 
these test problems by adding stochastic parameters to the objective functions, based on a 
Gaussian Normal distribution with specific mean and standard deviations N(Mean, Standard 
deviation). Where the CI level is set to be 𝛽𝛽=0.95.  The first ten minimization problems, from G01 to 
G10, were used to test the proposed approach, with modified objective functions and deterministic 
constraints, as shown in Appendix A. The number of constraints of each problem, number of 
stochastic parameters (L) and dimension (D) are shown in Appendix A. The rest of the details about 
the constraints’ functions and decision variables’ (𝑥𝑥𝑖𝑖) limitations, can be found in the IEEE-
CEC’2006 technical report [30]. 

For each test problem, detailed results are recorded in Table 3, which are respectively: the 
computational time given by CPU seconds per run, the average expected fitness value with its 
standard deviation, the expected fitness upper limit (𝜇𝜇′𝑈𝑈𝐿𝐿), OG and T.  Note that the solutions’ 
feasibility ratios (FS) equal 1 for all performed experiments. 

Figure (4) depicts the adaptive behaviour of the segments’ window sizes, e.g. for G05 run 
30, where the WS for each segment adaptively changed through the DE generations. It shows that 
the proposed ASBS algorithm is capable of managing the simulation budget according to the DE 
needs through the Fitness Test. It does this by emphasizing important segments that require higher 
budget at different DE stages while saving simulations in other segments. We averaged the 
adaptive segments, WSs, over all runs and test problems, and found that it ranges between 9 ≤
𝑊𝑊𝑃𝑃(𝑓𝑓) ≤ 34 ,𝑓𝑓𝑜𝑜𝑟𝑟 𝑓𝑓 = 1, . . ,5 segments. Consequently, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ranges between 45 ≤ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 170 ≤
𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥. 
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Figure 4. Adaptive WS behaviour in a single Sim-DE run for G05 
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Table 3. Detailed comparison results for modified stochastic benchmark CEC2006 problems 

G01 Computationa
l time Sec./R 𝜇𝜇′ 𝜎𝜎 𝜇𝜇′𝑈𝑈𝐿𝐿 𝑂𝑂𝐺𝐺 𝑇𝑇 

BS 17.13 -11.4089 55.8696 -8.5025 0.55 100k 
Fixed WS 13.37 -11.9722 56.1186 -9.0529 0.00 10k 

ASBS 8.84 -11.9100 56.1397 -8.9897 0.06 8.3k 
OCBAm+ 39.90 -8.8079 52.3569 -6.0843 2.97 100k 

G02 
BS 24.76 -1.0977 7.8090 -0.6914 0.00 100k 

Fixed WS 8.745936 -0.19085 1.300076 -0.12322 0.57 10k 
ASBS 16.95315 -0.71926 4.899683 -0.46438 0.23 8.4k 

OCBAm+ 132.69 -0.9228 6.5171 -0.5837 0.11 100k 
G03 

BS 35.81 -0.4176 8.9356 0.0472 0.80 100k 
Fixed WS 17.86939 -0.22503 1.666848 -0.13832 0.62 10k 

ASBS 19.35348 -1.22889 9.102789 -0.75536 0.00 6.6k 
OCBAm+ 71.84 -0.3534 8.3099 0.0789 0.83 100k 

G04 
BS 12.77 -30191.0664 9591.7280 -29692.1099 427.71 100k 

Fixed WS 6.704923 -30006.197 9642.852 -29504.581 558.55 10k 
ASBS 8.195253 -30613.502 9490.418 -30119.816 0.00 13k 

OCBAm+ 43.45 -30044.6604 9843.9713 -29532.5822 587.23 100k 
G05 

BS 29.92 5734.754 12226.649 6370.778 0.00 100k 
Fixed WS 16.81639 5742.524 12246.42 6379.577 8.80 10k 

ASBS 17.68167 5741.935 12254.77 6379.422 8.64 9.6k 
OCBAm+ 60.97 5745.553 12234.580 6381.989 11.21 100k 

G06 
BS 8.35 -3514.298 66414.088 -59.473 165.14 100k 

Fixed WS 5.489155 -731.35 15786.96 89.87923 314.49 10k 
ASBS 10.49107 -1543.1 25346.07 -224.614 0.00 11.9k 

