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Abstract

In this paper, we propose a novel lightweight relation extraction approach of

structural block driven - convolutional neural learning. Specifically, we detect

the essential sequential tokens associated with entities through dependency anal-

ysis, named as a structural block, and only encode the block on a block-wise

and an inter-block-wise representation, utilizing multi-scale Convolutional Neu-

ral Networks (CNNs). This is to 1) eliminate the noisy from irrelevant part

of a sentence; meanwhile 2) enhance the relevant block representation with

both block-wise and inter-block-wise semantically enriched representation. Our

method has the advantage of being independent of long sentence context since we

only encode the sequential tokens within a block boundary. Experiments on two

datasets i.e., SemEval2010 and KBP37, demonstrate the significant advantages

of our method. In particular, we achieve the new state-of-the-art performance

on the KBP37 dataset; and comparable performance with the state-of-the-art

on the SemEval2010 dataset.

Keywords: Relation Extraction, Deep Learning, CNNs, Dependency parsing

?Fully documented templates are available in the elsarticle package on CTAN.
Email addresses: wang@di.ku.dk (Dongsheng Wang ), prayag.tiwari@dei.unipd.it

(Prayag Tiwari ), sahil.garg@ieee.org (Sahil Garg), zhuhongyin2014@ia.ac.cn (Hongyin
Zhu), p.bruza@qut.edu.au (Peter Bruza)

1Dongsheng Wang and Prayag Tiwari contribute equally and share the co-first authorship.

Preprint submitted to Applied Soft Computing March 23, 2021

ar
X

iv
:2

10
3.

11
35

6v
1 

 [
cs

.C
L

] 
 2

1 
M

ar
 2

02
1

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle


1. Introduction

Relation extraction (RE) is an essential task in natural language processing

(NLP) to extract the relation between two entities for some given context. In the

past years, numerous massive scale knowledge bases (KBs), including DBpedia

[1],YAGO [2], and Freebase [3], have been constructed and being broadly utilized

in many NLP tasks and applications, such as question answering and web search.

These knowledge bases mainly consist of relational facts with some format, e.g.,

(Google, founder, Larry Page).

Though existing KBs contain a large number of facts, they are not close

to encompassing the vast number of facts embedded in plain text. RE is a

method of automatically extracting hidden relational facts from plain text to

supplement the KBs.

The relation extraction (RE) tasks are considered into two steps, relation

detection, and relation classification. Specifically, the first step is to detect

candidate relation mentions in sentences involving pairs of entities, and the

second is to classify these relation mentions into predefined categories [4, 5, 6].

In this paper, we focus on the latter task.

Non-relation instances can be managed as a normal relation class. On the

other hand, RE comes with a vastly unbalanced dataset where the quantity

of non-relation instances far surpasses relation instances, making this RE task

more challenging but more pragmatic than relation classification.

In past decades, most of the work in RE has been dominated by two ap-

proaches which can be differentiated by the essence of the relation description:

kernel-based approaches [7, 8, 9, 10, 11, 12, 13, 14], and feature-based approaches

[15, 16, 13, 17]. There is a common goal in these approaches which is to lever-

age a substantial body of knowledge resources and linguistic analysis in order

to map relation mentions into some rich representation. The purpose of the

rich representation is that it can be utilized by some statistical classifiers, for

example, maximum entropy [18, 19] or support vector machines (SVM) [20, 21].

2



The pipeline of linguistic analysis consists of several manually designed steps

for example, tokenization, chunking, part of speech tagging, parsing and name

tagging, which are often executed by the existing NLP module. Due to the

knowledge founded by the NLP research community, these approaches enable

the RE module to inherit knowledge from the pre-processing tasks. For exam-

ple, the indicated tasks in the pipeline above are well known to be subject to

significant levels of error when applied to out-of-domain dataset [22, 23, 24],

triggering the RE module to collapse. Thus, our main aim is to propose a novel

RE model which reduces the complexity of the feature engineering task, reduce

the error propagation rate and improve the performance in the RE task.

In this paper, we propose a novel structural block - driven convolutional

neural representation for RE. To be specific, we detect the essential spans as-

sociated with entities through dependency relation analysis, by obtaining the

parent, siblings, and children nodes of entities. These are ranked into selective

sequential tokens in the same order as they appear in the text. We enhance

the selective sequential tokens by enriching them with semantic tags (semantic

role and part-of-speech tags), all of which is encoded with multi-scale CNNs.

