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a b s t r a c t

Purpose: Prostate high-dose-rate brachytherapy (HDR-BT) planning involves determining the move-
ment that a high-strength radiation stepping source travels through the patient’s body, such that
the resulting radiation dose distribution sufficiently covers tumor volumes and safely spares nearby
healthy organs from radiation risks. The Multi-Objective Real-Valued Gene-pool Optimal Mixing
Evolutionary Algorithm (MO-RV-GOMEA) has been shown to be able to effectively handle this inherent
bi-objective nature of HDR-BT planning. However, in clinical practice there is a very restricted planning
time budget (often less than 1 h) for HDR-BT planning, and a considerable amount of running time
needs to be spent before MO-RV-GOMEA finds a good trade-off front of treatment plans (about
20–30 min on a single CPU core) with sufficiently accurate dose calculations, limiting the applicability
of the approach in the clinic. To address this limitation, we propose an efficiency enhancement
technique for MO-RV-GOMEA solving the bi-objective prostate HDR-BT planning problem.
Methods: Dose-Volume (DV) indices are often used to assess the quality of HDR-BT plans. The accuracy
of these indices depends on the number of dose calculation points at which radiation doses are
computed. These are randomly uniformly sampled inside target volumes and organs at risk. In available
HDR-BT planning optimization algorithms, the number of dose calculation points is fixed. The more
points are used, the better the accuracy of the obtained results will be, but also the longer the
algorithms need to be run. In this work, we introduce a so-called multi-resolution scheme that gradually
increases the number of dose calculation points during the optimization run such that the running time
can be substantially reduced without compromising on the accuracy of the obtained results.
Results and conclusion: Experiments on a data set of 18 patient cases show that with the multi-
resolution scheme, MO-RV-GOMEA can achieve a sufficiently good trade-off front of treatment plans
after five minutes of running time on a single CPU core (4–6 times faster than the old approach with a
fixed number of dose calculation points). When the optimization with the multi-resolution scheme is
run on a quad-core machine, five minutes are enough to obtain trade-off fronts that are nearly as good
as those obtained by running optimization with the old approach in one hour (i.e., 12 times faster). This
leaves ample time to perform the selection of the preferred treatment plan from the trade-off front for
the specific patient at hand. Furthermore, comparisons with real clinical treatment plans, which were
manually made by experienced BT planners within 30–60 min, confirm that the plans obtained by our
approach are superior in terms of DV indices. These results indicate that our proposed approach has
the potential to be employed in clinical practice.
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1. Background

1.1. High-dose-rate brachytherapy

Radiotherapy (RT) involves the use of radiation to sterilize
cancerous cells, preventing them from further growing and divid-
ing [1]. While external-beam RT (EBRT) uses radioactive beams
that target tumor regions from the outside of the patient’s body,
brachytherapy (BT) uses radiation sources that are delivered to
the vicinity of tumor regions and irradiate from the inside of
the patient’s body. High-dose-rate (HDR) BT [2,3] is a cancer
treatment modality, in which radiation sources of high strength
are passed through the patient’s body in a certain movement that
yields a radiation dose distribution that is deemed clinically suit-
able for the specific patient. The local nature of HDR-BT helps the
resulting dose distribution better conform to treatment targets,
reducing radiation risks to surrounding healthy organs.

We here focus on HDR-BT planning for prostate cancer, but
the methodology can be modified for application to other tu-
mor locations, e.g., cervix, head and neck, or breast. In prostate
HDR-BT, prostate and seminal vesicles are the typical treat-
ment targets while bladder, rectum, and urethra are the organs
at risk (OARs). An implant, consisting of a number, typically
14–20, of catheters, is inserted to the treatment targets through
the patient’s transperineal skin in the operation room. At our
clinic (Amsterdam UMC), the implant is fixated, and the patient
is transferred to the imaging room where 3D images (com-
puted tomography or magnetic resonance imaging scans) of the
patient’s pelvic area are acquired. Next, these are loaded into
a BT treatment planning system. Treatment targets and OARs
are delineated, and the inserted catheters are reconstructed on
the acquired medical images by the planners. In each catheter,
a number of so-called dwell positions are defined, where the
radiation source can reside for a certain amount of time (i.e., dwell
time) when passing through the catheter. Fig. 1 shows an ex-
ample of a prostate HDR-BT implant. The longer the dwell time
at a dwell position, the more radiation dose will be delivered
from that dwell position toward surrounding tissues. Different
dwell time settings result in different radiation dose distributions,
and BT planners need to determine how dwell times should
be configured to yield a radiation dose distribution that is de-
sired for the patient. An HDR-BT plan can thus be seen as a
list of dwell times associated with the dwell positions. A plan
that is approved by BT planners (i.e., radiation oncologists, RT
technologists, and medical physicists) will be used to treat the
patient. The inserted catheters, attached to flexible cables, are
then connected to a so-called afterloader machine that contains
a radiation source and controls the movement of that source
through the connected catheters as specified in the approved
plan. The afterloader retrieves the source from the catheters after
the treatment is completed.

1.2. Clinical protocol

Radiation oncologists specify the HDR-BT planning-aim dose,
which is a radiation dose level that is considered sufficient to
treat the tumor under concern. The planning-aim dose for
prostate HDR-BT at the hospital involved in this study (Amster-
dam UMC, location AMC) is 13 Gy. The utopian plan, in which
all treatment targets are sufficiently treated while no radiation
is delivered to OARs, does not exist because the BT source ir-
radiates the surrounding tissues from inside in all directions. In
current practice, a treatment plan is iteratively adapted (i.e., often
manually fine-tuned) and assessed based on a clinical protocol,
which consists of planning aims that indicate how treatment plans
should be developed. Planning aims are typically criteria for the
so-called Dose-Volume (DV) indices:

Fig. 1. An example implant of catheters in HDR-BT treatment for prostate
cancer.

Table 1
Prostate HDR-BT clinical protocol at Amsterdam UMC (location AMC).
Prostate Bladder Rectum Urethra Vesicles

V100 > 95% D1cm3 < 86% D1cm3 < 78% D0.1cm3 < 110% V80 > 95%
V150 < 50% D2cm3 < 74% D2cm3 < 74%
V200 < 20%

• V o
d index: the cumulative volume of an organ o that is

covered by the radiation dose level d.
• Do

v index: the radiation dose level that covers the most-
irradiated cumulative volume v of an organ o.

DV criteria specify the aspiration values for DV indices, which
are often presented in relative terms to the planning-aim dose
and organ volumes. For example, the criterion V prostate

100 > 95%
indicates that the cumulative prostate volume that receives at
least 100% of the planning-aim dose is aspired to be more than
95% of the total prostate volume. The criterion V prostate

200 < 20%
indicates that the cumulative prostate volume that receives at
least 200% of the planning-aim dose be less than 20% of the total
prostate volume (in order to prevent necrosis, i.e., unnatural cell
death). Because seminal vesicles are considered to harbor micro-
scopic disease, the criterion V vesicles

80 > 95% indicates that 80% of
the planning-aim dose should cover at least 95% of the seminal
vesicles volume. Also, to avoid over-irradiation of the bladder, the
criterion Dbladder

1 cm3 < 86% indicates that the most-irradiated 1 cm3

of the bladder volume receive less than 86% of the planning-aim
dose. Table 1 shows the DV criteria of the prostate HDR-BT clinical
protocol currently employed at the Amsterdam UMC (location
AMC).