OCBAm+ 23.82 -2988.813 60294.775 147.689 372.30 100k 
G07 

BS 16.90 26.216 36.573 28.119 0.00 100k 
Fixed WS 11.13015 27.21052 39.45158 29.26277 1.14 10k 

ASBS 8.946137 26.47936 37.38793 28.42426 0.31 10k 
OCBAm+ 45.54 28.112 35.868 29.978 1.86 100k 

G08 
BS 10.90 -0.0403 0.8638 0.0046 0.00 100k 

Fixed WS 5.45 -2.67E-52 6.61E-51 7.71E-53 0.00 10k 
ASBS 5.53 -1.12E-52 3.41E-51 6.5E-53 0.00 10.4k 

OCBAm+ 46.08 -0.0375 0.9223 0.0104 0.01 100k 
G09 

BS 17.24 728.3453 1104.8998 785.8216 0.00 100k 
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Fixed WS 7.80 732.8912 1106.06 790.4278 4.61 10k 
ASBS 9.81 731.0809 1105.649 788.5962 2.77 10.4k 

OCBAm+ 31.66 746.5662 1117.1348 804.6790 18.86 100k 
G10 

BS 18.08 10874.305 52438.630 13602.135 0.00 100k 
Fixed WS 7.11 11332.38 51238.15 13997.77 395.63 10k 

ASBS 6.35 11207.44 52977.76 13963.31 361.18 15k 
OCBAm+ 25.64 12895.251 64304.571 16240.34 2638.20 100k 

 

The most striking observation to emerge, from the comparison results recorded in Table 3, 
is that the intensive budget/reference BS and OCBAm+ with T = 100k are outperformed by other 
“lower budget” strategies for some problems. For example, the proposed ASBS outperformed 
other strategies results for G03, G04, and G06, with zero OG, while showing the smallest OG in 
others. It is also noticeable that the simulation budget T changes adaptively for different problems 
and is not constant. However, Fixed WS strategy showed a moderate performance, while OCBAm+ 
strategy showed diminished performance. To clarify how each strategy performance, further 
analysis and a summary is reported in Table 4. Table 4 records, for every studied strategy, the 
average values over all problems and Sim-DE runs for the following values in columns, respectively: 
Nindv scenarios size for each individual, T total simulation budget/R, the CPU computational time by 
seconds/run, convergence G: number of generations until reaching convergence or stability state, 
and finally percentage difference of OG.  

The data summary in Table 4 reveals that ASBS and Fixed WS have considerably close 
values and definitely the lowest: T, computational time and convergence G. This illustrates the 
success of the proposed SET in both strategies. However, the percentage difference in OG is in 
ASBS’s favour, which states that ASBS reached the highest solutions’ quality. OCBAm+ showed 
inefficiency in time and solutions’ quality compared to others, even when compared to its peer in 
budget (BS). This might be regarding as being due to the further computational complexity 
discussed in the Introduction section, and the sequential allocation rules of OCBAm+. While the 
proposed ASBS lowered the posited reference BS’s intensive simulation budget by 90% and its 
computational time by 42%, with the lowest percentage difference OG/highest quality solutions. 
The percentage difference of OG and computational time are plotted in Figure 5, which clearly 
shows the superiority of the proposed ASBS. This prominent performance is caused by the 
capability of the proposed main Sim-DE framework to adapt and efficiently determine the 
simulation budget.  
                 Table 4. Average performance measures over all problems and Sim-DE runs 
 

 

 

 

 Nindv T Time 
(Sec/Run) 

Convergence 
G 

% Difference 
OG 

BS 1000 100k 19 600 0.1877 
Fixed WS  100 10k 10 407 0.3134 

ASBS 104 10.4k 11 501 0.0378 
OCBAm+ 1000 100k 52 645 0.3561 
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Figure 5. Average computational time and % difference OG over all problems and R 