Furthermore, we add two more inter-block representations with one subtract

layer of the block representation subtracted by the two entity representations,

and one multiply layer of the two entity representations. Then, we concatenate

the block-wise and inter-block wise representations to infer the relation. As a

result, the encoding of a selective part of a sentence and the enhanced encoding

of the block leads to an improvement in both performance and efficiency. We

achieved a new state-of-the-art performance in the KBP37 dataset with an F1

of 60.9, and a comparable result in the SemEval dataset with an F1 of 81.1.

2. Literature Survey

Over recent years, many approaches have been proposed for relation extrac-

tion and classification. Most related work are based on applying NLP system

or pattern matching to derive lexical attributes. In general, pattern matching is
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the base for traditional relation classification task [25, 26] which can be catego-

rized into kernel-based approaches [9, 10] and feature-based approaches [27, 16].

The preceding category depends on manually designed patterns and so its time

consuming as well as requiring the need the input from experts. Consequently,

data sparsity is a challenge facing the latter approaches. Furthermore, extra

tools are required for these methods to derive linguistic features.

Distant supervision [28, 29, 30, 31, 32] came into much recognition since 2009

to address the challenge of pattern design, and also because of the scarcity of

manuially annotated data. This kind of approach integrates knowledge graphs

and textual datasets, where the knowledge graph is utilized to automatically

identify patterns from the textual dataset.

Our approach is inspired by neural models that learn features automati-

cally, e.g., Collobert et al [33]. Currently, deep learning is [34, 35] very widely

applied to learn the underlying feature automatically, so the remainder of the

literature survey will cover such approaches. For example, Lin [36] proposed

a sentence-level attention mechanism to alleviate the wrong labeling problem,

expecting to reduce the weight of the instances of noise. They employ a CNNs

encoder on multiple sentences with selective attention on expected correctly la-

beled sentences, by adding a learn-able weight to each sentence. Zhang et. al

[37] proposed a model that in the first stage amalgamates the Long Short-Term

Memory (LSTM) sequential approach with the type of entity position-aware

attention and shows improvement in relation extraction. In the later stage, TA-

CRED (106,264 instances), a large supervised relation extraction dataset was

attained from crowdsourcing and focused towards TAC KBP relations. This

combination of an effective model with high quality supervised data yields su-

perior relation extraction performance. The proposed model outperforms all

the neural-based baselines. Culotta et. al [38] proposed a probabilistic extrac-

tion model that yields mutual advantage to both ”bottom-up” and ”top-down”

relation extraction. This work demonstrates that amalgamating the relation

extraction with pattern discovery improves the performance of each task.

Zeng et. al [39, 40, 41] used a deep neural network to extract sentence and
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lexical level features. The proposed architecture takes the input (all the word

tokens) without complex pre-processing. Primarily, all the word tokens are con-

verted to vectors by using word embedding. Furthermore, lexical level based

features are extracted according to the stated nouns. Meanwhile, the convolu-

tional model is used to learn the sentence level features. The final extracted

feature vector is formed by combining these two-level features. In the end, the

obtained features are given to the softmax classifier to predict the association

between two marked nouns. The obtained results show that the proposed model

outperforms the baselines.

One interesting work by Nguyen et. al [42] used CNNs for relation extrac-

tion that learns features from the sentence automatically and hence reduces

the dependencies on external resources and toolkits. The proposed architecture

takes benefit of various window sizes for pre-trained word embedding and filter

on a non-static architecture as an initializer in order to enhance performance.

The relation extraction issues because of unbalanced data have been highlighted

in this work. Results shown improvement, not only over baselines for relation

extraction but also relation classification models. Liu et. al [43] explored how

dependency information can be used. Firstly, the newly termed augmented

dependency path (ADP) model is proposed, which comprises the shortest de-

pendency path among the two subtrees and entities joined to the shortest path.

In order to explore the semantic relation behind the ADP architecture, they

proposed dependency-based neural networks: CNNs to apprehend the most es-

sential features on the shortest path, and a recursive neural network (RNN) is

constructed to model the subtrees.