The radiation dose distribution of a treatment plan is often
approximated based on a sufficiently large number of random
dose calculation points. Let D be the set of nD dose calculation
points and T be the set of all nT dwell positions. Regarding the
strength and the shape of the radiation source employed for the
treatment, we can define an nD × nT dose rate matrix R, in
which each dose rate R ij is the amount of radiation released per
second (i.e., Gy/s) to the dose calculation point i ∈ D from the
radiation source when it resides at dwell position j ∈ T . Let
t = (t1, t2, . . . , tnT ) describe a treatment plan, i.e., a vector of
dwell times at nT dwell positions. This treatment plan t yields
a specific radiation dose distribution d = (d1, d2, . . . , dnD ), i.e., a
vector of radiation dose at nD dose calculation points, as follows.

d = Rt (1)

where each di is the total dose received at dose calculation point
i from all dwell positions. Let Do be the set of no

D dose calculation
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points inside organ o, Do ⊂ D, |Do| = no
D. Correspondingly, let do

be the dose distribution in organ o, i.e., a vector of radiation dose
at no

D dose calculation points in organ o. An indicator function
χ (di, d) is defined as:

χ (di, d) =
{

1 di ≥ d
0 di < d (2)

The value of a DV index V o
d can then be computed as:

V o
d =

1
no
D

∑
i∈Do

χ (di, d) (3)

The value of a DV index Do
v can computed as:

Do
v = do,s

⌊
v
vo ⌋

(4)

where do,s is the descending sorted version of do, and vo is the
volume (in cm3) represented by each dose calculation point inside
organ o.

An HDR-BT plan normally consists of dwell times of the radi-
ation source at about 100–300 dwell positions. The making of a
plan is carried out between catheter insertion and the actual irra-
diation. To reduce the inconvenience for the patient, the planning
time (not including the delineation of the organs and the implant)
should be as short as possible, and should not exceed 1 h. It is
not a trivial task to determine values for a few hundred dwell
times within such a limited time budget so that the resulting
radiation dose distribution (almost) satisfies all DV criteria in
the clinical protocol. Therefore, HDR-BT planners employ com-
puter software to assist the planning process. However, there
exist certain computational challenges that need to be properly
addressed.

1.3. Computational challenges in HDR-BT planning and related
works

1.3.1. Discontinuity
Computing the value of a DV index (V o

d or Do
v) involves count-

ing the number of dose calculation points where the radiation
dose exceeds a certain value. The discrete nature of the count-
ing introduces discontinuities in the search landscape of any
optimization problem formulation that is based on DV crite-
ria. Solving these problems by (classical) mathematical program-
ming methods result in Mixed Integer Linear Programming (MILP)
models, which could require many hours/days to obtain optimal
solutions [4]. In available BT planning software, the problem is
often simplified by employing linear models (solved by simulated
annealing [5]) or by employing quadratic models (solved by the
gradient-based Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm [6]). The so-called linear-penalty formulation in [5] can also
be solved by linear programming [7]. It has been shown that there
exists only a weak correlation between the objective values of
plans optimized under linear-penalty models and the quality of
DV indices of those plans that are used to assess the treatment
plan quality in clinical practice [8]. The optimal solutions of
such simplified models, therefore, are not guaranteed to satisfy
the original DV criteria-based models. In practice, BT planners
need to run available software many times with different penalty
factors (i.e., effectively creating new optimization models) or
need to perform graphical optimization (i.e., directly modifying the
spatial radiation dose distribution, and thereby adjusting dwell
times) until satisfactory plans are obtained [4]. A few researches
[9–11] have worked toward the automation of solving these lin-
ear models or quadratic models with multiple optimization runs,
in which each run has a different setting of penalty factors, result-
ing in multiple treatment plans (300 in [9,10] and 1000 in [11]).
The obtained plans are then filtered to identify the ones that
satisfy all the DV criteria in the clinical protocol. However, such
an approach still suffers from certain limitations. In particular:

• Because the optimization models are not based on DV in-
dices, the obtained plans can still be further improved with
respect to DV indices.
• It might happen that none of the obtained plans satisfies the

clinical protocol. The more DV criteria are considered, the
higher the probability that such a situation might happen.
For example, the protocol considered in [9–11] has only four
DV criteria while the one at our clinic has nine DV criteria
(see Table 1). Different rounds of multiple optimization runs
then need to be performed again until satisfactory plans are
obtained.

Recently, our preliminary work [12] has shown that algo-
rithms of the Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) family can exploit the dependency structure among
decision variables of the HDR-BT planning problem to efficiently
handle DV criteria without the need for model approximations.

1.3.2. Multi-objective optimization problem
When making a treatment plan, BT planners aim to maximize

the coverage of the planning-aim dose in target volumes while
minimizing undesired irradiation in OARs. BT planning, therefore,
is an inherent multi-objective optimization problem. However, if
each DV criterion is treated as a separate objective, such a clinical
protocol, like the one in Table 1, will result in a many-objective
problem (9 in our case). Such a many-objective optimization
problem is not only challenging and time-consuming to solve,
its trade-off results are also difficult to visualize and compre-
hend [13]. Several optimization models with 3–4 objectives for
a simpler clinical protocol that contains only 3–4 DV criteria
were proposed in [14], where the well-known Non-dominated
Sorting Genetic Algorithm II (NSGA-II [15]) was employed as the
solver. However, the problem modeling used in [14] does not
scale for more complicated protocols that contain many more DV
criteria (e.g., see Table 1), and it is not straightforward for BT
planners to determine which treatment plans from the resulting
trade-off front satisfy all criteria in the protocol at hand. In
practice, optimization tools in BT planning software often handle
the multi-objective aspect of HDR-BT planning by weighted-sum
approaches, in which all DV indices are simplified and then ag-
gregated together according to some weight vector, resulting in a
single objective function to be optimized [5,6]. Such weighted-
sum approaches can only yield a single treatment plan each
time, which is not guaranteed to exhibit the desired trade-off
between target coverage and organ sparing for the patient case
under concern. If BT planners are not satisfied with the resulting
plan, its dwell times must be re-optimized (by running opti-
mization tools again with different weight vectors or performing
manual graphical optimization), typically incurring 30–60 min of
the planning time (at our clinic). A review on optimization for
HDR-BT planning can be found in [16].

In our previous work [12], a bi-objective formulation was pro-
posed with the maximin approach to effectively model the clinical
protocol of 9 objectives (Table 1). Resulting trade-off fronts from
solving the model are easy to visualize and investigate, intuitive
to interpret, and no DV indices need to be omitted. The model is
also shown to be more efficiently solved by the Multi-Objective
Real-Valued GOMEA (MO-RV-GOMEA [17]), compared to many
common MOEAs (i.e., NSGA-II [15], MOEA/D [18], and MAMaL-
GaM [19]) [12]. A key reason for why the real-valued version of
GOMEA (RV-GOMEA [20]) can outperform state-of-the-art real-
valued EAs, such as Natural Evolution Strategy (NES [21]) or
Covariance Matrix Adaptation Evolution Strategy (CMA-ES [22]),
is that RV-GOMEA can straightforwardly employ partial evalua-
tions, i.e., the fact that the leverage impact of changing only a few
variables of a solution can be computed much more efficiently
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to update its objective values than performing a full function
evaluation. In addition, a clinical observer study performed on
the results of using MO-RV-GOMEA to solve the bi-objective
problem formulation using 20,000 dose calculation points (see
next subsection) for 18 prostate cancer patients and with 3 physi-
cians, showed that in 98% of cases, a MO-RV-GOMEA generated
plan was preferred to a clinically generated plan using currently
available methods [23].

1.3.3. The number of dose calculation points
The accuracy of computing DV index values depends on the

number of dose calculation points. The more points are used,
the more accurate DV index values are obtained, but also the
more computation time is incurred. In the BT planning software
Oncentra Brachy (Elekta AB, Stockholm, Sweden), the treatment
plan assessment module (in the default setting) computes DV in-
dices based on 500,000 points (i.e., 100,000 points per organ). The
optimization modules of the software, however, employ much
smaller sets of dose calculation points [5,6], about 100 times
fewer, during each optimization run for the sake of speed. Math-
ematical programming approaches also employ similar amounts
of dose calculation points to keep the models solvable by classical
optimization methods [4,7]. In our earlier work [12], a larger set
of dose calculation points (i.e., 20,000 points) was chosen to be
used for the multi-objective optimization of HDR-BT planning but
no analysis was provided to support the reason for this choice.
The results in [12], obtained after 1 h of running MO-RV-GOMEA,
were deemed to be good approximations of the Pareto trade-off
front and contain clinically desirable solutions [23]. However, the
whole time budget of 1 h for planning should not be used entirely
for optimization and the optimization time should be minimized
as much as possible without compromising too much on the
quality of the plans. It would be favorable if the optimization can
be run for at most 5 min, and the remaining time could then be
allocated to the investigation of trade-off plans and the selection
(and adaptation, if required) of the preferred treatment plan.
However, as shown in [12], there exist substantial differences
between the non-dominated fronts obtained after 10 min and the
ones after 1 h. This indicates that further research needs to be
done to reduce the amount of computing time.