Statistical significance testing was performed using the Wilcoxon rank test [34]. It tests the 
null hypothesis of zero difference in the median, between the average expected fitness (𝜇𝜇𝐴𝐴𝐴𝐴) 
resulted from BS and the average re-evaluated expected fitness of other studied strategies (𝜇𝜇′𝐴𝐴𝑡𝑡), 
at the 95% significance level. The results are shown in Table (5), the sign " ≈ " , indicates the 
acceptance of the null hypothesis, which means that there is no significance difference between 
the two means when p-value is greater than 0.05. While the sign " ≠ " indicates that the null 
hypothesis is rejected, which means that there is a significance difference between the expected 
fitness values. Wilcoxon negative ranks mean that strategy’s (St) results, for a given number of test 
problems out of 10, are better than BS for the minimization setting, while positive ranks mean the 
contrary.  These significance results confirm the previous findings that our proposed approach 
outperforms others and is not significantly different from BS with its intensive simulation budget 
and consequent high computational time. The ASBS results are even better in three problems out 
of ten, as besides its capability to reduce the simulation budget and hence computational time, it 
also preserves the solutions’ quality.   
                            Table 5. Wilcoxon Rank significance test 
 

 

 

 
To demonstrate the performance and scalability of the ASBS algorithm, additional 

experiments were performed on the proposed ASBS for problems G04, G07 and G09. These 
problems have been identified as they originally had the maximum number of stochastic 
parameters (S), of 4, 6 and 5 respectively, as shown in Appendix A. However, we implemented 
ASBS scalability analysis experiments, for each problem under different numbers of stochastic 
parameters, starting from S1 “single stochastic parameter” to the limit of S for each problem, as 
shown in Table (6). From Table (6), it is notable that the upper limit of the fitness value shows a low 
rate of change, given the change of (S). This is also clear in Figure (6), that shows the change in 
fitness behaviour for the three problems. Consequently, from these experiments, ASBS showed its 
stable performance under different uncertainties and scalability of S. 
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                       Table 6. ASBS scalability analysis 

Stochastic 
parameters (S) 

G04 

𝜇𝜇′𝑈𝑈𝐿𝐿 

G07 

𝜇𝜇′𝑈𝑈𝐿𝐿 

G09 

𝜇𝜇′𝑈𝑈𝐿𝐿 

S1 -29567 28.38651 789.3488 
S2 -29567 28.28197 788.7433 
S3 -29552 28.26884 788.6471 
S4 -29696 28.30401 788.4463 
S5  28.38104 788.5962 
S6  28.42426  

Rate of change 0.004853 0.005468 0.001143 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. ASBS scalability analysis for problems G04, G07 and G09 

Figure (7) further depicts graphical scalability analysis of the number of decision variables 
(D) and the number of stochastic parameters (S), for the studied strategies versus ASBS for all the 
problems. The two aspects are plotted against the percentage difference of OG as the measure of 
performance, and plotted by the order of the test problems from G01 to G10. This graphical 
analysis shows that the proposed ASBS outperformed all others under different conditions, except 
in one problem G02 with the highest D, where the performance is affected to some extent. While 
higher values of (S) did not affect the algorithm’s quality. Therefore, given all previous the findings 
from different experiments, the remarkable performance is overall in favour of the proposed ASBS. 
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Figure 7. Comparison of the scalability of ASBS for different problems with dimension (D) and stochastic 
parameters (S) 

3.3. A Well-known Real-world Problem  

Dynamic Economic Dispatch (DED) problems are a common optimization problem in electrical 
power systems, which is mainly concerned with scheduling electricity generation using a 
combination of renewable energy (i.e. wind or solar) and thermal energy. Despite the 
environmental and economic advantages of renewable energy, such as wind energy, its difficulties 
are the continuity and reliability of its operation [35]. The DED problem, for a cycle of T time units 
with ramp limits, involves many local optima and multiple constraints  [31]. Therefore, scheduling 
the right mix of generation from a number of generators to serve a particular load demand at 
minimum cost, is a challenging optimization problem [36].  However, DED models the operation of 
power systems more accurately and so has more research and practical value  [31]. 

 

In this study, we adopted the wind-thermal DED problem [31, 36] to apply our strategies and 
algorithm, as it has the same characteristics as defined in our problem definition (SCOP) in the 
introduction section. In the wind–thermal DED system, the main aim is to determine the optimal 
power generation of the thermal and wind generators, by minimizing the overall operating cost 
while satisfying the number of constraints, as described below.  