Huang et. al [44] proposed an attention-based CNNs for the relation clas-

sification task. The proposed architecture makes full use of word embedding,

position embedding and part-of-speech tag embedding information. which part

of the sentence is essential and influential w.r.t the two entities of interest, which

is determined by a word level attention approach. This model allows learning

of some essential features from labeled data, thus removing the dependency on

exterior knowledge, for example, the plain dependency structure. The model
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was tested on the SemEval-2010 Task 8 benchmark dataset and outperforms all

the state-of-art neural network models. Furthermore, the model can obtain this

performance with minimum feature engineering.

Zhang et. al [45] tried to address the lack of ability to learn temporal features

in CNNs, and focussing mainly on long-distance dependencies among nominal

pairs. They proposed a general architecture based on recurrent neural networks

(RNN’s) and contrasted it with CNNs-based approach. A new dataset was

introduced which is the refined version of MIMLRE [28]. Experimental results

on two datasets demonstrated that RNN’s-based approach can enhance the

performance of relation classification, and, in particular, is proficeint at learning

long distance relationships.

3. Technical Background

We introduce the essential technical background of our model, including

word embedding, CNNs, and semantic parsing. In particular, word embed-

ding initializes the vectors of words; CNNs are the representation models that

we employ to encode the text; and semantic parsing is the NLP approach we

adopted.

3.1. Multi-scale CNNs

CNNs was originally proposed for computer vision but has subsequently been

used for text classification [46] where it has shown high performance [47, 48]

which is superior to traditional NLP based methods.

CNNs is first utilized in a sentence-level classification by Kim et al. [49]

where they demonstrated improvement on NLP classification tasks.

Multi-scale CNNs have been demonstrated successful [50] where they em-

ploy multi-scale CNNs with different kernel sizes to overcome the drawback of

the simple convolutional kernel with fixed window size over encoded seman-

tics of documents, as shown in Figure 1. The reason underlying the design is

that determining a fixed window size using a simple convolutional kernel is de-

manding since small window normally requires deeper networks to gain critical
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Figure 1: Multi-scale CNNs [50]

information while large window sizes lead to loss of local information. Hence,

multi-scale CNNs with multiple window sizes are used to represent the compre-

hensive contextual information of the text.

When we employ this structure, the last Dense and predict layer will be

popped out, resulting in a CNN representation, which can be adopted to encode

texts of various types, followed by some new neural encoding scheme.

3.2. Word Embedding

Word embedding is a very prominent representation of document vocabu-

lary. This allows capturing the context of some given word in a document,

associations with other words, syntactic and semantic similarity, etc. Techni-

cally speaking, there is a mapping of words into vectors containing real number

by utilizing the dimension reduction, probabilistic model, or neural networks on

some word co-occurrence matrix. This is a kind of feature learning method and

language model as well. Word embedding is a kind of process to execute the

mapping utilizing neural networks.

Word embedding. Currently, there are several widely-used word embed-
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ding approaches for example, Glove (Stanford) 2, word2vec (Google)3, and

fastest (Facebook)4. In this work, Glove word embedding is used. Glove5 is

type of unsupervised learning model for getting vector representation of words.

Tag Embedding. Besides, we employ one-hot encoding for POS and de-

pendency tokens in our model, since they are not typical words or terms. Partic-

ularly, we encode a size of 24 dimensions embedding for POS labels (24 POS tags

in total); and 41 dimensions embedding for dependency labels (41 dependency

tags in total) in our model.

3.3. Semantic processing in NLP

3.3.1. Dependency Parsing

Dependency parsing 6 is the way to investigate the framework of the sen-

tence, forming an association between headwords and also those words which

change the heads. The following Figure 2 explains the dependency style inves-

tigation utilizing the traditional graphical approach which is accepted in the

community of dependency parsing. Here it is important to note that the lack of

nodes analogous to lexical categories or phrasal constituents in some dependency

parse; the inner framework of the dependency parse includes simply the directed

associations among lexical components in the sentences. Such associations di-

rectly encode hidden complex phrase structure parses to essential information.

For example, arguments of a given verb prefer are directly connected in the

dependency structure, although the relation to the main verb is far away in the

phrase tree framework.