1.4. Purpose & contributions

The purpose of our work is to develop an efficient computa-
tional technique to accelerate the performance of MO-RV-GOMEA
on solving the bi-objective HDR-BT planning problem such that
the approach is sufficiently efficient to be used in clinical practice.

Using clinical data, we first conduct experiments to show
the need to use large sets of dose calculation points. We then
propose a so-called multi-resolution scheme for adapting the size
of the set of dose calculation points such that the optimiza-
tion time can be substantially reduced without compromising
on the quality of the resulting trade-off fronts. Finally, we show
that the performance of our method can be further improved
with straightforward parallelization of the MO-RV-GOMEA solver
by using a multi-core CPU system that is nowadays commonly
available in modern desktops.

The remainder of the article is organized as follows. In
Section 2, we present our bi-objective formulation of the prostate
HDR-BT planning problem. In Section 3, we give a brief de-
scription of the MO-RV-GOMEA for the self-containedness of
this article, and propose the operation of the multi-resolution
scheme. In Section 4, we describe the experiment settings and,
in Section 5, we present and discuss the experimental results.
Finally, we conclude the article in Section 6.

2. Problem formulation

The DV indices in Table 1 are divided into two groups:

• Target Coverage: V prostate
100 and V vesicles

80

• Organ Sparing: V prostate
200 , V prostate

150 , Drectum
1cm3 , Drectum

2cm3 , Dbladder
1cm3 ,

Dbladder
2cm3 , Durethra

0.1cm3

We exclude the two indices V prostate
150 and V prostate

200 from the
Organ Sparing group and we use their criteria as hard constraints
in our optimization model, i.e., candidate treatment plans must
satisfy the two constraints V prostate

150 < 50% and V prostate
200 < 20% to

be considered as feasible solutions. While we want to irradiate
the prostate volume with the planning-aim dose as much as
possible, we need to restrict the coverage of excessive dose levels
(e.g., 150% and 200% of the planing-aim dose). An advantage of
excluding V prostate

150 and V prostate
200 is that these two V o

d indices have
different units (in cm3 or percentage of the prostate volume)
compared to Do

v indices (in Gy or percentage of the planning-aim
dose). Ensuring DV indices of a group having the same measure
unit is beneficial for employing the maximin approach to formu-
late the two objective functions as follows. Note that it might not
always be sensible to set some DV criteria as hard constraints.
In such cases, a V o

d index can be converted into a corresponding
Do

v index, and vice versa (see [24] for an example where all Do
v

indices in Table 1 are converted to V o
d indices.).

For each V o
d index in the Target Coverage group, the clinical

protocol has a corresponding lower-bound aspiration value V o,min
d .

The higher the value of such a V o
d index than this aspiration value,

the better the coverage of the required radiation dose level d
on this organ o. The Least Coverage Index (LCI) of a candidate
HDR-BT plan is defined as:

LCI(t) = min{δv(V
prostate
100 ), δv(V vesicles

80 )} (5)

where δv(V o
d ) = V o

d − V o,min
d measures the deviation of the V o

d
index value from the aspiration value V o,min

d .
For each Do

v index in the Organ Sparing group, the clinical pro-
tocol has a corresponding upper-bound aspiration value Do,max

v .
The lower the value of such a Do

v index than this aspiration value,
the better the sparing of organ o. The Least Sparing Index (LSI) of
a candidate HDR-BT plan is defined as:

LSI(t)
= min{δd(Dbladder

1cm3 ), δd(Dbladder
2cm3 ), δd(Drectum

1cm3 ), δd(Drectum
2cm3 ), δd(Durethra

0.1cm3)}

(6)

where δd(Do
v) = Do,max

v − Do
v measures the deviation of the Do

v

index from the aspiration value Do,max
v .

In general, maximizing LCI corresponds to optimizing the cov-
erage of the planning-aim dose on target volumes while maxi-
mizing LSI corresponds to optimizing the sparing of OARs from
radiation risks. These two objectives are conflicting with each
other and we thus have a bi-objective optimization model for the
prostate HDR-BT planning problem.

Fig. 2 shows the (LCI,LSI) objective space of the bi-objective
optimization model of the prostate HDR-BT planning problem
based on the clinical protocol in Table 1. The LCI axis is calibrated
in terms of percentage of a target volume. A plan t with LCI(t) =
0 indicates that V prostate

100 = 95% and V vesicles
80 ≥ 95%, or V prostate

100 ≥

95% and V vesicles
80 = 95%. A plan t with LCI(t) < 0 indicates that

V prostate
100 < 95% or V vesicles

80 < 95%, i.e., at least one target volume is
under-irradiated according to its criteria. A plan t with LCI(t) > 0
indicates that V prostate

100 > 95% and V vesicles
80 > 95%, i.e., all target

volumes are irradiated sufficiently. The LSI axis is calibrated in
terms of the radiation dose (Gy unit), which can be converted
by LSI(t)× planning-aim dose, because such absolute values are
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Fig. 2. The (LCI,LSI) objective space with an example trade-off front of HDR-BT
treatment plans. Treatment plans in the golden-colored corner satisfy all DV
criteria of the clinical protocol.

more convenient for planners to see the amount of excessive dose
above an OAR sparing aspiration value. A plan t with LSI(t) = 0
indicates that at least one sparing DV index is at its corresponding
aspiration value while the other indices satisfy their criteria. A
plan t with LSI(t) < 0 indicates that at least one sparing DV
index exceeds its aspiration value, i.e., an organ is over-irradiated.
A plan t with LSI(t) > 0 satisfies all DV criteria in the Organ
Sparing group. Consequently, a plan t with LCI(t) > 0 and
LSI(t) > 0 satisfies all DV criteria of the clinical protocol. In Fig. 2,
if a plan resides in the so-called golden corner of the (LCI,LSI)
objective space, that plan satisfies the clinical protocol. Note
that it is unnecessary to look for treatment plans that result in
excessive over-irradiation of OARs or excessive under-irradiation
of target volumes. Therefore, besides the two constraints that
are presented above for V prostate

150 and V prostate
200 , we employ two

additional constraints LCI(t) ≥ −0.2 and LSI(t) ≥ −0.2.
It is not always possible to obtain treatment plans in the

golden corner. The geometry of the inserted catheter implant
and the organs determine the quality of the trade-off front of
treatment plans that can be achieved. If the implant does not
allow golden-corner plans to be achieved, a treatment plan that
slightly violates some DV criteria can be chosen. Furthermore,
BT planners might also approve a plan outside the golden corner
for treatment if the trade-off between target coverage and organ
sparing exhibited by that plan is more beneficial for the specific
patient under concern, e.g., regarding the patient’s health con-
ditions. Such information, however, is difficult to be formulated
for optimization. We argue that it would be more beneficial to
solve the bi-objective model of HDR-BT planning presented here
to obtain the best possible trade-off front of treatment plans. BT
planners can then investigate the trade-off front to locate the plan
that exhibits the desired trade-off. Such an a posteriori approach
to the multi-objective HDR-BT planning can be facilitated by
MO-RV-GOMEA, presented in Section 3.

3. Optimization algorithm, multi-resolution scheme, and
multi-core CPU parallelization

3.1. MO-RV-GOMEA

The bi-objective problem formulation for prostate HDR-BT
planning can be more efficiently solved by MO-RV-GOMEA [17]
than many common MOEAs [12]. A more detailed outline of
MO-RV-GOMEA can be found in the Appendix A.