The mathematical model of the DED problem is illustrated in the following two subsections for the 
objective function and the constraints:  
 
3.3.1 Objective function  

 
The objective function of a wind–thermal DED system comprises the fuel and environmental 

costs of thermal generators and the operating cost of wind turbines. In addition, the penalty costs, 
such as the over-and under-estimated ones of wind energy due to the stochastic nature of wind 
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speeds are considered. Therefore, the power generated by a wind generator is considered as 
uncertain, and vary within a range According to a cost analysis of conventional and wind turbine 
generators, the objective function of the DED model in T time intervals can be expressed as [36] 

 Min:𝔼𝔼⟨FC⟩ = ∑𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1 ∑𝑇𝑇𝑡𝑡=1 ∑
𝑁𝑁𝑇𝑇
𝑖𝑖=1 𝐹𝐹𝑐𝑐𝑖𝑖�𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡,𝑖𝑖� + ∑𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1 ∑𝑇𝑇𝑡𝑡=1 ∑

𝑁𝑁𝑊𝑊
𝑤𝑤=1 (  

 𝐹𝐹𝑊𝑊𝑤𝑤�𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,𝑖𝑖�+ 𝐹𝐹𝑈𝑈𝑤𝑤�𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,𝑖𝑖� + 𝐹𝐹𝑂𝑂𝑤𝑤�𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,𝑖𝑖��                                                            (10) 

                  where,𝐹𝐹𝑐𝑐𝑖𝑖,𝑖𝑖�𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡,n� = 𝑎𝑎𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡,𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡,n
2 + �𝐸𝐸𝑖𝑖sin �𝑠𝑠𝑖𝑖�𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡

min − 𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡,n���      (11) 

𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡,n is the 𝑓𝑓𝑡𝑡ℎ thermal power plant at the 𝑠𝑠𝑡𝑡ℎ time period of an operational cycle 𝑇𝑇 in the 𝑓𝑓𝑡𝑡ℎ 
scenario. Note that, the uncertainties of renewable generations are represented using a number of 
possible scenarios, which are generated using a normal distribution in which its mean and standard 
deviation are taken from historical data [36]. 𝑁𝑁𝑇𝑇  is the number of thermal power plants, and 𝔼𝔼⟨𝐹𝐹𝑐𝑐⟩ 
is the expected fuel costs. 𝑎𝑎𝑖𝑖, 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖 ,𝐸𝐸𝑖𝑖, 𝑠𝑠𝑖𝑖 are the cost coefficients, and 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖, 𝛾𝛾𝑖𝑖  the emission 
coefficients of the 𝑓𝑓𝑡𝑡ℎ thermal generator, where 𝑁𝑁𝑊𝑊 is the number of wind power plants, 𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡,n  and 

𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,n are the output of the 𝑓𝑓𝑡𝑡ℎ and 𝑤𝑤𝑡𝑡ℎ thermal and wind generator, respectively, in which 

𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,n is considered as uncertain paramater, in the 𝑓𝑓𝑡𝑡ℎ scenario in which 𝐹𝐹𝑐𝑐𝑖𝑖  is the fuel cost of the 

𝑓𝑓𝑡𝑡ℎ thermal generator (as in eq. (11)), while 𝐹𝐹𝑊𝑊𝑤𝑤 is the operating cost, 𝐹𝐹𝑈𝑈𝑤𝑤  and 𝐹𝐹𝑂𝑂𝑤𝑤 are the penalty 
costs for the under- and over-estimated wind energy, respectively. A liner function is used to 
represent the operating cost of wind generators, as [36]: 

 𝐹𝐹𝑊𝑊𝑤𝑤(𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,n) = 𝛿𝛿𝑤𝑤𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡 , 𝑤𝑤 ∈ 𝑁𝑁𝑊𝑊 𝑠𝑠 ∈ 𝑇𝑇 𝑓𝑓 ∈ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                            (12) 

 where 𝛿𝛿𝑤𝑤 is the per unit cost of the 𝑤𝑤𝑡𝑡ℎ wind generator, with its output at the 𝑠𝑠𝑡𝑡ℎ time interval 
expressed as [37]: 

 𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,𝑖𝑖 = �

0  𝑓𝑓𝑓𝑓  𝑟𝑟𝑜𝑜𝑜𝑜𝑡𝑡𝑤𝑤 < 𝑟𝑟�𝑤𝑤,𝑡𝑡,n < 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤
𝑃𝑃𝑅𝑅𝑤𝑤