2https://nlp.stanford.edu/pubs/glove.pdf
3https://www.tensorflow.org/tutorials/representation/word2vec
4https://fasttext.cc/
5https://nlp.stanford.edu/projects/glove/
6https://nlp.stanford.edu/software/nndep.html
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Figure 2: A dependency-style parse alongside the associated constituent-based investigation

for I prefer the morning flight through Denver8

3.3.2. POS Tags

POS 9 tags are very essential for constructing parse tree which are utilized

in constructing named entities recognitions (NERs) and extract semantic con-

nections among words. POS is also useful for constructing lemmatizers which

minimize words to their root form. POS tagging is the way to highlight a word

into the documents dataset to an associated POS tag that is based on some

context in which then the word is utilized.

4. Proposed Method

We propose a novel approach where the entity oriented structural block is

detected, then the semantic representation for the block is encoded utilizing

multi-scale CNNs, which is further enriched with inter-block representation.

We first introduce the structural block detection in section 4.1, followed by the

enriched semantic encoding using CNNs in section 4.2.

9https://nlp.stanford.edu/software/tagger.shtml
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Figure 3: Our prediction Scheme.

4.1. Structural Block Detection

We detect the block of coherent tokens for entities in a text. This design is

to find directly relevant sequential tokens, whilst retaining their local integrity.

First, we obtain the candidate entities, e.g., in the cases of SemEval and KBP37

dataset, they explicitly give two entities. Next, we detect their structurally

related tokens to restore their coherent structural semantics. We achieve this

by building up a dependency tree for each sentence with dependency relations

between tokens and find the parent, siblings and children nodes as a single block

for each entity ei, which is defined as Eq. 1.

single block(ei) =
∑
tj∈ei

(tj + head(tj) + siblings(tj) + children(tj)) (1)

where tj is a token from the entity with its rank position j in text; head(tj)

basically refers to the relation name (mostly verbs) while siblings(tj) refers

to those tokens that share the same relation name; and the children(tj) in-

dicates those tokens that depend on tj . A single block literally covers all the

structurally related tokens in terms of a single entity. Nevertheless, we pro-

vide an alternative version without including children, i.e., single block(ei) =
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∑
tj∈ei (tj + head(tj) + siblings(tj)). This version empirically leads to compa-

rable or better performance than the first version, the comparison of which is

detailed in section 5.4.

The selected tokens for a set of entity E is defined as Eq. 2 where all

single blocks are aggregated into one block defined as aggreg block(E). All the

token indexes that are selected are denoted as J = set(
∑

tj∈aggreg block(E) j),

indicating that duplicate j will be removed.

aggreg block(E) =
∑
ei∈E

single block(ei) (2)

Then, the sequential tokens for the block are defined in Eq. 3.

seq tokens(E) =

|J|⊕
j∈ranked(J)

tj (3)

As the block is locally integrated instead of being integrated through the

whole sentence, we additionally concatenate its semantic role role(t) and the

part-of-speech pos(t) to assist the generalized learning on the selective sequential

tokens. The resulting structural block for a sentence is defined as Eq.4,

structural block(E) =
∑

t∈seq tokens(E)

(t⊕ role(t)⊕ pos(t)) (4)

where structural block(E) is the enhanced representation for the selective struc-

tural block.

As a result, the relation predicting is defined with softmax function of the

probability distribution as below,

p(r|θ, s) = softmax(M(h� s) + b) (5)

where softmax(x) = Exp(x)∑K

k=1
Exp(xk)

(K is the number of the relation); M

is the matrix representation of the relation, s is the enhanced structural block

representation; h is the hidden layer; and b is a bias vector in terms of the

output.
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4.2. Modeling

Inspired by [51], we propose an adapted model scheme as shown in Figure

3. The design is to take full advantage of the selective structural blocks with

both block and inter-block representation.

For a given sentence and two entities, we first detect the structural block

with dependency analysis, resulting in a subset of sequential tokens. We then

enrich the semantics by concatenating their semantic role tags and POS tags as

demonstrated in Eq. 4. As a result, every single token of the block is represented

with three tokens, working together to represent the whole structural block. The

semantic role tokens are supposed to give rise to the generalized learning on the

selective sequential tokens.