MO-RV-GOMEA employs an adaptive elitist archive [25] to
keep track of a pre-defined number of non-dominated solutions

obtained during the run because elitism is important for the con-
vergence of MOEAs [26,27]. In every generation, the selection set
S, that contains solutions with the best non-domination ranks se-
lected from the current population P , is clustered into k clusters of
equal size. This clustering procedure has been shown to enhance
the probability of obtaining an evenly-spread non-dominated
front [19]. Variation proceeds by processing each solution in the
population and restricting mating to the cluster that the solution
pertains to. One offspring is created for each population mem-
ber. Specifically, for each cluster, sets of dependent variables are
identified. For each set, new values are generated jointly, for each
solution, by sampling a normal distribution that was estimated
for these variables from the solutions in the same cluster. Each
of these partial modifications is only accepted if they result in
an improvement over the previous state; otherwise, the changes
are undone. The problem structure of HDR-BT planning allows the
impact of such local changes to be efficiently computed to update
the objective values of the solutions. Such partial evaluations can
be straightforwardly employed by MO-RV-GOMEA due to the
genetic-local-search-like nature of the GOM operator.

The Interleaved Multi-start Scheme (IMS [28,29]) is employed
to operate multiple populations of increasing sizes
asynchronously. For every b = 8 generations of population Pi,
the subsequent population Pi+1 (with |Pi+1| = 2 × |Pi|) is run
for one generation. All populations are kept running until the
computing budget is over or when satisfying results are obtained.
Practitioners thus do not need to determine the population size,
which is an important EA control parameter that is notoriously
difficult to set, especially for non-trivial real-world applications.

3.2. Multi-resolution scheme

If we consider the number of dose calculation points as a
control parameter of the algorithm, its setting can be automated
by incorporating it in the IMS as follows. The first population P1
starts with a small set of dose calculation points D. In this article,
we employ nD = |D| = 5000, i.e., no

D = 1000 for each organ
o ∈ {prostate, vesicles, bladder, rectum, urethra}. When each
subsequent population Pi is initialized, the set of dose calculation
points is re-generated and doubled in size, i.e., nD ← 2×nD. Note
that, while each population operates independently, the same set
of dose calculation points is used to compute the objective values
of all individuals of all populations and the elitist archive mem-
bers. Therefore, each time the set of dose calculation points is
re-generated, elitist archive members and all individuals in (non-
terminated) populations need to be re-evaluated with respect to
the new set. Fig. 3 shows the pseudocode for the multi-resolution
scheme together with the IMS.

3.3. Multi-core CPU parallelization

Modern desktop computers are often equipped with multi-
core CPUs, which are beneficial to accelerate evolutionary al-
gorithms, especially when solution evaluations are non-trivial.
When the evaluation of each individual is independent from
each other, solution evaluations can be straightforwardly paral-
lelized, i.e., multiple individuals can be evaluated at the same
time, depending on the number of cores available. In MO-RV-
GOMEA, every population member is transformed by GOM into
an offspring solution through a series of 2l − 1 (partial) modi-
fications, where each corresponds to the variables indicated by
a linkage set (see Appendix A.4). Note that we do not apply
parallelization in this horizontal manner because each step in
GOM depends on the result of the previous step. Instead, the
multi-core parallel computing can be implemented in a vertical
manner as follows. Each LT of every cluster has exactly 2l − 1
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Fig. 3. Multi-resolution scheme with the interleaved multi-start scheme.

linkage sets; thus, each linkage set can be indexed from the 1st
to the (2l − 1)th linkage set. We traverse from the 1st index to
the (2l− 1)th index. At every index ith, each population member
x is modified at the variables indicated by the ith linkage set
of the LT associated with the cluster that x belongs to. After all
population members are partially modified, solution evaluations
are performed for all these partially-altered individuals. Multi-
core parallelization can be straightforwardly applied to accelerate
these solution evaluations.

4. Experiment settings

In this work, we perform experiments using a desktop com-
puter with the configuration Intel(R) Core(TM) i7-3770S CPU
3.10 GHz. Our data set contains 18 anonymized prostate HDR-BT
patient cases from the Amsterdam UMC. For each patient case,
the BT treatment planning software Oncentra Brachy (research
version 4.6, Eleketa AB, Stockholm, Sweden) is used to acquire
the organ contours and the catheter delineations, and to activate
dwell positions that should be considered for treatment planning.
In each inserted catheter, the first dwell position starts at the
5.0 mm offset from the tip of the catheter, and the succeeding
dwell positions are activated with a step size of 2.5 mm. Dwell po-
sitions within the margin of 5.0 mm extended from the surfaces
of the targets (i.e., prostate and seminal vesicles) and outside
the margin of 1.0 mm extended from the surface of the urethra
are activated. Only these active dwell positions are considered
in the planning phase. We randomly uniformly generate 100,000
dose calculation points per organ (i.e., prostate, seminal vesicles,
rectum, bladder, and urethra). In total, we have a full set of
500,000 dose calculation points for each patient, offering the
same accuracy as in the BT treatment planning software. For each
patient case, a full dose rate matrix R that contains the dose rates
from active dwell positions to these 500,000 points can be created
according to the TG-43 dose calculation formalism (the American
Association of Physicists in Medicine AAPM Task Group No. 43
Report) [30–32] .

As explained in Section 1.3.3, available optimization tools do
not use such full sets of 500,000 dose calculation points, but
employ much smaller sets instead (e.g., about 5000 points in the
case of prostate HDR-BT) for the sake of speed. Therefore, we first

perform experiments with several fixed numbers of dose calcula-
tion points: 2500, 5000, 10,000, 20,000, and 40,000, respectively.
For each patient case and each number of dose calculation points,
we carry out 30 independent runs of MO-RV-GOMEA solving
the bi-objective optimization model. The set of dose calculation
points is randomly uniformly sampled at the beginning of each
run, and the running time is set at 1 h. The status of the elitist
archive is logged at every five minutes during the run, which
is used to compute the hypervolume development graph. All
obtained results are then re-evaluated based on the full set of
500,000 dose calculation points.

Second, we perform experiments with the multi-resolution
scheme. For each patient case, 30 independent runs of MO-RV-
GOMEA are carried out, and each run is assigned a running time
of 1 h. In each run, the number of dose calculation points starts
at 5000 points, which is generally similar to the literature. Each
time a new population is initialized (as in the IMS), the dose
calculation point set doubles its size and is re-generated. The
objective values of all the individuals of preceding populations
and the elitist archive are re-evaluated with respect to the new
dose calculation point set.

The Mann–Whitney–Wilcoxon statistical hypothesis test was
employed with p < α = 0.05 to test whether the hypervolume
result obtained by one setting of the dose calculation point set is
statistically significantly different from that of another setting.

5. Results and discussion

5.1. Fixed sets of dose calculation points

Fig. 4 shows the hypervolume development graphs and the
final approximation fronts (that have the median hypervolume
values) for Patient 1 from our data set. The results of other cases
can be found in the Supplementary Material. For each patient,
optimization runs are performed based on five settings of the
dose calculation point numbers: 2500, 5000, 10,000, 20,000, and
40,000 points, respectively, and the states of the elitist archives
(i.e., non-dominated solutions) at different time points are used
to compute the hypervolume values. Optimization runs using
small sets (i.e., 2500 or 5000 points) appear to obtain better
hypervolume results in the first 5–10 min of the runs compared
to when larger sets are used. After 10–20 min (for 2500–20,000
points) or 40–60 min (for 40,000 points), the hypervolume results
appear to be the same and, after 1 h, the obtained approximation
fronts are quite similar to each other regardless of the numbers
of dose calculation points. However, these results are computed
based on sets of dose calculation points with different sizes;
therefore, they should not be directly compared with each other.