𝑖𝑖�𝑤𝑤,𝑡𝑡,n−𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤
𝑖𝑖𝑏𝑏𝑤𝑤−𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤

 𝑓𝑓𝑓𝑓  𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤 < 𝑟𝑟�𝑤𝑤,𝑡𝑡,n < 𝑟𝑟𝑖𝑖𝑤𝑤
𝑃𝑃𝑅𝑅𝑤𝑤 i𝑓𝑓  𝑟𝑟𝑖𝑖𝑤𝑤 < 𝑟𝑟�𝑤𝑤,𝑡𝑡,n < 𝑟𝑟𝑜𝑜𝑜𝑜𝑡𝑡𝑤𝑤

             (13) 

 where 𝑟𝑟𝑜𝑜𝑜𝑜𝑡𝑡𝑤𝑤, 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤, 𝑟𝑟𝑖𝑖𝑤𝑤  and 𝑟𝑟�𝑤𝑤,𝑡𝑡,𝑖𝑖 are the cut-out, cut-in, rated and 𝑠𝑠𝑡𝑡ℎ-hour wind speed of the 
𝑤𝑤𝑡𝑡ℎ wind farm in the 𝑓𝑓𝑡𝑡ℎ scenario, respectively, and 𝑃𝑃𝑅𝑅𝑤𝑤 is the rated wind power from the 𝑤𝑤𝑡𝑡ℎ 
wind generator. 

Furthermore, we include penalty costs for any forecasted wind farm being under- or over-
estimated, which are expressed as [36]: 

 𝐹𝐹𝑈𝑈𝑤𝑤(𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,𝑖𝑖) = 𝑘𝑘𝑈𝑈𝑤𝑤 ∫
𝑃𝑃𝑅𝑅𝑤𝑤
𝑃𝑃𝑊𝑊𝑤𝑤,𝑡𝑡,𝑖𝑖

�𝑤𝑤 − 𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,𝑖𝑖�𝑓𝑓𝑃𝑃𝑊𝑊𝑤𝑤,𝑡𝑡,n
(𝑤𝑤)𝐸𝐸𝑤𝑤 (14) 

 𝐹𝐹𝑂𝑂𝑤𝑤(𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,n) = 𝑘𝑘𝑂𝑂𝑤𝑤 ∫
𝑃𝑃𝑅𝑅𝑤𝑤
0 �𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡,n − 𝑤𝑤�𝑓𝑓𝑃𝑃𝑊𝑊𝑤𝑤,𝑡𝑡,n

(𝑤𝑤)𝐸𝐸𝑤𝑤 (15) 

Earlier research shows that the wind speed follows a Weibull distribution function, as [37]: 

 𝑓𝑓𝑃𝑃𝑊𝑊𝑤𝑤,𝑡𝑡
(𝑊𝑊) = 𝐾𝐾𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝑡𝑡
𝜙𝜙𝐾𝐾𝑡𝑡−1𝑠𝑠−𝜙𝜙𝐾𝐾𝑡𝑡 , 0 < 𝑊𝑊𝑡𝑡 < 𝑊𝑊𝑅𝑅 (16) 



20 
 

 where the constants 𝑘𝑘𝑡𝑡, 𝑠𝑠𝑡𝑡 and 𝜙𝜙 are determined as: 

 𝐾𝐾𝑡𝑡 = (𝜎𝜎𝑡𝑡/𝜇𝜇𝑡𝑡)−1.086, (17) 

 𝑠𝑠𝑡𝑡 = 𝜇𝜇𝑡𝑡
Γ(1+𝐾𝐾𝑡𝑡−1)

 (18) 

 𝜙𝜙 = (1+(𝑊𝑊/𝑊𝑊𝑅𝑅)𝑙𝑙)𝑖𝑖
𝑐𝑐𝑡𝑡

 (19) 

 where 𝑠𝑠 = 𝑖𝑖𝑏𝑏−𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

 (20) 

 where 𝜇𝜇𝑡𝑡 and 𝜎𝜎𝑡𝑡 are the mean and standard deviations of the wind speed at the 𝑠𝑠𝑡𝑡ℎ hour, 
respectively. 