Then, we encode these sequential tokens with multi-scale CNNs, as shown

in Figure 1. Specifically, we pop out the softmax layer of the model, resulting in

the previous CNN representation layer, to encode the sequential tokens of the

entities, dependency labels, POS labels, and structural block.

Besides, we explicitly encode the inter-block representation to gain the con-

nection among the block and two entities. The inter-block representation in-

cludes a subtract layer between the block and the two entities, expressed as

b−e1−e2; and a multiply layer between two entities expressed as e1∗e2, assist-

ing the similarity inference between the two entities (as sim(e1, e2) = e1∗e2
|e1|.|e2| ).

As a result, we fully connect the structural block representation and the

inter-block representation and softmax the final relation classification.

5. Experimental Results

5.1. Data

Semantic Evaluation 10 dataset has 10 relations, as listed below. However,

because they have order difference, therefore, there is a total of 19 relations, as

the ”Other” does not apply this rule.

10https://www.cs.york.ac.uk/semeval2010_WSI/datasets.html
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Table 1: Dataset statistics.

Dataset train (instances) test (instances)

SemEval2010 8,000 2,717

KBP37 15,917 3,405

The second KBP37 dataset 11 is the revised version of MIML-RE annotation

dataset, which was provided by Gabor Angeli et al. [28]. They utilized both the

2013 and 2010 KBP document dataset, as well as a July 2013 dump of Wikipedia

as the text dataset for further annotation. There are 33811 annotated sentences.

More details about this dataset are presented in table 1 and 2.

5.2. Hardware setting

We list the hardware settings used to conduct the experiments. It is impor-

trant to note that we employ ordinary CPU server settings instead of GPUs.

Table 3 indicates that our model scheme overall has low setting requirements

comparable to most existing servers. We will demonstrate that even on such

basic servers the training speed is both fast and efficient.

5.3. Evaluation Measures

There are several evaluation measures in machine learning for example, ac-

curacy, precision, recall, f-score, etc. In line with most related work, we employ

the F-score to evaluate the performance of our model and use it to compare the

performance with other state-of-art neural models.

Precision(P ) =
Number of correctly extracted entity relations

Total number of extracted entity relations
(6)

Recall(R) =
Number of correctly extracted entity relations

Actual number of extracted entity relations
(7)

11https://github.com/davidsbatista/Annotated-Semantic-Relationships-Datasets/

issues/3
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Table 2: Details about SemEval2010 and KBP37 datasets.

SemEval2010

No. of relation types: 19

No. of relation classes: 10

Classes:

Cause-Effect Instrument-Agency

Product-Producer Content-Container

Entity-Origin Entity-Destination

Component-Whole Member-Collection

Communication-Topic Other

KBP37

No. of relation types: 37

No. of relation classes: 19

Classes:

per:alternate names org:alternate names

per:origin org:subsidiaries

per:spouse org:top members/employees

per:title org:founded

per:employee— of org:founded by

per:countries of residence org:countries of headquarters

per:stateorprovince of residence org:stateorprovince of headquarters

per:country of birth org:member

no relation

F1 =
2P ∗R
P +R

(8)

5.4. Results and Discussion

As shown in Table 5, our model has superior performance on the KBP37

dataset and comparable performance on the SemEval2010 dataset. The main

advantage of our method is that we do not rely on manually determined features

Table 3: Hardware settings.

Property modes CPU Memory System Threads per core

Value 64 bits 40 125G Ubuntu 14.04 2

14



while all the other methods adopt a feature set to some degree. As we achieve

the new state-of-art performance in KBP37 (with an improvement of 2.1%), we

found that text context in KBP37 is much longer than in SemEval2010. Con-

sequently, it seems that our method has a superior advantage in long contexts,

since the selective structural block strongly reduces the higher levels of noise

associated with long contexts. The confusion matrix is shown in Figure 6, where

the mappings of label is listed at footnote 12.

In SemEval2010, we found that the Instrument-Agency has the lowest F1

(below 70%), which is the bottleneck for the overall results. The reason behind

this category can be that it has broader coverage of instances for the two types,

namely, Instrument and Agency; while as we can observe that Cause-Effect,

Member-Collection, etc. have more specific patterns, or smaller coverage of in-

stances. There are some state-of-art models [52, 53] whose F-score is slightly

higher than our model, but our model take less time to compute than oth-

ers. Further, our model rely on manual determined features while all the other

methods adopt some level of manually selected features. The confusion matrix

is shown in Figure 5.