In order to put all results on an equal footing, we re-evaluate
the objective values of all (non-dominated) solutions found dur-
ing the runs using the same full set of 500,000 dose calculation
points and then compute the hypervolume again. The more accu-
rate re-evaluations show that using small sets of dose calculation
points considerably compromises on the accuracy of the results.
After re-evaluation, only the approximation fronts from the runs
using 10,000–40,000 points still contain treatment plans in the
golden corner while the fronts from the runs using 2500 points do
not reach the golden corner anymore. The runs using 5000 points
contains very few treatment plans in the golden corner after
re-evaluation. Considering that golden-corner solutions indicate
treatment plans that satisfy all DV criteria in the clinical protocol,
optimization using small sets of dose calculation points fails to
truly find good treatment plans (if they exist) even after being
run for 1 h. Similarly, the re-evaluated hypervolume values of
using small dose calculation point sets are significantly lower. On
the other hand, the decreases are not so considerable if larger
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Fig. 4. Patient 1. Top row: the average hypervolume values of the trade-off fronts over time found by MO-RV-GOMEA with different settings of the number of dose
calculation points. Shaded areas represent the standard deviations. Bottom row: the trade-off front that has the median hypervolume value.

Table 2
Average re-evaluated hypervolume values and standard deviations (in brackets) of the trade-off fronts of treatment plans obtained
after 1 h with four fixed sets of dose calculation points: 2500, 5000, 10,000, and 20,000 points. The best values are bold-faced and
statistical significance (with Bonferroni correction) is marked with the asterisk(*) symbol.
ID 2500 5000 10,000 20,000

1 0.119860 (0.006958) 0.128910 (0.003588) 0.134097 (0.003934) 0.137120 (0.002470)*
2 0.135320 (0.005863) 0.144067 (0.005224) 0.150107 (0.004470) 0.154087 (0.002394)*
3 0.136653 (0.003600) 0.144323 (0.002174) 0.148513 (0.001758) 0.151270 (0.001386)*
4 0.132067 (0.004817) 0.141347 (0.003642) 0.146610 (0.002259) 0.149187 (0.001357)*
5 0.121887 (0.008496) 0.133600 (0.006079) 0.140003 (0.003994) 0.143653 (0.003063)*
6 0.111123 (0.003745) 0.121993 (0.002338) 0.126993 (0.001456) 0.129807 (0.001035)*
7 0.115131 (0.007622) 0.124077 (0.005963) 0.129817 (0.002672) 0.133747 (0.002217)*
8 0.116520 (0.004766) 0.124313 (0.004234) 0.129713 (0.002127) 0.133047 (0.001608)*
9 0.125023 (0.004535) 0.134780 (0.004195) 0.138753 (0.003547) 0.142210 (0.002685)*

10 0.108299 (0.004711) 0.116587 (0.003450) 0.122593 (0.001995) 0.124940 (0.001414)*
11 0.123730 (0.005262) 0.132930 (0.003162) 0.139370 (0.001971) 0.142807 (0.001309)*
12 0.116152 (0.006804) 0.125283 (0.004020) 0.129857 (0.003569) 0.132870 (0.003007)*
13 0.140207 (0.003818) 0.145240 (0.004029) 0.149423 (0.003418) 0.152597 (0.002218)*
14 0.125650 (0.005386) 0.134153 (0.004168) 0.139463 (0.003068) 0.142573 (0.002013)*
15 0.115981 (0.004569) 0.127167 (0.003091) 0.132930 (0.001970) 0.135407 (0.001816)*
16 0.119275 (0.006984) 0.126210 (0.006947) 0.131617 (0.005863) 0.137070 (0.003019)*
17 0.133703 (0.003768) 0.140320 (0.002511) 0.143843 (0.002810) 0.146880 (0.001705)*
18 0.133973 (0.006031) 0.143200 (0.003301) 0.148967 (0.002584) 0.152377 (0.001633)*

sets of dose calculation points are employed. The small differ-
ences of both hypervolume graphs and approximation fronts
before and after re-evaluation when 20,000 points (or 40,000
points) are used during optimization suggest that employing
a dose calculation point set of such a size (or larger sizes) is
necessary to ensure acceptable reliability and accuracy of the
results obtained for solving our bi-objective optimization model
of the prostate HDR-BT planning problem. Determining a proper
number of dose calculation points for optimization is important
because directly optimizing over the full set of 500,000 points
would incur prohibitive computing time (since the evaluation
time for each candidate treatment plan increases proportionally
with the number of points employed to calculate DV indices).

Fig. 5 shows the comparison results of hypervolume develop-
ment graphs for all patient cases in our data set when optimizing
over 2500, 5000, 10,000, 20,000, and 40,000 dose calculation
points, and the presented results are all re-evaluated based on
the full set of 500,000 points. The results here agree with our
observation mentioned above. In the first 5–10 min, optimization
runs that use small sets of dose calculation points (i.e., 2500 or
5000 points) obtain better hypervolume values (and thus better
non-dominated fronts). After 10–20 min, optimization runs that
use 10,000–20,000 dose calculation points catch up and exceed

the runs that use smaller sets. It takes about 40–60 min for
the runs with 40,000 dose calculation points to reach similar
results. Table 2 compares the average hypervolume values of the
re-evaluated trade-off fronts of treatment plans obtained after
1 h when 2500–20,000 dose calculation points are used. For all
patient cases, the optimization runs with 20,000 dose calculation
points achieve better hypervolume results than the runs with
fewer points, and the differences are found to be statistically
significant. It can be seen that after the first few minutes, the
runs with smaller sets seem to converge quickly while the runs
with larger sets continue to improve their non-dominated fronts.
We can draw an analogy between this phenomenon and the
overfitting problem in machine learning, where overfitting is
more likely to happen when the number of data points in the
training set is too few [33]. Similarly, optimization runs might
quickly converge to some setting of dwell times such that its
resulting dose distribution is (near-)optimal for the DV criteria
as considered for small sets of 2500 or 5000 dose calculation
points. However, such dwell-time settings are less likely (than the
dwell-time settings obtained by the runs with 10,000 or 20,000
points) to satisfy the DV criteria over the full set of 500,000 points
(i.e., similar to the validation set or test set in machine learning).

Table 3 compares the average hypervolume values of the re-
evaluated trade-off fronts of treatment plans obtained after 1 h
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Fig. 5. The average hypervolume values of the trade-off fronts over time found by MO-RV-GOMEA with different settings of the number of dose calculation points.

when 20,000 and 40,000 dose calculation points are used. The dif-
ferences between the results obtained from the two settings are
statistically insignificant or negligible. However, Fig. 5 shows that
it takes MO-RV-GOMEA with 40,000 points about 40–60 min to
obtain similar results which can be achieved in about 20 min by
MO-RV-GOMEA with 20,000 points. For 20–30 min of computing
time on a single-core CPU, 20,000 points appear to be the proper
number of dose calculation points. Therefore, in all remaining
experiments, we employ 20,000 points.

There exist several limitations with this rigid setting of a
fixed number of points for multi-objective HDR-BT planning. First,
Fig. 5 shows that, in our experiments, the hypervolume values

of optimization runs with 20,000 points do not significantly in-
crease after 20 min, indicating that the search starts to converge.
However, such an amount of running time pertains to the specific
configuration of our computer system. Considering that the total
HDR-BT planning time should not exceed 1 h, the optimization
running time should be kept as short as possible without compro-
mising on the accuracy because treatment planners need time to
investigate solutions from the resulting trade-off front and select
a plan that is preferred. Second, the number 20,000 is well-tuned
for solving our bi-objective model derived from a specific clinical
protocol for prostate HDR-BT. A different protocol at a different
clinic, that contains different kinds of clinical criteria, might need
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Table 3
Average re-evaluated hypervolume values and standard deviations(in brackets) of
the trade-off fronts of treatment plans obtained after 1 h with two fixed sets of
dose calculation points: 20,000 and 40,000 points. The better values are bold-faced
and statistical significance is marked with the asterisk(*) symbol.
Patient ID 20,000 40,000

1 0.137120 (0.002470) 0.137653 (0.001371)
2 0.154087 (0.002394) 0.154960 (0.001313)
3 0.151270 (0.001386) 0.152283 (0.000816)*
4 0.149187 (0.001357)* 0.148967 (0.000887)
5 0.143653 (0.003063) 0.144987 (0.001596)
6 0.129807 (0.001035)* 0.128693 (0.001689)
7 0.133747 (0.002217) 0.134757 (0.001419)*
8 0.133047 (0.001608) 0.133453 (0.001128)
9 0.142210 (0.002685) 0.143123 (0.001909)