3.3.2 Constraints 

The load demand, capacity and ramp constraints are considered in a wind-thermal DED 
problem, as [36]: 

 ∑𝑁𝑁𝑇𝑇𝑖𝑖=1 𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡 + ∑𝑁𝑁𝑊𝑊𝑤𝑤=1 𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡 = 𝑃𝑃𝐷𝐷𝑡𝑡   (21) 

 𝑃𝑃𝑇𝑇𝑖𝑖
min ≤ 𝑃𝑃𝑇𝑇𝑖𝑖,𝑡𝑡 ≤ 𝑃𝑃𝑇𝑇𝑖𝑖

max  𝑓𝑓 ∈ 𝑁𝑁𝑇𝑇 , 𝑠𝑠 ∈ 𝑇𝑇  (22) 

 0 ≤ 𝑃𝑃�𝑊𝑊𝑤𝑤,𝑡𝑡 ≤ 𝑃𝑃𝑅𝑅𝑤𝑤   𝑤𝑤 ∈ 𝑁𝑁𝑊𝑊, 𝑠𝑠 ∈ 𝑇𝑇  (23) 

 −𝐷𝐷𝑅𝑅𝑖𝑖 ≤ �𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝑃𝑃𝑖𝑖,(𝑡𝑡−1)� ≤ 𝑈𝑈𝑅𝑅𝑖𝑖, i𝑓𝑓 𝑃𝑃𝑖𝑖,(𝑡𝑡−1) > 𝑃𝑃𝑖𝑖min (24) 

 −𝐷𝐷𝑅𝑅𝑖𝑖0 ≤ �𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝑃𝑃𝑖𝑖,(𝑡𝑡−1)� ≤ 𝑈𝑈𝑅𝑅𝑖𝑖1, i𝑓𝑓 0 < 𝑃𝑃𝑖𝑖,(𝑡𝑡−1) < 𝑃𝑃𝑖𝑖min (25) 

 �𝑇𝑇𝑖𝑖,(𝑡𝑡−1)
𝑜𝑜𝑖𝑖 − 𝑇𝑇min

𝑖𝑖

𝑜𝑜𝑖𝑖 � �𝑈𝑈𝑇𝑇𝑖𝑖,(𝑡𝑡−1) − 𝑈𝑈𝑇𝑇𝑖𝑖,𝑡𝑡� ≥ 0 (26) 

 �𝑇𝑇𝑖𝑖,(𝑡𝑡−1)
𝑜𝑜𝑓𝑓𝑓𝑓 − 𝑇𝑇min

𝑖𝑖

𝑜𝑜𝑓𝑓𝑓𝑓� �𝑈𝑈𝑇𝑇𝑖𝑖,𝑡𝑡 − 𝑈𝑈𝑇𝑇𝑖𝑖,(𝑡𝑡−1)� ≥ 0 

Eq. (24) shows the conventional ramp limits between two consecutive hours, and eq. (25) is 
the initial/final ramp limits when a generating unit is in the process of startup or shutdown, in 
which 𝑈𝑈𝑅𝑅1 and 𝐷𝐷𝑅𝑅0 are the initial ramp up and down respectively. Eq. (26) represents the 

minimum on/off time of a thermal generator, where 𝑇𝑇𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
𝑜𝑜𝑖𝑖  and 𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖

𝑜𝑜𝑓𝑓𝑓𝑓  are the minimum on and off 

time of the 𝑓𝑓𝑡𝑡ℎ unit, respectively. 𝑇𝑇𝑖𝑖,(𝑡𝑡−1)
𝑜𝑜𝑖𝑖  and 𝑇𝑇𝑖𝑖,(𝑡𝑡−1)

𝑜𝑜𝑓𝑓𝑓𝑓  are the continuous on and off time of the 𝑓𝑓𝑡𝑡ℎ 

unit at the 𝑠𝑠𝑡𝑡ℎ time interval , respectively, and 𝑈𝑈𝑇𝑇𝑖𝑖,𝑡𝑡  are the operational status of the 𝑓𝑓𝑡𝑡ℎ thermal 

unit at the 𝑠𝑠𝑡𝑡ℎ time interval, i.e., 0 - unit off, 1 - unit on. 