Our method exhibits satisfactory training speed as well. The average epoch

training time is 4.6s on SemEval2010 and 6.3s on KBP37 datasets, due to CNNs

and the structrual block detection. Though we are not provided with the train-

ing time from other published models for comparison, we claim the satisfactory

efficiency of our method.

As discussed in Eq. 1, we empirically found that the adoption of children

nodes when detecting block does not necessarily influence the final performance.

As shown in table 4, the performance of with-children version is slightly lower

12no relation = 0; org alternate names = 1; org city of headquarters =

2; org country of headquarters = 3; org founded = 4; org founded by = 5; org members =

6; org stateorprovince of headquarters = 7; org subsidiaries = 8; org top members =

9; per alternate names = 10; per cities of residence = 11; per countries of residence =

12; per country of birth = 13; per employee of = 14; per origin = 15; per spouse =

16; per stateorprovinces of residence = 17; per title = 18
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than that of without-children; while it is the opposite for KBP37 dataset. There-

fore, we maintain that the single block detection can include or exclude the

children nodes.

A single model shows an F1 between 78% to 79% in SemEval2010 dataset,

but improves to 81.1% when we ensemble the results from 2-4 models that are

trained from the same scheme. Given the proposed scheme is independent of the

fundamental encoding model, we therefore assume that different representation

models, including LSTM, BiLSTM, or a mixture modeling can replace our multi-

CNNs; and an ensemble of models with different fundamental representations

can potentially improve the ultimate performance.

Table 4: Comparison of two versions of obtaining blocks.

Our Model Version SemEval2010 KBP37

Macro F1 (%)

Block with-children 80.7 60.9

Block without-children 81.1 60.7

Figure 4: F1-score on Semeval-2010 and KBP37
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Table 5: Results of different neural models compared to our proposed models

Model
Semeval-2010 KBP37

Macro F1 (%)

MV-RNN [54] 79.1 -

CNN+PF [39] 78.9 -

CNN+PF [45] 78.3 51.3

CNN+PI [45] 77.4 55.1

RNN+PF [55] 78.8 54.3

RNN+PI [55] 79.6 58.8

att-BLSTM [52] 84.0 -

GCN [53] 84.8 -

Our Model 81.1 60.9

6. Conclusion and Future Work

Relation extraction plays an important role in the population of KBs and

other NLP tasks. In this paper, we presented a novel relation extraction ap-

proach with few features called the structural block - driven convolutional neural

model. The design of the model is to 1) eliminate the noise due to irrelevant

parts of a sentence and 2) enhance the relevant block representation, by adopt-

ing semantic role embedding and concatenating the inter-block representation.

The block is detected by entity oriented dependency analysis, and the enhanced

encoding of the block is conducted not only on block-wise representation but

with two more layers, one subtract and one multiply layer, based on strong

multi-scale convolutional neural models.

We validated our model on two datasets, i.e., SemEval2010 and KBP37,

where we achieve the new state-of-the-art performance on the KBP37 dataset

(60.9 F1) and comparable performance with the state-of-the-art on the Se-

mEval2010 dataset (81.1 F1).
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Figure 5: SemEval2010 confusion matrix

Our method has a superior advantage in long sentence contexts since our

model only encodes sequential tokens within the block boundary. For example,

the performance in KBP37 demonstrated the model’s robustness in long con-

texts. Moreover, compared to most of the other relation extraction approaches,

we do not rely on a manually constructed feature set. Finally, the model has a

satisfactory training speed, e.g., 4.6s epoch training time in SemEval2010 and

6.3s in KBP37.

As the scheme we proposed is extensible, one avenue for future work is to

apply the scheme based on other basic encoders, instead of CNNs. For instance,

BERT [56] has proved to be highly efficient in multiple NLP tasks. We can

replace the CNNs with BERT as an enhanced BERT representation to observe

whether it can generate further improvement.
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Figure 6: KBP37 confusion matrix, label mappings is shown at the bottom of the result

section 5.4.
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