10 0.124940 (0.001414) 0.124860 (0.001580)
11 0.142807 (0.001309) 0.142927 (0.001387)
12 0.132870 (0.003007) 0.134883 (0.002152)*
13 0.152597 (0.002218) 0.153803 (0.001097)*
14 0.142573 (0.002013) 0.143073 (0.001704)
15 0.135407 (0.001816) 0.135720 (0.000822)
16 0.137070 (0.003019) 0.138470 (0.001861)*
17 0.146880 (0.001705) 0.147683 (0.001050)*
18 0.152377 (0.001633) 0.152983 (0.000764)

Table 4
Average re-evaluated hypervolume values and standard deviations (in brackets) of the trade-off fronts of treatment
plans obtained after 1 h with a fixed set of 20,000 dose calculation points versus with the multi-resolution scheme.
The best values are bold-faced and statistical significance (with Bonferroni correction) is marked with the asterisk(*)
symbol.
ID 20,000 Multi-resolution Multi-resolution 4-core

1 0.137120 (0.002470) 0.137100 (0.001987) 0.139637 (0.001396)*
2 0.154087 (0.002394) 0.154700 (0.001460) 0.155910 (0.001766)*
3 0.151270 (0.001386) 0.151710 (0.001226) 0.153757 (0.000481)*
4 0.149187 (0.001357) 0.149397 (0.001466) 0.151310 (0.000815)*
5 0.143653 (0.003063) 0.144610 (0.002224) 0.146393 (0.001568)*
6 0.129807 (0.001035) 0.130153 (0.001147) 0.132303 (0.000570)*
7 0.133747 (0.002217) 0.134480 (0.001961) 0.137520 (0.001047)*
8 0.133047 (0.001608) 0.132843 (0.001853) 0.135430 (0.001103)*
9 0.142210 (0.002685) 0.143420 (0.001955) 0.146063 (0.001322)*

10 0.124940 (0.001414) 0.125563 (0.001726) 0.127843 (0.001124)*
11 0.142807 (0.001309) 0.143393 (0.001600) 0.145900 (0.000952)*
12 0.132870 (0.003007) 0.135170 (0.001750) 0.136223 (0.001728)*
13 0.152597 (0.002218) 0.153510 (0.000767) 0.154613 (0.000907)*
14 0.142573 (0.002013) 0.143107 (0.002136) 0.144933 (0.001240)*
15 0.135407 (0.001816) 0.136073 (0.001201) 0.137807 (0.000954)*
16 0.137070 (0.003019) 0.137980 (0.003402) 0.139610 (0.002494)*
17 0.146880 (0.001705) 0.147153 (0.001346) 0.148690 (0.000811)*
18 0.152377 (0.001633) 0.152913 (0.001418) 0.154290 (0.000989)*

a different number of dose calculation points. Similarly, HDR-BT
planning optimization for different treatment targets (e.g., head-
and-neck, cervix, or breast) might also require different sizes for
the dose calculation point sets. The number of dose calculation
points can thus be seen as a control parameter of an HDR-BT
planning optimization run. Determining a proper value for an EA
control parameter beforehand is difficult in real-world optimiza-
tion, and it would instead be more practical to employ the IMS to
adapt the number of dose calculation points during the run.

5.2. Multi-resolution scheme

Fig. 6 shows the hypervolume development graphs for solving
the bi-objective model of the prostate HDR-BT planning problem
based on a fixed set of 20,000 dose calculation points versus the
multi-resolution scheme, in which the number of dose calculation
points is adapted along the run. All presented results are re-
evaluated based on the full set of 500,000 points. The first two
columns of Table 4 compare the hypervolume values of the trade-
off fronts of treatment plans obtained after 1 h. Both methods
converge to trade-off fronts of similar hypervolume values at
the end of the 1-hour run (no statistically significant differ-
ence is found), indicating that their results are of equal quality.

The multi-resolution scheme, however, yields faster convergence
speed. Because the multi-resolution scheme starts with small sets
of dose calculation points, it has the same initial performance as
when fixed sets of 2500 or 5000 points are used. This is beneficial
since at the beginning of the run, the search is mainly explo-
rative and directly optimizing over large sets of dose calculation
points would then be inefficient. If the result is satisfactory, BT
planners can terminate the optimization run and investigate the
so-far-obtained trade-off front. Otherwise, if the optimization is
run further, new populations of larger sizes are initialized and
the dose calculation point set is enlarged accordingly, providing
better resolution (i.e., accuracy) to the search. Consequently, the
longer optimization is allowed to run, the better results (if they
exist) could be achieved. This is not the case when small dose
calculation point sets (e.g., 2500 or 5000 points) are employed, as
Fig. 5 shows that their hypervolume graphs quickly increase but
then soon converge to sub-optimal values. In the multi-resolution
scheme, early results based on small dose calculation point sets
provide effective guidance for later search, which is based on
larger dose calculation point sets, while not overly biasing the
search for a fixed set of points, because the set of dose calculation
points is enlarged before overfitting can occur.
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Fig. 6. The average hypervolume values of the trade-off fronts over time found by MO-RV-GOMEA with different settings of the number of dose calculation points.

Fig. 6 and Table 4 also show that the performance of the multi-
resolution scheme can be further improved by simply enabling
parallel computation on multi-core CPUs. In this work, we run
MO-RV-GOMEA with the multi-resolution scheme on a quad-core
CPU, which is a common configuration for desktop computers
at the time of writing. The parallelized MO-RV-GOMEA yields
better convergence speed and achieves similar or better hyper-
volume values than the single-core version. Within 5–10 min,
the parallelized MO-RV-GOMEA starts to converge, indicating
that the optimization run can be terminated because substantial
improvements are not expected to be found anymore.

Fig. 7 compares the resulting trade-off fronts of treatment
plans obtained by the runs that have the median hypervolume
values when a fixed set of 20,000 dose calculation points is used
versus the fronts that could be obtained if the multi-resolution
scheme is employed instead. All the presented results are re-
evaluated based on the full set of 500,000 dose calculation points.
When a fixed set of 20,000 dose calculation points is employed,
after being run for 1 h, MO-RV-GOMEA obtained trade-off fronts
that contain treatment plans in the golden corner for most patient
cases. Since the total planning time should be kept within 1 h, it
is unlikely that the whole time budget is used for optimization
and the optimization running time should be reduced as much as
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Fig. 7. Pareto fronts comparison.

possible. However, at the time point of 5 min, the trade-off fronts
obtained with fixed dose calculation point sets are still far from
the golden corner as well as from the 1-hour fronts, indicating
that treatment plans of much better quality can still be achieved.
Contrastingly, the 5 min trade-off fronts obtained with the multi-
resolution scheme are considerably better, closer to the golden
corner, and dominate the 5 min fronts obtained with the fixed

dose calculation point sets. Especially, when parallelized com-
puting of solution evaluations is enabled, the multi-resolution
scheme achieves trade-off fronts at 5 min runtime that are close
to the 1-hour trade-off fronts obtained with the fixed sets of
20,000 dose calculation points. The average hypervolume results
in Table 5 further support our claim. This indicates that the
parallelized runs could be terminated after 5 min and their results
could be presented to BT planners for selecting treatment plans.
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Table 5
Average re-evaluated hypervolume values and standard deviations (in brackets) of the trade-off fronts of treatment plans obtained after five minutes
with a fixed set of 20,000 dose calculation points versus with the multi-resolution scheme. The best values are bold-faced and statistical significance
(with Bonferroni correction) is marked with the asterisk(*) symbol. The 1-hour hypervolume results of using 20,000 points are also included for
comparison.
ID 20,000 (5 min) Multi-resolution (5 min) Multi-resolution 4 cores (5 min) 20,000 (1 h)