In this study we adopted the problem settings as identified in [36], with 𝑁𝑁𝑤𝑤 = 1,𝑁𝑁𝑇𝑇 =
5,𝑎𝑎𝑓𝑓𝐸𝐸 𝑇𝑇 = 6 hours therefore the decision variables dimension D=36. For each strategy, we 
conducted 30 independent runs. The 𝜇𝜇′ Upper Limit (UL) of 𝛽𝛽 = .95 confidence interval was 
calculated using eq. (8), while OG was calculated using eq. (9). 

The proposed algorithm, ASBS, has been applied on this application and compared to the 
basic strategy (BS) and Fixed WS strategy performance. However, it is not compared to other 
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algorithms because we modified the problem to be single objective with deterministic constrains, 
to enable us to apply the proposed algorithm, while other studies either studied the problem with 
stochastic constraints or were multi-objective, which we will consider in future research.  

As shown in Table (7), BS recorded the minimum outcome, while the ASBS outcome 
outperformed the Fixed WS strategy’s fitness outcome. ASBS again showed its superiority in 
computational time and overall simulation cost over the BS and Fixed WS.  However, ASBS 
performance has been affected by the scalability of the application to some extent, as occurred 
earlier in G02 in Figure 6.   

 
Table 7. Detailed comparison results for DED wind-thermal power systems problem 

DED 
Wind-

Thermal  

Computationa
l time Sec./R 𝜇𝜇′ 𝜎𝜎 𝜇𝜇′𝑈𝑈𝐿𝐿 FS 

% 
Difference 

OG 

𝑠𝑠𝑓𝑓𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑓𝑓𝑜𝑜𝑓𝑓  
𝑇𝑇 

BS 84.73922 819163 1833.187 819163 1 0 100k 
Fixed WS 82.88801 879317.9 3062.107 879477.1 1 1.074 10k 

ASBS 80.65824 876695.7 1747.712 876786.6 1 1.07 8k 

 
Such complex optimization problems suffer from a lack of theoretical analysis, as the 

development and performance analysis of EA widely relies on benchmarking [38]. However, the 
effective performance of the model, can be seen by the high potential of the ASBS 
procedures/equations in ”Algorithm1” to perform the Fitness Test (FT) and to adaptively determine 
suitable window sizes throughout different generations. As FT compares the re-evaluated fitness 
values by Nmax against the associated fitness quality, after a potential change in window size is 
tested. While the SET procedures/equations in “Algorithm2” extract the most representative 
simulation samples, given the updated window sizes by FT. These integrated procedures, cost 
efficiently direct the overall evolutionary algorithm towards the best values, with high likelihood, 
while using the same originally given probability distribution in the problem’s definition. This logical 
sequence illustrates the cost efficient performance, alongside the good solution fidelity, of the 
proposed algorithm.   

4. Conclusion 

Recent developments in the Sim-Opt paradigm have heightened the need for efficient 
utilization of the subsequent amplified computational burden. This study set out to handle this 
challenge by a proposed Simulation assisted Differential Evolution Algorithm (Sim-DE) for solving 
constrained stochastic problems. Most of the research in this field largely handled the simulation 
budget separately from the optimization process. However, the idea of reversing this challenge by 
mutually benefit from this combination is not deeply studied. Our proposed study attempted to 
improve this by allowing the Sim-DE algorithm to adaptively and efficiently control the simulation 
budget, as necessary in different generations. The Adaptive Segment Based Scheme (ASBS), along 
with the Segments Extraction Technique (SET) were proposed within the main Sim-DE framework. 
These algorithms foster capability of DE to control the stochastic scenarios’ sizes, while extracting 
representative, biased and smaller samples of these scenarios, which are efficiently sufficient for 
guiding DE in the search space. The proposed approach was empirically tested on a modified 
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stochastic constrained set of IEEE-CEC2006 test problems and the real world application of the 
Dynamic Economic Dispatch wind-thermal power system problem. 

 A comparison was performed between the proposed ASBS and other intensive simulation 
budget allocation techniques in the literature. It showed superior performance to the others in 
terms of the quality of its solutions, its ability to converge quickly, reduce the simulation budget 
and computational time. ASBS was capable to reduce the simulation cost by 90% and the 
computational time by 42%, while keeping the optimality gap to its minimum in comparison to the 
others in the Sim-DE framework, which also having the highest solutions’ quality. However, its 
performance may need further validation, when using different probability distributions and higher 
dimensions.  Further work is intended to test its performance when stochastic parameters occur in 
the constraints, and are not only limited to the objective function. 
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Appendix A. Modified Stochastic constrained CEC2006 Test problems 

Function 
No 

Stochastic objective function   No. of  
constraints 

No. stochastic 
parameters (L) 

Dimension 
(D) 

G01   𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� = 𝑁𝑁(5,10)∑ 𝑥𝑥𝑖𝑖4
𝑖𝑖=1 −

 𝑁𝑁(5,10)∑ 𝑥𝑥𝑖𝑖24
𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖13

𝑖𝑖=5 +  𝑁𝑁(1,5)          
9 3 13 

G02 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� =

−𝑁𝑁(2,10) �∑ 𝑐𝑐𝑜𝑜𝐵𝐵4(𝑥𝑥𝑖𝑖)−2∏ 𝑐𝑐𝑜𝑜𝐵𝐵2(𝑥𝑥𝑖𝑖)𝑖𝑖
𝑖𝑖=1

𝑖𝑖
𝑖𝑖=1   

�∑ 𝑖𝑖𝑥𝑥𝑖𝑖
2𝑖𝑖

𝑖𝑖=1

�     

2 1 20 

G03  𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� =

 −𝑁𝑁(1,10) �√𝑓𝑓�
𝑖𝑖

 ∏ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖=1           

1 1 10 

G04 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� = 𝑁𝑁(5.3578547,10) 𝑥𝑥32 +
 𝑁𝑁(0.8356891,1) 𝑥𝑥1𝑥𝑥5 +
N(37.293239,10) 𝑥𝑥1 −
N(40792.141,1000)   

6 4 5 

G05 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� = 𝑁𝑁(3,10) 𝑥𝑥1 +
  0. 000001 𝑥𝑥13 + N(2,10) 𝑥𝑥2 +

�0.000002

3
� 𝑥𝑥23            

5 2 4 

G06 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� = 𝑁𝑁(1,10) (𝑥𝑥1 − 10)3 +
𝑁𝑁(1,10) (𝑥𝑥2 − 20)3             

2 2 2 

G07 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� =  𝑥𝑥12 +  𝑥𝑥22 +  𝑥𝑥1𝑥𝑥2 −
N(14,10)𝑥𝑥1 − N(16,10)𝑥𝑥2 + (𝑥𝑥3 − 10)2 +
N(4,10)(𝑥𝑥4 − 5)2 + (𝑥𝑥5 − 3)2 +
2(𝑥𝑥6 − 1)2 + N(5,5) 𝑥𝑥72 + 7(𝑥𝑥8 − 11)2 +
N(2,5)(𝑥𝑥9 − 10)2 + (𝑥𝑥10 − 7)2 +
N(45,5)          

8 6 10 

G08 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� =

− 𝑁𝑁(1,10) 𝐵𝐵𝑖𝑖𝑖𝑖
3(2𝜋𝜋𝑥𝑥1) sin(2𝜋𝜋𝑥𝑥2)
𝑥𝑥1
3(𝑥𝑥1+𝑥𝑥2)

             

2 1 2 

G09 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� = (𝑥𝑥1 − 10)2 +
N(5,10)(𝑥𝑥2 − 12)2 +  𝑁𝑁(1,5)𝑥𝑥34 +
𝑁𝑁(3,10)(𝑥𝑥4 − 11)2 + 10 𝑥𝑥56 + 7 𝑥𝑥62 +  𝑥𝑥74 −
N(4,2)𝑥𝑥6𝑥𝑥7 − 10𝑥𝑥6 −
N(8,2)𝑥𝑥7                                          

4 5 7 

G10 𝑀𝑀𝑓𝑓𝑓𝑓.𝐸𝐸�𝑓𝑓( �⃗�𝑥 )� = 𝑁𝑁(1,10)𝑥𝑥1 + 𝑁𝑁(2,5)𝑥𝑥2 +
𝑁𝑁(1,10)𝑥𝑥3  

6 3 8 

 