1 0.092210 (0.007147) 0.120333 (0.004767) 0.132980 (0.003975)* 0.137120 (0.002470)
2 0.099105 (0.005807) 0.143197 (0.006592) 0.150653 (0.003503)* 0.154087 (0.002394)
3 0.082324 (0.013354) 0.145260 (0.002590) 0.147557 (0.002453)* 0.151270 (0.001386)
4 0.071905 (0.012951) 0.135883 (0.002846) 0.145497 (0.001208)* 0.149187 (0.001357)
5 0.081201 (0.008974) 0.137207 (0.003394) 0.140130 (0.003490)* 0.143653 (0.003063)
6 0.072148 (0.007551) 0.116361 (0.005101) 0.126243 (0.002020)* 0.129807 (0.001035)
7 0.063972 (0.007704) 0.119053 (0.004933) 0.128750 (0.004020)* 0.133747 (0.002217)
8 0.068848 (0.007717) 0.122127 (0.002516) 0.129047 (0.001848)* 0.133047 (0.001608)
9 0.117427 (0.006150) 0.135947 (0.001895) 0.140753 (0.002352)* 0.142210 (0.002685)

10 0.047569 (0.011441) 0.109066 (0.007975) 0.120660 (0.002630)* 0.124940 (0.001414)
11 0.098454 (0.009159) 0.130887 (0.003990) 0.137880 (0.003368)* 0.142807 (0.001309)
12 0.102818 (0.010952) 0.126530 (0.005737) 0.132353 (0.001962)* 0.132870 (0.003007)
13 0.109106 (0.007456) 0.148427 (0.002415) 0.150877 (0.001414)* 0.152597 (0.002218)
14 0.080000 (0.007776) 0.132203 (0.007095) 0.140743 (0.001159)* 0.142573 (0.002013)
15 0.035456 (0.009783) 0.109627 (0.005418) 0.131137 (0.002119)* 0.135407 (0.001816)
16 0.115160 (0.002799) 0.126453 (0.004493) 0.132170 (0.004858)* 0.137070 (0.003019)
17 0.105128 (0.007904) 0.140923 (0.002899) 0.143373 (0.003322)* 0.146880 (0.001705)
18 0.068436 (0.011074) 0.143503 (0.001657) 0.150163 (0.001326)* 0.152377 (0.001633)

In Fig. 7, we also plot the quality of the clinical plans in terms
of the LCI–LSI objective space. These clinical plans were made
within 30–60 min by manual optimization for the treatment
of the corresponding patient cases. For many cases, the clinical
plans lie outside the golden corner, which shows the difficulty
of manually designing a BT treatment plan that satisfies all DV
criteria in the protocol based on the software currently clinically
used. Fig. 7 exhibits that, after being run for 5 min, parallelized
MO-RV-GOMEA with the multi-resolution scheme obtains trade-
off fronts that dominate the clinical plans in all cases. Such
performance supports the usability of our method for being em-
ployed in clinical practice. Note that, however, the comparisons
here are based solely on Pareto dominance with respect to the
(LCI, LSI) objective value vectors of treatment plans. To approve a
candidate plan to be used for treatment, BT planners might need
to consult additional information (e.g., the patient age and health
situation, or the dose distribution outside both target volumes
and OARs), which is difficult to be formulated in a meaningful and
intuitive way into our current bi-objective optimization model.
The inclusion of such information is left for future work.

5.3. Discussion

Overall, the multi-resolution scheme addresses two key issues
with dose calculation point sets of fixed sizes mentioned in Sec-
tion 5.1, i.e., (1) reducing the optimization running time as much
as possible while still assuring reliability of the obtained results,
and (2) setting a proper number of dose calculation points as a
control parameter of the optimization algorithm. Note that simply
parallelizing the run with a fixed set of 20,000 points would
only address the former issue because the latter depends on
the specific bi-objective optimization model for HDR-BT planning
being solved at hand. A different clinical protocol that contains
different DV criteria might require a different number of dose cal-
culation points. Furthermore, other treatment targets (e.g., cervix,
breast, head-and-neck) also require different sizes of the dose
calculation point set since each target has different characteristics
(e.g., volume, shape, surrounding OARs). If the size of the dose cal-
culation point set is fixed, the proper size needs to be determined
specifically for each specific case. The multi-resolution scheme
thus eliminates such non-trivial parameter tuning when solving
HDR-BT planning. In general, our approach is quite flexible and
capable of handling various types of problem difficulties and
planning aims, thus allowing other kinds of treatment criteria to

be considered during optimization, e.g., hot-spot restriction [34],
tumor control probability (TCP) [35], or normal tissue complica-
tion probability (NTCP) [35]. Such criteria are important to be
used in combination with DV indices, because it has been shown
that in certain cases typical DV indices alone are not enough to
describe what makes a treatment plan really good [36].

While our approach can be considered sufficiently fast for
dwell-time optimization tasks on computer desktops with only
CPU cores in current clinical practice, real-time HDR-BT plan-
ning problems in the upcoming future, e.g., MR-guided catheter
placement [37], would require a faster response time. A potential
solution is to further accelerate MO-RV-GOMEA with the use of
GPU parallelization, which we recently successfully achieved [38].
To further speed up both the CPU and GPU versions of our
approach, we will study alternative ways of sampling dose cal-
culation points that, for the specific DV indices of interest, result
in the same precision of the DV indices, but using fewer dose
calculation points (e.g., by exploiting shapes and surfaces of or-
gans) [39,40]. Furthermore, our approach has been tested so far
with only one protocol for prostate HDR-BT at our clinic (Amster-
dam UMC, University of Amsterdam). The future plan is to show
and improve its generalizability to other protocols at other clinics
and for other tumor sites as well.

6. Conclusions

We successfully addressed the purpose of this work, i.e., to
speed up MO-RV-GOMEA in solving the bi-objective prostate
HDR-BT planning problem. We first discussed the computational
challenges associated with automating HDR-BT planning for
prostate cancer through computational optimization, especially
the importance of properly determining the number of dose
calculation points, which are used to evaluate the quality of
candidate treatment plans. The more dose calculation points
are used, the more accurate the obtained results are, but the
more computing time is required. Based on our preliminary
research, we recommended the use of MO-RV-GOMEA as the
optimization algorithm for solving a bi-objective model for HDR-
BT planning. Here, we proposed a multi-resolution scheme that
can be seamlessly integrated with an interleaved multi-start
scheme for MO-RV-GOMEA, in which the number of dose calcu-
lation points is gradually increased during an optimization run.
We further described a straightforward approach to multi-core
parallelization of MO-RV-GOMEA. Experiments on our data set



N.H. Luong, T. Alderliesten, B.R. Pieters et al. / Applied Soft Computing Journal 84 (2019) 105681 13

of 18 patient cases confirmed the effectiveness and efficiency
of the multi-resolution scheme, especially in combination with
(4-core) parallel processing, in which the optimization running
time can be reduced to 5 min, whereas 30–60 min are required in
current practice in BT planning. This result and the recent positive
clinical observer study outcomes [23] effectively open the door
to using MO-RV-GOMEA together with the bi-objective problem
formulation in clinical practice.
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Appendix A. MO-Rv-GOMEA

A.1. Elitist archive

MO-RV-GOMEA employs a secondary population to keep track
of the non-dominated solutions obtained during the run because
it has been suggested that having such an elitist archive is better
for the convergence of MOEAs [26]. The desired archive target size
can be set by a user with respect to their available computing
resources. It is also shown in [12] that an archive size of 1000
members is suitable for bi-objective prostate HDR-BT planning.
Each time a new candidate solution is evaluated, it is added
to the archive if it is not dominated by any archive member.
Archive members that are dominated by the new solution are
removed from the archive. When the target size is reached, a
discretization procedure is invoked to divide the objective space
into equal hypercubes, where each hypercube can contain only
one non-dominated solution. A new non-dominated solution is
added into the archive if it resides in an empty hypercube or if
it dominates the current occupant of that hypercube. The size of
hypercubes is adapted along the optimization run to ensure the
archive maintains approximately its desired size. Details about
the implementation can be found in [25].

A.2. Population clustering

Recombination might not be effective when performed on
solutions that belong to different regions on the non-dominated
front, deteriorating the efficiency of the search. For example, it
is generally not beneficial to recombine a treatment plan that
maximizes target coverage and a plan that minimizes radiation
to OARs because such two plans are at different extremes of
the front and typically differ a lot from each other. Population
clustering in the objective space is an implementation of the
niching concept, such that solution variation can be restricted
to solutions that belong to the same cluster and probably bear
certain similarities.

MO-RV-GOMEA maintains a working population P that has
n solutions (i.e., candidate treatment plans), which can be ran-
domly uniformly initialized. In every generation, a selection set

Fig. A.1. An example linkage tree with l = 8 problem variables.

S is formed by selecting ⌊τn⌋ solutions that have the best non-
domination rankings from P , where τ = 0.35 [17]. The selection
set S is then clustered into k clusters of equal size c = 2

k |S|,
where k > m and m is the number of objectives. This clustering
procedure was shown to enhance the probability of obtaining an
evenly-spread non-dominated front [19].

A.3. Linkage learning

MO-RV-GOMEA bears much resemblance to estimation-of-
distribution algorithms (EDAs), in which solution variation is
done by sampling from the distribution model that is built over
the solutions of the selection set S in every generation. The
distribution model encodes certain linkages (i.e., dependencies)
among decision variables (i.e., dwell times) that should be consid-
ered when generating offspring solutions. For HDR-BT planning,
such linkage-based optimization was shown to result in better
results compared to when variable dependencies are disregarded
as in classic variation operators (i.e., crossover and mutation) or
univariate factorization [12].

MO-RV-GOMEA often employs the so-called Linkage Tree (LT)
as the linkage model structure. An LT F over a set of decision
variable indices L = {1, 2, . . . , l} is a set of linkage sets F =
{F 1, F 2, . . . , F |F |}, where each linkage set F i is a subset of L,
i.e., F i

⊆ L, i ∈ {1, 2, . . . , |F |}. The LT contains l univariate linkage
sets, i.e., F i

= {i}, i ∈ L, indicating independence among decision
variables. The LT also contains l − 1 multivariate linkage sets,
i.e., F i

∈ F , |F i
| > 1, where each linkage set as such indicates

a group of variables that depend on each other to some extent. A
special multivariate linkage set that contains all variable indices is
assigned as the root note of the LT, indicating the total-dependent
state among variables. The LT has in total 2l− 1 linkage sets. An
example LT is shown in Fig. A.1.

The LT can be built by the hierarchical clustering algorithm
UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
that has O(nl2) complexity [41]. The input of UPGMA is an l × l
matrix describing similarity (e.g., a measure of distance) between
all pairs of decision variables. The Mutual Information (MI) of
variables, which can be inferred from the selected solutions in
each cluster, can be used as a similarity metric in the black-
box optimization context. However, it has been shown in [12]
that, for the HDR-BT planning problem, the Euclidean distance
between dwell positions is a better metric for building the LT.
Dwell times at dwell positions that are close to each other should
exhibit stronger dependence than dwell times at far away dwell
positions. Therefore, instead of learning the LT structure in every
generation, we employ such geometry knowledge to build an LT
beforehand, and this LT is then fixed to be used throughout the
optimization run.

In every generation, each cluster of MO-RV-GOMEA is as-
signed its own LT. While their linkage structure is the same,
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the associated distributions of each LT are estimated over the
solutions in each cluster. Based on the solutions in each cluster,
a univariate normal distribution is estimated for each univariate
linkage set while a multivariate normal distribution is estimated
for each multivariate linkage set. Each normal distribution in-
volves only the variables that are specified by the linkage set
that it is associated with. In total, 2l − 1 normal distributions
are estimated for each cluster. These distributions will be used to
generate offspring solutions when performing variation. Details
about estimating and adapting these distributions can be found
in [17].

A.4. Solution variation by gene-pool optimal mixing

For each cluster, the LT and its normal distributions are used to
transform each population member x associated with that cluster
into an offspring solution o by the Gene-pool Optimal Mixing
(GOM) operator as follows. All linkage sets in the LT are traversed
in a random order. For each linkage set, we sample the associated
normal distribution to modify x at the variables specified by that
linkage set. The partially-altered solution is evaluated to compute
the resulting difference in objective values, and the changes are
accepted only if they result in an improvement over the previous
state; otherwise, the changes are undone. After all linkage sets
are traversed, the original population member x is evolved into
an offspring o.

Each cluster is assigned an LT, and the parameters of normal
distributions corresponding with each LT are estimated from
cluster solutions. A cluster that contains the best solutions for a
certain objective (more than solutions in other clusters) is called
extreme cluster. Clusters that are not extreme clusters are called
middle clusters. The LT of each cluster is then used to improve
population solutions associated with that cluster to create off-
spring solutions. The improvement check at every GOM step
depends on which cluster the population solution belongs to. If
the solution belongs to a middle cluster, improvement checks are
based on the Pareto dominance relation. If the solution belongs
to an extreme cluster, improvement checks are based solely on
the objective corresponding to that cluster. Further details about
GOM can be found in [17].

A.5. Partial evaluations

Due to the genetic-local-search-like nature of the GOM oper-
ator, MO-RV-GOMEA performs more evaluations per generation
than a typical MOEA (e.g., NSGA-II, MOEA/D). Most evaluations
are spent on evaluating partially-altered solutions (i.e., treatment
plans), which differ from their previous states at only a few
variables (i.e., dwell times). However, the problem structure of
HDR-BT planning allows partial evaluations, i.e., the impact of
such local changes can be efficiently computed to update the
solutions’ objective values. The radiation dose distribution cal-
culation in Eq. (1) is a multiplication of the dose-rate matrix R
and a dwell time vector t (i.e., a treatment plan). If the values
of only a few dwell times are altered, the new treatment plan
t ′ will be t ′ = t + ∆t , where ∆t consists of only a few non-
zero elements at the corresponding positions. The impact can
be computed by performing multiplications between only the
columns of R that correspond to the changed dwell times and the
non-zero elements in ∆t . Details about partial evaluations can be
found in [12,17].

Note that partial evaluations are straightforwardly available
for MO-RV-GOMEA because each step of GOM only modifies the
current solution at a few variables as indicated by a linkage
set. Typical MOEAs for real-valued optimization (e.g., NSGA-II,
MOEA/D, or MAMaLGaM), however, create a complete offspring

Fig. A.2. Interleaved Multi-start Scheme (IMS) with b = 2.

solution each time, which differs totally from the parent solutions
and requires a full evaluation. Properly implementing a simi-
lar LT-based variation procedure for these MOEAs is non-trivial,
substantially changing their working principles as well. Partial
evaluations were shown to enable obtaining much better per-
formance with MO-RV-GOMEA than many other state-of-the-art
MOEAs when solving the HDR-BT planning problem [12].

A.6. Interleaved multi-start scheme (IMS)

The IMS is a automatic population-sizing scheme, which was
firstly introduced in [28] to eliminate the requirement of popula-
tion size setting for the Genetic Algorithm and was later adapted
for MO-RV-GOMEA [17]. The IMS operates multiple populations
of increasing sizes in an asynchronously parallel fashion. The
first population P1 is initialized with some small size N1. Each
subsequent population Pi+1 is then initialized with a population
size twice as large as the preceding population, i.e., Ni+1 =

2 × Ni, i > 0. For every b generations of population Pi, the
subsequent population Pi+1 is run for one generation. In principle,
there is no upper bound of the population size; all populations are
kept running until some termination criteria are satisfied. Fig. A.2
shows an example of the IMS.

The generation bases of IMS b = 2, and 4 have been sug-
gested for the discrete optimization cases [29] while b = 8
was found to give good results for MO-RV-GOMEA (i.e., for real-
valued optimization) [17]. Note that while each population is run
separately, they contribute to the same elitist archive. Because
new populations of larger sizes are kept being added, smaller
populations should be terminated if they are inefficient to solve
the current problem instance. For MO-RV-GOMEA with IMS, a
population is deemed to be inefficient if it contributes less than
10% of the non-dominated front that is combined from all active
populations while a larger population contributes more than 10%
of this combined front [17].

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.asoc.2019.105681.
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